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ABSTRACT

In this thesis, we analyze the free energy and the overlaps in the 2-spin spherical Sherrington
Kirkpatrick (SSK) spin glass model with an external field for the purpose of understanding the
transition between this model and the one without an external field. We compute the limiting values
and fluctuations of the free energy as well as three types of overlaps in the setting where the strength
of the external field, h, approaches zero as the dimension, N , approaches infinity. In particular, we
consider overlaps with the external field, the ground state, and a replica. The methods involve a
contour integral representation of the partition function along with random matrix techniques. We
also provide computations for the matching between different scaling regimes and we discuss the
implications of the results for susceptibility and for the geometry of the Gibbs measure.

The analysis throughout this thesis focuses on the SSK model with external field strength
h ∼ N−α for 0 < α < 1. We find that the free energy exhibits a transition at α = 1/6 in the low
temperature case but at α = 1/4 at the high temperature case. Furthermore, the overlaps do not
exhibit any transition in the high temperature case, but exhibit two transitions in the low temperature
case, at α = 1/6 and α = 1/2. These scalings are referred to as the mesoscopic and microscopic
external field respectively. In the final chapter, we present a more detailed analysis of the overlaps
in the microscopic setting.

x



CHAPTER I

Introduction

1.1 Overview of Spin Glasses and the Spherical Sherrington-Kirkpatrick Model

Since they were first developed in the 1970s, spin glass models have captured the attention of
mathematicians, physicists, computer scientists, statisticians, biologists, economists, and others
because of their intriguing probabilistic properties [42]. These models were initially developed
by physicists to study the magnetic behavior of alloys that exhibit unusual properties at low
temperatures (see, e.g. [18, 40]). The magnetic substances that are most familiar to us typically
move between two magnetic phases: ferromagnetic and paramagnetic. In the ferromagnetic (low
temperature) phase, the magnetic spins of the particles align with each other and remain fixed
over time. In the paramagnetic (high temperature) phase, the magnetic spins are in a disordered,
unaligned state and are constantly shifting over time. However, certain alloys can also exhibit a
“spin glass phase” where the magnetic spins are disordered but fixed over time (sometimes called
“frozen disorder”). In the alloys for which this phase exists, it occurs when the temperature is low
and there is no external magnetic field (or the external field is very weak).

Magnetic field strength

T
em

p
er

at
u
re

Spin glass Ferromagnetic

Paramagnetic

Figure I.1: This spin glass phase diagram, adapted from [10], is for the Spherical Sherrington-
Kirkpatrick model with Curie-Weiss interaction. Although phase diagrams look different for each
model, this one is an illustrative example.
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The ferromagnetic, paramagnetic, and spin glass phases have been described as a magnetic
analog of solids, liquids, and glasses respectively, and it is this analogy that gives rise to the name
“spin glass” [42].

Spin glass models use probability to describe the typical magnetic behavior of particles in large
systems. More specifically:

• Disorder variables encode the random interactions between particles.

• A spin vector σ encodes the magnetic spins of all particles at a particular instance.

• A probability measure p(σ), which depends on the disorder variables, defines the spin
distribution.

Because the disorder variables are random, p is a random measure. We will now look at some
examples of spin glass models. We beginning with two well-known models, Edwards-Anderson
and Sherrington-Kirkpatrick, before turning to the Spherical Sherrington-Kirkpatrick model, which
is the focus of this thesis.

1.1.1 Important spin glass models: Edwards-Anderson and Sherrington-Kirkpatrick

Edwards-Anderson(EA) model

One of the earliest and most well-known spin glass models was developed by Sam Edwards and
Philip Anderson in 1975 [18]. In the Edwards-Anderson (EA) model, we have N particles with
indices i ∈ {1, 2, ..., N}, each of which has a spin σi. For simplicity, this model takes Ising spins,
meaning that σi ∈ {±1}. We denote a spin configuration by

σ = (σ1, σ2, ..., σN) ∈ {±1}N . (1.1.1)

In order to model a “typical” spin configuration, we need a way to represent the interactions between
particles. For this purpose, the EA model introduces a set of i.i.d. random variables {Jij} where a
positive value for Jij represents a tendency of spins i and j to align while a negative value represents
a tendency to anti-align. From these random variables, we get the Hamiltonian

HEA(σ) = −
∑
i∼j

Jijσiσj, (1.1.2)

where i ∼ j indicates that particles i and j are adjacent (based on whatever lattice structure the model
imposes). This nearest-neighbor constraint is physically realistic since the magnetic interaction
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between particles weakens with distance. We note that the sum
∑

i∼j Jijσiσj is maximized by
configurations σ in which spin pairs σi, σj generally have the same sign for positive Jij and opposite
signs for negative Jij . This corresponds to a low energy state for the system, hence the Hamiltonian
−
∑

i∼j Jijσiσj is minimized. Finally, the EA model describes the probability distribution of spins
in this system using the Gibbs measure

pEA(σ) =
1

ZN
e−βHEA(σ) for σ ∈ {±1}N (1.1.3)

where β = 1/T denotes the inverse temperature and ZN is a normalization factor (also called the
partition function) defined by

ZN =
∑

σ∈{±1}N
e−βHEA(σ). (1.1.4)

Since pEA(σ) is proportional to e−βHEA(σ), this probability measure reflects the fact that the system
prefers low energy states (i.e. spin configurations for which −HEA(σ) is large).

Sherrington-Kirkpatrick model

The Sherrington-Kirkpatrick (SK) model was developed in 1975 by David Sherrington and Scott
Kirkpatrick [40]. Unlike the EA model, which is based on nearest-neighbor interactions, the SK
model is an infinite-range or mean-field model, meaning that the interactions are between all pairs
rather than just neighbors. While this set-up is further from the reality of physical spin systems, it is
easier to analyze in certain respects and has interesting connections to other types of optimization
problems.

As with the EA model, the space of spin configurations is {±1}N but now the Hamiltonian is

HSK(σ) = − 1√
N

∑
1≤i<j≤N

Jijσiσj (1.1.5)

where {Jij}Ni,j=1 is a symmetric matrix whose entries are standard Gaussian random variables,
independent up to the symmetry constraint. This type of matrix is known as a Gaussian Orthogonal
Ensemble or GOE and its properties will be described in more detail in Chapter II (the diagonal
elements are customarily taken to have twice the variance of the off-diagonal elements, although
they are not included in this sum). The normalization factor 1/

√
N is needed to account for the fact

that we are now summing over all pairs rather than just nearest neighbors, so the number of terms in
the sum is O(N2) rather than O(N). We will see later that this normalization is the right one to
ensure the free energy is of order 1. As with the EA model, the SK Hamiltonian is associated with a

3



Gibbs measure
pSK(σ) =

1

ZN
e−βHSK(σ), ZN =

∑
σ∈{±1}N

e−βHSK(σ). (1.1.6)

The SK model is not physically realistic, since the interactions do not decay with distance.
However, the model has an alternative interpretation in terms of the following optimization problem
[46]: Given a set of N people, let Jij represent the mutual feeling of like (positive) or dislike
(negative) between individuals i and j. We would like to partition the people into two subsets
such that, in general, friends are together and enemies apart (we label the subsets as ±1). While
we cannot do this perfectly, a good strategy is to choose labels σi ∈ {±1} that will maximize the
quantity 1√

N

∑
1≤i<j≤N Jijσiσj . Equivalently, we wish to find σ that maximizes −HSK(σ). We

further note that, for sufficiently large β (low temperature), the Gibbs measure concentrates near the
maximizer(s) of −HSK and the concentration becomes more pronounced as β increases. Indeed,
the infinite β (or zero temperature) limit of the Gibbs measure has a point mass at the maximizer(s)
of−HSK . For this reason, the optimization problem is sometimes referred to as a “zero temperature
problem,” while the SK model is the analogous problem “with temperature” [46].

This interpretation of the SK model as an optimization problem is illustrative of the important
connections between spin glasses and optimization problems, including promising applications in
areas such as machine learning (see e.g. [1]).

Lastly, we mention that the model described above is often referred to as a 2-spin SK model,
which is a special case of the p-spin model [37] with Hamiltonian

HSK,p(σ) = − 1

N (p−1)/2

N∑
i1,...,ip=1

gi1...ipσi1 · · ·σip . (1.1.7)

This can be further generalized to mixed p-spin models, the Hamiltonians for which consist of linear
combinations ofHSK,p for different p values.

1.1.2 The Spherical Sherrington-Kirkpatrick model

The Spherical Sherrington-Kirkpatrick (SSK) model, which was introduced in 1976 by Koster-
litz, Thouless, and Jones [28], is a continuous analog of the SK model. By this we mean that the
spin variable σ = (σ1, · · · , σN), which was discrete in the SK model, is now located in SN−1, the
sphere of radius

√
N in RN :

SN−1 = {σ ∈ RN : ‖σ‖ =
√
N}. (1.1.8)
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The Hamiltonian for the 2-spin SSK model with no external field is defined in the same way as for
SK model, namely

HSSK(σ) = − 1√
N

∑
1≤i<j≤N

Jijσiσj. (1.1.9)

In this thesis we consider a variation of this model: the SSK with an external field. The Hamiltonian
for this model is defined as

H(σ) = −1

2

N∑
i,j=1

Mij σi σj −h
N∑
i=1

gi σi = −1

2
σ ·Mσ − hg · σ (1.1.10)

where g is a standard Gaussian random vector and M = 1√
N
Jij . More specifically, for i ≤ j, the

variables Mij are independent centered Gaussian random variables with variance 1
N

for i < j and
2
N

for i = j. By the symmetry condition, Mij = Mji for i > j, so we can sum over all pairs and
divide by 2 rather than restricting to i < j (some versions of this model omit the diagonal elements
from the sum but we include them). The associated Gibbs measure is

p(σ) =
1

ZN
e−βH(σ) for σ ∈ SN−1. (1.1.11)

The partition function ZN is no longer a summation, but a surface integral defined by

ZN =

∫
SN−1

e−βH(σ)dωN(σ) (1.1.12)

where ωN is the normalized uniform measure on SN−1. Since the disorder variables M and g are
random, the Gibbs measure is a random measure, which we also call a thermal measure.

Because the SSK model has continuous spins rather than Ising spins, we lose the direct connec-
tion to the physical setting in which σi represents the magnetic spin of the ith particle. However,
the SSK model has other benefits. The continuous nature of SSK makes certain types of analysis
easier, as we will see in the subsequent chapters. It also has applications in statistics, where the free
energy of the SSK model corresponds to a log-likelihood ratio used in hypothesis testing for spiked
random matrices [26, 25].

1.1.3 Quantities of interest: Free energy and overlaps

The free energy per spin component is

FN = FN(T, h) =
1

Nβ
logZN . (1.1.13)
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Again, since the disorder variables M and g are random, the free energy FN is a random variable.
We are interested in the fluctuations of the free energy when h→ 0 as N →∞.

We also consider the behavior of the spin variables taken from the Gibbs measure. We focus on
the following three particular overlaps.

• (overlap with the external field) Define

M =
g · σ
N

. (1.1.14)

• (overlap with the ground state) Let u1 be a unit eigenvector corresponding to the largest
eigenvalue of the disorder matrix M . The vectors ±u1 are the ground states in the absence of
an external field, and we simply call them the ground states. Define

G =
|u1 · σ|√

N
and O = G2 (1.1.15)

• (overlap with a replica) Let σ(1) and σ(2) be two independent spin variables from the Gibbs
measure for the same sample (i.e. disorder variables Mij and gi); σ(2) is a replica of σ(1).
Define

R =
σ(1) · σ(2)

N
. (1.1.16)

The factors N and
√
N are included since ||u1|| = 1, ‖σ‖ =

√
N , and the expected value of

‖g‖2 = g2
1 + · · ·+ g2

N is N (see below). Thus, this rescaling corresponds to normalizing the vectors.
The overlaps depend on the spin variable and also the disorder sample. Hence, there are two

different expectations to consider. We consider the thermal (Gibbs) fluctuations of the overlaps for
a given disorder sample. For some quantities, we also consider the sample-to-sample fluctuations
of the thermal average. We denote the thermal (Gibbs) average for a given disorder sample by the
bracket 〈·〉. On the other hand, the sample-to-sample average of an observable O is denoted by Ō or
Es[O]. For example, the thermal averages

M = 〈M〉 and X =
1

h
〈M〉

are called magnetization and susceptibility, respectively. Many of the results of this thesis are about
the thermal fluctuations of overlaps for a given disorder sample. Fixing the disorder sample in this
manner is also referred to as “quenched disorder.”
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1.2 Summary of Existing Research

The purpose of this thesis is to study the case h → 0 systematically including up to the
fluctuation term for the free energy and the three overlaps. Below is a survey of some of the existing
research as it connects to the work in this thesis.

The free energy for the Hamiltonian (1.1.10) above when h = 0 converges, both in expectation
and in distribution, to a deterministic value which was computed by Kosterlitz, Thouless and Jones
in [28]. The Hamiltonian (1.1.10) is the 2-spin case of the more general p-spherical spin glass
model which includes interactions between multiple spin coordinates. The limit of the free energy
for the general spherical spin glass models which also includes the external field is given by the
Crisanti-Sommers formula [15]. This formula is the spherical version of the Parisi formula [39] for
the spins in hypercubes. The Parisi formula and Crisanti-Sommers formula are proved rigorously
by Talagrand in [45, 44]. The result of Kosterlitz, Thouless and Jones shows that when h = 0, there
are two phases: the spin glass phase when T < 1 and the paramagnetic phase when T > 1. On the
other hand, they argued that when h > 0, assuming that the external field is uniform, there is no
phase transition.

The subleading (in N ) term of the free energy depends on the disorder and hence it describes
the fluctuations of the free energy. For h = 0 and T > 1, the fluctuation term is of order N−1

and has the Gaussian distribution. This is proved for both the hypercube case [3, 21, 14] and the
spherical case [7]. For h = 0 and T < 1, for the Hamiltonian above, the fluctuation term is of order
N−2/3 and has the GOE Tracy-Widom distribution [7]. Chen, Dey, and Panchenko performed a
similar calculation for the case with Ising spins where h > 0 is of order 1 and g is the vector of
all 1s. In this case, they find [11] that the fluctuation term is of order N−1/2 and has the Gaussian
distribution for all temperature. They claim that similar results hold for the spherical case and our
results confirm this claim using a different method. We note that their result also holds for mixed
p-spin with even degree terms. Chen and Sen [12] computed the ground state energy for spherical
mixed p-spin models (of which SSK is a specific case) and found that the fluctuations of the ground
state energy are Gaussian in the presence of an external field.

In [22], the large deviations of the free energy distribution was obtained at T = 0 from a
non-rigorous saddle point calculation of the moments of ZN in the large N limit (see also [17] for
a rigorous version). From this calculation a transitional regime h ∼ N−1/6 for the fluctuations of
the free energy was conjectured. A proof of the existence of this regime was obtained in [27]. In
Chapter III, we obtain explicitly the fluctuations of the free energy in the regime h ∼ N−1/6 for any
T < 1 and in the regime h ∼ N−1/4 for T > 1. As we show, our results match in the tail of the
distribution with those of [22]. Note also the recent physics work [23] where a different spherical
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model of random optimization was considered, which exhibits a similar phenomenology.

The overlap with the external field has been studied in the context of magnetism and suscep-
tibility. Kosterlitz, Thouless, and Jones [28] computed the susceptibility as h tends to zero and
observed a transition at the temperature T = 1. Cugliandolo, Dean, and Yoshino [16] computed
two different versions of this limit of the susceptibility, in the first case taking limh→0 limN→∞ and
in the second case taking limN→∞ limh→0. In the first of these cases, they get the same result as
[28] with a transition at T = 1, but in the second case they do not observe a transition. Furthermore,
they find that the two types of limits agree for T > 1 but not for T < 1. They also extend these
results to a more general class of models (beyond Gaussian) and to non-linear susceptibility. In
Chapter IV, we focus on the linear susceptibility and differential susceptibility in the Gaussian case,
and obtain a more detailed picture. By considering the three regimes h > 0 constant, h ∼ N−1/6,
and h ∼ N−1/2, we see that the first limit considered by Cugliandolo et al agrees with our result for
the h→ 0 limit of the case where h > 0 is a fixed constant. The second limit that they consider is
analogous to our result for the H → 0 limit of the h ∼ N−1/2 case where we define H = hN1/2 (i.e.
we take N →∞ for h = HN−1/2 with fixed H and then we let H → 0). However, we find in this
case that the susceptibility depends on the sample and is a function of g · u1, the inner product of
the external field and the ground state. This dependence was not apparent in [16], since their set-up
fixes g · u1 = 1. When g · u1 = 1 we find, as they do, that there is no transition in the susceptibility
between high and low temperature. However, a transition does exist for all other values of g · u1.
This is discussed in Section 4.1 (specifically subsection 4.1.7) and a rigorous proof is presented in
Chapter V.

The overlap with the ground state is relevant to understanding the geometry of the Gibbs
measure. Subag [43] examines the geometry of the Gibbs measure for general p-spin spherical
models and finds that the Gibbs measure concentrates in spherical bands around the critical points of
the Hamiltonian. These bands are of the form Band(σ0, q, q

′) = {σ ∈ SN−1 : q ≤ R(σ,σo) ≤ q′}
where σ0 is a critical point ofH and R(σ,σ0) is the overlap of σ and σ0. In Section 4.2, we focus
specifically on the overlap with the ground state (a special case of R(σ,σ0) where σ0 is the critical
point corresponding to the largest eigenvalue). In the h = 0 regime, as expected, we see the Gibbs
measure concentrates in a band and we examine how this geometry changes for the case of positive
constant h as well as the cases of h ∼ N−1/6 and h ∼ N−1/3.

The overlap with a replica has been studied extensively, both for the Ising spin models and the
spherical spin models with general p-spin interaction. For p = 2 the non-rigorous replica method
used in [28, 15, 22] obtains a replica-symmetric saddle point leading to a prediction for the overlap
q as a function of h. In particular, at h = 0, the prediction is that q = 1− T for T < 1 and q = 0
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for T > 1. These calculations were confirmed rigorously in [38]. Recently, Landon, Nguyen, and
Sosoe extended the results further to examine the fluctuations of the overlap at high temperature
[36] and low temperature [29]. They find, in particular, that the overlap has Gaussian fluctuations
in the high temperature regime, whereas, in the low temperature regime, the fluctuations are of
order N−1/3 and converge to a random variable that has an explicit formula in terms of the GOE
Airy point process (see subsection 2.1.4 for a description of this). In Section 4.3, we obtain similar
results for h ∼ N−1/6 and h ∼ N−1/2.

1.3 Highlights of the results

1.3.1 Results for the free energy

We examine the behavior of the free energy, including its leading order and the sample-to sample
fluctuation term, as N →∞ when h = O(1) and when h→ 0. Note that throughout this thesis, we
often use the notation h = O(1) to mean that h is a positive constant. We find that, in each case,

FN(T, h)
D' F (T, h) + sample fluctuations (1.3.1)

where
D' denotes an asymptotic expansion in distribution with respect to the disorder variables. The

limiting free energy F (T, h) includes all deterministic (depending only on h and T ) terms whose
order exceeds that of the sample fluctuations. The “sample fluctuations” refers to the largest order
term that depends on the disorder sample. Our findings in each case are summarized in Table I.1.
Upon computing the leading term and sample fluctuations for FN(T, h) with h = O(1), we made
two key observations. Firstly, the free energy for h = O(1) does not exhibit a transition as we see
in the h = 0 case; this observation is consistent with the result of [11] for Ising spins. Secondly,
while the limiting free energy is continuous in T and h, the sample fluctuations in the h = O(1)

case do not agree with those in the h = 0 case (neither for T > 1 nor for T < 1). This suggests
the existence of transitional regimes. We found that, for T > 1, the transition occurs at h ∼ N−1/4

while, for T < 1, the transition occurs at h ∼ N−1/6. We computed the asymptotic expansion of
FN(T, h) in these transitional regimes.
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Case Limiting free energy F (T, h) Sample fluctuations Result

h = 0, T > 1 1
4T

N−1 Gaussian distribution 3.1.1

h = 0, T < 1 1− 3T
4

+ T log T
2

N−
2
3 TWGOE distribution 3.1.2

h = O(1) γ0

2
− Ts0(γ0)

2
− T−T log T

2
+ h2s1(γ0)

2
N−

1
2 Gaussian distribution 3.1.5

h ∼ N−
1
4 , T > 1 1

4T
+ h2

2T
N−1 Gaussian distribution 3.2.2

h ∼ N−
1
6 , T < 1 1− 3T

4
+ T log T

2
+ h2

2
N−

2
3 function of the GOE Airy 3.3.2

point process and Gaussian r.v.’s

Table I.1: This table summarizes our findings for the leading term and fluctuations of FN(T, h)
in the various cases we considered. By “limiting free energy” we actually mean an asymptotic
expansion of F (T, h) including all terms of order greater than that of the fluctuations. The h = 0
cases were already known [7] but are included here for completeness. In the limiting free energy for
the h = O(1) case, the quantity γ0 is deterministic and depends only on T and h. The functions s0

and s1 are defined in Chapter II. For more details on the notation, derivation, and precise formulas
for the fluctuation terms, see the corresponding result.

When comparing the fluctuations in each regime, we observe that the order of the fluctuations
are largest in the h = O(1) case, where they have order N−1/2 and Gaussian distribution. This
holds for all temperatures. When T > 1 but h = 0 or h→ 0, the fluctuations remain Gaussian, but
their order shrinks to N−1. When T < 1 and h = 0 or h→ 0, the fluctuations have order N−2/3.
In the case of h = 0 they have GOE Tracy-Widom distribution while, in the case of h ∼ N−1/6,
their distribution is a function of the GOE Airy point process and of a sequence of i.i.d. standard
Gaussian random variables. See Table I.1 for the equations corresponding to each of these results.

1.3.2 Results for the overlaps

In the next three tables we state our findings for the overlap with the external field, with
the ground state and with a replica. In each case the thermal average and thermal fluctuations
are presented in interesting regimes of h and T . The thermal average and fluctuations in most
cases depend on the disorder sample. Our findings also have implications for magnetization and
susceptibility, which will be described in more detail in section 4.1.

10



Case Thermal average 〈M〉 Thermal fluctuations of M Result

h = O(1) for all T hs1(γ0) +O(N−
1
2 ) N−

1
2 Gaussian 4.1.2

(and h = 0, T > 1) 4.1.3

h ∼ N−
1
6 , T < 1 h+O(N−

1
2 ) N−

1
2 Gaussian 4.1.5

h ∼ N−
1
2 , T < 1 h+ |n1|

√
1−T√
N

tanh
( |n1|h

√
N(1−T )

T

)
N−

1
2 [Gaussian + Bernoulli ] 4.1.7

(and h = 0, T < 1) 4.1.3

Table I.2: This table summarizes our finding for M, the overlap with the external field. Here,
γ0 = γ0(h, T ) in the first row is deterministic and has the same value as in Table I.1. The variable
n1 in the third row is n1 = u1 · g. For the top two rows, the leading term in 〈M〉 and the thermal
fluctuations of M do not depend on the disorder sample. However, the O(N−

1
2 ) subleading terms

in 〈M〉 for the top two cases and both the leading term in 〈M〉 and the thermal fluctuations of M of
the last row do depend on the disorder sample.

Case Thermal average 〈G2〉 Thermal fluctuations of G2 Result

h = O(1) for all T 1
N

(
h2n2

1

(γ0−2)2 + T
γ0−2

)
N−1 χ-squared (non-centered) 4.2.2

(and h = 0, T > 1) 4.2.7

h ∼ N−
1
6 , T < 1 1− T −

∑N
i=2

n2
i h

2N1/3

(t+a1−ai)2 N−
1
6 Gaussian 4.2.4

h ∼ N−
1
3 , T < 1 1− T +O(N−

1
3 ) N−

1
3 r.v. that depends on disorder 4.2.6

(and h = 0, T < 1) 4.2.7

Table I.3: This table summarizes our finding for G2 = O, the squared overlap with the ground state.
Here ni = ui · g and ai = N2/3(λi − 2). The quantity γ0 in the top row is the same term from
Tables I.1 and I.2. In the second row, the variable t and the total sum, which is O(1), depends on
the disorder sample. All leading and subleadings terms of 〈G2〉, and the thermal fluctuations of G2,
except the leading term, 1− T , of 〈G2〉 in the last row, depend on the disorder sample.
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Case Thermal average 〈R〉 Thermal fluctuations of R Result

h = O(1) for all T h2s2(γ0) +O(N−
1
2 ) N−

1
2 Gaussian 4.3.3

(and h = 0, T > 1) 4.3.8

h ∼ N−
1
6 , T < 1 1− T +O(N−

1
3 ) N−

1
3 r.v. that depends on disorder 4.3.5

h ∼ N−
1
2 , T < 1 (1− T ) tanh2

( |n1|h
√
N(1−T )

T

)
O(1) Bernoulli 4.3.7

(and h = 0, T < 1) 4.3.8

Table I.4: This table summarizes our finding for R, the overlap between two independent spins. The
quantity γ0 is the same term from the preceding tables and n1 = u1 · g. The subleading terms of
〈R〉 in the top two rows and the leading term of 〈R〉 in the third row depend on the disorder sample.
The thermal fluctuations of R also depend on the disorder sample for the bottom two rows.

1.3.3 Geometry of the Gibbs measure

The results for the overlaps give us information on the geometry of the spin configuration
under the Gibbs measure, some of which we summarize here. Recall that the spin configuration is
parameterized by the vector σ = (σ1, · · · , σN) which belongs to the N − 1 dimensional sphere of
radius

√
N and we consider the limit of large N . At high temperature, T > 1, the spin vector σ is

nearly orthogonal to the ground state ±u1 when h = 0. For h = O(1), the spin vector concentrates
on the intersection of the sphere and the single cone around the vector g. The leading term of the
cosine of the angle between the spin and the external field g depends on the temperature and the
field but not on the disorder sample, and, as one can expect, is an increasing function of the field.
See Figure I.2 (a). This implies that as the field becomes stronger, the cone becomes narrower.
There are no transitions between h = 0 and h = O(1).
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(a) T = 2 (b) T = 0.5

Figure I.2: These are plots of the leading term of the angle between the spin and g. The formula is
given by M0 in Subsection 4.1.3.2. The function depends only on T and h. (a) T = 2, (b) T = 0.5.

Now consider the low temperature regime 0 < T < 1. When h = 0, the spins are concentrated
on the intersection of the sphere with the double cone around the ground state ±u1 such that the
leading term of the cosine of the angle is

√
1− T . This angle was found in [28, 15, 22] and in

particular, [38] showed that spins are distributed uniformly on the intersection of this double cone
with the sphere. Consider increasing the external field strength h. When h = O(1), the spin vector
concentrates on the intersection of the sphere and the single cone around the vector g just like the
high temperature case. See Figure I.2 (b), which is qualitatively same as Figure I.2 (a). However
now between h = 0 and h = O(1), there are two interesting transitional regimes, h ∼ N−1/2, which
we call the microscopic regime, and h ∼ N−1/6, the mesoscopic regime.

In the microscopic regime, h ∼ N−1/2, at low temperature 0 < T < 1, the results of this thesis
lead us to the Conjecture 4.4.1, which implies that the double cone becomes polarized into a single
cone. The spin vector prefers the cone which is closer to g to the other cone by the

e
2h
√
N|n1|

√
1−T

T to 1 probability ratio.

The spin vector is more or less uniformly distributed on the cones. In this regime, the response
of the spin to the field is the sum of (i) a linear response in the direction transverse to ±u1 (i.e.
along the cones) and, (ii) the response of an effective 2-level system, which may be modeled as
a single one-component effective Ising spin σ√

N
= ±Su1 of size S = |n1|

√
1−T√
N

with energy scale
E = NhS =

√
Nh|n1|

√
1− T (leading to a mean magnetization S tanh(E/T )). Note that both S

and E are sample dependent, but depend only on |n1|, the overlap of the ground state and the field.
For h ∼ N−1/6, all eigenvectors and eigenvalues become important. In this regime, the spins

are concentrated on the intersection of the sphere and a single cone around the ground state, but the
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cone depends on the disorder sample. The cosine of the angle between the spin and u1 changes
from

√
1− T to a function which depends on all eigenvalues λi and the overlaps ni = ui · g of the

eigenvectors and the external field. Furthermore, the spins are no longer uniformly distributed on the
cone. They are pulled into the direction of g. This regime can be called “mesoscopic” as sample to
sample fluctuations are strong and non trivial. Note that in the present model the magnetic response
to the field, although non-trivial and sample dependent, does not exhibit jumps (so-called static
avalanches or shocks) at very low temperature, as were observed and studied in other mean-field
models such as the SK model; see [50, 49, 31, 32, 33].

For more details on the geometry of the Gibbs measure see Section 4.4, in particular, Table IV.1
and the summary in Subsection 4.4.3.

1.3.4 Detailed analysis of the microscopic external field

Chapter V focuses on the case where h ∼ N−1/2, also known as the microscopic regime. In
particular, we present a rigorous proof of Theorem 5.2.1 (stated below), which provides the moment
generating function for the overlap M. This is essentially a rigorous version of Result 4.1.6 whose
corollary, Result 4.1.7, appears in the table above.

It is important to note that this overlap involves two types of randomness. First, we have
randomness from the choice of M and g, which we refer to jointly as the “disorder sample.” Second,
we have randomness from the choice of spin variable. For the proofs in Chapter V, we fix an
arbitrary disorder sample so that M is a random variable depending on a fixed disorder sample and
random spin variable. The moment generating function in Theorem 5.2.1 provides the distribution
of M as a function of the fixed disorder sample.

This result is valid for an arbitrary disorder sample, subject to certain constraints that hold with
high probability. In particular, for any sufficiently small ε > 0, the event Eε (defined in Section
5.1.4) provides a set of conditions on M and g that are sufficient for Theorem 5.2.1 to hold. Section
5.1.4 provides a detailed description of the event Eε along with a proof that

P(Eε) ≥ 1−N−ε/10 for all sufficently small ε > 0 and all sufficiently large N . (1.3.2)

Theorem (5.2.1). Given T < 1 with h = HN−1/2 for some some fixed H ≥ 0 and n1 := u1 · g, we

have the following asymptotic formula for the moment generating function of M, the overlap with

the external field. This formula holds on the event Eε (which has probability at least 1−N−ε/10)
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for any sufficiently small ε > 0 and ξ = O(1).

〈eξ
√
NM〉 = eHξ+

Tξ2

2

cosh
(

(H + Tξ)|n1|
√

1−T
T

)
cosh

(
H|n1|

√
1−T
T

) (
1 +O(N−

1
21

+ ε
7 )
)
. (1.3.3)

Note that the leading term on the right-hand side is the product of two terms implying that it is
the moment generating function of a sum of two independent random variables. The exponential
term is the moment generating function of a Gaussian random variable. For the ratio of the cosh
functions, we note that the moment generating function of a shifted Bernoulli random variable that
takes values 1 and −1 with probabilities P and 1− P respectively is Pet + (1− P )e−t. The ratio
of cosh functions in Theorem 5.2.1 is of this form with t = ξ|n1|

√
1− T and

P =
e
H
T
|n1|
√

1−T

e
H
T
|n1|
√

1−T + e−
H
T
|n1|
√

1−T
. (1.3.4)

Hence, for any large N , we can conclude that, on the event Eε, the scaled overlap
√
NM behaves in

its leading order like the independent sum of a Gaussian random variable (with meanH and variance
T ) and a shifted Bernoulli random variable (which takes values |n1|

√
1− T and −|n1|

√
1− T with

probability P and 1− P respectively for the value of P stated above).
In addition to the theorem above, whose proof is published in [13], we also provide the

unpublished proof of Theorem 5.3.1 for the overlap with a replica in the microscopic regime, using
a similar method.

1.3.5 Application to magnetization and susceptibility

One important application of Theorem 5.2.1 is that it confirms the conjectures of [6] regarding
magnetization and susceptibility. Magnetization is defined to be 〈M〉, the Gibbs average of the
overlap with the external field. Susceptibility is the magnetization per unit external field strength,
given by

X =
〈M〉
h

. (1.3.5)

It follows from Theorem 5.2.1 that, on the event Eε, when T < 1 and h = HN−1/2 for H constant,
the susceptibility is

X = 1 +
|n1|
√

1− T
H

tanh

(
H|n1|

√
1− T
T

)
+O(N−

1
21

+ ε
3 ). (1.3.6)
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Of particular interest in the physics literature is the zero external field limit of the suscepti-
bility. Cugliandolo, Dean, and Yoshino [16] discuss two ways to taking this limit, namely
limh→0 limN→∞X and limN→∞ limh→0X (the first of these was also considered by [28]). Our
results for the microscopic external field give a different way of calculating the second of these
limits. In particular, since n1 ∼ N (0, 1) for all N , we can compute

lim
H→0

lim
N→∞

h=HN−1/2

X D
= 1 +

ν2(1− T )

T
for T < 1 and ν ∼ N (0, 1) (1.3.7)

where D= denotes equality in distribution. This confirms the conjecture of [6]. It is also consistent
with [16], which found that

lim
N→∞

lim
h→0
X =

1

T
for T < 1 when |n1| = 1 [16]. (1.3.8)

By removing this constraint on |n1| and applying Theorem 5.2.1, we are able to show that the
limiting susceptibility is not constant, as the result from [16] might suggest, but rather it is a random
variable whose distribution is given explicitly in (1.3.7).

Figure I.3 (b) illustrates the dependence of the limit of X on the disorder variable n2
1. This

result shows that the Curie law (inverse proportionality of susceptibility and temperature) holds
for the sample-to-sample average, but not for a given disorder sample. If we take a different limit,
namely if we let N →∞ with h > 0 first and then let h→ 0, then the limit of the susceptibility is
deterministic and given by min{T−1, 1}. See Figure I.3 (a). This formula was previously obtained in
[28], and also in [16]. See Subsections 4.1.7 and 4.1.8 for details including some further conjectures
about the zero external field limit of differential susceptibility (the derivative of the magnetization
with respect to external field strength). These can also be verified using Theorem 5.2.1.
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(a) lim
h→0

lim
N→∞
h>0

X (b) lim
H→0

lim
N→∞

h=HN−1/2

X for sevaral values of n2
1

Figure I.3: Graph of the zero external field limit of the susceptibility as a function of T .

1.4 Method of analysis

Our computations are based on contour integral representations which we present in Section 2.3.
The free energy and the moment generating functions of two of the overlaps can be expressed in
terms of a single integral, whereas the moment generating function in the case of the overlap with a
replica can be written as a double integral. The integrand for each of these integral representations
contains disorder variables and hence we have random integral formulas. The single integral formula
for the free energy was first observed by Kosterlitz, Thouless and Jones [28] and the authors use
the method of the steepest descent to evaluate the limiting free energy. For the case of h = 0,
this calculation was extended in [7] to find the fluctuation terms using the recent advancements
in random matrix theory, in particular the rigidity results on the eigenvalues [19] and the linear
statistics [24, 5, 34]. Similar ideas were also used in [8, 9, 10], including the case for the overlap
with a replica in [29]. This thesis extends the integral formula approach to the case when h = O(1)

and h→ 0 in the transitional regimes. When there is an external field, the analysis becomes more
involved. In this case, the dot products of the eigenvectors and the external field play an important
role in the analysis.

The steepest descent analysis in chapters III and IV can be made mathematically rigorous after
some efforts using probability theory and random matrix theory. However, those chapters focus on
computations and interpretations assuming that various estimates in the steepest descent analysis
can be obtained. In those chapters, we use the label “Result” for findings in which we do not provide
rigorous proofs and the label “Theorem” for findings that we cite from prior papers that include
rigorous proof. We use the label “Lemma” for short findings that we prove in full detail.

In a recent preprint [30], which was obtained independently and simultaneously with the work
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of chapters III and IV, Landon and Sosoe consider a similar SSK model in which the external field
is a fixed vector and the disorder matrix has zero diagonal entries. Their work is mathematically
rigorous and contains proofs of some of the results obtained in this thesis, namely for the free energy
and some aspects of the overlaps with the external field and with a replica in Subsections 3.1.2,
3.2.1, 3.3.1, 4.1.3, 4.1.5, 4.3.1, and 4.3.2. I subsequently proved the results in Subsection 4.1.6
on the overlap with the microscopic external field rigorously in [13] and that proof is provided in
Chapter V.

1.5 Organization of this thesis

Chapters I and II introduce the model, background information, and preliminary lemmas.
Chapter III presents the analysis and results for free energy, while Chapter IV focuses on the
overlaps. These two chapters are based on joint work with Jinho Baik, Pierre le Doussal, and Hao
Wu. Chapter V presents a more detailed analysis of the overlaps for a microscopic external field
(h ∼ N−1/2), which is work of the thesis writer only.

Much of the work in this thesis is already published. The contents of Chapters II, III, IV are
published in [6] along with some pieces of Chapter I. The contents in the first two sections of
Chapter V are published in [13], along with pieces of Chapter I. Section 5.3 contains a related,
unpublished proof.
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CHAPTER II

Preliminaries from Random Matrix Theory and Spin Glasses

2.1 Classical Random Matrix Results

Throughout this thesis we discuss the random matrix M (which we refer to as the interaction
matrix) and the random vector g. In this section we provide definitions notations and some well
known results from random matrix theory. The study of random matrices, and especially their
eigenvalues began in the 1950s with Eugene Wigner’s work in developing statistical models for
heavy-nuclei atoms [48]. Since then, interest in random matrices has grown, not only in physics, but
in many other fields including machine learning, statistics, finance, probability, and number theory
to name a few. For a broad introduction to random matrix theory the reader may refer to [4], [35] .
Here we focus on one simple and well-studied type of random matrix: the Gaussian Orthogonal
Ensemble.

Definition 2.1.1. A matrix from the Gaussian Orthogonal Ensemble (GOE) is a real-valued sym-

metric matrix

M = (M)Ni,j=1 (2.1.1)

such that, for i ≤ j, the variables Mij are independent centered Gaussian random variables with

variance 1
N

(1 + δij). By the symmetric matrix condition, Mij = Mji for i > j.

An alternative way of defining GOE is to omit the 1/N factor in the variance such that the
diagonal and off-diagonal elements have variance 2 and 1 respectively. However, we choose to
rescale by 1/N so that the eigenvalues are of order 1. We denote by

λ1 ≥ · · · ≥ λN and u1, · · · ,uN (2.1.2)

the eigenvalues of M and corresponding unit eigenvectors (based on Euclidean norm).
The definition above induces a probability measure on the space of N ×N symmetric matrices.

An important property of GOE matrices is that this probability measure is invariant under conjugation
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by an orthogonal matrix (hence the name Gaussian Orthogonal Ensemble). This implies that the
eigenvalues and eigenvectors are independent of each other. Furthermore, the eigenvectors are
uniformly distributed on the unit sphere. The eigenvalues are well studied in the literature and some
of their key properties are summarized below.

2.1.1 Probability notations

There are two types of randomness, one from the disorder sample M and g, and the other from
the Gibbs (thermal) measure. We often need to distinguish them. We add the subscript s to denote
sample probability or sample expectation such as Ps and Es. In addition, we use the following
notations.

Definition 2.1.2. When describing the limiting distributions in our results, we consider two classes

of random variables, which we refer to as sample random variables and thermal random variables.

To distinguish between these two classes, we denote them with the calligraphic font and the gothic

font respectively. For example a standard Gaussian sample random variable and a standard

Gaussian thermal variable will be denoted below by

N and N (2.1.3)

respectively.

Definition 2.1.3. Asymptotic notations:

• If {EN}∞N=1 is a sequence of events, we say that EN holds asymptotically almost surely (or

everywhere) if Ps(EN) → 1 as N → ∞. This probability is with respect to the choice of

disorder sample.

• For two N -dependent random variables A := AN and B := BN , the notation

A = O (B) (2.1.4)

means that, for any ε > 0, the inequality A ≤ BN ε holds asymptotically almost surely.

• The notation ' means an asymptotic expansion up to the terms indicated on the right-hand

side and the notation A � B indicates that A and B are of the same order as N →∞ (i.e.

c−1B < A < cB for some constant c and sufficiently large N ). When we say A � O(B) we

mean that, for any ε > 0, the inequality BN−ε < A < BN ε holds asymptotically almost

surely.
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• For ease of notation, we write h = O(1) to denote the case where h is a positive constant. In

this case we do not mean to imply that h has any dependence on N .

Definition 2.1.4. Convergence notations:

• The convergence in distribution of a sequence of random variables XN to a random variable

X with respect to the disorder variables is denoted by XN ⇒ X .

• We use the notations D= and
D' to denote an equality and an asymptotic expansion in distribu-

tion with respect to the disorder sample, respectively.

• We use similar notations with a different font, D
= and

D', to denote an equality and an

asymptotic expansion in distribution with respect to the Gibbs (thermal) measure, respectively.

It is worth noting that many of our results actually hold with high probability (i.e., there exist
some D > 0, N0 > 0 such that, for all N ≥ N0, P(EN) > 1 − N−D). While high probability is
much stronger than asymptotically almost sure probability, it is much more delicate to prove and
we do not discuss those proofs in Chapters III and IV. In Chapter V we provide rigorous proofs
for two results from the preceding chapter, demonstrating that these results indeed hold with high
probability.

2.1.2 Semicircle law

The empirical distribution of eigenvalues of M converges to the semicircle law [35]: for every
continuous bounded function f(x),

1

N

N∑
i=1

f(λi)→
∫
f(x)dσscl(x) where dσscl(x) =

√
4− x2

2π
1x∈[−2,2]dx (2.1.5)

with probability 1 as N →∞.

Definition 2.1.5. We define the following functions for later use:

s0(z) :=

∫
log(z − x)dσscl(x) and sk(z) :=

∫
dσscl(x)

(z − x)k
for k = 1, 2, · · · , (2.1.6)
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Properties: These functions can be evaluated explicitly as

s0(z) =
1

4
z(z −

√
z2 − 4) + log(z +

√
z2 − 4)− log 2− 1

2
,

s1(z) =
z −
√
z2 − 4

2
, s2(z) =

z −
√
z2 − 4

2
√
z2 − 4

, s3(z) =
1

(z2 − 4)3/2
, s4(z) =

z

(z2 − 4)5/2

(2.1.7)

for z not in the real interval [−2, 2]. As z → 2, we have

s1(z) ' 1−
√
z − 2, s2(z) ' 1

2
√
z − 2

− 1

2
, s3(z) ' 1

8(z − 2)3/2
, s4(z) ' 1

16(z − 2)5/2
.

(2.1.8)

2.1.3 Rigidity

Definition 2.1.6. For i = 1, 2, · · · , N , let λ̂i be the classical location defined by the quantile

conditions ∫ 2

λ̂i

dσscl(x) =
i

N
. (2.1.9)

We set λ̂0 = 2. We also set âi = (λ̂i − 2)N2/3.

Rigidity property: The rigidity result [20, 19] states that

|λi − λ̂i| ≤ (min{i, N + 1− i})−1/3O
(
N−2/3

)
(2.1.10)

uniformly for i = 1, 2, · · · , N .
The rigidity property allows us to apply the method of steepest descent to evaluate the integrals

involving the eigenvalues since the eigenvalues are close enough to the classical location, and the
fluctuations are small enough.

2.1.4 Edge behavior

Definition 2.1.7.

• Define the rescaled eigenvalues

ai := N2/3(λi − 2). (2.1.11)
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• Define {αi}∞i=1 to be the GOE Airy point process process to which the rescaled eigenvalues

converge in distribution as N →∞ [47, 41]:

{ai} ⇒ {αi}. (2.1.12)

Properties:
The rightmost point α1 of the GOE Airy point process has the GOE Tracy-Widom distribution

a1 ⇒ α1
D
= TWGOE . (2.1.13)

The GOE Airy point process satisfies the asymptotic property that

αi ' −
(

3πi

2

)2/3

as i→∞. (2.1.14)

This asymptotic is due to the fact that the semicircle law is asymptotic to
√

2−x
π

dx as x→ 2. The
above formula and the rigidity imply that, with high probability,

ai � −i2/3 as i, N →∞ satisfying i ≤ N (2.1.15)

2.1.5 Central limit theorem of linear statistics

For a function f which is analytic in an open neighborhood of [−2, 2] in the complex plane,
consider the sum of f(λi). The semicircle law (2.1.5) gives its leading behavior. If we subtract the
leading term, the difference

N∑
i=1

f(λi)−N
∫
f(x)dσscl(x) (2.1.16)

converges to a Gaussian distribution with explicit mean and variance; see, for example, [24, 5, 34].
Note that unlike the classical central limit theorem, we do not divide by

√
N .

Definition 2.1.8. Define

LN(z) :=
N∑
i=1

log(z − λi)−Ns0(z). (2.1.17)

for z > 2 where s0(z) is given by (2.1.7).

Properties:
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The above-mentioned central limit theorem implies in this case that

LN(z)⇒ N (M(z), V (z)) (2.1.18)

where (see Lemma A.1 in [7])

M(z) =
1

2
log

(
2
√
z2 − 4

z +
√
z2 − 4

)
, V (z) = 2 log

(
z +
√
z2 − 4

2
√
z2 − 4

)
. (2.1.19)

For later uses, we record that for 0 < β < 1,

M(β + β−1) =
1

2
log(1− β2), V (β + β−1) = −2 log(1− β2). (2.1.20)

2.2 More Specific Preliminaries for This Research (Special sums)

In this section we collect several important results about convergence of various types of sums
that we will use throughout. Before presenting those results, we recall that he external field is given
by the vector

g = (g1, g2, · · · , gN)T , (2.2.1)

which we assume to be a standard Gaussian vector (i.e. {gi} are independent standard Gaussians),
and the strength of the external field is denoted by a non-negative scalar h. We also define

ni = ui · g, (2.2.2)

the overlap of the eigenvector and the external field. The external field and eigenvectors appear in the
results and analysis of this thesis only as this combination. The variables λi and ni are collectively
called disorder variables. We call the joint realization of λi and ni a disorder sample throughout the
thesis. Note that (n1, · · · , nN) is a standard Gaussian vector due to the rotational invariance of the
Gaussian measure. Furthermore, its entries are independent of the eigenvalues λ1, · · · , λN . The
analysis of this thesis also applies, after some changes of formulas, to the case when the external
field is a deterministic vector of length N , for example g = (1, · · · , 1)T . However, we restrict to
the Gaussian external field since the Gaussian assumption makes calculations simpler.

Many of the results in this section are motivated by the need to work with sums of the form

1

N

N∑
i=2

1

(λ1 − λi)k
, k = 1, 2, · · · , (2.2.3)
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or its variations. The above quantity looks superficially close to the linear statistics (2.1.16) with
f(x) = 1

(λ1−x)k
with one term removed but the function f(x) is singular at x = λ1. We note that if

we replace f(x) by 1
(2−x)k

and use the semicircle law, we obtain sk(2) which diverges for k ≥ 2.
Hence, the result of the previous subsection does not apply. On the other hand, for k = 1, s1(2) = 1.
This fact indicates that the above sum still converges when k = 1.

We present several definitions, followed by their related convergence results and some brief
explanation of why these results hold. Recall the definition ai = (λi − 2)N2/3 and ni = ui · g.

Definition 2.2.1. We define the following random sums, which depend on the disorder sample:

• Define

ΞN := N1/3

(
1

N

N∑
i=2

1

λ1 − λi
− 1

)
=

N∑
i=2

1

a1 − ai
−N1/3. (2.2.4)

• Define, for w > 0,

EN(w) := N1/3

[
1

N

N∑
i=1

n2
i

wN−2/3 + λ1 − λi
− 1

]
=

N∑
i=1

n2
i

w + a1 − ai
−N1/3. (2.2.5)

• Define, for z > 2,

SN(z; k) :=
1√
N

N∑
i=1

n2
i − 1

(z − λ̂i)k
for k ≥ 1. (2.2.6)

Definition 2.2.2. We define the following limits, which depend on the GOE Airy point process {αi}:

• Define

Ξ := lim
n→∞

 n∑
i=2

1

α1 − αi
− 1

π

∫ ( 3πn
2 )

2/3

0

dx√
x

 . (2.2.7)

Landon and Sosoe showed that the limit exists almost surely [29].

• Define E(s) as follows, where νi are i.i.d. Gaussian random variables with mean 0 and

variance 1 independent of the GOE Airy point process αi:

E(s) := lim
n→∞

 n∑
i=1

ν2
i

s+ α1 − αi
− 1

π

∫ ( 3πn
2 )

2/3

0

dx√
x

 . (2.2.8)

This limit exists almost surely by a similar argument as in [29] showing that Ξ exists.
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Result 2.2.3. Using the notations above, we have the following convergence results.

• Landon and Sosoe proved in [29] that

ΞN ⇒ Ξ. (2.2.9)

They use this result to describe the fluctuations of the overlap with a replica when h = 0 and

T < 1.

• We also need another version of the result (2.2.9) where the constant numerators are replaced

n2
i :

N1/3

(
1

N

N∑
i=2

n2
i

λ1 − λi
− 1

)
⇒ lim

n→∞

 n∑
i=2

ν2
i

α1 − αi
− 1

π

∫ ( 3πn
2 )

2/3

0

dx√
x

 (2.2.10)

where νi are i.i.d standard Gaussians, independent of the GOE Airy point process αi. This

follows from (2.2.9) and the fact that

1

N2/3

N∑
i=2

n2
i − 1

λ1 − λi
⇒

∞∑
i=2

ν2
i − 1

α1 − αi
(2.2.11)

which is a convergent series due to Kolmogorov’s three series theorem and (2.1.14).

• By the same argument as for 2.2.10,

EN(w)⇒ E(w) for w > 0. (2.2.12)

• By the Lyapunov central limit theorem and the definition of λ̂i, we have

SN(z; k)⇒ N (0, 2s2k(z)) (2.2.13)

as N →∞ for z > 2. (Note that the variance of n2
i − 1 is 2.)

Result 2.2.4. In addition to the convergence results listed above, we also need estimates that hold

for asymptotically almost every disorder sample.

• A consequence of (2.2.9) is that

1

N

N∑
i=2

1

λ1 − λi
=

1

N1/3

N∑
i=2

1

a1 − ai
= 1 +O

(
N−1/3

)
. (2.2.14)
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for asymptotically almost every disorder sample.

• We have

N∑
i=2

1

(a1 − ai)k
= O (1) and

N∑
i=2

n2
i

(a1 − ai)k
= O (1) , k ≥ 2, (2.2.15)

for asymptotically almost every disorder sample. This follows from the fact that the ai � −i2/3

and (a1 − a2)−1 is bounded of order 1 with high probability.

• We also need the result

1

N

N∑
i=1

n2
i

(z − λi)k
= sk(z) +

SN(z; k)√
N

+O
(
N−1

)
, z > 2, k > 1 (2.2.16)

for asymptotically almost every disorder sample. To justify (2.2.16), we observe that

1

N

N∑
i=1

n2
i

(z − λi)k
=

1

N

N∑
i=1

1

(z − λi)k
+

1

N

N∑
i=1

n2
i − 1

(z − λi)k
. (2.2.17)

We then use the central limit theorem (2.1.16) for linear statistics for the first sum and replace

λi by λ̂i in the second sum using the rigidity (2.1.10).

2.3 Contour integral representations

The partition function is an N -fold integral over a sphere. Using the Laplace transform and
Gaussian integrations, Kosterlitz, Thouless and Jones showed in [28] that this integral can be
expressed as a single contour integral which involves the disorder sample. We state this result and
also include its derivation in Subsection 2.3.1. By the same method, the moment generating function
of each overlap can also be written as a ratio of single or double contour integrals. These results are
presented in section 2.3.2.

2.3.1 Free energy

The following result holds for any disorder sample.

Lemma 2.3.1 ([28]). Let M be an arbitrary N by N symmetric matrix and let g be an N dimen-

sional vector. Let λ1 ≥ · · · ≥ λN be the eigenvalues of the matrix M and let ui be a corresponding
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unit eigenvector. Then, the partition function ZN defined in (1.1.13) can be written as

ZN = CN

∫ γ+i∞

γ−i∞
e
N
2
G(z)dz where CN =

Γ(N/2)

2πi(Nβ/2)N/2−1
(2.3.1)

and

G(z) = βz − 1

N

N∑
i=1

log(z − λi) +
h2β

N

N∑
i=1

n2
i

z − λi
with ni = ui · g. (2.3.2)

Here, the integration is over the vertical line γ + iR where γ is an arbitrary constant satisfying

γ > λ1.

Proof. Let Λ = diag(λ1, λ2, · · · , λN). Let O = (u1, · · · ,uN) be an orthogonal matrix so that
M = OΛOT . Let SN−1 be the sphere of radius 1 in RN and let dΩN−1 be the surface area element
on SN−1. Then, using the change of variables 1√

N
OTσ = x,

ZN =
1

|SN−1|
I

(
βN

2
, h
√

2β

)
where I(t, s) =

∫
SN−1

et
∑N
i=1 λix

2
i+s
√
t
∑N
i=1 nixidΩN−1(x).

where ni = (OTg)i = ui · g. We take the Laplace transform of J(t) = tN/2−1I(t, s). Making a
simple change of variables t = r2 and using Gaussian integrals, the Laplace transform is equal to

L(z) =

∫ ∞
0

e−ztJ(t)dt = 2

∫
RN
e−

∑N
i=1(z−λi)y2

i+s
∑N
i=1 niyidNy = 2

N∏
i=1

e
s2n2

i
4(z−λi)

√
π

z − λi

for z satisfying z > λ1. We obtain a single integral formula of the partition function by taking the
inverse Laplace transform.

Note that the sign ambiguity of ui does not affect the result since the formula depends only on
n2
i .

2.3.2 Overlaps

In this section, we give the moment generating function of each of the overlaps, expressed as a
ratio of contour integrals. The proofs are similar to the computations for the free energy case and
we sketch them at the end of this section.

Definition 2.3.2. . The following three functions are related to the function G and will be used to

compute the three overlaps respectively. We denote by η ∈ R the parameter that will be used for the

moment generating function of each overlap.
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• For the overlap with the external field, we use the function

GM(z) := βz − 1

N

N∑
i=1

log(z − λi) +
(h+ η

N
)2β

N

N∑
i=1

n2
i

z − λi
. (2.3.3)

Note that this is G(z) with h replaced by h+ ηN−1.

• For the (square of the) overlap with the ground state, we use the function

GO(z) :=βz − 1

N
log

(
z −

(
λ1 +

2η

N

))
− 1

N

N∑
i=2

log(z − λi)

+
h2β

N

n2
1

z − (λ1 + 2η
N

)
+
h2β

N

N∑
i=2

n2
i

z − λi
.

(2.3.4)

Note that this is G(z) with λ1 replaced by λ1 + η
βN

.

• For the overlap with a replica, we use the function

GR(z, w; a) :=β(z + w)− 1

N

N∑
i=1

log
(
(z − λi)(w − λi)− a2

)
+
h2β

N

N∑
i=1

n2
i (z + w − 2λi + 2a)

(z − λi)(w − λi)− a2
.

(2.3.5)

Lemma 2.3.3. For real parameter η, the moment generation functions of the three overlaps are as

follows:

〈eβηM〉 =

∫
e
N
2
GM(z)dz∫

e
N
2
G(z)dz

, 〈eβηO〉 =

∫
e
N
2
GO(z)dz∫

e
N
2
G(z)dz

, 〈eηR〉 =

∫∫
e
N
2
GR(z,w; η

βN
)dzdw∫∫

e
N
2
GR(z,w;0)dzdw

.

(2.3.6)
The contours are vertical lines going upward in the complex plane such that all singularities lie on

the left of the contour.

Proof. First,

〈eβηM〉 =
1

ZN(h)

∫
SN−1

eβ
η
N
g·σeβ(

1
2
σ·Mσ+hg·σ)dωN(σ) =

ZN(h+ ηN−1)

ZN(h)
.
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Secondly, by definition,

〈eβηO〉 =
1

ZN

∫
SN−1

eβ
η
N

(u1·σ)2

eβ(σ·Mσ+hg·σ)dωN(σ). (2.3.7)

Since
1

2
σ ·Mσ +

η

N
(u1 · σ)2 =

1

2

N∑
i=1

λi(ui · σ)2 +
η

N
(u1 · σ)2,

the integral in (2.3.7) is the same as that of ZN with λ1 7→ λ1 + 2η
N

. Finally, using the eigenvalue-
eigenvector decomposition M = OΛOT and changing variables 1√

N
OTσ = x and 1√

N
OT τ = y,

we find that

〈eηR〉 =
J(βN

2
, βN

2
; η
Nβ
,
√
βh√
2
,
√
βh√
2

)

J(βN
2
, βN

2
; 0,

√
βh√
2
,
√
βh√
2

)
. (2.3.8)

where we use the notation

J(u, v; a, b, c) = (uv)
N
2
−1

∫ ∫
e

2a
√
uv

N∑
i=1

xiyi+u
N∑
i=1

λix
2
i+2b

√
u
N∑
i=1

nixi+v
N∑
i=1

λiy
2
i+2c

√
v
N∑
i=1

niyi
dΩ⊗2

N−1(x, y).

We evaluate the Laplace transform of J(u, v, a, b, c). Changing variable by u = r2, v = s2 and
rx 7→ x, sy 7→ y, the Laplace transform

Q(z, w) =

∫ ∞
0

∫ ∞
0

e−zu−wvJ(u, v)dudv

becomes a 2-dimensional Gaussian integral which evaluates to

Q(z, w) = 4
N∏
i=1

π√
(z − λi)(w − λi)− a2

e
n2
i ((w−λi)b

2+2abc+(z−λi)c
2

(z−λi)(w−λi)−a2 .

The inverse Laplace transform gives a double integral formula for J(u, v).
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CHAPTER III

Free Energy of Spherical Sherrington-Kirkpatrick Model

In this chapter we analyze the free energy of the SSK model. We begin with a summary of the
known results for the limiting distribution of the fluctuations in the cases where h = 0, T > 1 and
h = 0, T < 1. We then contrast this with the result for h > 0 for h fixed. In Section 3.2, we analyze
the free energy transition between h = 0 and h > 0 in the high temperature case. This transition
occurs when h ∼ N−1/4. Finally, in Section 3.3, we analyze the free energy transition between
h = 0 and h > 0 in the low temperature case. This transition occurs when h ∼ N−1/6.

3.1 Fluctuations of the free energy

From the integral formula (2.3.1), using

CN =

√
Nβ

2i
√
π(βe)N/2

(1 +O(N−1)), (3.1.1)

the free energy can be written as

FN =
1

2β
(G(γ)− 1− log β) +

1

Nβ
log

(√
Nβ

2i
√
π

∫ γ+i∞

γ−i∞
e
N
2

(G(z)−G(γ))dz

)
+O(N−2) (3.1.2)

where O(N−2) is a constant that does not depend on the disorder sample M and g. We evaluate
the integral asymptotically using the method of steepest descent. The formula for G(z) is given in
(2.3.2) and

G ′(z) = β − 1

N

N∑
i=1

1

z − λi
− h2β

N

N∑
i=1

n2
i

(z − λi)2
where ni = ui · g. (3.1.3)
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For real z, G ′(z) is an increasing function taking values from −∞ to β as z moves from λ1 to∞.
Hence, there is a unique real critical point γ satisfying

G ′(γ) = 0, γ > λ1.

We set γ for the contour of (3.1.2) to be this critical point.
In this section, we use the formula (3.1.2) to evaluate the fluctuations of the free energy when

the external field strength h is fixed. For the case h = 0, this computation was done in [28] for the
leading deterministic term and in [7] for the subleading term. For fixed h > 0, the fluctuations for
the SK model were computed in [11] using a method different from the one of this thesis. We first
review the computation of [7] for h = 0 and then give a new computation for fixed h > 0 using the
above integral formula.

The following formula will be used in one of the subsections: Since G ′(γ) = 0 implies that
G(z)− G(γ) = G(z)− G(γ)− G ′(γ)(z − γ), we can write

N(G(z)− G(γ)) = −
N∑
i=1

[
log(1 +

z − γ
γ − λi

)− z − γ
γ − λi

]
+ h2β

N∑
i=1

n2
i (z − γ)2

(z − λi)(γ − λi)2
. (3.1.4)

3.1.1 No external field: h = 0

3.1.1.1 High temperature regime: T > 1

When h = 0, we write, using the notation (2.1.17),

G(z) = βz − 1

N

N∑
i=1

log(z − λi) = βz − s0(z)− LN(z)

N
, s0(z) =

∫
log(z − x)dσscl(x).

(3.1.5)
From (2.1.18), LN(z) = O (1) for fixed z > 2. Thus, G0(z) := βz − s0(z) is an approximation of
the function G(z) and we first find the critical point γ0 of G0(z) satisfying γ0 > 2, where we recall
that the largest eigenvalue λ1 → 2. Since G ′′0 (z) > 0, we find that minz≥2 G ′0(z) = G ′0(2) = β − 1

from the formula (2.1.7) of s′0(z) = s1(z). Thus, the critical point of G0(z) exists only when
1
β

= T > 1. From the formula, we find that for T > 1, it is given by

γ0 := β + β−1 = T + T−1. (3.1.6)
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In this case, a simple perturbation argument (see Section 3.4) implies that γ = γ0 +O (N−1) and

G(γ) = G(γ0)− LN(γ0)

N
+O

(
N−2

)
=
β2

2
+ 1 + log β − LN(γ0)

N
+O

(
N−2

)
. (3.1.7)

Even though the integral in (3.1.2) involves the disorder sample, the rigidity of the eigenvalues
from Section 2.1.3 implies that, with high probability, the eigenvalues are close to the non-random
classical locations (i.e. the quantiles of the semicircle law). Thus, we can still apply the method of
steepest descent when the disorder sample is in an event of the high probability. Using

G ′′(γ) ' G ′′0 (γ0) = s2(γ0) =
β2

1− β2

and G(k)(γ) = O (1) for all k ≥ 2, the Gaussian approximation of the integral is valid and we find
that ∫ γ+i∞

γ−i∞
e
N
2

(G(z)−G(γ))dz ' i
√

4π√
Ns2(γ0)

=
i
√

4π(1− β2)√
Nβ2

. (3.1.8)

Inserting everything into (3.1.2) and using the fact that LN(γ0) converges to a Gaussian distri-
bution with mean and variance given by (2.1.20), we obtain the following result. This result was
proved rigorously in [7].

Theorem 3.1.1 ([7]). For h = 0 and T > 1,

FN(T, 0) =
1

4T
+

T

2N

[
log(1− T−2)− LN(γ0)

]
+O

(
N−3/2

)
(3.1.9)

as N → ∞ with high probability, where γ0 = T + T−1 and LN(z) is defined in (2.1.17). As a

consequence,

FN(T, 0)
D' 1

4T
+

T

2N
N (−α, 4α) α := −1

2
log(1− T−2), (3.1.10)

where N (a, b) is a (sample) Gaussian distribution of mean a and variance b.

3.1.1.2 Low temperature regime: T < 1

In contrast to the previous section, the function G0(z) = βz − s0(z) is no longer a good
approximation of G(z) for 0 < T < 1 when h = 0. Indeed, the function G0(z) does not have a
critical point satisfying z > 2. Hence, we need to find the critical point γ of G(z) directly. Since
the critical point of G0(z) when T = 1 is given by γ0 = 2, it is reasonable to assume that when
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0 < T < 1, γ is close to the large eigenvalue λ1. It turns out that γ = λ1 + O (N−1). We set
γ = λ1 + sN−1 with s = O (1) and determine s. Separating out the term with i = 1 in the equation
(3.1.3) and using (2.2.14),

G ′(γ) = β − 1

N(γ − λ1)
− 1

N

N∑
i=2

1

γ − λi
= β − 1

s
− 1 +O

(
N−1/3

)
= 0. (3.1.11)

Thus s = 1
β−1

+O
(
N−1/3

)
, which is consistent with our assumption that s = O (1). To evaluate

G(γ) = βγ − 1

N

N∑
i=1

log(γ − λi),

we use (2.1.17)-(2.1.19). We need to evaluate
∑N

i=1 log(z − λi) for z = 2 + O(N−2/3). Observe
that

M(z) = O(log(z − 2)) and V (z) = O(log(z − 2)) as z → 2.

Hence, a formal application of (2.1.18) to this case using s0(z) = 1
2

+ (z − 2) + O((z − 2)3/2)

implies that for z → 2 such that |z − 2| ≥ N−d for some d > 0,

1

N

N∑
i=1

log (z − λi) = s0 (z) +O
(
N−1

)
=

1

2
+ (z − 2) +O

(
N−1

)
+O((z − 2)3/2). (3.1.12)

This heuristic computation indicates that

G(γ) = βγ − 1

N

N∑
i=1

log(γ − λi) = 2β − 1

2
+ (β − 1)(λ1 − 2) +O

(
N−1

)
. (3.1.13)

We now consider the integral in (3.1.2). For k ≥ 2, we have, using the notation (2.1.11) for the
scaled eigenvalues ai = N2/3(λi − 2) and the estimate (2.2.15),

G(k)(γ)

(−1)k(k − 1)!
=

1

N

N∑
i=1

1

(γ − λi)k
=
Nk−1

sk
+N

2
3
k−1

N∑
i=2

1

(a1 + sN−1/3 − ai)k
= O

(
Nk−1

)
(3.1.14)

with high probability. The estimate G ′′(γ) = O (N) indicates that the main contribution to the
integral comes from a neighborhood of radius N−1 of the critical point. However, all terms of the
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Taylor series

N
(
G(γ + uN−1)− G(γ)

)
=

N∑
k=2

N1−kG(k)(γ)

k!
uk

are of the same order O (1) for finite u. Hence, we cannot replace the integral with a Gaussian
integral. Instead, we proceed as follows. Using the formula (3.1.4), separating out the i = 1 term
from the sum, using a Taylor approximation for the remaining sum, and using (2.2.15),

N
(
G(γ + uN−1)− G(γ)

)
= − log

(
1 +

u

s

)
+
u

s
+O

(
N∑
i=2

u2N−2/3

(a1 − sN−1/3 − ai)2

)
= − log

(
1 +

u

s

)
+
u

s
+O

(
N−2/3

) (3.1.15)

with high probability for finite u. From this,∫ γ+i∞

γ−i∞
e
N
2

(G(z)−G(γ))dz ' 1

N

∫ i∞

−i∞

e
u
s

1 + u
s

du � O
(
N−1

)
. (3.1.16)

We do not need the exact value of the integral, but only the estimate that its log is O (logN).
We thus obtain the following result, which was proved rigorously in [7].

Theorem 3.1.2 ([7]). For h = 0 and 0 ≤ T < 1,

FN(T, 0) = 1− 3T

4
+
T log T

2
+

1− T
2N2/3

a1 +O
(
N−1

)
(3.1.17)

as N →∞ with high probability. As a consequence,

FN(T, 0)
D' 1− 3T

4
+
T log T

2
+

1− T
2N2/3

TWGOE . (3.1.18)

Remark 3.1.3. The zero temperature case T = 0 of the theorem is the standard random matrix
theory result that the largest eigenvalue of a GOE matrix converges to the Tracy-Widom distribution.
We see that a formal T → 0 limit of the result implies this statement. Similarly, all results of this
thesis, other than those that have T > 1 restrictions, have a convergent formal limit if we take
T → 0. Hence, even though we need a separate argument since there is no integral representation,
we expect that all results are valid for the T = 0 case as well.
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3.1.2 Positive external field: h = O(1)

Fix h > 0. We use (2.1.18) and (2.2.16) to write

G(z) = βz − s0(z) + h2β

[
s1(z) +

1√
N
SN(z; 1)

]
+O

(
N−1

)
for z > λ1. The random variable SN(z; k) is defined in (2.2.6) and it converges in distribution to
N (0, 2s2k(z)); see (2.2.13). This time, G(z) is approximated by the function G0(z) = βz− s0(z) +

h2βs1(z). Its derivative G ′0(z) = β − s1(z) − h2βs2(z) is an increasing function for z > 2 and
G ′(z)→ −∞ as z ↓ 2 while G ′(z)→ +∞ as z → +∞. Hence, unlike in the case of h = 0, there
is a point γ0 > 2 satisfying G ′0(γ0) = 0 for all T > 0. It satisfies the equation

G ′0(γ0) = β − s1(γ0)− h2βs2(γ0) = 0. (3.1.19)

A perturbation argument (see Section 3.4) implies that the critical point γ of G(z) has the form

γ = γ0 + γ1N
−1/2 +O

(
N−1

)
. (3.1.20)

We do not need a formula for γ1 in this section, but we record it here since we use it in later sections;

γ1 =
h2βSN(γ0; 2)

s2(γ0) + 2h2βs3(γ0)
(3.1.21)

where we used the fact that d
dz
SN(z; 1) = −SN(z; 2). The perturbation argument also implies that

G(γ) = βγ0 − s0(γ0) + h2βs1(γ0) +
h2β√
N
SN(γ0; 1) +O

(
N−1

)
. (3.1.22)

The integral term in (3.1.2) can be evaluated using the steepest descent method as in the case of
h = 0 and T > 1 since G(k)(γ) = O (1) for all k ≥ 2. From the Gaussian integral approximation,∫ γ+i∞

γ−i∞
e
N
2

(G(z)−G(γ))dz ' i
√

4π√
NG ′′(γ)

� O
(
N−1/2

)
. (3.1.23)

Remark 3.1.4. We do not focus in Chapters III and IV on justifying the use of steepest descent in
this context, but instead provide the computations based on this method. One can rigorously check
that the steepest descent method works here, but it is also worth noting that all the contour integral
computations needed in these chapters can be achieved without the use of steepest descent. In fact,
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the contour integrals in sections 3.1.2, 3.2.1, 3.3.1, 4.1.3, 4.1.5, 4.2.1, 4.2.2, 4.2.3, 4.3.1, and 4.3.2
require no contour deformation at all. Using the straight line contour and crude bounds on the order
of the integrand, one can compute, up to leading order, the value of the integral in a neighborhood of
γ and then show that the tails are of smaller order. These computations are fairly lengthy and will be
omitted from this thesis. The integrals in sections 4.1.6 and 4.3.3 can be treated by a similar method,
but require a slight deformation of the original contour. These proofs are included in Chapter V.

Combining the preceding information in this section, we obtain the following result.

Result 3.1.5. For fixed h > 0 and T > 0,

FN(T, h) = F (T, h) +
h2SN(γ0; 1)

2
√
N

+O
(
N−1

)
(3.1.24)

as N →∞ with high probability where SN(z; k) is defined in (2.2.6) and

F (T, h) :=
γ0

2
− Ts0(γ0)

2
− T − T log T

2
+
h2s1(γ0)

2
(3.1.25)

with γ0 being the solution of the equation

1− Ts1(γ0)− h2s2(γ0) = 0, γ0 > 2. (3.1.26)

Since SN(γ0; 1) converges in distribution to N (0, 2s2(γ0)) from (2.2.13), we conclude the
following result.

Result 3.1.6. For fixed h > 0 and T > 0, as N →∞,

FN(T, h)
D' F (T, h) +

1√
N
N
(

0,
h4s2(γ0)

2

)
. (3.1.27)

This result shows that the order of the fluctuations of the free energy is N−1/2 for all T > 0,
which is different from both N−1 for h = 0, T > 1 and N−2/3 for h = 0, 0 < T < 1.

3.1.3 Comparison with the result of Chen, Dey, and Panchenko

Chen, Dey, and Penchenko computed the fluctuations of the free energy of the SK model with
h > 0 in [11] when g = 1 := (1, 1, ..., 1)T . We compare our result with theirs. The adaptation
of the approach of [11] to the SSK model with g = 1 implies that

√
N (FN(T, h)− E[F (T, h)])
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converges in distribution as N →∞ to the centered Gaussian distribution with variance

h4(1− q0)4

2T 2(T 2 − (1− q0))
(3.1.28)

where q0 is the unique real number between 0 and 1 satisfying

q0 + h2 =
T 2q0

(1− q0)2
. (3.1.29)

The quantity q0 has the interpretation as the overlap of two independent spins from the Gibbs
measure involving the same disorder sample, i.e. the overlap of a spin with a replica. The formula
(3.1.29) was predicted using the replica saddle point method in [15] (equation (4.5)) and [22]
(equation (29) with n = 0).

Our result (3.1.27) above is for the SSK model when g is a Gaussian vector, but it extends to the
case g = 1. The only difference is that the variance of the limiting Gaussian distribution (3.1.27)
changes to

h4

2
(s2(γ0)− (s1(γ0))2). (3.1.30)

Using the fact that s2(z) = s1(z)2

1−s1(z)2 for z > 2, it is easy to check that (3.1.28) and (3.1.30) are same
with q0 and γ0 related by the equation

q0 = 1− Ts1(γ0). (3.1.31)

3.1.4 Matching between h > 0 and h = 0

We have considered three different regimes: (a) h = 0 and T < 1, (b) h = 0 and T > 1, and (c)
h = O(1). The order of the fluctuations of the free energy in these regimes are N−1, N−2/3, and
N−1/2, respectively. In these cases, the fluctuations are governed by the disorder variables given by
(a) all eigenvalues λ1, · · · , λN , (b) the top eigenvalue λ1, and (c) the combinations ni = ui · g of
the eigenvectors and the external field. These differences indicate that there should be transitional
regimes as h → 0. We now study the limit h → 0 of the result obtained for the case h > 0 and
determine the transitional scaling of h heuristically by matching the order of the fluctuations. We
need to consider the high temperature case and the low temperature case separately.
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3.1.4.1 Asymptotic property of γ0

Throughout this thesis, we will make use of following property of the leading term γ0 of the
critical point of G(z) when h = O(1).

Lemma 3.1.7. Let γ0 > 2 be the solution of the equation (3.1.26), 1 − Ts1(γ0) − h2s2(γ0) = 0.

Then, as h→ 0,

γ0 =


T + T−1 +

h2

T
+O(h4) for T > 1,

2 +
h4

4(1− T )2
− h6

4(1− T )4
+O(h8) for 0 < T < 1.

(3.1.32)

On the other hand, as h→∞,

γ0 = h+
T

2
+O(h−1) for all T > 0. (3.1.33)

Proof. Consider the limit of γ0 as h→ 0. For T > 1, the equation for γ0 becomes 1− Ts1(γ0) = 0

when h = 0, and its solution is T + T−1. A simple perturbation argument applied to the equation
for small h implies the result. For 0 < T < 1, we use the asymptotics

s2(z) =
1

2
√
z − 2

+O(1) and s1(z) = 1 +O(
√
z − 2) as z → 2,

which follow from the formulas in (2.1.7). Then, the equation for γ0 becomes

1− T − h2

2
√
γ0 − 2

+O(h2) +O(
√
γ0 − 2) = 0 (3.1.34)

as h→ 0 and γ0 → 2. From this equation we find the result as h→ 0. The limit as h→∞ follows
from sk(z) = z−k +O(z−k−1) as z →∞.

3.1.4.2 High temperature case, T > 1

From (3.1.32), we find that for T > 1, as h→ 0,

s0(γ0) =
1

2T 2
+ log T +

h2

T 2
+O

(
h4
)
, s1(γ0) =

1

T
− h2

T (T 2 − 1)
+O

(
h4
)
,

s2(γ0) =
1

T 2 − 1
− 2T 2h2

(T 2 − 1)3
+O

(
h4
)
.
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Inserting the formulas into (3.1.25),

F (T, h) =
1

2T
+
h2

2T
− h4

4T (T 2 − 1)
+O(h6). (3.1.35)

Therefore, we find that if we first take N →∞ with fixed h > 0 and then let h→ 0, then

FN(T, h)
D'
[

1

2T
+
h2

2T
− h4

4T (T 2 − 1)

]
+

h2√
2N(T 2 − 1)

N (0, 1) (3.1.36)

where the terms of orders h6 and h4N−1/2 have been dropped. The fluctuations are of order h2
√
N

.
On the other hand, when h = 0, the fluctuations are of order N−1 (see (3.1.10)). These two terms
are of same order when h ∼ N−1/4.

3.1.4.3 Low temperature case, T < 1

Using the T < 1 case of (3.1.32), the leading term (3.1.25) becomes

F (T, h) = 1− 3T

4
+
T log T

2
+
h2

2
− h4

8(1− T )
+O(h6) (3.1.37)

and the variance of the Gaussian distribution in (3.1.27) becomes h4s2(γ0)
2

= h2(T−1)
2

+O(h4). Thus,
from (3.1.27), for T < 1, we find that if we take N →∞ first and then take h→ 0, then

FN(T, h)
D'
[
1− 3T

4
+
T log T

2
+
h2

2
− h4

8(1− T )

]
+

1√
N
N
(

0,
h2(1− T )

2

)
(3.1.38)

where the terms of orders h6 and h3N−1/2 have been dropped. This implies that the fluctuations
of the free energy are of order h√

N
. On the other hand, when h = 0, the fluctuations are of order

N−2/3 (see (3.1.18)). These two terms are of same order when h ∼ N−1/6.

3.1.4.4 Summary

In summary, a heuristic matching computation suggests that the transitional scaling is

h = O(N−1/4) for T > 1,

h = O(N−1/6) for T < 1.
(3.1.39)

In next two sections, we compute the fluctuations of the free energy in the above transitional
regimes.

40



3.2 Free energy for T > 1 and h ∼ N−1/4

3.2.1 Analysis

Assume that T > 1 and set
h = HN−1/4 (3.2.1)

for fixed H > 0. In this case, using the notations (2.1.17) and (2.2.6),

G(z) = βz − s0(z)− LN(z)

N
+
H2β√
N

[
s1(z) +

SN(z; 1)√
N

]
+O

(
N−3/2

)
(3.2.2)

where we recall that LN(z) and SN(z; 1) are O (1) for z > 2. We approximate the function by
G0(z) = βz − s0(z) and, as we discussed in sub-subsection 3.1.1.1, this function has the critical
point γ0 = β + β−1 for T > 1. Applying a perturbation argument (see Section 3.4) and using the
formulas of s0(z) and s1(z), the critical point of G(z) is given by

γ = γ0 +O
(
N−1/2

)
with γ0 = β + β−1. (3.2.3)

Furthermore,

G(γ) =
β2

2
+ 1 + log β +

H2β2

√
N

+
1

N

[
− H4β4

2(1− β2)
+H2βSN(γ0; 1)− LN(γ0)

]
+O

(
N−3/2

)
.

(3.2.4)

Since

G ′′(γ) =
1

N

N∑
i=1

1

(γ − λi)2
+

2H2β

N3/2

N∑
i=1

n2
i

(γ − λi)3
' s2(γ) +

2H2β

N1/2
s3(γ) ' s2(γ0) (3.2.5)

and G(k)(γ) = O(1) for all k ≥ 2, the method of steepest descent implies that

∫ γ+i∞

γ−i∞
e
N
2

(G(z)−G(γ))dz ' i

N1/2

√
4π

s2(γ0)
� O

(
N−1/2

)
. (3.2.6)

Result 3.2.1. For h = HN−1/4 with fixed H > 0 and T > 1,

FN(T, h) =
1

4T
+

H2

2T
√
N

+
T

2N

[
log(1− T−2)− H4

2T 2(T 2 − 1)
+
H2

T
SN(γ0; 1)− LN(γ0)

]
(3.2.7)
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plusO
(
N−3/2

)
, asN →∞ with high probability whereLN(z) and SN(z; 1) are defined in (2.1.17)

and (2.2.6), respectively, and γ0 = γ0(h = 0) = T + T−1.

The sample random variables SN(γ0; 1) and LN(γ0) both converge to Gaussian distributions.
Since SN(γ0; 1) depends only on ni’s and LN(γ0) depends only on λi’s, these two random variables
are independent. Therefore, we obtain the following result.

Result 3.2.2. For h = HN−1/4 and T > 1, as N →∞,

FN(T, h)
D'
[

1

4T
+

H2

2T
√
N

]
+

T

2N
N (−α, 4α), α :=

H4

2T 2(T 2 − 1)
− 1

2
log(1− T−2).

(3.2.8)

3.2.2 Matching with h = 0 and h = O(1) cases

If we set H = 0 in (3.2.7), we recover the result (3.1.10) for the case of h = 0. We now consider
the limit H → ∞. If we formally set H = hN1/4 in (3.2.7) with h small but fixed and N large,
then we have

FN(T, h) ' 1

4T
+
h2

2T
− h4

4T (T 2 − 1)
+

h2

2
√
N
SN(γ0; 1) (3.2.9)

for asymptotically almost every disorder sample. This is the same as (3.1.24) when h→ 0 since
F (T, h) satisfies (3.1.35) as h→ 0. Therefore, (3.2.7) matches well with both regimes.

3.3 Free energy for T < 1 and h ∼ N−1/6

3.3.1 Analysis

Assume that 0 < T < 1 and we set

h = HN−1/6 (3.3.1)

for fixed H > 0. We find the critical point γ > λ1. Previously we had γ = λ1 +O (N−1) when
h = 0 and γ = λ1 +O (1) when h > 0. For h ∼ N−1/6, we make the ansatz

γ = λ1 + sN−2/3 (3.3.2)

and find s > 0 assuming that s = O (1). From the equation G ′(γ) = 0, see (3.1.3), the equation of
s is

β − 1

N1/3

N∑
i=1

1

s+ a1 − ai
− h2βN1/3

N∑
i=1

n2
i

(s+ a1 − ai)2
= 0 (3.3.3)
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where we recall ai = N2/3(λi − 2). Here, we did not change h to HN−1/6 since we will cite this
equation in several places. From (2.2.15), the second sum converges with high probability. The first
sum is 1 + O

(
N−1/3

)
from (2.2.14). Thus, with h = HN−1/6 the equation becomes, under the

assumption that s = O (1),

β − 1−H2β

N∑
i=1

n2
i

(a1 + s− ai)2
+O

(
N−1/3

)
= 0. (3.3.4)

Let t be the unique positive solution of the equation

β − 1−H2β
N∑
i=1

n2
i

(t+ a1 − ai)2
= 0, t > 0. (3.3.5)

Using the rigidity, we can show that t � O (1) with high probability. From this, comparing the
equations for s and t, we find that

s = t+O
(
N−1/3

)
. (3.3.6)

which is consistent with the ansatz. The last equation can also be verified by checking the inequali-
ties

G ′(λ1 + tN−2/3(1−N−ε)) < 0 < G ′(λ1 + tN−2/3(1 +N−ε))

for any 0 < ε < 1/3.
We now evaluate G(γ) which is given by

G(γ) = βγ − 1

N

N∑
i=1

log(γ − λi) +
H2β

N4/3

N∑
i=1

n2
i

γ − λi
. (3.3.7)

Insert γ = λ1 + sN−2/3 = 2 + (a1 + s)N2/3. By (3.1.12), the sum involving the log function
becomes

1

N

N∑
i=1

log(γ − λi) =
1

2
+N−2/3(a1 + s) +O

(
N−1

)
.

The other sum in (3.3.7) is equal to

H2β

N2/3

N∑
i=1

n2
i

a1 + s− ai
=
H2β

N2/3

(
N1/3 + EN(s)

)
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using the random variable EN(w) defined by (2.2.5), which is O (1) outside of a set whose probabil-
ity shrinks to zero. Thus,

G(γ) = 2β − 1

2
+
H2β

N1/3
+

1

N2/3

[
(β − 1)(a1 + s) +H2βEN(s)

]
+O

(
N−1

)
. (3.3.8)

To evaluate the integral in (3.1.2), we observe that for k ≥ 2,

G(k)(γ)

(−1)k(k − 1)!
= N

2k
3
−1

N∑
i=1

1

(s+ a1 − ai)k
+ kN

2
3
k− 2

3H2β
N∑
i=1

n2
i

(s+ a1 − ai)k+1
= O

(
N

2
3
k− 2

3

)
.

For k = 2, the leading term is

G ′′(γ) = 2N2/3H2β
N∑
i=1

n2
i

(s+ a1 − ai)3
+O

(
N1/3

)
. (3.3.9)

Since G ′′(γ) ∼ N2/3, the main contribution to the integral comes from a neighborhood of radius
N−5/6 near the critical point. By the Taylor series, for u = O(1),

N
(
G(γ + uN−5/6)− G(γ)

)
=
∞∑
k=2

N1− 5
6
k

k!
G(k)(γ)uk = H2β

(
N∑
i=1

n2
i

(s+ a1 − ai)3

)
u2+O

(
N−5/6

)
(3.3.10)

where all terms but k = 2 are O
(
N−5/6

)
. Thus, from the Gaussian integral approximation,

∫ γ+i∞

γ−i∞
e
N
2

(G(z)−G(γ))dz ' 1

N5/6

∫ i∞

−i∞
e
H2β

(∑N
i=1

n2
i

(s+a1−ai)3

)
u2

du � O
(
N−5/6

)
. (3.3.11)

Combining all together in (3.1.2) and replacing s by t, we obtain the following

Result 3.3.1. For h = HN−1/6 and 0 < T < 1,

FN = F0(T, h) +
F̃(T,H)

N2/3
+O

(
N−1

)
, F0(T, h) := 1− 3T

4
+
T log T

2
+
h2

2
, (3.3.12)

as N →∞ for asymptotically almost every disorder sample. Here,

F̃(T,H) =
1

2
(1− T )(t+ a1) +

1

2
H2EN(t) (3.3.13)
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where EN(z) is defined in (2.2.5) and t is the unique solution of the equation (3.3.5),

1− T = H2

N∑
i=1

n2
i

(t+ a1 − ai)2
, t > 0. (3.3.14)

The function F0(T, h) is equal to F (T, h) of (3.1.25) if we set γ0 = 2. The order of fluctuations
is N−2/3 as in the h = 0 case. But the fluctuations depend on all eigenvalues and n1, · · · , nN . In
contrast, when h = 0 they depend only on the largest eigenvalue. Using (2.2.12) for EN(t), we
obtain the next distributional result.

Result 3.3.2. For h = HN−1/6 and 0 < T < 1,

FN
D' F0(T, h) +

(1− T )(ς + α1) +H2E(ς)

2N2/3
(3.3.15)

as N →∞, where

E(w) = lim
n→∞

( n∑
i=1

ν2
i

w + α1 − αi
− 1

π

∫ ( 3πn
2 )

2/3

0

dx√
x

)
(3.3.16)

and ς is the solution of the equation

1− T = H2

∞∑
i=1

ν2
i

(ς + α1 − αi)2
, ς > 0, (3.3.17)

where αi is the GOE Airy point process and νi are independent standard normal sample random

variables.

3.3.2 Asymptotic behavior of the scaled limiting critical point t

The solution t of the equation (3.3.5),

1− T −H2

N∑
i=1

n2
i

(t+ a1 − ai)2
= 0, t > 0, (3.3.18)

is the scaled limiting critical point that is used in the result (3.3.12) above. We now describe the
behavior of t as H → 0 and H →∞. The following result is useful in the next two subsections and
in two later sections.
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Result 3.3.3. The solution t of the equation (3.3.18) satisfies:

t =
|n1|√
1− T

H +O(H2) as H → 0 (3.3.19)

and
√
t ' H2

2(1− T )

[
1 +

H2SN
(
2 + H4N−2/3

4(1−T )2 ; 2
)

(1− T )N5/6

]
as H →∞. (3.3.20)

The second term inside the bracket of the equation (3.3.20) is O (H−3).

For the H → 0 limit, we see from the equation (3.3.18) that t→ 0 as H → 0. If we set t = yH ,
then separating the term i = 1, the equation becomes 1− T =

n2
1

y2 +O(H2). Solving it, we obtain
(3.3.19).

We now consider the large-H behavior of t. We write the equation (3.3.18) as

1− T
H2

=
N∑
i=1

n2
i

(t+ a1 − ai)2
=

1

N4/3

N∑
i=1

n2
i

(z − λi)2
, z = 2 + (t+ a1)N−2/3. (3.3.21)

Note that t → ∞ as H → ∞. We evaluate the leading term of the right-hand side of the above
equation when z → 2 such that z − 2� N−2/3. The equation (2.2.16) when k = 2 is

1

N

N∑
i=1

n2
i

(z − λi)2
= s2(z) +

SN(z; 2)√
N

+O
(
N−1

)
for z − 2 = O(1). We expect that this formula is still applicable to z = 2 + (t + a1)N−2/3 since
t→∞. Since z → 2, we have s2(z) ' 1

2
√
z−2

from (2.1.8). The equation (3.3.21) becomes

1− T
H2

' 1

2N1/3
√
z − 2

+
SN(z; 2)

N5/6
. (3.3.22)

The sample expectation of SN(z; 2) with respect to the ni’s is 0 and the variance is

Es[SN(z; 2)2] =
2

N

N∑
i=1

1

(z − λ̂i)4
' 2s4(z) ' 1

8(z − 2)5/2

from (2.1.8). Thus, we expect that SN(z; 2) = O
(
(z − 2)−5/4

)
as z → 0 and (3.3.22) becomes

1− T
H2

' 1

2
√
t

+
SN(2 + tN−2/3; 2)

N5/6
' 1

2
√
t

+O
(
t−5/4

)
.
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Solving it gives t ' H4

4(1−T )2 , the leading term of (3.3.20), as H →∞. Inserting it bask to the same
equation, we obtain the next term and obtain (3.3.20). The last computation also shows that the
second term in the brackets of (3.3.20) is O

(
H2t−5/4

)
= O (H−3).

3.3.3 Matching with h = 0

We show that a formal limit (3.3.12) as H → 0 agrees with (3.1.17) which is the result for
h = 0. The leading term satisfies

F0(T, h) = 1− 3T

4
+
T log T

2
+O(H2N−1/3). (3.3.23)

For the subleading term (3.3.13), we use (3.3.19) for t and find that

EN(t) =
n2

1

t
+

N∑
i=2

n2
i

t+ a1 − ai
−N1/3 =

|n1|
√

1− T
H

+O (1) (3.3.24)

where the O (1) term follows from (2.2.14). Therefore, if we set h = HN−1/6 and take the limits
N →∞ first and H → 0 second, then

FN(T, h) = 1− 3T

4
+
T log T

2
+

1− T
2N2/3

a1 +O
(
H2N−1/3

)
+O

(
HN2/3

)
(3.3.25)

for asymptotically almost every disorder sample. This agrees with result (3.1.17) obtained when
h = 0.

We remark that the two subleading terms in (3.3.25) are comparable in size when H =

O(N−1/3), or equivalently when h = O(N−1/2). This regime is not important for the compu-
tation of the free energy, but it will become important when we discuss the overlap of the spin
variable with the external field in Subsection 4.1.6.

3.3.4 Matching with h > 0

We show that the formal limit of (3.3.12) as H →∞ is consistent with the result (3.1.25) for
h > 0.

3.3.4.1 Large w limit of EN(w)

We first consider the behavior of EN(w), defined in (2.2.5), as w →∞ and then we insert w = t

which tends to∞ from (3.3.20). This result is also used in other sections later.
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Result 3.3.4. As w →∞,

EN(w) ' −
√
w +

SN(W ; 1)

N1/6
+O

(
w−1/2

)
, W := 2 + wN−2/3. (3.3.26)

where SN(z; k) is defined in (2.2.6).

Let âi := N2/3(λ̂i − 2) be the scaled classical location of the eigenvalues. Write

EN(w) =
N∑
i=1

n2
i

w − âi
−N1/3 +

N∑
i=1

n2
i (ai − âi − a1)

(w + a1 − ai)(w − âi)
. (3.3.27)

Since ai � −i2/3, we find that for any ε > 0,

N∑
i=1

1

(w − ai)2
≤ 1

w1/2−ε

N∑
i=1

1

(w − ai)3/2+ε
= O

(
w−1/2

)
as w → ∞. Thus, considering in a similar way, the last sum in (3.3.27) is O

(
w−1/2

)
since

a1 = O (1), ai − âi = O (1), and w →∞. Setting W = 2 + wN−2/3, (3.3.27) can be written as

EN(w) = N1/3

[
1

N

N∑
i=1

1

W − λ̂i
− 1

]
+
SN(W ; 1)

N1/6
+O

(
w−1/2

)
.

From a formal application of the semicircle law,

1

N

N∑
i=1

1

W − λ̂i
' s1(W ) = 1−

√
W − 2 +O(W − 2) = 1−

√
w

N1/3
+O(wN−2/3).

Thus, we obtain (3.3.26).

The equations (3.3.20) and (3.3.26) imply the next result.

Result 3.3.5. Let t be the solution of (3.3.14). Then, as H →∞,

EN(t) ' − H2

2(1− T )
− H4SN(Γ0; 2)

2(1− T )2N5/6
+
SN(Γ0; 1)

N1/6
, Γ0 = 2 +

H4N−2/3

4(1− T )2
. (3.3.28)
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3.3.4.2 Large H limit

From (3.3.28), we see that the N−2/3 term in (3.3.12) satisfies

F̃(T,H)

N2/3
' (1− T )a1

2N2/3
− H4

8(1− T )N2/3
+
H2SN(Γ0; 1)

2N5/6
' − h4

8(1− T )
+
h2SN(Γ0; 1)

2
√
N

(3.3.29)

writing in terms of h = HN−1/6. Thus, we find that if we take h = HN−1/6 and N →∞ and then
take H →∞, then

FN '
[
1− 3T

4
+
T log T

2
+
h2

2
− h4

8(1− T )

]
+
h2SN(Γ0; 1)

2
√
N

, Γ0 = 2+
H4N−2/3

4(1− T )2
(3.3.30)

for asymptotically almost every disorder sample. The point Γ0 is approximately equal to γ0. The
terms in brackets are the same as the limit of F (T, h) as h→ 0 in (3.1.37). The O(N−1/2) term in
(3.1.37) agrees with the last term of (3.3.30) since γ0 ' 2 + h4

4(1−T )2 = Γ0 from (3.1.32). Hence, we
find that the above formula is the same as the formal h→ 0 limit of the result (3.1.25), which was
obtained by taking N →∞ first with h = O(1) fixed. Hence, the result matches with the h = O(1)

regime.

The last term of (3.3.30) depends on the disorder sample. We consider its sample distribution
and show that the sample distributions of the h = HN−1/6 regime and h > 0 regime match for
0 < T < 1. Using (2.2.13), we replace SN(Γ0; 1) by N (0; 2s2(Γ0)). Using s2(z) ' 1

2
√
z−2

as
z → 2, we find that

h2SN(Γ0; 1)

2
√
N

D' h
√

1− T√
2N

N (0, 1) . (3.3.31)

The right-hand side is same as the fluctuation term in (3.1.38), which shows the matching. This
computation shows the matching of the h = HN−1/6 regime and the h > 0 regime for 0 < T < 1

in terms of the sample distribution as well.

3.3.5 Comparison with the large deviation result of [22]

We now compare our results with the large deviation result of [22]. To this aim we first extend
their calculation from T = 0 to any 0 < T < 1, which is straightforward. Denoting by Es the
sample expectation, we find that

Es[ZnN ] = Es[eβNnFN ] ' eβNnF
0

eN26h6G( βn
8h2 ) (3.3.32)

49



where F 0 is the same as the terms in brackets in (3.3.30), the sample-independent terms, and

G(x) =
(1− T )3

3
x3 +

1− T
4

x2. (3.3.33)

This formula is valid for fixed T < 1, n, and h to the leading order as N → ∞ and in a second
stage as n, h→ 0 so that n

h2 is fixed. The full result for fixed n and h is in (94) and (95) of [22] and
the above formula follows from it after changing T → 2T , σ → 2h, and J0 = 2. Note that the term
eN26h6G( n

8Th2 ) is O(1) when h = O(N−1/6) and n = O(h2) = O(N−1/3). We have

N26h6G
( n

8Th2

)
=
N(1− T )3n3

24T 3
+
Nh2(1− T )n2

4T 2
. (3.3.34)

We compare the above formula with the one obtained using the result (3.3.12). From (3.3.12),
we find that

Es[ZnN ] = Es[e
Nn
T
FN ] ' e

Nn
T
F0(T,h) Es[e

N1/3n
T
F̃(T,H)]. (3.3.35)

Now we let H →∞. This term was computed in (3.3.29) in which we neglected the contribution
from a1. Including this term, using (3.3.31), and also noting that SN(z; 1) and a1 are independent,
we obtain

Es[e
N1/3n
T
F̃(T,H)] ' e−

N1/3nH4

8T (1−T ) e
N2/3n2H4

8T2
√
t Es

[
e
N1/3n(1−T )

2T
a1

]
. (3.3.36)

We can replace
√
t ' H2

2(1−T )
from (3.3.20) in the middle term. For the remaining expectation, we

use the right tail of the GOE Tracy-Widom distribution F1(s) = P(α1 < s) ∼ exp(−2
3
s3/2) as

s→ +∞, and thus

E[e
N1/3n(1−T )

2T
a1 ] '

∫
e
N1/3n(1−T )

2T
a1− 2

3
α

3/2
1 dα1 ' exp

(
1

3

(N1/3n(1− T )

2T

)3
)
. (3.3.37)

Combining the calculations together, we find that

E[ZnN ] ' e
Nn
T
F0(T,h)e−

N1/3nH4

8T (1−T ) e
N2/3n2H2(1−T )

4T2 e
Nn3(1−T )3

24T3 . (3.3.38)

The exponents of the last two factors, upon writing H = hN1/6, agree with (3.3.34). Since
F 0 = F0(T, h) − h4

8(1−T )
, we find that (3.3.38) is the same as (3.3.32). This shows that the tail of

the typical fluctuations obtained here matches the large deviation tails at the exponential order.
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3.4 A perturbation argument

The following perturbation lemma is used to obtain (3.1.7), (3.1.22) and (3.2.4).

Lemma 3.4.1. Let I be a closed interval of R. Let G(z;N) be a sequence of random C4-functions

for z ∈ I . Let ε = ε(N) := N−δ for some δ > 0 and assume that

G(z;N) = G0(z;N) +G1(z;N)ε+G2(z;N)ε2 +O
(
ε3
)

(3.4.1)

and

G′(z;N) = G′0(z;N) +G′1(z;N)ε+G′2(z;N)ε2 +O
(
ε3
)

(3.4.2)

for random C4-functions Gk(z;N). Suppose that

G
(`)
k (z;N) = O (1) (3.4.3)

uniformly for z ∈ I for all k = 0, 1, 2, 0 ≤ ` ≤ 4 and also assume that there is a γ0 ∈ I satisfying

G′0(γ0;N) = 0, |G′′0(γ0;N)| ≥ C > 0 (3.4.4)

for a positive constant C. Then there is a critical point γ = γ(N) of G(z;N) admitting the

asymptotic expansion

γ = γ0 + γ1ε+ γ2ε
2 +O

(
ε3
)

(3.4.5)

where

γ1 = −G
′
1(γ0;N)

G′′0(γ0;N)
, γ2 = −

G′2(γ0;N) +G′′1(γ0;N)γ1 + 1
2
G′′′0 (γ0;N)γ2

1

G′′0(γ0;N)
. (3.4.6)

Furthermore,

G(γ;N) = G0(γ0;N) +G1(γ0;N)ε+

(
1

2
G′1(γ0;N)γ1 +G2(γ0;N)

)
ε2 +O

(
ε3
)
. (3.4.7)

Proof. This lemma is standard when G(z;N) is deterministic. The proof for the random G(z;N)

does not change. For simplicity, we suppress the dependence on N in the notations; for example
we write G0(z) instead of G0(z;N). In order to prove (3.4.5), it is enough to show that for any
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0 < t < δ, G′(γ+)G′(γ−) < 0 with γ± = γ0 + γ1ε+ γ2ε
2 ± ε3N t. From the Taylor expansion,

G′(γ±) = G′0(γ0) + (G′′0(γ)γ1 +G′1(γ0))ε

+

(
G′′0(γ0)γ2 +G′2(γ0) +G′′1(γ0)γ1 +

1

2
G′′′0 (γ0)γ2

1

)
ε2 ±G′′0(γ0)ε3N t +O

(
ε3
)
.

(3.4.8)

The definitions of γ0, γ1, and γ2 imply that

G′(γ±) = ±G′′0(γ0)ε3N t +O
(
ε3
)

(3.4.9)

Thus, G′(γ+)G′(γ−) < 0 for all large enough N and we obtain (3.4.5). The equation (3.4.7) follows
from

G(γ) = G0(γ) +G1(γ)ε+G2(γ)ε2 +O
(
ε3
)

= G0(γ0) + (G′0(γ0)γ1 +G1(γ0))ε

+

(
G′0(γ0)γ2 +

1

2
G′′0(γ0)γ2

1 +G′1(γ0)γ1 +G2(γ0)

)
ε2 +O

(
ε3
)
,

(3.4.10)

together with G′0(γ0) = 0 and (3.4.6).

Remark 3.4.2. Here, we consider the asymptotic expansion of G(z) up to the third order term. One
can also consider the case where the expansion is up to the second order, then (3.4.7) is still valid
up to the second order.
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CHAPTER IV

Overlaps of the Spherical Sherrington-Kirkpatrick Model

This is the longest chapter of the thesis and contains our analysis of three types of overlaps: the
overlap with an external field, overlap with the ground state, and the overlap with a replica. These
are discussed in Sections 4.1, 4.2, and 4.3 respectively. For each type of overlap, we analyze its
limiting value as well as its fluctuations in several distinct regimes, namely h = 0, h > 0 fixed, and
the transitional regimes where h→ 0 as N →∞. None of the three overlaps exhibits any transition
at high temperature. However, when T < 1, all three overlaps exhibit a transition at h ∼ N−1/6. The
overlap with the external field and the overlap with a replica also exhibit a transition at h ∼ N−1/2.
The overlap with the ground state exhibits a transition at h ∼ N−1/3. We conclude the chapter with
Section 4.4, which describes the implications of our findings in terms of the geometry of the Gibbs
measure.

4.1 Overlap with the external field

The overlap of a spin with the external field is

M =
g · σ
N

.

We study the thermal fluctuation of the overlap for a given disorder sample in several regimes:
h = O(1), h ∼ N−1/6 and h ∼ N−1/2. We also consider the magnetization, susceptibility, and
differential susceptibility,

M = 〈M〉, X =
M
h
, Xd =

dM
dh

.

4.1.1 Thermal average from free energy

Before we discuss the thermal fluctuations of M, we first derive the thermal average of M, i.e.
the magnetization, from the results for the free energy in two regimes, h = O(1) and h ∼ N−1/6,
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using

M = 〈M〉 =
dFN
dh

. (4.1.1)

Case h = O(1):

For h > 0 and T > 0, the result (3.1.24) for the free energy implies that

〈M〉 =
dFN
dh
' dF (T, h)

dh
+

1

2
√
N

d

dh
(h2SN(γ0; 1)) (4.1.2)

for asymptotically almost every disorder sample where we recall from equation (3.1.26) that γ0 > 2

satisfies 1− Ts1(γ0)− h2s2(γ0) = 0. Using s′0(z) = s1(z) and s′1(z) = −s2(z),

dF (T, h)

dh
= hs1(γ0) +

1

2
(1− Ts1(γ0)− h2s2(γ0))

dγ0

dh
(4.1.3)

However, the equation for γ0 (see equation (3.1.26)) implies that the second term is zero. On the
other hand, since S ′N(z; 1) = −SN(z; 2),

d

dh
(h2SN(γ0; 1)) = 2hSN(γ0; 1)− h2SN(γ0; 2)

dγ0

dh
. (4.1.4)

Using equation (3.1.26) again and s′2(z) = −2s3(z), we find that

dγ0

dh
=

2hs2(γ0)

Ts2(γ0) + 2h2s3(γ0)
. (4.1.5)

Therefore, we conclude that, for fixed h > 0 and T > 0,

〈M〉 ' hs1(γ0) +
1√
N

[
hSN(γ0; 1)− h3s2(γ0)SN(γ0; 2)

Ts2(γ0) + 2h2s3(γ0)

]
(4.1.6)

for asymptotically almost every disorder sample.

Case h ∼ N−1/6 and T < 1:

If we use the result (3.3.12) for the free energy when h = HN−1/6 and 0 < T < 1, we find that

〈M〉 = N1/6 dFN
dH

' h+
HEN(t)√

N
+

(1− T +H2E ′N(t))

2
√
N

dt

dH
(4.1.7)
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for asymptotically almost every disorder sample. The formula for EN is given in (2.2.5) and

E ′N(w) = −
N∑
i=1

n2
i

(w + a1 − ai)2
. (4.1.8)

Since t satisfies the equation (3.3.14), we see that the term 1 − T + H2E ′N(t) = 0. Hence, for
h = HN−1/6 and 0 < T < 1,

〈M〉 ' h+
HEN(t)√

N
(4.1.9)

for asymptotically almost every disorder sample.
In both of these regimes, it turns out that the thermal average is indeed the leading term. However,

this calculation does not give us the thermal fluctuation term. To obtain that, we use the integral
representation of the overlap in the following subsections. For the overlap and magnetization,
it turns out that there is another interesting regime, h ∼ N−1/2, for 0 < T < 1. This is the
regime that occurs when the two terms in (4.1.9) have the same order; it was shown in (3.3.24) that
HEN(t) ' O (1) as H → 0. See the following subsections for the details.

4.1.2 Setup

We obtain the thermal probability of the overlap by considering the moment generating function
〈eβηM〉with respect to the Gibbs measure (1.1.11). Here, η is the variable for the generating function
and we scaled by β for convenience in subsequent formulas. It turns out that the thermal fluctuations
of M are of order N−1/2 in all regimes. Hence, we scale η = ξ

√
N and use ξ as the scaled variable

for the moment generating function. From Lemma 2.3.3, we have the following formula:

〈eβξ
√
NM〉 = e

N
2

(GM(γM)−G(γ))

∫ γM+i∞
γM−i∞ e

N
2

(GM(z)−GM(γM))dz∫ γ+i∞
γ−i∞ e

N
2

(G(z)−G(γ))dz
(4.1.10)

where

GM(z) = βz − 1

N

N∑
i=1

log(z − λi) +
(h+ ξ√

N
)2β

N

N∑
i=1

n2
i

z − λi
. (4.1.11)

Here, we take γM > λ1 to be the critical point of GM(z) satisfying

G ′M(γM) = 0 (4.1.12)

and we take γ > λ1 to be the critical point of G(z). The only difference between GM and G, which
we studied extensively in the previous sections, is that h is changed to h+ ξN−1/2.
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We record two formulas that we use below. From the explicit formulas for GM and G, the
equation G ′M(γM)− G ′(γ) = 0 implies that

(γM − γ)

[
1

N

N∑
i=1

1

(γM − λi)(γ − λi)
+
h2β

N

N∑
i=1

n2
i (γ + γM − 2λi)

(γM − λi)2(γ − λi)2

]

=

(
2ξh

N3/2
+

ξ2

N2

)
β

N∑
i=1

n2
i

(γM − λi)2
.

(4.1.13)

The other formula that we will need is

N(GM(γM)− G(γ)) = −
N∑
i=1

[
log

(
1 +

γM − γ
γ − λi

)
− γM − γ

γ − λi

]
+ h2β

N∑
i=1

n2
i (γM − γ)2

(γM − λi)(γ − λi)2

+

(
2ξh√
N

+
ξ2

N

)
β

N∑
i=1

n2
i

γM − λi
=: A1 + A2 + A3,

(4.1.14)

which can be seen using GM(γM)− G(γ) = GM(γM)− G(γ)− G ′(γ)(γM − γ).

4.1.3 Positive external field: h = O(1)

4.1.3.1 Analysis

Fix h > 0. The critical point γ of G(z) is evaluated in subsection 3.1.2. It is shown in (3.1.20)
that

γ = γ0 + γ1N
−1/2 +O

(
N−1

)
where γ0 and γ1 are deterministic functions of h and T . From the formulas for G and GM, we see
that G ′M(z) = G ′(z) + O

(
N−1/2

)
for z > λ1 + O(1) (cf. (2.2.16)). This implies that γM − γ =

O
(
N−1/2

)
. We need to evaluate the difference precisely. From (4.1.13), we find, using the

semicircle law, that

(γM − γ)
(
s2(γ) + 2h2βs3(γ) +O

(
N−1/2

))
=

2ξhβ√
N
s2(γ) +O

(
N−1

)
.

Thus,

γM = γ + ∆N−1/2, ∆ =
2hβξs2(γ0)

s2(γ0) + 2h2βs3(γ0)
+O

(
N−1/2

)
. (4.1.15)

We now evaluate N(GM(γM)− G(γ)) for (4.1.10) via the equation (4.1.14). Using the Taylor
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expansion of the logarithm function,

A1 =
∆2

2N

N∑
i=1

1

(γ − λi)2
+O

(
1

N3/2

N∑
i=1

1

(γ − λi)3

)
=

∆2s2(γ)

2
+O

(
N−1/2

)
. (4.1.16)

Similarly,

A2 =
h2β∆2

N

N∑
i=1

n2
i

(γ − λi)3
+O

(
N−1/2

)
= h2β∆2s3(γ) +O

(
N−1/2

)
. (4.1.17)

In these two equations, we replaced γM by γ . For A3, using (4.1.15) and the notation (2.2.6), we
have

A3 = 2ξhβ(s1(γM)
√
N + SN(γM; 1)) + ξ2βs1(γM) +O

(
N−1/2

)
= 2ξhβs1(γ)

√
N +

[
2ξh(SN(γ; 1)− s2(γ)∆) + ξ2s1(γ)

]
β +O

(
N−1/2

)
.

(4.1.18)

Combining the three terms and inserting the formulas of γ and ∆,

N(GM(γM)− G(γ)) =2ξhβ
[√

Ns1(γ0)− s2(γ0)γ1 + SN(γ0; 1)
]

+ ξ2

[
βs1(γ0)− 2h2β2s2(γ0)2

s2(γ0) + 2h2βs3(γ0)

]
+O

(
N−1/2

)
.

(4.1.19)

Now we consider the integrals in (4.1.10). Since G(k)(γ) = O (1) for all k ≥ 2, the method of
steepest descent applies. It is also straightforward to check that

G ′′M(γM) = G ′′(γM) +O
(
N−1/2

)
= G ′′(γ) +O

(
N−1/2

)
.

Hence, ∫ γM+i∞
γM−i∞ e

N
2

(GM(z)−GM(γM))dz∫ γ+i∞
γ−i∞ e

N
2

(G(z)−G(γ))dz
'

√
G ′′(γ)

G ′′M(γM)
' 1.

Inserting the above computations into (4.1.10), moving the term involving
√
N to the left,

replacing βξ by ξ, using β = 1/T , and inserting the formula (3.1.21) for γ1, we obtain the
following.

Result 4.1.1. For h = O(1) and T > 0,

〈eξ
√
N(M−hs1(γ0))〉 ' e

ξh

[
SN (γ0;1)− h3s2(γ0)SN (γ0;2)

Ts2(γ0)+2h2s3(γ0)

]
+ ξ2

2

[
Ts1(γ0)− 2Th2s2(γ0)2

2Ts2(γ0)+h2s3(γ0)

]
(4.1.20)
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as N → ∞ for asymptotically almost every disorder sample, where γ0 > 2 is the solution of the

equation (3.1.19) and SN(z; k) is defined in (2.2.6).

Since the right-hand side is an exponential of a quadratic function of ξ, we obtain the following
distributional result.

Result 4.1.2. For h = O(1) and T > 0,

M
D' hs1(γ0) +

1√
N

[
hSN(γ0; 1)− h3s2(γ0)SN(γ0; 2)

Ts2(γ0) + 2h2s3(γ0)
+ σMN

]
(4.1.21)

as N →∞ for asymptotically almost every disorder sample. The thermal random variable N is a

standard normal random variable and the coefficient σM > 0 is given by the formula

σ2
M = Ts1(γ0)− 2Th2s2(γ0)2

Ts2(γ0) + 2h2s3(γ0)
. (4.1.22)

The thermal average is given by the first three terms in (4.1.21) and they agree with the formula
(4.1.6) obtained from the free energy.

4.1.3.2 Discussion of the leading term

The leading term
M0(h, T ) := hs1(γ0(h)) (4.1.23)

in (4.1.21) is deterministic. See Figure IV.1 (a) for a graph as a function of h. The function M0

satisfies the following properties:

• For every T > 0, M0(h, T ) is an increasing function of h.

• As h→∞,

M0(h, T ) = 1− T

2h
+O(h−2) for all T > 0. (4.1.24)

• As h→ 0,

M0(h, T ) '

 h
T
− h3

T (T 2−1)
for T > 1,

h− h3

2(1−T )
for 0 < T < 1.

(4.1.25)

The first property is consistent with the intuition that the overlap of the spin with the external
field becomes larger as the external field becomes stronger. The proof follows from

d

dh
M0 = s1(γ0)− hs2(γ0)γ′0 =

Ts1(γ0)s2(γ0) + 2h2(s1(γ0)s3(γ0)− s2(γ0)2)

Ts2(γ0) + 2h2s3(γ0)
(4.1.26)
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and from checking that s1(z)s3(z)−s2(z)2 > 0 for all z > 2 using (2.1.7). The large-h and small-h
limits follow from Lemma 3.1.7.

(a) M0 (b) σ2
M

Figure IV.1: Graphs of M0 and σ2
M as functions of h for various values of T

4.1.3.3 Discussion of the variance

The variance of the overlap satisfies

〈M2〉 − 〈M〉2 ' σ2
M

N
. (4.1.27)

The term σ2
M(h, T ) = σ2

M is given in (4.1.22) and does not depend on the disorder sample. See
Figure IV.1 for the graph. Here are some properties of σ2

M.

• For every T , σ2
M(h, T ) is a decreasing function of h.

• As h→∞,

σ2
M =

T

h
+O(h−2) for all T > 0. (4.1.28)

• As h→ 0,

σ2
M →

1 for T > 1,

T for 0 < T < 1.
(4.1.29)

The first property follows from

d

dh
σ2
M = −T

2s2(γ0) [(Ts2(γ0)2 − 12h4s3(γ0)2 + 12h4s2(γ0)s4(γ0)) γ′0(h) + 4hTs2(γ0)2]

(Ts2(γ0) + 2h2s3(γ0))2

(4.1.30)
by checking that s2(z)s4(z)− s3(z)2 > 0 for all z > 2. The large- and small-h limits follow from
Lemma 3.1.7.
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4.1.3.4 Limit as h→∞

Consider the formal limit of the result (4.1.21) as h→∞. Using (3.1.33), we have

hkSN(γ0; k) =
1√
N

N∑
i=1

n2
i − 1

(γ0

h
− λ̂i

h
)k
' 1√

N

N∑
i=1

(n2
i − 1) (4.1.31)

and sk(γ0) ' h−k as h → ∞. Therefore, using (4.1.24) and (4.1.28), we find that if we take
N →∞ with h > 0 and then take h→∞, we get

M
D' 1− T

2h
+

1√
N

[∑N
i=1(n2

i − 1)

2
√
N

+

√
T√
h
N

]
. (4.1.32)

The leading term M ' 1 is trivial since the spin is likely to be pulled to the direction of the external
field if h is large.

4.1.3.5 Limit as h→ 0 when T > 1

Since γ0 → T + T−1 as h → 0 for T > 1 from (3.1.32), the terms SN(γ0; 1) and SN(γ0; 2)

remain O(1). Hence the deterministic terms in the square brackets in (4.1.21) converge to zero as
h→ 0. We thus find, using (4.1.25) and (4.1.29), that, if we take the limit N →∞ with h > 0 and
then take h→ 0, the result for T > 1 becomes

M
D' h

T
− h3

T (T 2 − 1)
+

1√
N

[
N + hSN(T +

1

T
; 1)

]
. (4.1.33)

4.1.3.6 Limit as h→ 0 when T < 1

The small-h limit (3.1.32) of γ0 and the limit of sk(z) as z → 2 obtained in (2.1.8) imply that,
as h→ 0,

s2(γ0) ' (1− T )

h2
+

T

2(1− T )
, s3(γ0) ' (1− T )3

h6
, s4(γ0) ' 2(1− T )5

h10
(4.1.34)

when 0 < T < 1. From these, we see that

hSN(γ0; 1)− h3s2(γ0)SN(γ0; 2)

Ts2(γ0) + 2h2s3(γ0)
' hSN(γ0; 1)− h5SN(γ0; 2)

2(1− T )2
. (4.1.35)
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Thus, by (4.1.25) and (4.1.29), if take the limit N →∞ with h > 0 and then take h→ 0, then

M
D' h− h3

2(1− T )
+

1√
N

[
hSN(γ0; 1)− h5SN(γ0; 2)

2(1− T )2
+
√
TN

]
, γ0 ' 2 +

h4

4(1− T )2
.

(4.1.36)
Finally, we consider the terms hSN(γ0; 1) and h5SN(γ0; 2). The sample-to-sample variance of
SN(γ0; k) is

2

N

N∑
i=1

1

(γ0 − λ̂i)2k
' 2s2k(γ0), (4.1.37)

which is expected to hold for γ0−2� N−2/3, i.e., h� N−1/6, Thus the sample-to-sample variance
is O (h−2) for k = 1 and O (h−10) for k = 2 from (4.1.34). Hence, we expect that hSN(γ0; 1) and
h5SN(γ0; 2) are O (1) for h� N−1/6.

4.1.4 No external field: h = 0

When h = 0 and T > 1, it is well-known in spin glass theory [38, 36] that two independently
chosen spins are asymptotically orthogonal, indicating that the spin variable becomes uniformly
distributed on the sphere ‖σ‖ =

√
N as N →∞. For h = 0 the Gibbs measure is independent of

g. Hence, the overlap M = 1
N
g · σ of the spin with the random Gaussian vector g is the cosine of

the angle of two independent vectors which are chosen more or less uniformly at random from the
sphere. Thus, we expect that M is approximately 1√

N
times a standard normal distribution. The

formal limit of (4.1.33) as h→ 0 coincides with this result. Indeed when T > 1, the analysis for
h > 0 with h = O(1) extends to h ≥ 0 and (4.1.21) holds.

When h = 0 and T < 1, it was argued in [28] that 〈|u1·σ|〉√
N

converges to
√

1− T . (In [28], the
authors claim that 〈u1·σ〉√

N
→
√

1− T , but this seems to be a typographical error since 〈u1 · σ〉 = 0

due to the symmetry of the Gibbs measure under the transformation σ 7→ −σ.) It was also proven
in [38] that the absolute value of the overlap of two independently chosen spins converges to 1− T .
Hence, a spin variable may be written as σ√

N
= ±
√

1− Tu1 +
√
Tv, where the unit vector v is

taken uniformly at random from the hyperplane perpendicular to u1 and the signs ± are each taken
with probability 1/2; see more discussion on such a decomposition of the spin variable in Section
4.4. Thus, using the notation n1 = u1 · g, we expect that M ' ±n1

√
1−T+

√
TN√

N
. Recall that u1 has

sign ambiguity and hence n1 is defined up to its sign. Thus, we find the following result for h = 0.
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Result 4.1.3. For h = 0,

M '


1√
N
N for T > 1,

|n1|
√

1− TB +
√
TN√

N
for 0 < T < 1

(4.1.38)

asN →∞, for asymptotically almost every disorder sample, where N is a standard normal random

variable, and B is independent of N and has the distribution P(B = 1) = P(B = −1) = 1
2
.

The right-hand side of (4.1.36) involves the thermal random variable N but does not involve
the other thermal random variable B in (4.1.38). Hence, the formal limit of (4.1.36) as h→ 0 is
not equal to (4.1.38) when T < 1. This implies that there should be a transitional regime. It turns
out that there are two transitional regimes, h ∼ N−1/6 and h ∼ N−1/2. The first regime can be
expected, since γ0 = 2 +O(h4) as h→ 0, and the subleading term O(h4) is of same order as the
fluctuations of the top eigenvalue λ1 when h ∼ N−1/6. This is the same transitional regime that was
observed for the free energy. The second regime h ∼ N−1/2 arises because the ratio of the integrals
in (4.1.10), which was approximately equal to 1 when h > 0 (and when h ∼ N−1/6 as well), is no
longer close to 1 when h ∼ N−1/2. This will be responsible for the appearance of B. We discuss
these two transitional regimes in the next subsections. We will see in Subsection 4.1.6 that the result
for h = HN−1/2 actually holds even when H = 0, implying that (4.1.38) indeed holds.

4.1.5 Mesoscopic external field: h ∼ N−1/6 and T < 1

4.1.5.1 Analysis

We scale h as
h = HN−1/6

for fixed H > 0. This scale is the same as the one considered in Subsection 3.3.1. We showed in
that section that the critical point of G(z) is γ = λ1 + sN−2/3 where s > 0 satisfies the equation
(3.3.4). To find the critical point of GM(z), we make the ansatz that γM ' γ, Then, the equation
(4.1.13) becomes

(γM − γ)

[
N1/3

N∑
i=1

1

(s+ a1 − ai)2
+H2βN2/3

N∑
i=1

2n2
i

(s+ a1 − ai)3

]

'
(

2ξH

N5/3
+

ξ2

N2

)
βN4/3

N∑
i=1

n2
i

(s+ a1 − ai)2
,
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implying that
γM − γ = O

(
N−1

)
, (4.1.39)

which is consistent with the ansatz. We do not need to determine theO (N−1) term in this subsection.
We now evaluateN(GM(γM)−G(γ)) using (4.1.14). From the Taylor series of the log function,

A1 '
N∑
i=1

(γM − γ)2

(γ − λi)2
=

N∑
i=1

(γM − γ)2N4/3

(s+ a1 − ai)2
= O

(
N−2/3

)
.

Inserting h = HN−1/6,

A2 '
H2β

N1/3

[
N2

N∑
i=1

n2
i

(s+ a1 − ai)2

]
(γM − γ)2 = O

(
N−1/3

)
.

The third term in (4.1.14) is

A3 =

(
2ξH +

ξ2

N1/3

)
β

[
N∑
i=1

n2
i

s+ a1 − ai
+O

(
N−1/3

)]
.

Using the random variable EN(s) defined in (2.2.5), which is O (1), and combining all three terms,

N(GM(γM)− G(γ)) = 2ξHβN1/3 + 2βξHEN(s) + βξ2 +O
(
N−1/3

)
. (4.1.40)

Finally, consider the integrals in (4.1.10). The denominator is computed in Section 3.3.1. The
numerator can be computed in the same manner. Indeed, we can check, as with the denominator,
that G(k)

M (γM) = O
(
N

2
3
k− 2

3

)
for all k ≥ 2 and

G ′′M(γM) = 2N2/3H2β
N∑
i=1

n2
i

(s+ a1 − ai)3
+O

(
N1/2

)
, (4.1.41)

which is the same as the denominator. Hence, the Gaussian integral approximations of the integrals
imply that ∫ γM+i∞

γM−i∞ e
N
2

(GM(z)−GM(γM))dz∫ γ+i∞
γ−i∞ e

N
2

(G(z)−G(γ))dz
'

√
G ′′(γ)

G ′′M(γM)
' 1. (4.1.42)

Combining the above computations into (4.1.10), replacing s by t (the solution to (3.3.5)),
replacing βξ by ξ, and using 1/β = T , we obtain the following result.
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Result 4.1.4. For h = HN−1/6 and 0 < T < 1,

〈eξ
√
N(M−h)〉 ' eξHEN (t)+Tξ2

2 , EN(t) :=
N∑
i=1

n2
i

t+ a1 − ai
−N1/3, (4.1.43)

as N → ∞ for asymptotically almost every disorder sample, where t > 0 is the solution of the

equation (3.3.14).

Since the exponent of the right-hand side of (4.1.43) is a quadratic function of ξ, we obtain

Result 4.1.5. For h = HN−1/6 and 0 < T < 1,

M
D' h+

1√
N

[
HEN(t) +

√
TN
]

(4.1.44)

as N →∞ for asymptotically almost every disorder sample, where the thermal random variable N

has the standard Gaussian distribution.

The thermal average is obtained from the first two terms. The average is the same as (4.1.9) that
we obtained from the free energy.

4.1.5.2 Matching with h = O(1)

We take the formal limit H → ∞ of (4.1.44). The limit of EN(t) as H → ∞ is obtained in
(3.3.28). From this, we find that, if we take h = HN−1/6 and let N → ∞ first and then take
H →∞, then

M
D' h− h3

2(1− T )
+

1√
N

[
hSN(γ0; 1)− h5SN(γ0; 2)

2(1− T )2
+
√
TN

]
(4.1.45)

as H →∞ where γ0 ' 2 + h4

4(1−T )2 . This result agrees with (4.1.36), which is obtained by taking
h > 0 fixed and letting N →∞ first and then taking h→ 0.

4.1.5.3 Formal limit as H → 0

We take the formal limit H → 0 of (4.1.44). We obtained the limit of EN(t) as H → 0 in
(3.3.24). Hence, we find that, if we take N → ∞ with h = HN−1/6 first and then take H → 0,
then

M
D' h+

1√
N

[
|n1|
√

1− T +
√
TN
]
. (4.1.46)
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This formula evaluated at H = 0 is different from (4.1.38). In particular, the Bernoulli random
variable B(1/2) is missing. In the next subsection, we consider a new regime h = O(N−1/2) in
which the two terms in (4.1.46) are of the same order. We will show that this new regime interpolates
between h = O(N−1/6) and h = 0.

4.1.6 Microscopic external field: h ∼ N−1/2 and T < 1

4.1.6.1 Analysis

We set, for fixed H > 0,
h = HN−1/2. (4.1.47)

This is a new regime which did not appear in previous sections. The appearance of this scaling
regime was first noticed in [22] for the zero-temperature case.

Critical points

We first compute the critical point γ of G(z). In previous sections, we had γ = λ1 +O
(
N−2/3

)
for h ∼ N−1/6 and γ = λ1+O (N−1) for h = 0. For h ∼ N−1/2, it turns out that γ = λ1+O (N−1).
We make the ansatz that

γ = λ1 + pN−1 (4.1.48)

with p = O (1). Then, the critical point equation becomes

β − 1

N

N∑
i=1

1

λ1 + pN−1 − λi
− H2β

N2

N∑
i=1

n2
i

(λ1 + pN−1 − λi)2
= 0. (4.1.49)

Separating out i = 1 in both sums and using (2.2.14) and (2.2.15) for the remaining sums, the
equation becomes

β − 1− 1

p
− H2βn2

1

p2
+O

(
N−1/3

)
= 0. (4.1.50)

The solution is

p =
1 +

√
1 + 4(β − 1)H2βn2

1

2(β − 1)
+O

(
N−1/3

)
. (4.1.51)

Hence, p = O (1), which is consistent with the ansatz.
Now consider the critical point of GM(z). Due to the scale h = HN−1/2, the function GM(z) is

the same as G(z) with H replaced by H + ξ. Thus, we find that

γM = λ1 + pMN
−1 (4.1.52)
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where pM > 0 solves the equation

β − 1− 1

pM
− (H + ξ)2βn2

1

p2
M

+O
(
N−1/3

)
= 0. (4.1.53)

Exponential terms

We evaluate N(GM(γM) − G(γ)) using (4.1.14). For A1, the sum with i ≥ 2, using a Taylor
approximation, is O

(
N−2/3

)
. Hence,

A1 = − log(
pM
p

) +
pM
p
− 1 +O

(
N−2/3

)
.

The sum with i ≥ 2 for A2 is O (N−1) and we obtain

A2 =
H2βn2

1(pM − p)2

pMp2
+O

(
N−1

)
.

Finally, again separating the term with i = 1 and using (2.2.10) for the rest of the sum,

A3 = (2ξH + ξ2)β

(
n2

1

pM
+ 1

)
+O

(
N−1/3

)
. (4.1.54)

Therefore,

N(GM(γM)− G(γ))

= − log(
pM
p

) +
pM
p
− 1 +

H2βn2
1(pM − p)2

pMp2
+ (2ξH + ξ2)β

(
n2

1

pM
+ 1

)
+O

(
N−1/3

)
.

(4.1.55)
Using the equations (4.1.50) and (4.1.53) satisfied by p and pM, the equation (4.1.55) can be written
as

N(GM(γM)− G(γ)) =− log(
pM
p

) + 2(β − 1)(pM − p) + (2Hξ + ξ2)β +O
(
N−1/3

)
.

(4.1.56)

Integrals

We now consider the integrals in the formula (4.1.10). The ratio of the integrals in this regime
turns out to give a non-trivial contribution. We first show that we cannot use a Taylor series
approximation. Consider the numerator; the denominator is the same as the numerator with ξ = 0.
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For k ≥ 2, we use the formula for GM(z) to get

G(k)
M (γM)

(−1)k(k − 1)!
=

1

N

N∑
i=1

N
2
3
k

(a1 + pMN−1/3 − ai)k
+
k(H + ξ)2β

N2

N∑
i=1

n2
iN

2
3

(k+1)

(a1 + pMN−1/3 − ai)k+1

=N
2
3
k−1

(
N

1
3
k

pkM
+O (1)

)
+ k(H + ξ)2βN

2
3
k− 4

3

(
N

1
3

(k+1)

pk+1
M

+O (1)

)
= O

(
Nk−1

)
.

Since G(2)
M = O (N), the main contribution to the integral comes from a neighborhood of radius

N−1 around the critical point. If we use the new variable z = γM + uN−1 and the Taylor series

N
(
GM(γM + uN−1)− GM(γM)

)
=
∞∑
k=2

N−k+1

k!
G(k)
M (γM)uk,

we find that all terms in the series areO (1) for finite u. Since all terms in the Taylor series contribute
to the integral, this method will not work and we instead proceed as follows. Using G ′M(γM) = 0,
we have

N(GM(γM + w)− GM(γM)) = N(GM(γM + w)− GM(γM)− G ′M(γM)w)

= −
N∑
i=1

[
log

(
1 +

w

γM − λi

)
− w

γM − λi

]
+

(
h+

ξ√
N

)2

β
N∑
i=1

n2
iw

2

(γM + w − λi)(γM − λi)2
.

Separating out i = 1, using a Taylor approximation of the log function, and using (2.2.15),

N
(
GM(γM + uN−1)− GM(γM)

)
= − log

(
1 +

u

pM

)
+

u

pM
+

(H + ξ)2βn2
1u

2

(pM + u)p2
M

+O
(
u2N−2/3

)
.

We temporarily write the middle two terms with x := (H + ξ)2βn2
1 and get

u

pM
+

xu2

(pM + u)p2
M

= u

(
1

pM
+

x

p2
M

)
− x

pM
+

x

pM + x
.

Using (4.1.53) twice, the above formula can be written as

N
(
GM(γM + uN−1)− GM(γM)

)
' − log

(
1 +

u

pM

)
+ (β − 1)(u− pM) + 1 +

(H + ξ)2βn2
1

(pM + u)
.

(4.1.57)
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Thus,∫ γM+i∞

γM−i∞
e
N
2

(GM(z)−GM(γM))dz ' 1

N

∫ i∞

−i∞

√
pM

pM + u
e

(β−1)(u−pM)

2
+ 1

2
+

(H+ξ)2βn2
1

2(pM+u) du

=
p

1/2
M e−(β−1)pM+ 1

2

N

∫ i∞

−i∞

e
(β−1)(pM+u)

2
+

(H+ξ)2βn2
1

2(pM+u)

√
pM + u

du.

(4.1.58)

The last integral is an integral formula of a modified Bessel function which can be evaluated
explicitly (see e.g. [2]):∫

0++iR

eaw+ b
w

√
w

dw = 2πi

(
b

a

)1/4

I− 1
2
(2
√
ab) =

2i
√
π√
a

cosh(2
√
ab). (4.1.59)

Hence, we obtain∫ γM+i∞

γM−i∞
e
N
2

(GM(z)−GM(γM))dz ' 2i
√

2πpMe
−(β−1)pM+ 1

2

N
√
β − 1

cosh
(

(H + ξ)|n1|
√
β(β − 1)

)
.

(4.1.60)
Note that the integral depends on ξ, unlike in the cases h > 0 and h ∼ N−1/6. The denominator is
the case when ξ = 0. Thus,

∫
e
N
2

(GM(z)−GM(γM))dz∫
e
N
2

(G(z)−G(γ))dz
'
√
pM
p
e−(β−1)(pM−p)

cosh
(

(H + ξ)|n1|
√
β(β − 1)

)
cosh

(
H|n1|

√
β(β − 1)

) . (4.1.61)

Combining all terms together, replacing βξ by ξ and using T = 1/β, we obtain the following.

Result 4.1.6. For h = HN−1/2 and 0 < T < 1,

〈eξ
√
NM〉 ' eHξ+

Tξ2

2

cosh
(

(H + Tξ)|n1|
√

1−T
T

)
cosh

(
H|n1|

√
1−T
T

) (4.1.62)

as N →∞ for asymptotically almost every disorder sample.

The right-hand side is the product of two terms, implying that
√
NM is a sum two independent

random variables. The exponential term on right-hand side is the moment generating function of a
Gaussian distribution, while the ratio of the cosh functions is the moment generating function of a
shifted Bernoulli distribution. Indeed, if P(X = 1) = p and P(X = −1) = 1− p with p = ea

ea+e−a
,

68



then
E[eξX ] = peξ + (1− p)e−ξ =

cosh(a+ ξ)

cosh(a)
.

Hence, we deduce the following result.

Result 4.1.7. For h = HN−1/2 and 0 < T < 1,

M
D' h+

|n1|
√

1− TB(α) +
√
TN√

N
(4.1.63)

as N → ∞ for asymptotically almost every disorder sample. Here, B(c) is a shifted Bernoulli

thermal random variable with the probability mass function P (B(c) = 1) = c and P (B(c) =

−1) = 1− c and α in (4.1.63) is given by

α :=
e
H|n1|

√
1−T

T

e
H|n1|

√
1−T

T + e−
H|n1|

√
1−T

T

. (4.1.64)

The thermal random variable N has the standard Gaussian distribution and it is independent of

B(α).

4.1.6.2 Matching with h ∼ N−1/6 and h = 0

As H →∞, the random variable B(α)→ 1. The formal limit of (4.1.63) as H →∞ is

M
D' h+

1√
N

[
|n1|
√

1− T +
√
TN
]
, (4.1.65)

which is the same as (4.1.46) from the h = HN−1/6 regime. On the other hand, if we take H → 0,
then B(α)

D−→ B(1/2). Hence, the formal limit of (4.1.63) as H → 0 is the same as the h = 0 case
(4.1.38). Therefore, the result (4.1.63) matches with both the h ∼ N−1/6 and h = 0 results.

4.1.7 Susceptibility

In this subsection, we discuss properties of the susceptibility, defined as the magnetization per
external field strength. In the next subsection we discuss differential susceptibility

X =
M
h

=
〈M〉
h

=
1

h

dFN
dh

. (4.1.66)

We denote by X̄ or Es[X ] the sample average of X . We denote by Vars the sample variance. As
described in Chapter II, we use the font

D' to denote an asymptotic expansion in distribution with
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respect to the disorder sample.

4.1.7.1 Macroscopic field h = O(1)

From Subsection 4.1.6, for fixed h > 0 and T > 0,

X ' X 0 +
X 1

√
N

(4.1.67)

for asymptotically almost every disorder sample, where

X 0 = s1(γ0) and X 1 = SN(γ0; 1)− h2s2(γ0)SN(γ0; 2)

Ts2(γ0) + 2h2s3(γ0)
(4.1.68)

and γ0 is the solution of the equation (3.1.19) and SN(z; k) is defined in (2.2.13).
The leading term X 0 is deterministic and satisfies:

• X 0 is a decreasing function of h,

• As h→∞,

X 0(h, T ) =
1

h
− T

2h2
+O(h−3) for all T > 0 (4.1.69)

• As h→ 0,

X 0(h, T ) '

 1
T
− h2

T (T 2−1)
for T > 1

1− h2

2(1−T )
for 0 < T < 1.

(4.1.70)

See Figure IV.2a for the graph of X 0 as a function of h.

The subleading term X 1 depends on the disorder sample. We consider its sample-to-sample
fluctuations. From (2.2.13), SN(γ0; 1) and SN(γ0; 2) converge to the centered bivariate Gaussian
distribution with

Vars[SN(γ0; 1)]→ 2s2(γ0), Vars[SN(γ0; 2)]→ 2s4(γ0), (4.1.71)

and

Covs(SN(γ0; 1),SN(γ0; 2)) = Es

[
1

N

N∑
i=1

(n2
i − 1)2

(γ0 − λ̂i)3

]
→ 2s3(γ0). (4.1.72)

as N →∞. Hence, as N →∞,
X 1 D' N (0, σ2

s) (4.1.73)
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where the sample variance is

σ2
s =

2s2(γ0)2 (T 2s2(γ0) + 2Th2s3(γ0) + h4s4(γ0))

(Ts2(γ0) + 2h2s3(γ0))2 . (4.1.74)

See Figure IV.2b for the graph of σ2
s . The graph shows that σ2

s is a monotonically decreasing
function of h. It is easy to check that:

• As h→∞,
σ2
s '

1

2h2
for all T > 0. (4.1.75)

• As h→ 0,

σ2
s '


2

T 2 − 1
for T > 1,

1− T
h2

for T < 1.
(4.1.76)

The above formula suggests that there is an interesting transition as T approaches the critical
temperature T = 1 in the case where h→ 0. The behavior near the point (T, h) = (1, 0) is worth
studying, but we leave this subject for the future.

(a) Graph of X 0(h) (b) Graph of σ2
s(h)

Figure IV.2: Graphs of X 0(h) and σ2
s(h) as functions of h for various values of T

4.1.7.2 Mesoscopic external field: h ∼ N−1/6 and T < 1

From Subsection 4.1.6, for h = HN−1/6 with fixed H > 0 and 0 < T < 1,

X ' 1 +
EN(t)

N1/3
(4.1.77)

for asymptotically almost every disorder sample, where EN(t) is given in (4.1.43).
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(a) Xmicro as a function of H when |n1| = 1 (b) Xmicro as a function of H when |n1| =
√
2

Figure IV.3: Graphs of Xmicro(H,T ) as functions of H for various values of 0 < T < 1.

The behavior of EN(t) as H → ∞ and H → 0 is discussed in Subsubsections 4.1.5.2 and
4.1.5.3. The sample-to-sample fluctuation of EN(t) is shown in Subsection 3.3.1 and we see that
EN(t)

D' E(ς) where

E(ς) = lim
n→∞

 n∑
i=1

ν2
i

ς + α1 − αi
− 1

π

∫ ( 3πn
2 )

2/3

0

dx√
x

 (4.1.78)

and ς > 0 solves 1− T = H2
∑∞

i=1
ν2
i

(ς+α1−αi)2 . Here, αi is the GOE Airy point process and νi are
i.i.d standard normal random variables independent of αi.

4.1.7.3 Microscopic external field: h ∼ N−1/2 and T < 1

The thermal average of (4.1.63) implies that for h = HN−1/2 with fixedH > 0 and 0 < T < 1,

X ' 1 +
|n1|
√

1− T
H

tanh

(
H|n1|

√
1− T

T

)
=: Xmicro (4.1.79)

for asymptotically almost every disorder sample. The function Xmicro is a decreasing function in
both H and T (see Figures IV.3 and IV.4). From the formula for Xmicro, we conclude that

Xmicro ' 1 +
|n1|
√

1− T
H

as H →∞ (4.1.80)

and
Xmicro ' 1 +

n2
1(1− T )

T
− H2n4

1(1− T )2

3T 3
as H → 0. (4.1.81)
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(a) Xmicro as a function of T when |n1| = 1 (b) Xmicro as a function of T when |n1| =
√
2

Figure IV.4: Graphs of Xmicro(H,T ) as functions of T for various values of H .

4.1.7.4 The zero-external-field limit of the susceptibility

We consider two different limits of the susceptibility depending on how h→ 0 and N →∞ are
taken. The first limit is obtained from (4.1.70):

lim
h→0

lim
N→∞
h>0

X =

 1
T

for T > 1

1 for T < 1.
(4.1.82)

See Figure I.3 (a). This result (4.1.82) was previously obtained in [28], and also in [16]. The limit
does not depend on the disorder sample.

The second limit is obtained from (4.1.81) for 0 < T < 1:

lim
H→0

lim
N→∞

h=HN−1/2

X = 1 +
n2

1(1− T )

T
for 0 < T < 1. (4.1.83)

See Figure I.3 (b). This limit depends on the disorder sample, but only on one variable, n2
1. Observe

that this limit blows up at T = 0 while the limit (4.1.82) is finite at T = 0. The sample-to-sample
average of (4.1.83) satisfies

lim
H→0

lim
N→∞

h=HN−1/2

X̄ =
1

T
for 0 < T < 1. (4.1.84)
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4.1.8 Differential susceptibility

We also consider the differential susceptibility given by

Xd =
d

dh
〈M〉 =

d2FN
dh2

=
N

T

(
〈M2〉 − 〈M〉2

)
. (4.1.85)

The results (4.1.21), (4.1.44), and (4.1.63) imply the following formulas. All formulas hold for
asymptotically almost every disorder sample.

(a) For fixed h > 0 and T > 0,

Xd ' s1(γ0)− 2h2s2(γ0)2

Ts2(γ0) + 2h2s3(γ0)
=: X 0

d . (4.1.86)

(b) For h = HN−1/6 with fixed H > 0 and 0 < T < 1,

Xd ' 1. (4.1.87)

(c) For h = HN−1/2 with fixed H > 0 and 0 < T < 1,

Xd ' 1 +
n2

1(1− T )

T cosh2
(
H|n1|

√
1−T

T

) =: Xd,micro. (4.1.88)

The limits for the macroscopic and mescopic regimes do not depend on the disorder samples,
but the limit for the microscopic regime depends on the disorder variable n2

1. The macroscopic limit
satisfies the following property as h→ 0:

X 0
d '


1

T
− 3h2

T (T 2 − 1)
+O(h4) T > 1,

1− 3h2

2(1− T )2
+O(h4) 0 < T < 1.

(4.1.89)

On the other hand the microscopic limit satisfies, for 0 < T < 1,

Xd,micro '


1 +O(e−

2H|n1|
√

1−T
T ) as H →∞.

1 +
n2

1(1− T )

T
− H2n4

1(1− T )2

T 3
as H → 0.

(4.1.90)

The zero-external-field limit is the same as the susceptibility of the last section even though the

74



subleading terms differ by a factor of 3. In both cases the limit is

lim
H→0
Xd,micro = lim

H→0
Xmicro = 1 +

n2
1(1− T )

T
(4.1.91)

and this value depends on the disorder variable n2
1. Note that the sample-to-sample average of n2

1 is
1. This result shows that both susceptibilities satisfy Curie’s law in the sample-to-sample average
sense, but not in the quenched disorder sense. In other words, the sample mean of the susceptibility
is inversely proportional to temperature, but not the susceptibility for an arbitrary fixed disorder
sample.

We note that if we take T → 0 with H > 0 fixed in (4.1.79) and (4.1.88), then

Xmicro ' 1 +
|n1|
H

and Xd,micro ' 1 at T = 0. (4.1.92)

This shows that Xd,micro(T = 0) does not diverge as H → 0 but Xmicro(T = 0) does.

4.2 Overlap with the ground state

Recall that ±u1 denote the unit eigenvectors corresponding to the largest eigenvalue of M . The
overlap of the spin with the ground state and the squared overlap are defined as

G =
|u1 · σ|√

N
, O = G2 =

1

N
(u1 · σ)2, (4.2.1)

respectively. The overlap G = 1 when T = h = 0 since the Hamiltonian is maximized when σ is
parallel to ±u1. The overlap measures how close the spin is to the ground state. Since it is more
convenient to analyze, we consider O in this section.

As with the overlap with the external field, there are no transitions when T > 1 as h → 0.
However, when T < 1, there are two interesting transitional regimes given by h ∼ N−1/6 and
h ∼ N−1/3. The second regime did not appear for the overlap with the external field. On the other
hand, the regime h ∼ N−1/2, which we studied for the free energy and the overlap with the external
field, does not reveal any new features of O. Instead, O has the same properties for h ∼ N−1/2 as it
does for h = 0.

The moment generating function of O has the integral formula given in Lemma 2.3.3,

〈eβηO〉 = e
N
2

(GO(γO)−G(γ))

∫ γO+i∞
γO−i∞ e

N
2

(GO(z)−GO(γO))dz∫ γ+i∞
γ−i∞ e

N
2

(G(z)−G(γ))dz
(4.2.2)
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where

GO(z) = βz − 1

N
log (z − λ1 − b)−

1

N

N∑
i=2

log(z − λi) +
h2βn2

1

N(z − λ1 − b)
+
h2β

N

N∑
i=2

n2
i

z − λi
.

(4.2.3)
We take take γO and γ to be the critical points of GO and G respectively, and we use the notation

b :=
2η

N
. (4.2.4)

The difference between GO and G is that, in the case of GO, λ1 is changed to λ1 + b.

The following two formulas will be used in the analysis below. First, we have

N(GO(γO)− G(γ)) = N(GO(γO)− G(γ)− G ′(γ)(γO − γ)) = D1 +D2 +D3 +D4 (4.2.5)

where

D1 := − log

(
1 +

γO − γ − b
γ − λ1

)
+
γO − γ
γ − λ1

,

D2 := −
N∑
i=2

[
log

(
1 +

γO − γ
γ − λi

)
− γO − γ
γ − λi

]
,

D3 := h2βn2
1

[
1

γO − λ1 − b
− 1

γ − λ1

+
γO − γ

(γ − λ1)2

]
,

D4 := h2β(γO − γ)2

N∑
i=2

n2
i

(γO − λi)(γ − λi)2
.

(4.2.6)

Second, we can show from the equation G ′O(γO)− G ′(γ) = 0 that

(γO − γ)

[
1

N(γO − λ1 − b)(γ − λ1)
+

1

N

N∑
i=2

1

(γO − λi)(γ − λi)

+
h2βn2

1

N

γ + γO − 2λ1 − b
(γO − λ1 − b)2(γ − λ1)2

+
h2β

N

N∑
i=2

n2
i (γ + γO − 2λi)

(γO − λi)2(γ − λi)2

]
= b

[
1

N(γO − λ1 − b)(γ − λ1)
+
h2βn2

1

N

γ + γO − 2λ1 − b
(γO − λ1 − b)2(γ − λ1)2

]
.

(4.2.7)
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4.2.1 Macroscopic external field: h = O(1)

4.2.1.1 Analysis

Fix h > 0. The fluctuations of O turn out to be of order N−1. Thus we set

η = ξN so that b = 2ξ. (4.2.8)

The critical point of G(z) is obtained in Subsection 3.1.2 and is given by γ = γ0 + O
(
N−1/2

)
where γ0 solves the equation (3.1.19). We do not need an explicit formula for the term O

(
N−1/2

)
in this section. Since G ′O(z) = G ′(z) +O (N−1) for z > 2, a perturbation argument implies that the
critical point of GO(z) is given by

γO = γ +O
(
N−1

)
. (4.2.9)

We use (4.2.5) to compute N(GO(γO) − G(γ)). From the semi-circle law, we have D2 =

O ((γO − γ)2N) = O (N−2) and D4 = O (N−1). On the other hand, D1 and D3 are easy to
compute and we find that

N(GO(γO)− G(γ)) = − log

(
1− 2ξ

γ0 − 2

)
+

2h2βn2
1ξ

(γ0 − 2)2(1− 2ξ
γ0−2

)
+O

(
N−1/2

)
. (4.2.10)

Since G(k)
O (γO) = O (1) for all k ≥ 2, the ratio of the integrals (4.2.2) can be evaluated using

the method of steepest descent. For k = 2,

G ′′O(γO) ' s2(γ0) + h2βs3(γ0),

which does not depend on ξ. Since G(γ) is the special case of GO(γ) when ξ = 0, we conclude that∫ γO+i∞
γO−i∞ e

N
2

(GO(z)−GO(γO))dz∫ γ+i∞
γ−i∞ e

N
2

(G(z)−G(γ))dz
'

√
G ′′(γ)

G ′′O(γO)
' 1.

Inserting these results into (4.2.2), replacing ξ with (γ0 − 2)ξ, and using β = 1/T , we obtain
the following.

Result 4.2.1. For h = O(1) and T > 0,

〈e
γ0−2
T

ξNO〉 ' (1− 2ξ)−1/2 e
h2n2

1ξ

T (γ0−2)(1−2ξ) (4.2.11)
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as N →∞ for asymptotically almost every disorder, where γ0 > 2 is the solution of the equation

(3.1.19).

Note that if X is a non-central Gaussian random variable µ + N, i.e. if X2 is a non-centered
chi-squared distribution with 1 degree of freedom, then

E[eξX
2

] = (1− 2ξ)−1/2e
µ2ξ

1−2ξ . (4.2.12)

Therefore, we obtain the next result from the one above.

Result 4.2.2. For h = O(1) and T > 0,

O
D' O0

N
where O0 =

T

γ0 − 2

∣∣∣∣∣ h|n1|√
T (γ0 − 2)

+ N

∣∣∣∣∣
2

(4.2.13)

as N →∞ for asymptotically almost every disorder, where the thermal random variable N has the

standard Gaussian distribution.

4.2.1.2 Limits as h→∞ and h→ 0

Consider the formal limit of (4.2.13) as h→∞. From (3.1.33), we find that if we take h > 0

and let N →∞ first and then h→∞, we get

O
D' 1

N

[
n2

1 +
2|n1|

√
T√

h
N

]
(4.2.14)

for all T > 0. On the other hand, the equation (3.1.32) implies that if we take h > 0 and letN →∞
first and then h→ 0, we obtain

O
D' T 2

N(T − 1)2

[
N2 +

2h|n1|
T − 1

N

]
for T > 1 (4.2.15)

and

O
D' 16

N

[
(1− T )4n2

1

h6
+

√
T (1− T )3|n1|

h5
N

]
for 0 < T < 1. (4.2.16)

For 0 < T < 1, the above result indicates that the overlap is of order 1 when h ∼ N−1/6. We study
this regime in the next subsection.
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4.2.2 Mesoscopic external field: h ∼ N−1/6 and T < 1

4.2.2.1 Analysis

We set
h = HN−1/6 (4.2.17)

for fixed H > 0. If we insert h = HN−1/6 in to the formula, the equation (4.2.16) indicates that
the fluctuations are of order N−1/6. Thus, we set

η = ξN1/6 so that b = 2ξN−5/6 (4.2.18)

in (4.2.2) and (4.2.4).
The critical point γ of G(z) is obtained in Subsection 3.3.1 and it is given by γ = λ1 + sN−2/3

where s > 0 is the solution of the equation (3.3.4). We now consider the critical point of GO(z).
From the formula, we see that G ′O(z) is an increasing function of z for z > λ1 + b. Using b > 0

and the explicit formula of the functions, we can easily check that G ′O(γ) < G ′(γ) = 0 and
G ′O(γ + b) > G ′(γ) = 0. Hence, we find that γ < γO < γ + b, and thus, γO − γ = O(N−5/6). We
now set

γO = γ + ∆N−5/6 (4.2.19)

and determine ∆ using (4.2.7). The right-hand side of the equation (4.2.7) is equal to

2ξ

N5/6

[
N1/3

s2
+

2H2βn2
1N

2/3

s3

]
=

4ξH2βn2
1

N1/6s3

(
1 +O

(
N−1/3

))
.

For the left-hand side of the equation, the first two terms are of smaller order than the last two terms.
Using γO = γ +O

(
N−5/6

)
and b = O

(
N−5/6

)
for the other two sums, the left-hand side is equal

to
∆

N5/6

[
2H2βn2

1N
2/3

s3
+ 2H2βN2/3

N∑
i=2

n2
i

(s+ a1 − ai)3
+O

(
N1/3

)]
.

Therefore,

∆ =
2ξn2

1s
−3∑N

i=1 n
2
i (s+ a1 − ai)−3

+O
(
N−1/6

)
. (4.2.20)

We now evaluate N(GO(γO) − G(γ)) using (4.2.5). It is easy to check that D1 = O
(
N−1/6

)
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and D2 = O
(
N−1/3

)
. Evaluating the first two leading terms,

D3 = H2βn2
1

[
2ξ

s2
N1/6 +

(∆− 2ξ)2

s3
+O

(
N−1/6

)]
.

Finally,

D4 = H2β∆2

N∑
i=2

n2
i

(s+ a1 − ai)3
+O

(
N−1/6

)
.

Putting these together and also using the explicit formula of ∆, we obtain

N(GO(γO)− G(γ)) =
2H2βn2

1

s2
ξN1/6 +

4H2βn2
1

[∑N
i=2 n

2
i (s+ a1 − ai)−3

]
s3
[∑N

i=1 n
2
i (s+ a1 − ai)−3

] ξ2 +O
(
N−1/6

)
.

(4.2.21)
It remains to consider the integrals in (4.2.2). The scale h = HN−1/6 is the same as the

one in Subsection 3.3.1. Since γO = λ1 + sN−2/3 + ∆N−5/6 = λ1 + sN−2/3 + O
(
N−5/6

)
and

b = O(N−5/6), the calculation from Subsection 3.3.1 applies with only small changes. We find
from the explicit formulas that G(k)

O (γO) = O
(
N

2
3
k− 2

3

)
for all k ≥ 2 and

G ′′O(γO) = H2βt2
N∑
i=1

n2
i

(s+ a1 − ai)3
+O

(
N−1/6

)
.

Thus, as in Subsection 3.3.1, the main contribution to the integral comes from a neighborhood
of radius N−5/6 around the critical point, and the numerator can be evaluated using a Gaussian
integral. Since the leading term of G ′′O(γO) does not depend on ξ and the denominator is the case of
the numerator with ξ = 0, we find that∫ γO+i∞

γO−i∞ e
N
2

(GO(z)−GO(γO))dz∫ γ+i∞
γ−i∞ e

N
2

(G(z)−G(γ))dz
' 1. (4.2.22)

From the above computations, we obtain an asymptotic formula for 〈eβξN1/6O〉. Moving a term
of order N1/6 to the left, changing βξ to ξ, replacing β by 1/T , and replacing s by t, which solves
the equation (3.3.14), we arrive at the following result.
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Result 4.2.3. For h = HN−1/6 and 0 < T < 1,

〈eξN
1/6(O−H

2n2
1

t2
)〉 ' exp

2H2Tn2
1

[∑N
i=2 n

2
i (t+ a1 − ai)−3

]
t3
[∑N

i=1 n
2
i (t+ a1 − ai)−3

] ξ2

 (4.2.23)

as N → ∞ for asymptotically almost every disorder sample, where t > 0 is the solution of the

equation (3.3.14).

The right-hand side depends strongly on the disorder sample, as the formula involves all of the
ai and ni. The above result implies the following.

Result 4.2.4. For h = HN−1/6 and 0 < T < 1,

O
D' H2n2

1

t2
+
σON

N1/6
=

[
1− T −H2

N∑
i=2

n2
i

(t+ a1 − ai)2

]
+
σON

N1/6
(4.2.24)

as N →∞ for asymptotically almost every disorder sample, where the thermal random variable N

has the standard normal distribution and σO > 0 satisfies

σ2
O =

4H2Tn2
1

[∑N
i=2 n

2
i (t+ a1 − ai)−3

]
t3
[∑N

i=1 n
2
i (t+ a1 − ai)−3

] . (4.2.25)

The equality of the leading terms in the two formulas of (4.2.24) follows from the equation (3.3.14)
that t satisfies.

4.2.2.2 Matching with h = O(1)

We consider the H → ∞ limit. From (3.3.20), we have t ' H4

4(1−T )2 . Hence, the term(4.2.24)
satisfies

σ2
O '

4H2Tn2
1

t3
' 44Tn2

1(1− T )6

H10
.

Therefore, the first formula of (4.2.24) implies that if we take h = HN−1/6 and let N →∞ first
and then H →∞, we get

O
D' 16

N

[
(1− T )4n2

1

h6
+

√
T (1− T )3|n1|

h5
N

]
. (4.2.26)
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This formula matches the formal limit given in (4.2.16). Thus this regime matches with the h = O(1)

regime.

4.2.2.3 Formal limit as H → 0

Using (3.3.19) for t, the denominator of (4.2.25) becomes n2
1 +O (H3) as H → 0. Thus, if we

take h = HN−1/6 and let N →∞ first and then take H → 0, we get

O
D' 1− T −H2

N∑
i=2

n2
i

(a1 − ai)2
+

2H
√
T

N1/6

[
N∑
i=2

n2
i

(a1 − ai)3

]1/2

N. (4.2.27)

The last two terms of (4.2.27) are of orders H2 = h2N1/3 and HN−1/6 = h, respectively. These
two terms have the same order if h ∼ N−1/3. We study this regime in the next subsection. Note
that, in this regime, the two terms are of order N−1/3.

4.2.3 Microscopic external field: h ∼ N−1/3 and T < 1

4.2.3.1 Analysis

Set
h = HN−1/3 (4.2.28)

for fixed H > 0. In the last part of the previous sub-subsection, a formal calculation indicated that
the order of fluctuation in this regime is N−1/3. We set

η = ξN1/3 so that b = 2ξN−2/3. (4.2.29)

The regime h ∼ N−1/3 did not appear in previous sections. Hence, we first find the critical point
γ of G(z). Previously we saw that γ = λ1 +O

(
N−2/3

)
when h ∼ N−1/6 and γ = λ1 +O (N−1)

when h ∼ N−1/2. We expect that, in this regime, γ is between the above two cases, so we set
γ = λ1 + w for some w and we assume N−1 � w � N−2/3. The equation for the critical point is,
using (2.2.14),

G ′(γ) = β − 1

N

N∑
i=1

1

γ − λi
− H2β

N5/3

N∑
i=1

n2
i

(γ − λi)2
= β − 1

Nw
− 1 +O

(
N−1/3

)
− H2βn2

1

N5/3w2
= 0.

(4.2.30)
Under the assumption for w, we see that 1

Nw
� 1

N5/3w2 , and hence w = O
(
N−5/6

)
. Explicitly
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solving the equation β − 1− H2βn2
1

N5/3w2 = 0, we find that

γ = λ1 + rN−5/6 where r =

√
H2βn2

1

β − 1
+O

(
N−1/6

)
. (4.2.31)

For later use, we record that, upon inserting γ = λ1 + rN−5/6 into the equation (4.2.30), r satisfies
the following more detailed equation, using the notation ΞN defined in (2.2.9):

β − 1

rN1/6
− 1− ΞN

N1/3
+O

(
N−1/2

)
− H2βn2

1

r2
− H2β

N1/3

N∑
i=2

n2
i

(a1 − ai)2
= 0. (4.2.32)

The critical point γO of GO(z) is easy to obtain since b = 2ξ
N2/3 has the same order as the

fluctuations of the eigenvalues λi. The critical point equation is the same as in the case of G(z)

except that λ1 is changed to λ1 + b. Thus we have

γO = λ1 + b+ rON
−5/6 where rO = r +O

(
N−1/6

)
. (4.2.33)

For our computation, it turns out that we need an improved estimate for rO − r. The equation
G ′O(γO) = 0 is, in terms of rO,

β − 1

rON1/6
− 1− H2βn2

1

r2
O

+O
(
N−1/3

)
= 0.

This equation is the same as the equation (4.2.32) up to order N−1/6. Therefore, we obtain an
improved estimate rO = r +O

(
N−1/3

)
. As a consequence,

γO − γ = b+O
(
N−7/6

)
= 2ξN−2/3 +O

(
N−7/6

)
. (4.2.34)
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We now evaluate N(GO(γO)− G(γ)) using (4.2.5). We have

D1 =
2ξN1/6

r
+O

(
N−1/3

)
,

D2 = −
N∑
i=2

[
log

(
1 +

2ξ

a1 − ai

)
− 2ξ

a1 − ai

]
+O

(
N−1/6

)
,

D3 =
2ξH2βn2

1

r2
N1/3 +O

(
N−1/6

)
,

D4 = 4ξ2H2β

N∑
i=2

n2
i

(a1 + 2ξ − ai)(a1 − ai)2
+O

(
N−1/6

)
.

Note that r appears only in D1 and D3. Using the equation (4.2.32), the sum D1 + D3 can be
expressed without using r:

D1 +D3 = 2ξN1/3

[
β − 1− ΞN

N1/3
− H2β

N1/3

N∑
i=2

n2
i

(a1 − ai)2

]
+O

(
N−1/6

)
. (4.2.35)

On the other hand, using the notation ΞN in (2.2.9) again, we can write

D2 = −

[
N∑
i=2

log

(
1 +

2ξ

a1 − ai

)
− 2ξN1/3

]
+ 2ξΞN +O

(
N−1/6

)
. (4.2.36)

Adding D1, D2, D3, and D4, and combining two sums that are multiplied by H2β, we find that

N(GO(γO)− G(γ)) = 2ξ(β − 1)N1/3 +

[
2ξN1/3 −

N∑
i=2

log

(
1 +

2ξ

a1 − ai

)]

− 2ξH2β
N∑
i=2

n2
i

(a1 + 2ξ − ai)(a1 − ai)
+O

(
N−1/6

) (4.2.37)

We note that the term in brackets is O (1) due to (2.2.9).

Finally, we consider the integrals in (4.2.2), beginning with the numerator. Using γO =

λ1 + b+ rN−5/6 +O
(
N7/6

)
and the explicit formula for GO(z), we find that

G(k)
O (γO) = O

(
N

5
6
k− 5

6

)
for k ≥ 2. Since G ′′O(γO) = O

(
N

5
6

)
, the main contribution to the integral comes from a neighbor-
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hood of radius N−
11
12 about the critical point. For k = 2, we find explicitly that

G ′′O(γO) =
2H2βn2

1

r3
N−5/6 +O

(
N−1

)
.

Hence,

N(GO(γO +wN−
11
12 )−GO(γO)) =

∞∑
k=2

N1− 11
12
kG(k)

O (γO)wk

k!
=
H2βn2

1

r3
w2 +O

(
N−

1
12

)
(4.2.38)

for finite w, and the integral can be evaluated as a Gaussian integral. Since the leading term of
(4.2.38) does not depend on ξ, we find that the ratio of the integrals in (4.2.2) is asymptotically
equal to 1.

Combining the computations above, we obtain an asymptotic formula for
〈
eβξN

1/3O
〉

. Moving
a term and using β = 1/T , we arrive at the following result.

Result 4.2.5. For h = HN−1/3 and 0 < T < 1,

〈
e
ξ
T
N1/3(O−(1−T ))

〉
' eξN

1/3
N∏
i=2

exp
(
− ξH2n2

i

T (a1+2ξ−ai)(a1−ai)

)
√

1 + 2ξ
a1−ai

(4.2.39)

as N →∞ for asymptotically almost every disorder sample.

We remark that the right-hand side is O (1) since

ξN1/3 − 1

2

N∑
i=2

log

(
1 +

2ξ

a1 − ai

)
= O (1) .

The formula (4.2.39) is a product of the moment generating functions of non-centered chi-
squared distributions (see (4.2.12)). Hence, we obtain the following.

Result 4.2.6. For h = HN−1/3 and 0 < T < 1,

O
D' 1− T +

T

N1/3
WN , WN = N1/3 −

N∑
i=2

∣∣ H|ni|√
T (a1−ai)

+ ni
∣∣2

a1 − ai
(4.2.40)

as N →∞ for asymptotically almost every disorder sample, where the thermal random variables

ni are independent standard normal random variables.
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Here, we emphasize that ni are sample random variables (given by the dot product of each
eigenvector of M with the external field) while ni are thermal random variables. Note that WN =

O (1) since N1/3 −
∑N

i=2
n2
i

a1−ai = O (1).

4.2.3.2 Matching with the mesocopic field, h ∼ N−1/6

We take the formal limit H →∞ of (4.2.40) and compare with (4.2.27). Then, using N1/3 −∑N
i=2

1
a1−ai = O (1) from (2.2.14),

WN = −H
2

T

n∑
i=2

n2
i

(a1 − ai)2
− 2H√

T

N∑
i=2

|ni|ni
(a1 − ai)3/2

+O (1) . (4.2.41)

The second sum is a sum of independent (thermal) Gaussian random variables, and hence it has a
Gaussian distribution. Therefore, if take h = HN−1/3 and let N →∞ first and then take H →∞,
we get

O
D' 1− T − H2

N1/3

N∑
i=2

n2
i

(a1 − ai)2
+

2H
√
T

N1/3

[
N∑
i=2

n2
i

(a1 − ai)3

]1/2

N. (4.2.42)

In order to compare this with the result (4.2.27), we use the notation h = HmicroN
−1/3 =

HmesoN
−1/6. The equations (4.2.42) and (4.2.27) are same once we set H = Hmicro and H = Hmeso,

respectively.

4.2.4 No external field: h = 0

For 0 < T < 1, the calculations of the previous subsection for h = HN−1/3 go through; we
obtain the result by setting H = 0 in (4.2.40). For T > 1, the computations in Subsection 4.2.1 for
h = O(1) also apply to h = 0; see (4.2.15).

Result 4.2.7. For h = 0,

O
D'


T 2

N(T − 1)2
N2 for T > 1,

1− T +
T

N1/3

(
N1/3 −

N∑
i=2

n2
i

a1 − ai

)
for 0 < T < 1.

(4.2.43)

where the thermal random variable N has the standard normal distribution, and ni are independent

standard normal thermal random variables.
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4.2.5 The thermal average

We use the notation
Ω = 〈O〉 = 〈G2〉 (4.2.44)

to denote the thermal average of the squared overlap of a spin with the ground state. Previous
subsections imply the following results.

(i) For h ≥ 0 and T > 1, or for h = O(1) with h > 0 and 0 < T < 1,

Ω ' Ω0

N
, Ω0 :=

T

γ0 − 2

[
h2n2

1

T (γ0 − 2)
+ 1

]
. (4.2.45)

From the asymptotic formulas (3.1.33) and (3.1.32) of γ0,

Ω0 ' n2
1 +

T − (T − 4)n2
1

h
as h→∞ for all T > 0 (4.2.46)

and

Ω0 '


T 2

(T − 1)2
+
h2(n2

1 − 1)T 2

(T − 1)4
as h→ 0 for T > 1

16n2
1(1− T )4

h6
+

4T (1− T )2 + 32n2
1(1− T )4

h4
as h→ 0 for 0 < T < 1.

(4.2.47)
See Figure IV.5 for graphs of Ω0.

(ii) For h = HN−1/6 with 0 < T < 1,

Ω ' H2n2
1

t2
= 1− T −H2

N∑
i=2

n2
i

(t+ a1 − ai)2
. (4.2.48)

(iii) For h = HN−1/3 with T < 1 (including the case when H = 0),

Ω ' 1− T +
1

N1/3

[
T

(
N1/3 −

N∑
i=2

1

a1 − ai

)
−H2

N∑
i=2

n2
i

(a1 − ai)2

]
. (4.2.49)
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If we collect only the order 1 terms, then as N →∞ with T < 1,

Ω→


0 for h > 0

1− T −H2
∑N

i=2
n2
i

(t+a1−ai)2 for h = HN−1/6

1− T for h = HN−1/3 (including H = 0).

(4.2.50)

The sample-to-sample standard deviation of the thermal average of squared overlap satisfies for
0 < T < 1,

√
Ω2 − (Ω)2 =


O(N−1) for h = O(1)

O(1) for h ∼ N−1/6

O(N−1/3) for h ∼ N−1/3 (including h = 0).

(4.2.51)

The order is largest when h ∼ N−1/6.

Figure IV.5: Graphs of Ω0 for h = O(1) as functions of h for different combinations of T and n1.

4.2.6 Order of thermal fluctuations

For 0 < T < 1, the standard deviation of the thermal fluctuations satisfies

√
〈O2〉 − 〈O〉2 =


O (N−1) for h = O(1)

O
(
N−1/6

)
for h ∼ N−1/6

O
(
N−1/3

)
for h ∼ N−1/3 (including h = 0).

(4.2.52)

for asymptotically almost every disorder sample. The thermal fluctuations are largest when h ∼
N−1/6.
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4.3 Overlap with a replica

Let

R = R1,2 =
σ(1) · σ(2)

N
(4.3.1)

be the overlap of a spin σ(1) and its replica σ(2), chosen independently from SN−1 using the Gibbs
measure with the same disorder sample. From Lemma 2.3.3, we have

〈eηR〉 = e
N
2

(GR(γR,γR;a)−2G(γ))

∫∫
e
N
2

(GR(z,w;a)−GR(γR,γR;a))dzdw(∫
e
N
2

(G(z)−G(γ))dz
)2 (4.3.2)

where

GR(z, w; a) = β(z + w)− 1

N

N∑
i=1

log
(
(z − λi)(w − λi)− a2

)
+
h2β

N

N∑
i=1

n2
i (z + w − 2λi + 2a)

(z − λi)(w − λi)− a2

(4.3.3)
and we set

a =
η

βN
. (4.3.4)

We take γ to be the critical point of G(z) and we chose γR > λ1 + |a| such that (γR, γR) is a critical
point of GR(z, w; a). We calculate γR below.

The partial derivative of GR with respect to z is

∂GR
∂z

= β − 1

N

N∑
i=1

w − λi
(z − λi)(w − λi)− a2

− h2β

N

N∑
i=1

n2
i (w − λi + a)2

((z − λi)(w − λi)− a2)2
(4.3.5)

and ∂GR
∂w

is similar. Since ∂GR
∂z

is an increasing function for real z (and similarly with ∂GR
∂w

), there
exists a critical point of the form (z, w) = (γR, γR) where γR solves the equation

β− 1

N

N∑
i=1

γR − λi
(γR − λi − a)(γR − λi + a)

−h
2β

N

N∑
i=1

n2
i

(γR − λi − a)2
= 0, γR > λ1+|a|. (4.3.6)

There may be other critical points, but (γR, γR) is the one that we use for our steepest descent
analysis. For simplicity, we refer to this critical point as γR rather than (γR, γR). For a = 0,
GR(z, w; 0) = G(z) + G(w), and in this case, the critical point is (z, w) = (γ, γ).
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We use the following two formulas in this section. The first formula is

N (GR(γR, γR; a)− 2G(γ)) = N(GR(γR, γR; a)− 2G(γ)− 2G ′(γ)(γR − γ)) = B1 +B2

(4.3.7)

where

B1 := −
N∑
i=1

[
log

(
1 +

2(γR − γ)

γ − λi
+

(γR − γ)2 − a2

(γ − λi)2

)
− 2(γR − γ)

γ − λi

]

and

B2 := 2h2β
N∑
i=1

n2
i

[
1

γR − λi − a
− 1

γ − λi
+

γR − γ
(γ − λi)2

]
.

The second formula is

(γR − γ − a)

[
N∑
i=1

γR − λi
(γR − λi − a)(γR − λi + a)(γ − λi)

+ h2β
N∑
i=1

n2
i (γ + γR − 2λi − a)

(γR − λi − a)2(γ − λi)2

]

= −a
N∑
i=1

1

(γR − λi + a)(γ − λi)
,

(4.3.8)

which follows from subtracting the critical point equations for γR and γ.

We also make use of the following lemma.

Lemma 4.3.1. The point γR satisfies γ < γR < γ + a.

Proof. Let

g(z) = β − 1

N

N∑
i=1

z − λi
(z − λi − a)(z − λi + a)

− h2β

N

N∑
i=1

n2
i

(z − λi − a)2
.

Since g(γR) = 0, it is enough to show that g(γ) < 0 and g(γ + a) > 0. Using a > 0, we see that

g(γ) < β − 1

N

N∑
i=1

1

γ − λi
− h2β

N

N∑
i=1

n2
i

(γ − λi)2
= G ′(γ) = 0.
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On the other hand,

g(γ + a) =β − 1

N

N∑
i=1

γ − λi + a

(γ − λi)(γ − λi + 2a)
− h2β

N

N∑
i=1

n2
i

(γ − λi)2

>β − 1

N

N∑
i=1

1

γ − λi
− h2β

N

N∑
i=1

n2
i

(γ − λi)2
= G ′(γ) = 0.

4.3.1 Macroscopic external field: h = O(1)

4.3.1.1 Analysis

Fix h > 0. It turns out that the fluctuations are of order N−1/2. Hence, we set

η = βξ
√
N so that a = ξN−1/2. (4.3.9)

The critical point of G(z) is given in (3.1.20) by γ = γ0 + γ1N
−1/2 +O (N−1). Consider the

critical point γR. By Lemma 4.3.1, γR = γ +O(N−1/2). We now use the equation (4.3.8). Using
the semi-circle law approximation, we find that

γR − γ − a = −
a
(
s2(γ0) +O(N−

1
2 )
)

s2(γ0) + 2h2βs3(γ0) +O(N−
1
2 )
. (4.3.10)

Thus,

γR = γ +
ξA√
N

+O(N−1) where A =
2h2βs3(γ0)

s2(γ0) + 2h2βs3(γ0)
. (4.3.11)

We evaluate N(GR(γR, γR; a)− 2G(γ)) using (4.3.7). From a Taylor approximation,

B1 =
N∑
i=1

(γR − γ)2 + a2

(γ − λi)2
+O

(
N−1/2

)
=
(
(γR − γ)2 + a2

)
Ns2(γ) +O

(
N−1/2

)
. (4.3.12)

On the other hand, using the geometric series for 1
γR−λi−a

= 1
(γ−λi)+(γR−γ−a)

and using (2.2.16),

B2 =
N∑
i=1

n2
i

[
a

(γ − λi)2
+

(γR − γ − a)2

(γ − λi)3
+O

(
(γR − γ − a)3

(γ − λi)4

)]
= a

(
s2(γ) +N−1/2SN(γ; 2)

)
+ (γR − γ − a)2s3(γ) +O

(
N−1/2

) (4.3.13)

91



where SN(z; k) is defined in (2.2.6). The leading term is as2(γ) which is O(N1/2) and the rest is
O (1). Inserting γ = γ0 + γ1N

−1/2 +O (N−1) and using s′2(z) = −2s3(z), we find that

N(GR(γR, γR; a)− 2G(γ)) = ξ2(1 + A2)s2(γ0)

+ 2h2β
(
ξ2(A− 1)2s3(γ0) + ξSN(γ0; 2) + ξ

√
Ns2(γ0)− 2ξs3(γ0)γ1

)
+O

(
N−

1
2

)
.

(4.3.14)

We now consider the integrals in (4.3.2). Since all partial derivatives of GR(z, w) evaluated
at the critical point (z, w) = (γR, γR) are O (1), the two dimensional method of steepest descent
applies. Since the second derivatives evaluated at the critical point do not depend on ξ, we find that
the ratio of the integrals in (4.3.2) is asymptotically equal to 1.

Combining the computations above, we find that

log〈eβξ
√
NR〉 '1

2
ξ2(1 + A2)s2(γ0)

+ h2β
(
ξ2(A− 1)2s3(γ0) + ξSN(γ0; 2) + ξ

√
Ns2(γ0)− 2ξs3(γ0)γ1

)
(4.3.15)

where A is given by (4.3.11). Using the formula (3.1.21) of γ1, we obtain

SN(γ0; 2)− 2s3(γ0)γ1 =
Ts2(γ0)

Ts2(γ0) + 2h2s3(γ0)
SN(γ0; 2). (4.3.16)

Hence, we conclude the following.

Result 4.3.2. For h > 0 and T > 0,

log〈eξ
√
N(R−h2s2(γ0))〉 ' h2Ts2(γ0)SN(γ0; 2)

Ts2(γ0) + 2h2s3(γ0)
ξ +

T 2s2(γ0)(Ts2(γ0) + 4h2s3(γ0))

2(Ts2(γ0) + 2h2s3(γ0))
ξ2 (4.3.17)

as N → ∞ for asymptotically almost every disorder sample, where γ0 > 2 is the solution of the

equation 1− Ts1(γ0)− h2s2(γ0) = 0, and SN(z; k) is defined in (2.2.6).

As a consequence, we obtain the following.

Result 4.3.3. For h > 0 and T > 0,

R
D' h2s2(γ0) +

1√
N

[
h2Ts2(γ0)SN(γ0; 2)

Ts2(γ0) + 2h2s3(γ0)
+ σRN

]
(4.3.18)
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as N →∞ for asymptotically almost every disorder sample, where the thermal random variable N

has the standard normal distribution and σR > 0 satisfies

σ2
R =

T 2s2(γ0)(Ts2(γ0) + 4h2s3(γ0))

Ts2(γ0) + 2h2s3(γ0)
. (4.3.19)

4.3.1.2 Discussion of the leading term

The leading term
R0 = R0(T, h) = h2s2(γ0) = 1− Ts1(γ0) (4.3.20)

in (4.3.18) depends on neither the choice of spin configuration nor the disorder sample. See Figure
IV.6a for the graph of R0 as a function of h.

The value (4.3.20) for R0 reproduces the prediction q0 for the overlap obtained in [15, 22] from
the replica saddle methods which predicts that q0 is determined by (3.1.29), The equivalence is
checked using that s2(z) = s1(z)2/(1− s1(z)2) and q0 = 1− Ts1(γ0).

It is easy to check the following properties using a computation similar to the one in Subsection
4.1.3:

• For every T > 0, R0 is an increasing function of h > 0.

• As h→∞,

R0 = 1− T

h
+O(h−2) for all T > 0. (4.3.21)

• As h→ 0,

R0 =


h2

T 2 − 1
− 2T 2h4

(T 2 − 1)2
+O(h6) for T > 1,

1− T +
Th2

2(1− T )
+O(h4) for 0 < T < 1.

(4.3.22)

4.3.1.3 Discussion of the thermal variance

The thermal variance of R satisfies

〈R2〉 − 〈R〉2 ' σ2
R

N
(4.3.23)
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(a) Graph of R0 (solid line) and (M0)2 (dashed
line) as a function of h for T = 0.3 and T = 1.3

(b) Graph of σ2
R as a function of h.

Figure IV.6: Graphs of R0 and σ2
R.

for σ2
R given in (4.3.19) and it does not depend on the disorder sample. See Figure IV.6b for the

graph. It is a decreasing function of h, and satisfies

σ2
R =

2T 2

h2
− 5T 3

2h3
+O(h−4) as h→∞ for all T > 0 (4.3.24)

and

σ2
R(h, T ) =


T 2

T 2 − 1
+O(h4) as h→ 0 for T > 1,

2T 2(1− T )

h2
+O(1) as h→ 0 for 0 < T < 1.

(4.3.25)

4.3.1.4 Limit as h→∞

As h→∞, using (3.1.33) and sk(z) = z−k +O(z−k−2) as z →∞, we find that

h2Ts2(γ0)SN(γ0; 2)

Ts2(γ0) + 2h2s3(γ0)
' T

∑N
i=1(n2

i − 1)

2h
√
N

. (4.3.26)

Thus, we see that, for every T > 0, if we take N →∞ with h > 0 and then take h→∞,

R
D' 1− T

h
+

T

h
√
N

[∑N
i=1(n2

i − 1)

2
√
N

+
√

2N

]
. (4.3.27)
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4.3.1.5 Limit as h→ 0 when T > 1

Using (3.1.32), if we take N →∞ with h > 0 and then take h→ 0, we see that, for T > 1,

R
D' h2

T 2 − 1
− 2T 2h4

(T 2 − 1)2
+

1√
N

[
T√

T 2 − 1
N + h2SN(T +

1

T
; 2)

]
. (4.3.28)

4.3.1.6 Limit as h→ 0 when T < 1

Similarly, from (3.1.32), if we take N →∞ with h > 0 and then take h→ 0, we see that, for
0 < T < 1,

R
D' (1− T ) +

Th2

2(1− T )
+

T

h
√
N

[
h5SN(γ0; 2)

2(1− T )2
+
√

2(1− T )N

]
. (4.3.29)

From the discussions around the equation (4.1.37), we expect that h5SN(γ0; 2) = O (1) as h→ 0

if h � N−1/6. This indicates that there may be a transition when h ∼ N−1/6. We study this
regime in the next subsection. On the other hand, the thermal fluctuation term becomes of order 1 if
h−1N−1/2 = O(1). This indicates a new regime h ∼ N−1/2, which we study in a later section.

4.3.2 Mescoscopic external field: h ∼ N−1/6 and T < 1

4.3.2.1 Analysis

Set
h = HN−1/6 (4.3.30)

for fixed H > 0. It turns out that the order of the fluctuations of R is N−1/3. Hence, we set

η = βξN1/3 so that a = ξN−2/3. (4.3.31)

The critical point of G(z) is given by γ = λ1 + sN−2/3 where s > 0 solves the equation (3.3.3).
Inserting h = HN−1/6, the equation takes the form

β − 1

N1/3

N∑
i=1

1

s+ a1 − ai
−H2β

N∑
i=1

n2
i

(s+ a1 − ai)2
= 0. (4.3.32)

The solution satisfies s = t+O
(
N−1/3

)
where t solves the equation (3.3.14).

For the critical point of GR, Lemma 4.3.1) shows that γ < γR < γ + a. Hence, γR − γ − a =

O(N−2/3). However, we can get a sharper bound on this difference. The right-hand side of (4.3.8)
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is O
(
aN4/3

)
and the bracket term of the left-hand side of the same equation is O

(
N5/3

)
, with the

leading contribution coming from the second sum. Hence, we find that

γR = γ + a− ε, ε = O
(
N−1

)
. (4.3.33)

We now evaluate (4.3.7). The first sum B1 is

−
N∑
i=1

[
log

(
1 +

2(a− ε)
γ − λi

− (2a− ε)ε
(γ − λi)2

)
− 2(a− ε)

γ − λi

]
' −

N∑
i=1

[
log

(
1 +

2ξ

s+ a1 − ai

)
− 2ξ

s+ a1 − ai

]

and this sum is O (1). For the second sum, we get

B2 = 2ξN1/3H2β
N∑
i=1

n2
i

(s+ a1 − ai)2
+O

(
N−1/3

)
.

Therefore, N(GR(γR, γR; a)− 2G(γ)) is equal to

−
N∑
i=1

[
log

(
1 +

2ξ

s+ a1 − ai

)
− 2ξ

s+ a1 − ai

]
+ 2ξN1/3H2β

N∑
i=1

n2
i

(s+ a1 − ai)2
+O(N−1/3).

(4.3.34)

Using the equation (4.3.32) for s, we can write

N(GR(γR, γR; a)− 2G(γ)) = 2ξβN1/3 −
N∑
i=1

log

(
1 +

2ξ

s+ a1 − ai

)
+O(N−1/3). (4.3.35)

Finally, we compute the integrals in (4.3.2). A calculation similar to the one from Subsection
3.3.1 shows that the kth partial derivatives of GR evaluated at (z, w) = (γR, γR) are O

(
N

2
3
k− 2

3

)
.

Since the second derivatives are O
(
N

2
3

)
, the main contribution to the integral comes from a

neighborhood of radius N−5/6 around the critical point. Moreover, from explicit computations, we
find that

∂2GR
∂z2

(γR, γR) =
∂2GR
∂w2

(γR, γR) ' xN2/3,
∂2GR
∂z∂w

(γR, γR) ' yN2/3
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where

x = 2H2β
N∑
i=1

n2
i (s+ a1 − ai + ξ)

(s+ a1 − ai)3(s+ a1 − ai + 2ξ)
, y = 2H2β

N∑
i=1

n2
i ξ

(s+ a1 − ai)3(s+ a1 − ai + 2ξ)
.

Using the method of steepest descent with the change of variables z = γR + uN−5/6 and w =

γR + vN−5/6, the integral becomes∫
γR+iR

∫
γR+iR

e
N
2

(GR(z,w;a)−GR(γR,γR;a))dzdw ' 1

N5/3

∫
iR

∫
iR
e

1
4

(xu2+xv2+2yuv)dudv. (4.3.36)

Evaluating the Gaussian integral, inserting the formulas of x and y, and noting that the denominator
is the same as the numerator when ξ = 0, the ratio of the integrals becomes

∫ ∫
e
N
2

(GR(z,w;a)−GR(γR,γR;a))dzdw(∫
e
N
2

(GR(z)−G(γ))dz
)2 '

√√√√√ ∑N
i=1

n2
i

(s+a1−ai)3∑N
i=1

n2
i

(s+a1−ai)2(s+a1−ai+2ξ)

. (4.3.37)

Combining the above calculations and replacing s by t, we obtain the following result after
moving a term of order N1/3.

Result 4.3.4. For h = HN−1/6 and 0 < T < 1,

〈e
1
T
ξN1/3(R−(1−T ))〉 ' e

ξN1/3− 1
2

∑N
i=1 log

(
1+ 2ξ

t+a1−ai

)√√√√√ ∑N
i=1

n2
i

(t+a1−ai)3∑N
i=1

n2
i

(t+a1−ai)2(t+a1−ai+2ξ)

(4.3.38)

as N → ∞ for asymptotically almost every disorder sample, where t > 0 is the solution of the

equation (3.3.14).

The term in the exponent on the right-hand side is O (1).

Result 4.3.5. For h = HN−1/6 and 0 < T < 1,

R
D' 1− T +

T

N1/3
ΥN(t) (4.3.39)

as N → ∞ for asymptotically almost every disorder sample, where t > 0 is the solution of the

equation (3.3.14) and ΥN(t) is a random variable defined by the generating function given by the

right-hand side of (4.3.38).
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4.3.2.2 Matching with h = O(1)

We take the formal limit of the result (4.3.39) as H → ∞. From (3.3.20), t → ∞. The big
square root term of the generating function on the right-hand side of (4.3.38) is approximately 1.
On the other hand,

ξN1/3 − 1

2

N∑
i=1

log

(
1 +

2ξ

t+ a1 − ai

)
' ξ

(
N1/3 −

N∑
i=1

1

t+ a1 − ai

)
+ ξ2

N∑
i=1

1

(t+ a1 − ai)2

Setting x = λ1 + tN−2/3, we have, using a formal application of the semi-circle law,

N1/3 −
N∑
i=1

1

t+ a1 − ai
= N1/3

(
1− 1

N

N∑
i=1

1

x− λi

)
' N1/3 (1− s1(x)) .

Using (2.1.8), the above equation becomes

N1/3 −
N∑
i=1

1

t+ a1 − ai
' N1/3

√
x− 2 '

√
t.

For the other term,

N∑
i=1

1

(t+ a1 − ai)2
=

1

N4/3

N∑
i=1

1

(x− λi)2
' 1

N1/3
s2(x) ' 1

N1/32
√
x− 2

' 1

2
√
t
.

Hence, the generating function on the right-hand side of (4.3.38) is approximately e
√
tξ+ ξ2

2
√
t . There-

fore,
ΥN(t)

D'
√
t+ t−1/4N

for a thermal standard normal random variable N. Inserting the large H formula (3.3.20) for t and
replacing H = hN1/6, we find that if we take h = HN−1/6 and let N → ∞ first and then take
H →∞, we get

R
D' 1− T +

Th2

2(1− T )
+

T

hN1/2

[
h5SN(γ0; 2)

2(1− T )2
+
√

2(1− T )N

]
. (4.3.40)

This is the same as (4.3.29) which is obtained by first taking N → ∞ with h > 0 fixed and then
taking h→ 0. Therefore, the result matches with the h = O(1) case.
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4.3.2.3 Limit as H → 0

From (3.3.19), t = O(H) → 0 as H → 0. The generating function on the right-hand side of
(4.3.38) converges to

e
ξN1/3− 1

2

∑N
i=2 log

(
1+ 2ξ

t+a1−ai

)

where the term i = 1 cancels out with the limit of the big square root term. Using the moment
generating function (4.2.12) for the chi-squared distribution, we find that if we take h = HN−1/6

and N →∞ and then take H → 0, then

R
D' 1− T +

T

N1/3

(
N1/3 −

N∑
i=2

n2
i

a1 − ai

)
. (4.3.41)

for independent thermal standard Gaussian random variables ni.

4.3.3 Microscopic external field: h ∼ HN−1/2 and T < 1

4.3.3.1 Analysis

Set
h = HN−1/2 (4.3.42)

for fixed H > 0. It turns out that the fluctuations are of order O (1). In other words, the leading
term of R converges to a random variable. We set

η = βξ so that a = ξN−1. (4.3.43)

The critical point of G(z) is γ = λ1 + pN−1 from (4.1.48). Consider the critical point of GR.
Lemma 4.3.1 implies that γR = λ1 +O (N−1). We set

γR = λ1 + qRN
−1, qR > |ξ|, (4.3.44)

for some qR. Separating i = 1 in the equation (4.3.6), we find that qR is the solution of the equation

β − 1− qR
q2
R − ξ2

− H2βn2
1

(qR − ξ)2
+O

(
N−1/3

)
= 0. (4.3.45)

When β = T−1 > 1, the equation β − 1− x
x2−ξ2 − H2βn2

1

(x−ξ)2 = 0 has a unique solution for x and qR is
approximated by this solution with error O

(
N−1/3

)
.
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Using (4.3.7) and separating out the i = 1 term, we find that N(GR(γR, γR; a)−2G(γ)) is equal
to

− log

(
q2
R − ξ2

p2

)
+

2(qR − p)
p

+ 2H2βn2
1

[
1

qR − ξ
− 1

p
+
qR − p
p2

]
+O

(
N−1/3

)
. (4.3.46)

Using the fact that p satisfies equation (4.1.50), this can be written as

N(GR(γR, γR; a)− 2G(γ))

= − log

(
q2
R − ξ2

p2

)
+ 2(β − 1)(qR − p) + 2H2βn2

1

[
1

qR − ξ
− 1

p

]
+O

(
N−1/3

)
.

(4.3.47)

We now consider the integrals in (4.3.2). As in Subsection 4.1.6 of the overlap with the external
field when h ∼ N−1/2, the main contribution to the integral comes from a neighborhood of radius
N−1 around the critical point in both variables. Changing variables to z = γR + uN−1 and
w = γR + vN−1, we find that all terms of the Taylor series are of the same order, so we see, as
in Subsection 4.1.6, that the integral is not approximated by a Gaussian integral. Therefore, we
proceed by writing

N(GR(z, w; a)− GR(γR, γR; a))

= N(GR(z, w; a)− GR(γR, γR; a)− (GR)z(γR, γR; a)(z − γR)− (GR)w(γR, γR; a)(w − γR))

= −
N∑
i=1

[
log

(
(z − λi)(w − λi)− a2

(γR − λi)2 − a2

)
− (γR − λi)(z + w − 2γR)

(γR − λi)2 − a2

]

+ h2β
N∑
i=1

n2
i

[
z + w − 2λi + 2a

(z − λi)(w − λi)− a2
− 2

γR − λi − a
+

z + w − 2γR
(γR − λi − a)2

]
.

Inserting the change of variables and separating i = 1 out,

N(GR(z, w; a)− GR(γR, γR; a)) '− log

(
(u+ qR)(v + qR)− ξ2

q2
R − ξ2

)
+
qR(u+ v)

q2
R − ξ2

+H2βn2
1

[
u+ v + 2qR + 2ξ

(u+ qR)(v + qR)− ξ2
− 2

qR − ξ
+

u+ v

(qR − ξ)2

]
for finite u and v. Using the equation (4.3.45), this can be written as

N(GR(z, w; a)− GR(γR, γR; a))

' − log

(
(u+ qR)(v + qR)− ξ2

q2
R − ξ2

)
+ (β − 1)(u+ v) +H2βn2

1

[
u+ v + 2qR + 2ξ

(u+ qR)(v + qR)− ξ2
− 2

qR − ξ

]
.
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Thus, the numerator integral in (4.3.2) is asymptotically equal to

√
q2
R − ξ2

N2

∫ ∫
e

1
2

(β−1)(u+v)+
H2βn2

1
2

[
u+v+2qR+2ξ

(u+qR)(v+qR)−ξ2
− 2
qR−ξ

]
√

(u+ qR)(v + qR)− ξ2
dudv

where the contours are from −i∞ to i∞ such that all singularities lie on the left of the contours.
The denominator integral is the same with ξ = 0.

Combining the above calculations into (4.3.2) and making simple translations for the integral,
we find that

〈eβξR〉 '

∫ ∫
1√
uv−ξ2

e
1
2

(β−1)(u+v)+
H2βn2

1(u+v+2ξ)

2(uv−ξ2) dudv(∫
1√
u
e

1
2

(β−1)u+
H2βn2

1
2u du

)2 (4.3.48)

where the contours are upward vertical lines such that the points ξ (in the numerator) and 0 (in the
denominator) lie on the left of the contours. We now evaluate the integrals using (recall (4.1.59))∫

eau+ b
u

√
u

du =
2i
√
π√
a

cosh(2
√
ab). (4.3.49)

Consider the double integral in the numerator. For each v, we change the variable u to z by setting
uv − ξ2 = z. We can define the branch cut appropriately such that the contour for z does not cross
the branch cut. The numerator becomes∫∫

1

v
√
z
e
β−1

2
( z+ξ

2

v
+v)+

H2βn2
1

2z
( z+ξ

2

v
+v+2ξ)dzdv.

The z-integral can be evaluated using (4.3.49). Writing the resulting cosh term as the sum of
two exponentials, we can evaluate the w-integral again using (4.3.49). The above double integral
becomes

− 2π

β − 1

[
e
√

(β−1)βH|n1| cosh
(√

(β − 1)βH|n1|+ (β − 1)ξ
)

+ e−
√

(β−1)βH|n1| cosh
(√

(β − 1)βH|n1| − (β − 1)ξ
)]

.

Writing cosh as the sum of two exponentials again, the expression above becomes a linear combina-
tion of e(β−1)ξ and e−(β−1)ξ. The denominator in (4.3.48) is the same as the numerator when ξ = 0.
Thus, using β = 1/T and re-scaling ξ, we obtain the following
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Result 4.3.6. For h = HN−1/2 and 0 < T < 1,

〈eξ
R

1−T 〉 '
cosh

(
2
√

1−TH|n1|
T

)
eξ + e−ξ

cosh
(

2
√

1−TH|n1|
T

)
+ 1

(4.3.50)

as N →∞ for asymptotically almost every disorder sample.

Recognizing that the right-hand side is the moment generating function of a shifted Bernoulli
random variable, we obtain the following result.

Result 4.3.7. For h = HN−1/2 and 0 < T < 1,

R

1− T
D' B(θ), θ :=

cosh
(

2
√

1−TH|n1|
T

)
cosh

(
2
√

1−TH|n1|
T

)
+ 1

(4.3.51)

as N →∞ for asymptotically almost every disorder sample, where the thermal random variable

B(c) is the (shifted) Bernoulli distribution taking values 1 and −1 with probability c and 1 − c,
respectively.

4.3.3.2 Limits as H →∞

If we formally take the limit as H →∞ of the result (4.3.51), then

R
D' 1− T. (4.3.52)

This is the same as the leading term of (4.3.41) which is obtained by taking h = HN−1/6 and letting
N →∞ first and then taking H → 0.

4.3.4 No external field: h = 0

For 0 < T < 1, the analysis in Subsection 4.3.3 for h = HN−1/2 extends to H = 0 case as
well. For T > 1, the analysis in Subsection (4.3.1) applies to all h ≥ 0. We note that, for h = 0 and
T > 1, γ0 = T + T−1 and s2(γ0) = 1

T 2−1
. We have the following result.

Result 4.3.8. For h = 0,

R
D'


T√

N(T 2−1)
N for T > 1,

(1− T )B(1/2) for 0 < T < 1.
(4.3.53)
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4.4 Geometry of the spin configuration

The results on three types of overlaps tell us how the spin variables are distributed on the sphere.
We discuss the geometry of the spin configuration vector σ = (σ1, · · · , σN) from the Gibbs measure
in this section. Recall that u1 is a unit vector which is parallel to the eigenvector corresponding to
the largest eigenvalue of the disorder matrix. In this section, we choose u1, among two opposite
directions, as the one satisfying u1 ·g ≥ 0. Recall the notation n1 = g ·u1 and that the external field
g is a standard Gaussian vector. Note that n1 = |n1| because of the choice of u1. The normalized
spin vector can be decomposed as

σ̂ :=
σ√
N

= au1 + b
g − n1u1

‖g − n1u1‖
+ v, v · u1 = v · g = 0, (4.4.1)

where a and b are components of the normalized spin vector in the u1 and g1 − n1u1 directions,
respectively. The vector v is perpendicular to both u1 and g, and it satisfies

‖v‖2 = 1− a2 − b2. (4.4.2)

Note that ‖g − n1u1‖2 = ‖g‖2 − n2
1 ' N + O

(
N1/2

)
and n1 = O (1). Thus, if we ignore

subleading terms from each component, the above decomposition becomes

σ̂ ' au1 + b
g√
N

+ v = au1 + bĝ + v, ĝ :=
g√
N
. (4.4.3)

The components a and b are related to the overlaps by the formulas

O = (σ̂ · u1)2 = a2, M = σ̂ · ĝ =
an1√
N

+ b
‖g − n1u1‖√

N
' an1√

N
+ b (4.4.4)

up to O (N−1) terms. Furthermore, v satisfies the equation

R = σ̂(1) · σ̂(2) = a1a2 + b1b2 + v(1) · v(2). (4.4.5)

4.4.1 The signed overlap with a replica for the microscopic field, h ∼ N−1/2 and T < 1

Consider the decomposition for h = HN−1/2 and 0 < T < 1. The overlap with the ground
state is given in Result 4.2.6 for h ∼ N−1/3 and Result 4.2.7 for h = 0. Since the leading terms of
the both results are same, given by 1− T , the leading term holds also for h ∼ N−1/2. Thus, we find
that a2 ' 1 − T in this regime, and hence |a| '

√
1− T . On the other hand, Result 4.1.7 on M
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implies that
an1√
N

+ b
D' h+

|n1|
√

1− TB(α)√
N

+

√
TN√
N

. (4.4.6)

Noting h ∼ N−1/2, we find that b = O
(
N−1/2

)
. From the formulas of a and b, we also find that

‖v‖2 = 1− a2 − b2 ' T . Finally, Result 4.3.7 implies that

a1a2 + b1b2 + v(1) · v(2) D' (1− T )B(θ). (4.4.7)

Here, θ is given in (4.3.51) and α in (4.4.6) is given by (4.1.64). They satisfy the relation θ =

α2 + (1 − α)2. Now, we make the following ansatz on a. For h = 0 and 0 < T < 1, the spin
configurations are equally likely to be on either of the double cones around u1 with the cosine of
the angle given by

√
1− T . This means that a

D'
√

1− T B(1/2) for h = 0 and 0 < T < 1. For
h ∼ N−1/2, we make the ansatz that

a = σ̂ · u1
D'
√

1− T B(ϕ) (4.4.8)

for some ϕ which we determine now. Note that if X1 and X2 are independent (thermal) random
variables distributed as B(ϕ), then their product X1X2 is B(ϕ2 + (1− ϕ)2)-distributed. Thus, the
equations (4.4.6) and (4.4.7) become

|n1|
√

1− T B(ϕ)√
N

+ b
D' h+

|n1|
√

1− TB(α)√
N

+

√
TN√
N

and
(1− T )B(ϕ2 + (1− ϕ)2) +O

(
N−1

)
+ v(1) · v(2) D' (1− T )B(θ).

Since θ = α2 + (1− α)2, it is reasonable to assume that the solutions are ϕ = α, and

a
D'
√

1− T B(α), b
D' h+

√
TN√
N

.

This calculation leads us to the following conjecture on the signed overlap of the spin variable with
a replica.

Conjecture 4.4.1. For a given disorder sample, let u1 be the unit vector corresponding to the

ground state such that u1 · g ≥ 0. Then, for h = HN−1/2 and 0 < T < 1, the signed overlap with
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the ground state satisfies

σ · u1√
N

D'
√

1− T B(α), α =
e
H|n1|

√
1−T

T

e
H|n1|

√
1−T

T + e−
H|n1|

√
1−T

T

, (4.4.9)

as N →∞ for asymptotically almost every disorder sample.

The above conjecture implies that for h = HN−1/2 the spin configuration vector concentrates
on the intersection of the sphere and the double cone around u1 where the cosine of the angle is
√

1− T , just like the h = 0 case. However, while for H = 0 the spin vector is equally likely to
be on either of the cones, for H > 0 the spin prefers the cone that is closer to g than the other
cone. As H →∞, the polarization parameter α→ 1 and hence for h� N−1/2, the spin vector is
concentrated on one of the cones.

4.4.2 Spin decompositions in various regimes

The results of the overlaps give us information about the decomposition of the spin for other
regimes of h as well. From the first equation of (4.4.4), we find a2, and hence |a|. The discussion
of the previous subsection implies that for h� N−1/2, the spin vector concentrates on one of the
cones. Thus, we expect that a = |a| for such h. Using this formula of a, we then obtain b from
the second equation of (4.4.4), from which we also find ‖v‖2 = 1− a2 − b2. Finally, the equation
(4.4.5) implies v(1) · v(2), and hence, the overlap v̂(1) · v̂(2) of the unit transversal vector v̂ = v

‖v‖

with its replica. We summarize the findings in Table IV.1. The result for the last row follows from
the last subsection.

The result for the regime h ∼ N−1/6 (fourth row) follows from Results 4.2.4, 4.1.5, and 4.3.5.
The term A = A(T, hN1/6) is given by the leading term in Result 4.2.4,

A =

√√√√1− T − h2N1/3

N∑
i=2

n2
i

(t+ a1 − ai)2
=
hN1/6|n1|

t
, (4.4.10)

where t > 0 is the number that makes the two formulas of A equal. For every disorder sample, A is
a decreasing function of H = hN1/6, changing from

√
1− T for H = 0 to 0 as H →∞.

The result for the regime h = O(1) (second row) follows from Result 4.2.2, 4.1.2, and 4.3.3. The
variable γ0 = γ0(T, h) > 2 is the solution of the equation (3.1.26). It satisfies γ0 ' h+ T

2
as h→∞

and γ0 ' 2 + h4

4(1−T )2 as h → 0: See Lemma 3.1.7. The function s1(z) is the Stieltjes transform
of the semicircle law. It satisfies s1(z) = z−1 + O(z−3) as z → ∞ and s1(z) ' 1 −

√
z − 2 as
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Case a = σ̂ · u1 b ' σ̂ · ĝ ‖v‖ v̂(1) · v̂(2)

h→∞ 0 1 0 0

h = O(1)
√
O0√
N

hs1(γ0)
√

1− h2s1(γ0)2 h2s1(γ0)4

(1−s1(γ0)2)(1−h2s1(γ0)2)

h→ 0, hN
1
6 →∞ 4(1−T )2|n1|

h3
√
N

h 1 1− T

h ∼ N−
1
6 A(T, hN1/6) h

√
1−A2 1−T−A2

1−A2

hN
1
6 → 0, hN

1
2 →∞

√
1− T h

√
T o(1)

h ∼ N−
1
2 (and h = 0)

√
1− T B(α) h+

√
TN√
N

√
T o(1)

Table IV.1: This table summarized the findings of the decomposition of the spin variable σ̂ '
au1 + bĝ + v in different regimes for 0 < T < 1. We indicate the leading order terms, except that
we have o(1) at two places. The o(1) term in the fifth row is complicated to state and the o(1) term
in the last row is not determined from our analysis. The unit transversal vector is v̂ = v

‖v‖ .

z → 2: see (2.1.8). See Sub-subsection 4.1.3.2 for properties of M0 = hs1(γ0). The term
√
O0√
N

is
from Result 4.2.2 and is given by

√
O0

√
N

=
1√
N

∣∣∣∣∣ h|n1|
γ0 − 2

+

√
TN√
γ0 − 2

∣∣∣∣∣ . (4.4.11)

For the last column, Result 4.3.3 and the formula b ' hs1(γ0) imply that v(1) · v(2) ' h2s2(γ0)−
h2s1(γ0)2. We use the identity s2(z) = s1(z)2/(1− s1(z)2) for z > 0 to simplify the formula.

The third row follows either from the fourth row or from the second row. Starting from the
fourth row, we use (4.2.26), which shows that

A2 ' 16(1− T )4n2
1

h6N
(4.4.12)

as hN1/6 → ∞. We can also see this formula from (4.4.10) because t ' h4N2/3

4(1−T )2 (see (3.3.20)).
Note that A = o(1) in this regime. On the other hand, if we start from the second row, we use
(4.2.16) to find the same formula for a. Other columns can be found from s1(γ0) ' 1− h2

2(1−T )
as

h→ 0. Note that the two components a and b are comparable in size for h ∼ N−1/8.
The quantity a in the fifth row follows either from the fourth row or from the last row. The

formula (4.2.27) shows that A2 ' 1− T as hN1/6 → 0. We also see this formula from (4.4.10) by
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dropping the o(1) term. If we start from the last row, the polarization parameter α satisfies α→ 1

as hN1/2 →∞, and hence a '
√

1− T , giving the same formula for a. The other columns follow
from this result. One can show using Result 4.2.6 and (4.2.41) that the subleading term in a (not
shown in Table IV.1) is comparable to the leading term of b, which is h, when h ∼ N−1/3.

4.4.3 Summary

Three quantities contain thermal random variables: a for the regimes h = O(1) and h ∼ N−1/2,
and b for the regime h ∼ N−1/2. Among those, a for the regime h ∼ N−1/2 is O (1) but the other
two quantities are of smaller order O

(
N−1/2

)
.

The table shows that a = O(1) for h ≤ O(N−1/6) and b = O(1) for h ≥ O(1). As h increases,
the u1 component of a typical spin vector decreases while the ĝ component increases. The above
result shows that the crossover occurs in the regime N−1/6 � h� O(1) in which both components
are o(1).

The last column of the table is the overlap of the unit transversal vector v̂ with its replica. This
overlap is o(1) for h� N−1/6. If the error were O(N−1/2), it would give a strong indication that
the thermal distribution of v̂ is uniform on the transverse space (i.e. the set of unit vectors that
are perpendicular to u1 and g). The above result does not show the error, but we expect that the
distribution on the transverse space is close to being uniform. On the other hand, for h ≥ O(N−1/6),
the overlap of the unit transversal vector is non-zero and O (1). This implies that v̂ is not uniformly
distributed on the transverse space.

Overall, for 0 < T < 1, as we increase the external field, we expect the following geometry of
the spin vector that is randomly chosen using the Gibbs (thermal) measure for a quenched disorder,
i.e. for asymptotically almost every disorder sample.

• For h� N−1/6, the spin vector is on a double cone around u1 (possibly preferring one cone
to the other), and the thermal distribution on the transverse space is close to being uniform.

• For h ∼ N−1/6, the spin vector is polarized to a single cone around u1, but the cone itself
depends non-trivially on the disorder sample. The thermal distribution on the transverse space
is not uniform and depends on the disorder sample.

• For N−1/6 � h � O(1), the spin vector entirely lies on the transverse space with only
o(1) components on the ground state and external field directions. Although the thermal
distribution is not uniform, it does not depend on the disorder sample.
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• For h = O(1), the spin vector is on a cone around g and the thermal distribution on the
transverse space is not uniform. The cone and the distribution on the transverse space do not
depend on the disorder sample.

• For h→∞, the spin vector is parallel to g.

The results of this thesis do not describe the distribution of v̂ on the transverse space in detail.
This can be achieved by studying the overlaps σ · ui with other eigenvectors. This analysis can be
done using the method of this thesis and we leave this work as a future project.

The items in the table can be expressed via a single formula across all regimes by using the
following decomposition of the spin configuration vector:

σ̂
D' AB(α)u1 + hs1(γ0)ĝ +

√
1−A2 − h2s1(γ0)2v̂ +O

(
N−1/2

)
(4.4.13)

where v̂ is a unit vector in the transverse space, i.e. v̂ · u1 = v̂ · ĝ = 0 and ‖v̂‖ = 1. All items in
the middle three columns of the table other than two items, a for the regime h = O(1) and b for the
regime h ∼ N−1/2, are of order greater than O

(
N−1/2

)
. Hence, the above formula is meaningful

for all items except those two.
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CHAPTER V

Detailed Analysis of the Overlaps for a Microscopic External Field

The purpose of this chapter is to rigorously prove our results for the the overlap with the external
field and overlap with a replica in the microscopic field regime (h ∼ N−1/2). The microscopic
regime is the most delicate one to analyze and has important implications for magnetic susceptibility
as well as the geometry of the Gibbs measure. This chapter focuses on the proofs of Theorems 5.2.1
and 5.3.1. These are similar to Results 4.1.6 and 4.3.6 in the previous chapter, but we provide a
more precise statement of each result as well as a rigorous proof. In particular, we specify bounds
for the order of the subleading term and the probability with which the result holds.

Section 5.1 provides preliminary lemmas, which include more precise versions of some of the
material in Chapter II. The proof of Theorem 5.2.1 can be found in Section 5.2. Sections 5.1 and
5.2 are also published in [13]. In Section 5.3 we prove Theorem 5.3.1. A comparable result was
obtained via a different method in [30] (see Theorem 2.14).

5.1 Preliminary lemmas

5.1.1 Eigenvalue spacing

Recall from Chapter II that we define the rescaled eigenvalues

ai := N2/3(λi − 2) (5.1.1)

and, as N →∞, the rescaled eigenvalues converge in distribution to the GOE Airy point process
[47, 41]. We denote this as {αi}∞i=1 satisfying

{ai} ⇒ {αi}. (5.1.2)
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Heuristically, we expect that, for 1� i� N ,

ai ≈ αi ≈ −
(

3πi

2

)2/3

(5.1.3)

since the semicircle law is asymptotic to
√

2−x
π

dx as x → 2. The above approximation and the
rigidity property suggest that,

ai � −i2/3 as i, N →∞ satisfying i� N. (5.1.4)

For proofs throughout this chapter, we need a more rigorous version of the approximation above,
which we obtain in the following lemma.

Lemma 5.1.1. (adapted from [29]) There exist some integer K and some c > 0, which do not

depend on N , such that, for all k > K, we have

P

 ⋂
N2/5≥j≥k

{
a1 − aj ≥ cj2/3

} ≥ 1− 2

k1/2
. (5.1.5)

Proof. In line (6.33) of [29], Landon and Sosoe obtain the result that there exists some K1 (not
depending on N ) such that, for all k > K1,

P

 ⋂
N2/5≥j≥k

{
N2/3(λj − 2) ≤ −

(
3πj

2

)2/3

+
1

10
j2/3

} ≥ 1− 1

k1/2
. (5.1.6)

(Note that the original statement of this inequality in the arxiv version of [29] contains a typo, but
the result above is what follows from the preceding lines of [29] and we confirmed this with the
authors.) Next, we observe that there exists some K ′ such that, for all k > K ′, we have

P
(
N2/3(2− λ1) ≤ 1

10
k2/3

)
≥ 1− 1

k1/2
(5.1.7)

for N sufficiently large. This comes from the fact that the GOE Tracy-Widom distribution has
sub-exponential tails. Neither K1 nor K ′ depends on N , so we take K to be the maximum of these
two values and, combining (5.1.6) and (5.1.7), we conclude the desired result.
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5.1.2 Special sums

The preliminaries in Chapter II also included convergence results for sums of the form

1

N

N∑
i=2

1

(λ1 − λi)m
. (5.1.8)

In particular, recall Landon and Sosoe proved [29] that

ΞN := N1/3

(
1

N

N∑
i=2

1

λ1 − λi
− 1

)
⇒ Ξ (5.1.9)

for a random variable Ξ as N →∞. The limiting random variable Ξ can be expressed in terms of
the GOE Airy kernel point process as

Ξ = lim
n→∞

 n∑
i=2

1

α1 − αi
− 1

π

∫ ( 3πn
2 )

2/3

0

dx√
x

 (5.1.10)

where the limit exists almost surely.
We also claimed in Chapter II another version of the result (5.1.9) where the constant numerators

are replaced n2
i :

N1/3

(
1

N

N∑
i=2

n2
i

λ1 − λi
− 1

)
⇒ lim

n→∞

 n∑
i=2

ν2
i

α1 − αi
− 1

π

∫ ( 3πn
2 )

2/3

0

dx√
x

 (5.1.11)

where νi are i.i.d standard Gaussians, independent of the GOE Airy point process αi. This follows
from (5.1.9) and the fact that

1

N2/3

N∑
i=2

n2
i − 1

λ1 − λi
⇒

∞∑
i=2

ν2
i − 1

α1 − αi
(5.1.12)

which is a convergent series due to Kolmogorov’s three series theorem and Lemma 5.1.1. Note that
Lemma 5.1.1 enables to verify (5.1.11) rigorously by including details that we omitted in Chapter
II.

The last task related to the special sums is to provide a rigorous version of Result 2.2.4 that
includes more specific bounds on the order of the sub-leading terms and the probability with which
each statement holds (in Result 2.2.4 we simply said “for asymptotically almost every disorder
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sample”). The precise version is provided in the following two lemmas.

Lemma 5.1.2. For any δ > 0,

1

N

N∑
i=2

1

λ1 − λi
= 1 +O(N−

1
3

+δ) and
1

N

N∑
i=2

n2
i

λ1 − λi
= 1 +O(N−

1
3

+δ) (5.1.13)

with probability at least 1−N−δ/2. (This lemma is adapted from a similar result in [30]).

Proof. Define an event

Eδ :=
{
λ1 − λ2 ≥ N−

2
3

(1+δ)
}
∩

{
N⋂
i=1

{
|λi − λ̂i| ≤ N−

2
3

+δ (min{i, N + 1− i})−1/3
}}

.

(5.1.14)
The first equation in (5.1.13) holds on this event, which we can see by writing

1

N

N∑
i=2

1

λ1 − λi
=

1

N

bNδ/3c∑
i=2

1

λ1 − λi
+

1

N

N∑
i=bNδ/3c+1

1

λ1 − λi

= O(N−
1
3

+δ) +
(

1 +O(N−
1
3

+δ)
) (5.1.15)

where, for the first sum, we use λ1 − λi ≥ N−
2
3

(1+δ) and, for the second sum, we use eigenvalue
rigidity and the semicircle law. The second equation in (5.1.13) also holds on Eδ using the same
reasoning along with the fact that the sum in (5.1.12) is convergent. It remains only to show that

P(Eδ) ≥ 1−N−δ/2. (5.1.16)

From Lemma 3.4 from [29], we have

P(λ1 − λ2 ≥ N−
2
3

(1+δ)) ≥ 1−N−
2
3
δ+δ′ (5.1.17)

for any δ′ > 0. This, along with (2.1.10), implies the lemma.

We also consider a similar class of sums with a larger exponent in the denominator and get the
following lemma.

Lemma 5.1.3. For any δ > 0

N∑
i=2

1

(a1 − ai)m
= O(N δ) and

N∑
i=2

n2
i

(a1 − ai)m
= O(N δ), m ≥ 2, (5.1.18)
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with probability at least 1−N− δ
3m .

Proof. To prove the first of these inequalities we consider the event

Fδ,m =
{
a1 − a2 > N−

δ
2m

}
∩

{
N⋂
i=1

{
|λi − λ̂i| ≤ N−

2
3

+δ (min{i, N + 1− i})−1/3
}}

(5.1.19)

The event
{
a1 − a2 > N−

δ
2m

}
occurs with probability at least 1 − N− δ

2m
+δ′ for any δ′ > 0 (see

[29] Lemma 3.4). Using this fact along with the eigenvalue rigidity result (2.1.10), we can conclude
that the event Fδ,m occurs with probability at least 1−N− δ

3m . Now we show that the first inequality
in Lemma 5.1.3 holds on the event Fδ,m. In particular, on that event, we have

N∑
i=2

1

(a1 − ai)m
=

bNδ/2c∑
i=2

1

(a1 − ai)m
+

N∑
i=bNδ/2c+1

1

(a1 − ai)m

< N δ/2 · 1

(N−
δ

2m )m
+ 2

N∑
i=bNδ/2c+1

1

(−ai)m

≤ N δ + 2
N∑

i=bNδ/2c+1

1

(−âi)m

(
1 +
|ami − âmi |

(−ai)m

)

< N δ + 4
N∑

i=bNδ/2c+1

1

(−âi)m

(5.1.20)

The summation in the last line is well approximated by the integral

N−
2m
3

+1

∫ λ̂bNδ/2c+1

−2

1

(2− x)m
dσscl(x) < 4N−

2m
3

+1

∫ λ̂bNδ/2c+1

−2

1

(2− x)m−
1
2

dx (5.1.21)

Using the approximation 2 − λ̂bNδ/2c+1 ≈ cN−
2
3

+ δ
3 from (5.1.3), we see that the right hand side

of the inequality above is of order N−mδ/3. Thus
∑N

i=2
1

(a1−ai)m = O(N δ) on the event Fδ,m.

Because ni are standard Gaussians, the sum
∑N

i=2
n2
i

(a1−ai)m has the same order with comparable
probability.

5.1.3 Chi-squared distributions

One quantity that we make use of throughout this chapter is n1 = uT1 g. We note that n1 has a
standard normal distribution which means that n2

1 has a chi-squared distribution with one degree
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of freedom. We prove many results that hold on the event where n2
1 is roughly of order 1. More

specifically, we have the following lemma

Lemma 5.1.4. For any sufficiently small δ > 0,

P
(
N−δ < n2

1 < δ logN
)
≥ 1−N−δ/2 (5.1.22)

The proof of this lemma is straightforward from the probability density function for chi-squared
random variables. We note for the purpose of future results that n1 is independent of the eigenvalues
of M .

5.1.4 Defining the event on which our result holds

For any ε > 0, we define an event Eε as follows:

Eε :=
{
N−ε < n2

1 < ε logN
}
∩{

1

N

N∑
i=2

1

λ1 − λi
= 1 +O(N−

1
3

+ε) and
1

N

N∑
i=2

n2
i

λ1 − λi
= 1 +O(N−

1
3

+ε)

}

∩

{
N∑
i=2

1

(a1 − ai)m
≤ N ε and

N∑
i=2

n2
i

(a1 − ai)m
≤ N ε for m = 2, 3

}
(5.1.23)

Lemma 5.1.5. For ε > 0 sufficiently small and N sufficiently large,

P(Eε) ≥ 1−N−ε/10 (5.1.24)

Proof. The event Eε as defined above is the intersection of three events, each with probability close
to 1. For sufficiently large N , we know from Lemma 5.1.4 that the first event in the intersection
has probability at least 1 − N−ε/2 and, from Lemma 5.1.2, the second event in the intersection
has probability at least 1−N−ε/2. The third event in the intersection is actually composed of two
events, the one for m = 2 and the one for m = 3. By Lemma 5.1.3, these hold with probability
1−N−ε/6 and 1−N−ε/9 respectively. Putting these together, we see that, even if the complements
of all of these events are disjoint, we have P(Eε) ≥ 1−N−ε/10 for any sufficiently small ε > 0 and
sufficiently large N .

Throughout the rest of this chapter, we will prove various results assuming that we are on the
event Eε. We can then conclude that those results hold with probability at least 1−N−ε/10.
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5.2 Overlap with the microscopic external field (detailed proof)

5.2.1 Introduction

In this section, we present a rigorous proof of Theorem 5.2.1, which provides the moment
generating function for the overlap M. This is essentially a rigorous version of Result 4.1.6/4.1.7.

Theorem 5.2.1. Given T < 1 with h = HN−1/2 for some some fixed H ≥ 0 and n1 := u1 · g, we

have the following asymptotic formula for the moment generating function of M, the overlap with

the external field. This formula holds on the event Eε (which has probability at least 1−N−ε/10)

for any sufficiently small ε > 0 and ξ = O(1).

〈eξ
√
NM〉 = eHξ+

Tξ2

2

cosh
(

(H + Tξ)|n1|
√

1−T
T

)
cosh

(
H|n1|

√
1−T
T

) (
1 +O(N−

1
21

+ ε
7 )
)
. (5.2.1)

Note that the leading term on the right-hand side is the product of two terms implying that it is
the moment generating function of a sum of two independent random variables. The exponential
term is the moment generating function of a Gaussian random variable. For the ratio of the cosh
functions, we note that the moment generating function of a shifted Bernoulli random variable that
takes values 1 and −1 with probabilities P and 1− P respectively is Pet + (1− P )e−t. The ratio
of cosh functions in Theorem 5.2.1 is of this form with t = ξ|n1|

√
1− T and

P =
e
H
T
|n1|
√

1−T

e
H
T
|n1|
√

1−T + e−
H
T
|n1|
√

1−T
. (5.2.2)

Hence, for any large N , we can conclude that, on the event Eε, the scaled overlap
√
NM behaves in

its leading order like the independent sum of a Gaussian random variable (with meanH and variance
T ) and a shifted Bernoulli random variable (which takes values |n1|

√
1− T and −|n1|

√
1− T with

probability P and 1− P respectively for the value of P stated above).
We can use Theorem 5.2.1 to obtain various information about the overlaps, including formulas

for all moments of M. Of particular interest are the first moment (Gibbs expectation) and the
variance with respect to the Gibbs measure. Since M is of order N−1/2 in the case of a microscopic
external field, we examine the scaled overlap M

√
N . For the expectation, we get

〈M
√
N〉 = H + |n1|

√
1− T tanh

(
H|n1|

√
1− T
T

)
+O

(
N−

1
21

+ ε
3

)
(5.2.3)
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and for the variance with respect to the Gibbs measure, we get

Var(M
√
N) = T + n2

1(1− T )

(
1− tanh2

(
H|n2

1|
√

1− T
T

))
+O

(
N−

1
21

+ ε
3

)
, (5.2.4)

where both of these formulas hold on the event Eε.
In the proof of Theorem 5.2.1, we make use of Lemma 2.3.3, which can be restated as follows:

〈eβξ
√
NM〉 = e

N
2

(GM(γM)−G(γ))

∫ γM+i∞
γM−i∞ e

N
2

(GM(z)−GM(γM))dz∫ γ+i∞
γ−i∞ e

N
2

(G(z)−G(γ))dz
(5.2.5)

where

GM(z) = βz − 1

N

N∑
i=1

log(z − λi) +
(h+ ξ√

N
)2β

N

N∑
i=1

n2
i

z − λi
(5.2.6)

and we use γ and γM to denote critical points of G(z) and GM(z) respectively, which satisfy γ > λ1

and γM > λ1. In the next two lemmas, we show that these critical points are unique and we compute
upper and lower bounds for them. After accomplishing this, we turn to the more delicate task of
computing the integrals in the formula for the generating function of M. This is more difficult for
h ∼ N−1/2 than in the other scaling regimes because the critical point is very close to a branch
point. Since a straightforward application of Taylor approximation and steepest descent analysis
does not work in this case, we directly compute the integral in a neighborhood of the critical point
and then show that the tails of the integral are of smaller order.

5.2.2 Critical point analysis

We begin by computing the critical point γ of G(z). In Section 4.1.6, we used the ansatz that
γ = λ1 + pN−1 with N−δ < p < N δ for any δ > 0 and sufficiently large N on some event whose
probability tends to 1 as N →∞. Here we take a more rigorous approach. Without making any
assumption about the order of p, we set

γ = λ1 + pN−1 (5.2.7)

and then prove that the order of p indeed satisfies the ansatz from Section 4.1.6 (in fact we prove
something more precise). In particular, we can define p via the formula for G ′(z) and prove the
following lemma.
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Lemma 5.2.2. There exists a unique p > 0 satisfying the equation

G ′(λ1 + pN−1) = β − 1

N

N∑
i=1

1

λ1 + pN−1 − λi
− H2β

N2

N∑
i=1

n2
i

(λ1 + pN−1 − λi)2
= 0 (5.2.8)

and, for any sufficiently small ε > 0 and sufficiently large N , we have T < p < ε logN on the

event Eε, which occurs with probability at least 1−N−ε/10.

Proof. The existence and uniqueness of p can be seen from the fact that, for x ∈ (λ1,∞), the
function G ′(x) is monotonically increasing with G ′(x) → β as x → ∞ and G ′(x) → −∞ as
x → λ1. Having established that (5.2.8) has a unique solution p > 0, we turn to the task of
bounding p. On the event Eε, the last sum in equation (5.2.8) is O(N−

2
3

+ε) for any sufficiently small
ε > 0. From this, we get

β − 1

N

N∑
i=2

1

λ1 − λi
− 1

p
− H2βn2

1

p2
+O(N−

2
3

+ε) < 0 < β − 1

p
− H2βn2

1

p2
(5.2.9)

on Eε. Further applying the definition of Eε to the sum on the left hand side and rearranging terms,
we get

β − 1 +O(N−
1
3

+ε) <
1

p
+
H2βn2

1

p2
< β. (5.2.10)

Hence, on Eε, the expression 1
p

+
H2βn2

1

p2 is bounded above and below by order 1 quantities. The
upper bound ensures that p > 1

β
= T (note this is not a sharp bound). The lower bound on

1
p

+
H2βn2

1

p2 ensures that p = O(ε logN) provided that |ni| = O(ε logN). Since |ni| < (ε logN)1/2

for sufficiently large N on Eε, we can definitely ensure that |ni| < Cε logN for any constant C and
sufficiently large N .

Having proved the lemma, we apply the bounds on the order of p to equation (5.2.8) and
conclude that p satisfies

β − 1− 1

p
− H2βn2

1

p2
+O(N−

1
3

+ε) = 0 (5.2.11)

with probability 1−N−ε/10. We note that, when h = HN−1/2, the equation for GM is same as the
one for G with H replaced by H + ξ. Thus γM = λ1 + pMN

−1 where pM > 0 solves the equation

β − 1− 1

pM
− (H + ξ)2βn2

1

p2
M

+O(N−
1
3

+ε) = 0, (5.2.12)

and the lemma below follows by the same reasoning as in the lemma above.
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Lemma 5.2.3. There exists a unique pM > 0 satisfying the equation

G ′M(λ1 + pMN
−1) = β − 1

N

N∑
i=1

1

λ1 + pMN−1 − λi
− (H + ξ)2β

N2

N∑
i=1

n2
i

(λ1 + pMN−1 − λi)2
= 0

(5.2.13)
and, for any sufficiently small ε > 0 and sufficiently large N , we have T < pM < ε logN on the

event Eε, which occurs with probability at least 1−N−ε/10.

5.2.3 Contour integral computation

We now consider the ratio of the integrals in the formula (5.2.5). For the integral in the numerator,
we have the following lemma.

Lemma 5.2.4. For fixed H > 0 with h = HN−1/2 and T < 1∫
e
N
2

(GM(z)−GM(γM))dz

=
2i
√

2πpMe
−(β−1)pM+ 1

2

N
√
β − 1

cosh
(

(H + ξ)|n1|
√
β(β − 1)

)(
1 +O(N−

1
21

+ ε
7 )
)

(5.2.14)

on the event Eε, which occurs with probability at least 1−N−ε/10 for any sufficiently small ε > 0.

Proof. To compute this integral, we need a formula for N(GM(z)− GM(γM)) in terms of u where
z = γM + uN−1. We will begin by focusing on the central portion of the integral and then we will
handle the tails separately. When we are on the event Eε and |u| = o(N

1
3
−ε), we get the following

computation:

N(GM(z)− GM(γM)) = N(GM(z)− GM(γM)− G ′M(γM)uN−1)

= −
N∑
i=1

[
log

(
1 +

uN−1

γM − λi

)
− uN−1

γM − λi

]
+

(H + ξ)2β

N

N∑
i=1

n2
iu

2N−2

(γM + uN−1 − λi)(γM − λi)2

= − log

(
1 +

u

pM

)
+

u

pM
+O

(
N∑
j=2

|u|2N−2

(γM − λj)2

)

+
(H + ξ)2βn2

1u
2

(pM + u)p2
M

+O

(
N∑
j=2

|u|2N−3

(γM − λj)3

)
.

(5.2.15)
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Using properties of the event Eε, the quantity in the last line above can be simplified as follows:

= − log

(
1 +

u

pM

)
+

u

pM
+

(H + ξ)2βn2
1u

2

(pM + u)p2
M

+O(|u|2N−
2
3

+ε)

= − log

(
1 +

u

pM

)
+ (β − 1 +O(N−

1
3

+ε))(u− pM) + 1 +
(H + ξ)2βn2

1

(pM + u)
+O(|u|2N−

2
3

+ε)

= − log

(
1 +

u

pM

)
+ (β − 1)(u− pM) + 1 +

(H + ξ)2βn2
1

(pM + u)
+O

(
(|u|+ 1)N−

1
3

+ε
)
.

(5.2.16)

Now, set g(u) = 1
2

(
− log

(
1 + u

pM

)
+ (β − 1)(u− pM) + 1 +

(H+ξ)2βn2
1

(pM+u)

)
and let 0 < δ < 1

6
− ε

2
.

Then we see that, on the event Eε,∫ γM+i∞

γM−i∞
exp

[
N

2
(GM(z)− GM(γM))

]
dz

=
1

N

(∫ iNδ

−iNδ

exp
(
g(u) +O

(
(|u|+ 1)N−

1
3

+ε
))

du+ integrals of tails

)
.

(5.2.17)

For the purposes of computing this, it helps to deform the contour by shifting it leftward so that,
instead of the vertical contour from γM − i∞ to γM + i∞, we consider a contour from λ1 − i∞
to λ1 + i∞ which is a straight vertical line except near λ1 where it passes to the right of λ1. The
integral on this contour will be the same as on the original contour and we get∫ λ1+i∞

λ1−i∞
exp

[
N

2
(GM(z)− GM(γM))

]
dz

=
1

N

(∫ iNδ

−iNδ

exp
(
g(u− pM) +O

(
(|u|+ 1)N−1/3

))
du+ integrals of tails

)

=
1

N

(∫ iNδ

−iNδ

exp(g(u− pM))
(

1 +O
(

(|u|+ 1)N−
1
3

+ε
))

du+ integrals of tails

)
.

(5.2.18)

Note that we have implemented a leftward shift of γM − λ1 with respect to z, which corresponds to
a leftward shift of pM with respect u. We make this shift in the integrand rather than in the contour
bounds, so the contour with respect to u is a vertical line along the imaginary axis, but passing to the
right of the origin. Next, we compute the integral on the portion of the contour from −iN δ to iN δ.
Call this portion of the contour C. We define C more specifically (in terms of u) to be composed of
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three pieces:

• C1 is the straight line from −iN δ to −ipM.

• C2 is the semicircle given by pMeiθ with θ ∈ [−π
2
, π

2
].

• C3 is the straight line from ipM to iN δ.

We show that exp(g(u − pM)) is bounded on C1, C2, C3 by bounding the real part of g(u − pM).
On C1 and C3, we have

Re(g(u− pM)) = −1

2
log

(
|u|
pM

)
− 2pM(β − 1) + 1 < 1. (5.2.19)

On C2, we have

Re(g(pMe
iθ − pM)) =− 1

2
log(|eiθ|) + (β − 1) · Re(pMe

iθ − 2pM) + 1 + Re

(
(H + ξ)2βn2

1

pMeiθ

)
<1 +

(H + ξ)2βn2
1

pM
.

(5.2.20)

Since the real part of g(u− pM) is bounded, the magnitude of exp(g(u− pM)) is also bounded by
some constant (call it c) so we have∫

C1

exp(g(u− pM))
(

1 +O
(

(|u|+ 1)N−
1
3

+ε
))

du

=

∫ −ipM

−iNδ

exp(g(u− pM))
(

1 +O
(

(|u|+ 1)N−
1
3

+ε
))

du

=

∫ −ipM

−iNδ

exp(g(u− pM))du+O(c · 2N2δ− 1
3

+ε)

=

∫
C1

exp(g(u− pM))du+O(N2δ− 1
3

+ε).

(5.2.21)

Similarly, we have∫
C3

exp(g(u− pM))
(

1 +O
(

(|u|+ 1)N−
1
3

+ε
))

du =

∫
C3

exp(g(u− pM))du+O(N2δ− 1
3

+ε).

(5.2.22)
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Finally, for C2, we get∫
C2

exp(g(u− pM))
(

1 +O
(

(|u|+ 1)N−
1
3

+ε
))

du

=

∫ π/2

−π/2
exp(g(pMe

iθ − pM))
(

1 +O
(
N−

1
3

+ε
))

pMieiθdθ

=

∫ π/2

−π/2
exp(g(pMe

iθ − pM))pMieiθdθ +O
(
pMcπN

− 1
3

+ε
)

=

∫
C2

exp(g(u− pM))du+O(N−
1
3

+ε).

(5.2.23)

Thus, we conclude that, on the event Eε, for any 0 < δ < 1
6
− ε

2
,

∫ iNδ

−iNδ

exp(g(u− pM))
(

1 +O
(

(|u|+ 1)N−
1
3

+ε
))

du

=

∫ iNδ

−iNδ

exp(g(u− pM))du+O(N2δ− 1
3

+ε). (5.2.24)

We use lemma 5.2.5 to show that the integral of the tails has order O(N−δ/3). This has the same
order as O(N2δ− 1

3
+ε) when δ = 1

7
(1− 3ε), which is positive for any 0 < ε < 1

3
. Since we are free

to choose any 0 < δ < 1
6
− ε

2
, we set δ = 1

7
(1− 3ε) and get

∫
e
N
2

(GM(z)−GM(γM))dz =
1

N

(∫ iNδ

−iNδ

exp(g(u− pM))du+O
(
N−

1
21

+ ε
7

))

=
1

N

(∫ iNδ

−iNδ

√
pM
u
e

(β−1)(u−2pM)

2
+ 1

2
+

(H+ξ)2βn2
1

2u du+O
(
N−

1
21

+ ε
7

))

=
p

1/2
M e−(β−1)pM+ 1

2

N

(∫ iNδ

−iNδ

1√
u
e

(β−1)u
2

+
(H+ξ)2βn2

1
2u du+O

(
N−

1
21

+ ε
7

))
.

(5.2.25)

The integral
∫

0++iR
1√
u

exp
(

(β−1)u
2

+
(H+ξ)2βn2

1

2u

)
du can be evaluated using the contour integral

formula for the modified Bessel function (see e.g. [2]):∫
0++iR

1√
w
eaw+ b

wdw = 2πi

(
b

a

)1/4

I− 1
2
(2
√
ab) =

2i
√
π√
a

cosh(2
√
ab). (5.2.26)

Since this integral converges, the integral in the last line of equation (5.2.25) must converge to
the same value. Furthermore, the tails of the integral in (5.2.26) beyond order N δ only contribute
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O(N−δ/2) to the value of the integral. This can be seen by applying integration by parts to the
integral i

∫∞
Nδ

1√
iy
ei(ay− b

y
)dy where the factor 1√

y
e−

ib
y is differentiated and the factor eiay is integrated.

This gives us O(N−δ/2), which is less than O(N−
1
21

+ ε
7 ) since δ = 1

7
(1− 3ε). Hence, we conclude

that, on the event Eε,∫
e
N
2

(GM(z)−GM(γM))dz

=
2i
√

2πpMe
−(β−1)pM+ 1

2

N
√
β − 1

cosh
(

(H + ξ)|n1|
√
β(β − 1)

)(
1 +O(N−

1
21

+ ε
7 )
)
. (5.2.27)

We now return to the task of computing the moment generating function of M using equation
(5.2.5). The integral in the denominator of that formula can be viewed as a special case of the
numerator in which ξ = 0 and pM is replaced with p. Therefore, on the event Eε,∫

e
N
2

(GM(z)−GM(γM))dz∫
e
N
2

(G(z)−G(γ))dz

=

√
pM
p
e−(β−1)(pM−p)

cosh
(

(H + ξ)|n1|
√
β(β − 1)

)
cosh

(
H|n1|

√
β(β − 1)

) (
1 +O(N−

1
21

+ ε
7 )
)
. (5.2.28)

To compute the moment generating function of M from the formula (5.2.5), it remains only to
evaluate the factor e

N
2

(GM(γM)−G(γ)), which is also computed in Section 4.1.6. Although we require
more precision for the order of the sub-leading term than we did in the preceding chapter, this can
easily be achieved by repeating our previous steps using the assumptions that hold on the event Eε
and carefully tracking the order of each term. This yields the result

N(GM(γM)− G(γ)) =− log(
pM
p

) + 2(β − 1)(pM − p) + (2Hξ + ξ2)β +O(N−
1
3

+ε).

(5.2.29)
Thus we can conclude that

〈eβξ
√
NM〉 = e

(2Hξ+ξ2)β
2

cosh
(

(H + ξ)|n1|
√
β(β − 1)

)
cosh

(
H|n1|

√
β(β − 1)

) (
1 +O(N−

1
21

+ ε
7 )
)
. (5.2.30)

Replacing βξ by ξ and using T = 1/β, we obtain the result stated in Theorem 5.2.1.
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5.2.4 Integral Approximation Lemma

The proof of Theorem 5.2.1 in the preceding subsections required us to compute a contour
integral. In that computation, we relied on the fact that the dominant contribution to the integral
comes from a neighborhood of the critical point. In this section, we prove that fact by providing an
upper bound for the value of the integral outside of a neighborhood of the critical point and showing
that the upper bound shrinks to zero as N → ∞. This is the most technical part of the contour
integral computations.

Lemma 5.2.5 (Tail approximation for overlap with external field when h = H−1/2 and T < 1). For

any δ > 0,∫ i∞

iNδ

exp

[
N

2
(GM(λ1 + uN−1)− GM(γM))

]
du = O(N−δ/3) as N →∞ (5.2.31)

on the event Eε.

Proof. First, observe that we are using a vertical contour with real part equal to λ1 as opposed
to the original contour, which had real part equal to γ. This is due to a contour deformation
that we did when computing the integral on the central portion of the contour. To show that
the integrals of the tails tend to zero, we deform the contour yet again. Instead of the vertical
line contour given by λ1 + i(N δ + t)N−1 with t ∈ [0,∞), we consider the contour C4 given by
λ1 − f(t)N−1 + i(N δ + t)N−1 where f(t) = (t + 1)∆ − 1 for some 0 < ∆ < 1

3
. We briefly

comment on this choice of contour: In order to show decay of the tails of the integral, we want the
real part of z(t) to approach −∞ as t→ ±∞. However, in order to control the integrand, we want
the real part of |z(t)−λ1| to be smaller than λ1−λ2 when |t| < N . We choose f(t) = (t+ 1)∆− 1

because we also need f(0) = 0 and f ′(t) bounded.
To bound

∫ i∞
iNδ exp[N

2
(GM(λ1 + uN−1)− GM(γM))]du we observe that∣∣∣∣ ∫ i∞

iNδ

exp

[
N

2
(GM(λ1 + uN−1)− GM(γM))

]
du

∣∣∣∣
=

∫ ∞
0

∣∣∣∣(f ′(t) + i) exp

[
N

2
(GM(λ1 + (−f(t) + i(N δ + t))N−1)− GM(γM))

] ∣∣∣∣dt
≤
∫ ∞

0

∣∣∣∣− ∆

(t+ 1)1−∆
+ i

∣∣∣∣ · ∣∣∣∣ exp

[
N

2
(GM(λ1 + (−f(t) + i(N δ + t))N−1)− GM(γM))

] ∣∣∣∣dt
≤
∫ ∞

0

√
2

∣∣∣∣ exp

[
N

2
(GM(λ1 + (−f(t) + i(N δ + t))N−1)− GM(γM))

] ∣∣∣∣dt
(5.2.32)
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Thus, it suffices to show
∫∞

0
| exp

[
N
2

(GM(λ1 + (−f(t) + i(N δ + t))N−1)− GM(γM))
]
|du =

O(N−δ/3). We use the notation GM(z) = A(z) +B(z) where

A(z) := βz − 1

N

N∑
j=1

log(z − λj), B(z) :=
(H + ξ)2β

N2

N∑
j=1

n2
j

z − λj
. (5.2.33)

We begin by noting that∫ ∞
0

∣∣∣∣exp

[
N

2
(GM(z(t))− GM(γM))

]∣∣∣∣ dt
≤
∫ ∞

0

∣∣∣∣exp

[
N

2
(A(z(t))− A(γM))

]∣∣∣∣ · ∣∣∣∣exp

[
N

2
(B(z(t))−B(γM))

]∣∣∣∣ dt (5.2.34)

Therefore, in order to show that the integral on the tail has order O(N−δ/3), it is enough two prove
the following two things:

•
∫∞

0

∣∣exp
(
N
2

(A(λ1 − f(t)N−1 + i(N δ + t)N−1)− A(γM))
)∣∣ dt = O(N−δ/3) and

•
∣∣exp

(
N
2

(B(λ1 − f(t)N−1 + i(N δ + t)N−1)−B(γM))
)∣∣ is bounded for t > 0.

The integral in the first bullet point can be rewritten as∫ ∞
0

∣∣∣∣exp

(
N

2
(A(λ1 − f(t)N−1 + i(N δ + t)N−1)− A(γM))

)∣∣∣∣ dt
=

∫ ∞
0

exp

(
Nβ

2
(λ1 − f(t)N−1 − γM)

)
·

∣∣∣∣∣exp

[
−1

2

N∑
j=1

log

(
λ1 − f(t)N−1 + i(N δ + t)N−1 − λj

γM − λj

)]∣∣∣∣∣ dt
(5.2.35)

and this can be further simplified as

=

∫ ∞
0

exp

(
−β(pM + f(t))

2

)
·

∣∣∣∣∣exp

[
−1

2

N∑
j=1

log

(
λ1 − f(t)N−1 + i(N δ + t)N−1 − λj

γM − λj

)]∣∣∣∣∣ dt
=

∫ ∞
0

exp

(
−β(pM + f(t))

2

)
· exp

[
−1

2

N∑
j=1

log

∣∣∣∣λ1 − f(t)N−1 + i(N δ + t)N−1 − λj
γM − λj

∣∣∣∣
]

dt

(5.2.36)
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We begin by showing that this integral restricted to the interval [2(γM − λN)N,∞) is of order
O(e−N/2) . If we integrate over just the first factor in the expression above, we get∫ ∞

2(γM−λN )N

exp

(
−β(pM + f(t))

2

)
dt

= exp

(
−β(pM − 1)

2

)∫ ∞
2(γM−λN )N

exp

(
−(t+ 1)∆

2

)
dt

=O(exp(−N∆))

(5.2.37)

In the last equality above, we used the fact (see Lemma 5.2.3) that pM > T on the event Eε. Since
this integral converges, it suffices to show that
exp

[
−1

2

∑N
j=1 log

∣∣∣λ1−f(t)N−1+i(Nδ+t)N−1−λj
γM−λj

∣∣∣] is of order O(e−N/2) for t ≥ 2(γM − λN)N .

exp

[
−1

2

N∑
j=1

log

∣∣∣∣λ1 − f(t)N−1 + i(N δ + t)N−1 − λj
γM − λj

∣∣∣∣
]

≤ exp

[
−1

2

N∑
j=1

log

∣∣∣∣(N δ + t)N−1

γM − λj

∣∣∣∣
]
≤ exp

[
−1

2

N∑
j=1

log

∣∣∣∣2(γM − λN)

γM − λj

∣∣∣∣
]

≤ exp

[
−N

2
log(2)

]
< e−N/2

(5.2.38)

Next, we show that the integral is of order O(N−δ/3) on the interval [0, 2(γM − λN)N ]. For t in
this interval we have

exp

[
−1

2

N∑
j=1

log

∣∣∣∣λ1 − f(t)N−1 + i(N δ + t)N−1 − λj
γM − λj

∣∣∣∣
]

= exp

[
−1

2

N∑
j=1

log

∣∣∣∣a1 − aj − f(t)N−1/3 + i(N δ + t)N−1/3

pMN−1/3 + a1 − aj

∣∣∣∣
]
.

(5.2.39)

To obtain an upper bound for this quantity, we begin with the j = 1 term and observe that

exp

[
−1

2
log

∣∣∣∣−f(t) + i(N δ + t)

pM

∣∣∣∣] ≤ exp

[
−1

2
log

∣∣∣∣N δ

pM

∣∣∣∣] ≤ (pMN δ

)1/2

. (5.2.40)
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For the summation of the j ≥ 2 terms, we get

exp

[
−1

2

N∑
j=2

log

∣∣∣∣a1 − aj − f(t)N−1/3 + i(N δ + t)N−1/3

pMN−1/3 + a1 − aj

∣∣∣∣
]

≤ exp

[
−1

4

N∑
j=2

log

∣∣∣∣(a1 − aj − f(t)N−1/3)2 + (N δ + t)2N−2/3

(pMN−1/3 + a1 − aj)2

∣∣∣∣
]

≤ exp

[
−1

4

N∑
j=2

log

∣∣∣∣1 +
−2(f(t) + pM)(a1 − aj)N−1/3 − p2

MN
−2/3 + (N δ + t)2N−2/3

(pMN−1/3 + a1 − aj)2

∣∣∣∣
]
.

(5.2.41)

Because −p2
MN

−2/3 + (N δ + t)2N−2/3 > 0, the last line of this inequality is bounded above by

exp

[
−1

4

N∑
j=2

log

∣∣∣∣1− 2(f(t) + pM)(a1 − aj)N−1/3

(pMN−1/3 + a1 − aj)2

∣∣∣∣
]

≤ exp

[
−1

4

N∑
j=2

log

∣∣∣∣1− 2(f(t) + pM)N−1/3

a1 − aj

∣∣∣∣
]

≤ exp

[
1

4

N∑
j=2

(
2(f(t) + pM)N−1/3

a1 − aj
+

(
2(f(t) + pM)N−1/3

a1 − aj

)2
)]

= exp

[
f(t) + pM

2

N∑
j=2

N−1/3

a1 − aj
+ ((f(t) + pM)N−1/3)2

N∑
j=2

1

(a1 − aj)2

]
.

(5.2.42)

Next, using the properties of the event Eε, we see that the last line above has upper bound

exp

[
f(t) + pM

2

(
(1 +O(N−

1
3

+ε)) +O(N−
2
3

+∆+ε)
)]

= exp

[
f(t) + pM

2

(
1 +O(N−

1
3

+ε)
)]

. (5.2.43)

Combining this with the upper bound from the j = 1 term in (5.2.40), we conclude that

exp

[
−1

2

N∑
j=1

log

∣∣∣∣λ1 − f(t)N−1 + i(N δ + t)N−1 − λj
γM − λj

∣∣∣∣
]

≤
(pM
N δ

)1/2

exp

[
f(t) + pM

2

(
1 +O(N−

1
3

+ε)
)]

. (5.2.44)
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Finally, plugging this back into the original integral, we get∫ 2(γM−λN )N

0

∣∣∣∣exp

(
N

2
(A(λ1 − f(t)N−1 + i(N δ + t)N−1)− A(γM))

)∣∣∣∣ dt
≤
∫ 2(γM−λN )N

0

exp

(
−β(pM + f(t))

2

)
·
(pM
N δ

)1/2

exp

[
f(t) + pM

2
(1 +O(N−

1
3

+ε))

]
dt

=
(pM
N δ

)1/2
∫ 2(γM−λN )N

0

exp

[
−β − 1 +O(N−

1
3

+ε)

2
· (f(t) + pM)

]
dt

(5.2.45)

Since β > 1, there exists some C ′′ > 0 such that the integral is bounded above by

(pM
N δ

)1/2
∫ 2(γM−λN )N

0

exp
[
−C ′′((t+ 1)∆ − 1)

]
dt

= O

((pM
N δ

)1/2
)

= O

((
ε logN

N δ

)1/2
)

= O(N−δ/3) (5.2.46)

Lastly, it remains to show that
∣∣exp

(
N
2

(B(λ1 − f(t)N−1 + i(N δ + t)N−1)−B(γM))
)∣∣ is bounded

and it suffices to show that Re
(
N
2

(B(λ1 − f(t)N−1 + i(N δ + t)N−1)−B(γM))
)

is bounded
above.

Re

[
N

2
(B(λ1 − f(t)N−1 + i(N δ + t)N−1)−B(γM)]

)
= Re

[
N

2
· (H + ξ)2β

N2

N∑
j=1

(
n2
j

λ1 − f(t)N−1 + i(N δ + t)N−1 − λj
−

n2
j

γM − λj

)] (5.2.47)

We observe that the real part of the j = 1 term in the summation is negative and, furthermore,∑N
j=2(− n2

j

γM−λj
) is negative. Removing these terms, we see that the quantity above has upper bound

Re

[
(H + ξ)2β

2N

N∑
j=2

n2
j

λ1 − f(t)N−1 + i(N δ + t)N−1 − λj

]

=
(H + ξ)2β

2N

N∑
j=2

n2
j(λ1 − f(t)N−1 − λj)

(λ1 − f(t)N−1 − λj)2 + (N δ + t)2N−2
.

(5.2.48)

127



Now consider two cases. For t < N , the expression in the last line is bounded above by

(H + ξ)2β

2N

N∑
j=2

n2
j

λ1 − f(t)N−1 − λj
=

(H + ξ)2β

2

N∑
j=2

n2
jN
−1/3

a1 − aj − f(t)N−1/3
(5.2.49)

This will be O(1) because
∑N

j=2

n2
jN
−1/3

a1−aj = 1 + O(N−
1
3

+ε) on the event Eε and, for sufficiently

small ε, we have f(t)N−1/3 < 1
2
(a1 − a2) since f(t)N−1/3 = O(N∆− 1

3 ) where ∆ < 1
3

and
a1 − a2 > N−ε/3 on Eε.

In the case where t ≥ N , we instead use the upper bound

(H + ξ)2β

2N

N∑
j=2

n2
j(λ1 − λj)

(N δ + t)2N−2
≤ (H + ξ)2β

2N

N∑
j=2

4n2
j (5.2.50)

Since n2
j are i.i.d. chi-squared random variables, the right-hand side is O(1) with overwhelming

probability.

5.3 Applying this method to the overlap of two replicas (unpublished result)

Using a method similar to the proofs in Section 5.2, we can prove Theorem 5.3.1 below for
R, the overlap of two replicas (this is a rigorous re-formulation of Result 4.3.6). The generating
function for the overlap with a replica involves a double integral rather than a single integral, but we
can use the same contour as in Section 5.2 for both integrals and then transform to polar coordinates
in order to prove the desired decay properties outside a neighborhood of the critical point. While
our method works to prove this theorem, the details were omitted from the published paper [13]
because the theorem also follows from Theorem 2.14 of [30], as we explain below.

Theorem 5.3.1. Given T < 1 and h = HN−1/2 for some some fixed H ≥ 0, we have the following

asymptotic formula for the moment generating function of R, the overlap with a replica. This

formula holds on the event Eε (which has probability at least 1−N−ε/10) for any sufficiently small

ε > 0 and ξ = O(1).

〈eξ
R

1−T 〉 =
cosh

(
2
√

1−TH|n1|
T

)
eξ + e−ξ

cosh
(

2
√

1−TH|n1|
T

)
+ 1

+O(N−
1
21

+ ε
7 ) (5.3.1)

Note that the leading order term on the right hand side is the moment generating function
of a shifted Bernoulli random variable that takes values 1 and −1 with probability P and 1 − P
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respectively, where

P =
cosh

(
2
√

1−TH|n1|
T

)
cosh

(
2
√

1−TH|n1|
T

)
+ 1

. (5.3.2)

Thus, for large N , we can conclude that, on the event Eε, the overlap R behaves in its leading
order like a shifted Bernoulli random variable. This conclusion also follows from Theorem 2.14 of
[30], which states that, for sufficiently ε > 0, there exists ε1 > 0 such that with probability at least
1−N−ε1 and all t > 0,

〈
1{|N−1σ(1)·σ(2)∓(1−β−1)|≤t}

〉
=

1

2
± 1

2
tanh2

(√
v2

1θ(β − 1)

)
+N εO

(
t+N−2/3+εt−2 +N−1/3

)
(5.3.3)

where their parameter θ is equivalent to H2β in our notation and their v1 is analogous to our n1,
but for a deterministic rather than a random choice of g. While their theorem is formulated and
proved in a different manner than Theorem 5.3.1, their result implies ours. The unpublished proof
of Theorem 5.3.1 is provided below:

Proof of Theorem 5.3.1

To prove this theorem, we begin by observing that, at the scaling h ∼ N−1/2, the fluctuations of
R are of order 1 (i.e. the leading term converges to a random variable) so we set

η = βξ and thus a =
η

βN
=

ξ

N
. (5.3.4)

We make use of Lemma 2.3.3, which can be restated as follows:

〈eβξR〉 = e
N
2

(GR(γR,γR;a)−2G(γ))

∫∫
e
N
2

(GR(z,w;a)−GR(γR,γR;a))dzdw(∫
e
N
2

(G(z)−G(γ))dz
)2 (5.3.5)

where

GR(z, w; a) = β(z+w)− 1

N

N∑
i=1

log
(
(z − λi)(w − λi)− a2

)
+
H2β

N2

N∑
i=1

n2
i (z + w − 2λi + 2a)

(z − λi)(w − λi)− a2

(5.3.6)
and γR > λ1 is chosen such that (γR, γR) is a critical point of GR. In Section 4.3, we rigorously
proved that GR has a unique critical point of this form. We provide further analysis of the critical
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point in the next subsection and then turn to the task of computing the integrals.

5.3.1 Critical point analysis

From Lemma 5.2.2, we know that the critical point γ of G is

γ = λ1 +
p

N
(5.3.7)

where T < p < ε logN on Eε for sufficiently large N , and p satisfies the equation

β − 1− 1

p
− H2βn2

1

p2
+O(N−

1
3

+ε) = 0. (5.3.8)

In Lemma 4.3.1, we rigorously proved that the function GR(z, w; a) has a unique critical point of
the form (z, w) = (γR, γR) and that, for any scaling of h, it satisfies

γ < γR < γ + a. (5.3.9)

Applying this lemma to the case of h ∼ N−1/2, we can verify that γR has the form

γR = λ1 +
qR
N

(5.3.10)

with qR > ξ and T < qR < ε logN + ξ on Eε for sufficiently large N . This follows from the lemma
by noting that

pN−1 = γ − λ1 < γR − λ1 < γ + a− λ1 = pN−1 + ξN−1 (5.3.11)

Thus, we have p < qR < p+ ξ where ξ is of order 1 and T < p < ε logN on Eε.
Then the critical point equation becomes, separating the i = 1 term out,

β − 1− qR
q2
R − ξ2

− H2βn2
1

(qR − ξ)2
+O(N−

1
3

+ε) = 0. (5.3.12)

5.3.2 Contour integral computation

Having verified the location of γR, we proceed to the computation of the contour integrals. The
first quantity we need is N(GR(γR, γR; a)− 2G(γ)). The intermediate steps of this computation are
provided in Chapter II and we do not repeat them here. The result of the calculation is that, on the
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event Eε,

N(GR(γR, γR; a)− 2G(γ))

= − log

(
q2
R − ξ2

p2

)
+ 2(β − 1)(qR − p) + 2H2βn2

1

[
1

qR − ξ
− 1

p

]
+O(N−

1
3

+ε).
(5.3.13)

We also need the quantity N(GR(z, w; a)− GR(γR, γR; a)) which we calculate to be

N(GR(z, w; a)− GR(γR, γR; a))

= N(GR(z, w; a)− GR(γR, γR; a)− (GR)z(γR, γR; a)(z − γR)− (GR)w(γR, γR; a)(w − γR))

= −
N∑
i=1

[
log

(
(z − λi)(w − λi)− a2

(γR − λi)2 − a2

)
− (γR − λi)(z + w − 2γR)

(γR − λi)2 − a2

]

+
H2β

N

N∑
i=1

n2
i

[
z + w − 2λi + 2a

(z − λi)(w − λi)− a2
− 2

γR − λi − a
+

z + w − 2γR
(γR − λi − a)2

]
.

For the ratio of the integrals, we set z = γR + u
N

and w = γR + v
N

. The i = 1 term gives the main
contribution and we obtain

N(GR(z, w; a)− GR(γR, γR; a))

=− log

(
(u+ qR)(v + qR)− ξ2

q2
R − ξ2

)
+
qR(u+ v)

q2
R − ξ2

+H2βn2
1

[
u+ v + 2qR + 2ξ

(u+ qR)(v + qR)− ξ2
− 2

qR − ξ
+

u+ v

(qR − ξ)2

]
+O

(
|u|+ |v|
N

1
3
−ε

)
.

(5.3.14)

Note that this equation differs from the one provided in the preceding chapter in the sense that it
includes the dependence on u and v in the subleading term. This will be used to bound certain
integrals later in the proof. Using equation (5.3.12), the above can be written as

N(GR(z, w; a)− GR(γR, γR; a))

=− log

(
(u+ qR)(v + qR)− ξ2

q2
R − ξ2

)
+ (β − 1)(u+ v)

+H2βn2
1

[
u+ v + 2qR + 2ξ

(u+ qR)(v + qR)− ξ2
− 2

qR − ξ

]
+O

(
|u|+ |v|+ 1

N
1
3
−ε

)
.

(5.3.15)

We now compute the integral of the numerator. We will take C1 and C2 be finite subsections
of the contours that we get when we make the change of variables z = γR + u

N
and w = γR + v

N

(possibly after some allowable deformation of the contour). We require that |u|, |v| = O(N δ) on C1
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and C2 respectively where δ is some positive constant to be determined later. Thus, we write the
integral in the numerator as∫

γR+iR

∫
γR+iR

e
N
2

(GR(z,w;a)−GR(γR,γR;a))dzdw

=

√
q2
R − ξ2

N2

(∫
C1

∫
C2

e
1
2

(β−1)(u+v)+
H2βn2

1
2

[
u+v+2qR+2ξ

(u+qR)(v+qR)−ξ2
− 2
qR−ξ

]
+O
(
|u|+|v|+1

N1/3−ε

)
√

(u+ qR)(v + qR)− ξ2
dudv

+ integral outside C1 × C2

)
.

(5.3.16)

If we let m denote the maximal magnitude of the integrand on these contours, we can simplify the
integral as follows (where c1, c2 denote the lengths of C1 and C2 respectively):

∫
C1

∫
C2

e
1
2

(β−1)(u+v)+
H2βn2

1
2

[
u+v+2qR+2ξ

(u+qR)(v+qR)−ξ2
− 2
qR−ξ

]
+O
(
|u|+|v|+1

N1/3−ε

)
√

(u+ qR)(v + qR)− ξ2
dudv

=

∫
C1

∫
C2

e
1
2

(β−1)(u+v)+
H2βn2

1
2

[
u+v+2qR+2ξ

(u+qR)(v+qR)−ξ2
− 2
qR−ξ

]
√

(u+ qR)(v + qR)− ξ2

(
1 +O(N δ− 1

3
+ε)
)

dudv

=
(

1 +O(N δ− 1
3

+ε)c1c2m
)∫

C1

∫
C2

e
1
2

(β−1)(u+v)+
H2βn2

1
2

[
u+v+2qR+2ξ

(u+qR)(v+qR)−ξ2
− 2
qR−ξ

]
√

(u+ qR)(v + qR)− ξ2
dudv.

(5.3.17)

Thus, we need to show that we can pick contours C1, C2 such that c1, c2 are O(N δ) and m is
bounded. For this purpose, it suffices to take the full contours to be straight lines parallel to the
imaginary axis with real part equal to ξ − qR, except within a one unit radius of the point ξ − qR,
where the contour takes a semicircular detour around the point and define both C1 and C2 to be
the portion of this contour where the variable of integration has magnitude less than N δ. For these
contours, the magnitude of the integrand is bounded above by exp((β − 1)(1 + ξ) +H2βn2

1) while
c1 and c2 are still O(N δ). Thus, the quantity O(N δ− 1

3
+ε)c1c2m becomes O(N3δ− 1

3
+ε).

We then show in section 5.3.3 that the integral outside the central region converges to zero at an
exponential rate and the integral (5.3.16) becomes

√
q2
R − ξ2

N2
(1 +O(N3δ− 1

3
+ε))

∫
C1

∫
C2

e
1
2

(β−1)(u+v)+
H2βn2

1
2

[
u+v+2qR+2ξ

(u+qR)(v+qR)−ξ2
− 2
qR−ξ

]
√

(u+ qR)(v + qR)− ξ2
dudv (5.3.18)

Now we plug this integral into the formula (5.3.5) along with the computation from equation
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(5.3.13). By simple translations of the variables we get the following (where C is now the vertical
contour with real part ξ that passes to the right of ξ and is truncated at magnitude N δ).

〈eβξR〉 =

∫
C

∫
C

1√
uv−ξ2

e
1
2

(β−1)(u+v)+
H2βn2

1(u+v+2ξ)

2(uv−ξ2) dudv
(

1 +O(N3δ− 1
3

+ε)
)

(∫
C

1√
u
e

1
2

(β−1)u+
H2βn2

1
2u du

)2 (
1 +O(N3δ− 1

3
+ε)
) . (5.3.19)

We now evaluate the integrals in (5.3.19) using (recall (5.2.26))∫
eau+ b

u

√
u

du =
2i
√
π√
a

cosh(2
√
ab). (5.3.20)

While our integrals are defined on a finite contour, they must converge to the same value as the
integral on the full contour as N →∞. As we observed in the single-integral case, the tails of the
integral in (5.3.20) beyond |u| = N δ only contribute O(N−δ/2) to the value of the intergral. We
find that the terms O(N3δ− 1

3
+ε) and O(N−δ/2) are of equal order when δ = 2

21
(1 − 3ε) and both

terms become O(N−
1
21

+ ε
7 ).

Now consider the double integral in the numerator. For each v, we change the variable u to z by
setting uv− ξ2 = z. We can define the branch cut appropriately such that the contour for z does not
cross the branch cut, although we note that the branch cut will change depending on the value of v.
The double integral becomes∫∫

1

v
√
z
e
β−1

2
( z+ξ

2

v
+v)+

H2βn2
1

2z
( z+ξ

2

v
+v+2ξ)dzdv. (5.3.21)

The z-integral can be evaluated using (5.3.20) and the double integral becomes

2i
√

2π√
β − 1

∫
1√
v
e
β−1

2
( ξ

2

v
+v)+

H2βn2
1

2v cosh

(√
(β − 1)βH|n1|(v + ξ)

v

)
dv. (5.3.22)

Writing cosh as the sum of two exponentials, the v-integral becomes the sum of two integrals which
we can evaluate again using (5.3.20). We find that the double integral is equal to

− 2π

β − 1

[
e
√

(β−1)βH|n1| cosh
(√

(β − 1)βH|n1|+ (β − 1)ξ
)

+ e−
√

(β−1)βH|n1| cosh
(√

(β − 1)βH|n1| − (β − 1)ξ
)] (5.3.23)
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Writing cosh as the sum of two exponentials again, the above becomes a linear combination of
e(β−1)ξ and e−(β−1)ξ. The denominator in (5.3.19) is same as the numerator when ξ = 0. We find
that

〈eβξR〉 =
cosh

(
2
√

(β − 1)βH|n1|
)
e(β−1)ξ + e−(β−1)ξ

cosh
(

2
√

(β − 1)βH|n1|
)

+ 1

(
1 +O(N−

1
21

+ ε
7 )
)

(5.3.24)

Using β = 1/T and re-scaling ξ, we find that

〈eξ
R

1−T 〉 =
cosh

(
2
√

1−TH|n1|
T

)
eξ + e−ξ

cosh
(

2
√

1−TH|n1|
T

)
+ 1

(
1 +O(N−

1
21

+ ε
7 )
)

(5.3.25)

Thus, we can conclude the result given in theorem 5.3.1.

5.3.3 Approximating the integral outside the central region

The goal of this section is to show that, for the double contour integral that we use to compute
overlap of two independent spins, the integral outside of the central region shrinks to zero (here
“central region” is where both variables of integration have order less than N δ). We can use a similar
approach to what was done for the single-integral examples. We break the equation G(z, w; a) into
two parts

A(z, w; a) = β(z + w)− 1

N

N∑
i=1

log((z − λi)(w − λi)− a2)

B(z, w; a) =
h2β

N

N∑
i=1

n2
i (z + w − 2λi + 2a)

(z − λi)(w − λi)− a2

(5.3.26)

Our goal will be to show that the integral of

exp

[
N

2

(
A(γR + itN−δ

′
, γR + irN−1/2; a)− A(γR, γR; a)

+B(γR + itN−δ
′
, γR + irN−δ

′
; a)−B(γR, γR; a)

)] (5.3.27)

tends to zero exponentially (i.e. it has order O(exp(−N δ′)) for some δ′ > 0) if we integrate on the
region outside a circle of radius N δ centered at the origin.

The general approach will be to show that the integral of the “A part” goes to zero exponentially

134



and that the “B part” is either bounded or has growth that is at most polynomial in N . To show that
the “A part” goes to zero exponentially, we will have to consider two subregions:

1. The region in which one of the variables of integration has magnitude greater than a multiple
of N and the other can be anything.

2. The region in which both variables of integration have order less than N while the distance of
their coordinates (as a point in R2) from the origin is at least 2N δ.

For this integration we take the contours to be the curves parametrized by u(t) = x(t) + iy(t) and
v(r) = x(r) + iy(r) where

x(t) =


cos(2πt) t ∈ [−1, 1]

0 t ∈ [−N δ,−1] ∪ [1, N δ]

1− (|t| −N δ + 1)∆ t ∈ (−∞,−N δ) ∪ (N δ,∞)

(5.3.28)

y(t) =

sin(2πt) t ∈ [−1, 1]

t t ∈ (−∞,−1) ∪ (1,∞)
(5.3.29)

With this parametrization, the integral becomes∣∣∣∣∫ ∫ exp

[
N

2
(GR(λ1+a+uN−1, λ1+a+vN−1; a)−GR(λ1+a, λ1+a; a))

]
du dv

∣∣∣∣
≤
∫ ∫

|(x′(t)+iy′(t))(x′(r)+iy′(r))|

·
∣∣∣∣ exp

[
N

2

(
GR
(
λ1+a+x(t)+iy(t)

N
, λ1+a+x(r)+iy(r)

N
; a
)
−GR(λ1+a, λ1+a; a)

)]∣∣∣∣dr dt

(5.3.30)

Note that x′(t) and y′(t) are bounded.

Showing the A part tends to zero exponentially when one variable is greater than a multiple
of N

Without loss of generality, let t > 3N(γR − λN − a) and r ∈ R. (In the next two sections, we
will consider N δ < t < 3N(γR − λN − a) for various ranges of r. The cases where t is negative or
where the roles of t and r are reversed can be treated similarly). The A part of the integral on the
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desired region becomes

∫ ∞
−∞

∫ ∞
3N(γR−λN−a)

exp

(
Nβ

2
(2(λ1 + a− γR) + (x(t) + x(r))N−1)

)
·

∣∣∣∣∣exp

[
−1

2

N∑
i=1

log
(

(λ1+a+x(t)N−1−λi+iy(t)N−1)(λ1+a+x(r)N−1−λi+iy(r)N−1)−a2

(γR−λi)2−a2

)]∣∣∣∣∣ dt dr (5.3.31)

We will show that, on the region of integration, the second factor of this integrand is bounded
while the integral of the first factor tends to zero exponentially on the event Eε. We will begin by
considering the integral of the first factor and for these calculations that we recall that x(t) and x(r)

are bounded above by 1 and are strictly negative for |r|, |t| > N δ. Using this we have∫ ∞
−∞

∫ ∞
3N(γR−λN−a)

exp

(
Nβ

2
(2(λ1 + a− γR) + (x(t) + x(r))N−1)

)
dt dr

=

∫ ∞
−∞

∫ ∞
3N(γR−λN−a)

exp

(
−β
(
qR − ξ −

1

2
(x(t) + x(r))

))
dt dr

= exp(−β(qR − ξ))
∫ ∞
−∞

exp

(
β

2
x(r)

)
dr ·

∫ ∞
3N(γR−λN−a)

exp

(
β

2
x(t)

)
dt

= O(1) ·O(N δ) ·O
(

exp

(
−β

2
(3N(γR − λN − a)−N δ)

))
(5.3.32)

where the we get exp(−β(qR − ξ)) = O(1) in the last line from the fact that qR > T on Eε. The
quantity in the last line will be less than exp(−βN) for sufficiently large N , so it remains to show
that, for t > 3N(γR − λN − a), the quantity∣∣∣exp

[
−1

2

∑N
i=1 log

(
(λ1+a+x(t)N−1−λi+iy(t)N−1)(λ1+a+x(r)N−1−λi+iy(r)N−1)−a2

(γR−λi)2−a2

)]∣∣∣ is bounded. This
quantity can be rewritten as∣∣∣∣∣exp

[
−1

2

N∑
i=1

log
(

(λ1−λi+a)2−a2+(x(t)+x(r))(λ1−λi+a)N−1−rtN−2+i(r+t)(λ1−λi+a)N−1

(γR−λi)2−a2

)]∣∣∣∣∣ (5.3.33)
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If r > −N(γR − λN − a) then this quantity is bounded above by

exp

[
−1

2

N∑
i=1

log

(
(t+ r)(λ1 − λi + a)N−1

(γR − λi)2 − a2

)]

≤ exp

[
−1

2

N∑
i=1

log

(
2(γR − λN − a)(λ1 − λi + a)

(γR − λi − a)(γR − λi + a)

)]

= exp

[
−1

2

N∑
i=1

log

(
2 · qR − ξ + a1 − aN

qR − ξ + a1 − ai
· ξ + a1 − ai
qR + ξ + a1 − ai

)]
< 1.

(5.3.34)

The inequality in the last line above (which is definitely not optimal) follows from the fact that,
when a1 − ai > qR, the first fraction is greater than 1 and the second fraction is greater than 1

2
, but,

when a1 − ai < qR, the first fraction is greater than N2/3(ε logN)−1 and the second is greater than
ξ(ε logN)−1 on the event Eε. Thus, we are taking the log of a number greater than 1 for every index
i.

Thus, we are done with the case in which r > −N(γR − λN − a). We now turn to the case of
r < −N(γR − λN − a). In this case, the quantity in line (5.3.33) is bounded above by

exp

[
−1

2

N∑
i=1

log

∣∣∣∣(λ1 − λi + a)2 − a2 − rtN−2 + (x(t) + x(r))N−1(λ1 − λi + a)

(γR − λi)2 − a2

∣∣∣∣
]

≤ exp

[
−1

2

N∑
i=1

log

∣∣∣∣ |rt|N−2 − (t∆ + |r|∆)N−1(λ1 − λi + a)

(γR − λi)2 − a2

∣∣∣∣
]
.

(5.3.35)

Given that |t| and |r| both have order at least N , the first term in the numerator above has strictly
greater order than the second term. Thus, the quantity above has upper bound

exp

[
−1

2

N∑
i=1

log

∣∣∣∣ 1
2
|rt|N−2

(γR − λi)2 − a2

∣∣∣∣
]
≤ exp

[
−1

2

N∑
i=1

log

∣∣∣∣ 3
2
(γR − λN − a)2

(γR − λi)2 − a2

∣∣∣∣
]

≤ exp

[
−1

2

N∑
i=1

log

(
3

2

(
1− 2a

γR − λN + a

))]
= exp

[
−1

2

N∑
i=1

log

(
3

2

(
1−O

(
N−1

)))]

≤ exp

[
−N

2
log

(
4

3

)]
.

(5.3.36)

Thus we have shown that the integral of the A part is less than exp(−βN) on the region where
t > 3N(γR − λN − a) and r ∈ R.
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Showing the A part tends to zero exponentially when both variables have order less than N
and the radius is at least 2N δ

Similarly to the previous case, the integral on this region can be expressed as follows (we begin
with an integral with variables of integration t and r but will later transform to polar coordinates):

∫ ∫
exp

(
Nβ

2
(2(λ1 + a− γR) + (x(t) + x(r))N−1)

)
·

∣∣∣∣∣exp

[
−1

2

N∑
i=1

log
(

(λ1+a+x(t)N−1−λi+iy(t)N−1)(λ1+a+x(r)N−1−λi+iy(r)N−1)−a2

(γR−λi)2−a2

)]∣∣∣∣∣ dt dr. (5.3.37)

The first factor of the integrand simplifies to exp(−β(qR − ξ − 1
2
(x(t) + x(r)))). We now focus on

computing an upper bound for the term in the absolute value, which can be simplified as∣∣∣∣∣exp

[
−1

2

N∑
i=1

log
(

(λ1−λi+a)2−a2+(x(t)+x(r))(λ1−λi+a)N−1−rtN−2+i(r+t)(λ1−λi+a)N−1

(γR−λi)2−a2

)]∣∣∣∣∣
=

∣∣∣∣∣exp

[
−1

2

N∑
i=1

log

(
(a1−ai+ξN−

1
3 )2+(x(t)+x(r))(a1−ai+ξN−

1
3 )N−

1
3−rtN−

2
3 +i(r+t)(a1−ai+ξN−

1
3 )N−

1
3

(qRN
− 1

3 +a1−ai)2−ξ2N−
2
3

)]∣∣∣∣∣
(5.3.38)

At this point, it helps to consider the contribution from the i = 1 term of the summation separately
from the contribution of the terms 2 ≤ i ≤ N . The contribution from the i = 1 term can be bounded
as follows:∣∣∣∣∣exp

[
−1

2
log

(
ξ2N−

2
3 + (x(t) + x(r))ξN−

2
3 − rtN− 2

3 + i(r + t)ξN−
2
3

q2
RN

− 2
3 − ξ2N−

2
3

)]∣∣∣∣∣
= exp

[
−1

2
log

∣∣∣∣ξ2 + (x(t) + x(r))ξ − rt+ i(r + t)ξ

q2
R − ξ2

∣∣∣∣]
(5.3.39)

To bound this quantity we assume without loss of generality that |t| ≥ |r| and consider two cases:

• If |r| < 1 then |t| > 2N δ − 1 and the quantity in (5.3.39) is bounded above by

exp

[
−1

2
log

∣∣∣∣ r + t

q2
R − ξ2

∣∣∣∣] ≤ exp

[
−1

2
log

∣∣∣∣ N δ

q2
R − ξ2

∣∣∣∣] =
√

(q2
R − ξ2)N−

δ
2 (5.3.40)

• In the case where |r| ≥ 1, we recall that |t| ≥ |r| so |t| ≥
√

2N δ in this region. Using this
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fact, we conclude that the quantity in (5.3.39) is bounded above by

exp

[
−1

2
log

∣∣∣∣ξ2 + (x(t) + x(r))ξ − rt
q2
R − ξ2

∣∣∣∣] ≤ exp

[
−1

2
log

∣∣∣∣ rt

2(q2
R − ξ2)

∣∣∣∣]
≤ exp

[
−1

2
log

∣∣∣∣ N δ

2(q2
R − ξ2)

∣∣∣∣] ≤√2(q2
R − ξ2)N−

δ
2 (5.3.41)

In either case, we conclude that the contribution from the i = 1 term is at most
√

(q2
R − ξ2)N−

δ
2 .

Next, we need to bound the contribution from the 2 ≤ i ≤ N terms in the last line of (5.3.38).
We use the notation Xi = a1 − ai + ξN−

1
3 and Y = (x(t) + x(r))N−

1
3 . Note that both Xi and Y

depend on N and Y also depends on r, t. Furthermore, Y is negative for all r, t in this region. Using
this notation, we see that, on the event Eε, the contribution from the 2 ≤ i ≤ N terms in the last line
of (5.3.38) becomes∣∣∣∣∣exp

[
−1

2

N∑
i=2

log

(
X2
i +XiY − rtN−

2
3 + iXi(r + t)N−

1
3

(Xi + (qR − ξ)N−
1
3 )2 − ξ2N−

2
3

)]∣∣∣∣∣
= exp

−1

4

N∑
i=2

log
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i + (XiY − rtN−

2
3 )2 + 2X3

i Y − 2X2
i rtN

− 2
3 +X2

i (r + t)2N−
2
3(

(Xi + (qR − ξ)N−
1
3 )2 − ξ2N−

2
3

)2


 .

(5.3.42)

Combining the last two terms in the numerator and removing a negative term from the denominator,
we see that the last line above has upper bound

exp

[
−1

4

N∑
i=2

log

(
X4
i + (XiY − rtN−

2
3 )2 + 2X3

i Y +X2
i (r2 + t2)N−

2
3

(Xi + (qR − ξ)N−
1
3 )4

)]

≤ exp

[
−1

4

N∑
i=2

log

(
X4
i + 2X3

i Y

(Xi + (qR − ξ)N−
1
3 )4

)]

= exp

[
−1

4

N∑
i=2

log

(
1 +

(2Y − 4(qR − ξ)N−
1
3 )X3

i +O(N−
2
3X2

i (qR − ξ)2)

(Xi + (qR − ξ)N−
1
3 )4

)]

≤ exp

[
−1

4

N∑
i=2

log

(
1− 2[C(qR − ξ)− x(t)− x(r)]N−

1
3

a1 − ai

)]
(5.3.43)

where the last line holds for some constant C sufficiently large. Because t and r have order at most
N , we can choose ∆ < 1

3
and apply the Taylor approximation for log to conclude that this quantity
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is bounded above by

exp

1
4

N∑
i=2

2[C(qR − ξ)− x(t)− x(r)]N−
1
3
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(
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3
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)2
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= exp

[
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i=2

N−
1
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+ (C(qR − ξ)− x(t)− x(r))2N−

2
3
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i=2

1

(a1 − ai)2

]

≤ exp

[
C(qR − ξ)− x(t)− x(r)

2
(1 +O(N−

1
3

+ε)) +O(N2∆− 2
3

+ε)

]
.

(5.3.44)

If we further require ∆ < 1
3
− ε

2
, then we can replace O(N2∆− 2

3
+ε) with O(1). Finally, we plug this

upper bound back into (5.3.38) along with the contribution from the i = 1 term of the summation
and we find that the integral is bounded above by∫ ∫

exp

(
−β 2(qR − ξ)− x(t)− x(r)

2

)
·
√

2(q2
R − ξ2)

N
δ
2

· exp

[
C(qR − ξ)− x(t)− x(r)

2
(1 +O(N−

1
3

+ε)) +O(1)

]
dt dr

= exp

((
C

2
− β
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(qR − ξ)(1 + o(1))

) √
2(q2

R − ξ2)

N
δ
2

·
∫ ∫

exp

(
−β − 1 +O(N−

1
3

+ε)

2
(−x(t)− x(r))

)
dt dr

=O(N1− ε
2 logN)

∫ ∫
exp

(
−β − 1 +O(N−

1
3

+ε)

2
(−x(t)− x(r))

)
dt dr.

(5.3.45)

Since the term in front of the integral has sublinear growth, it now suffices to show that the
integral has exponentially shrinking order. To achieve this, we will transform the integral to polar
coordinates where t = R cos θ and r = R sin θ. Observe that, because of how x(t) and x(r) are
defined, the quantity−x(t)−x(r) is always positive in this region. Furthermore, the integral that we
get on this region (between the circle of radius 2N δ and the square of side length 6N(γR−λN +a))
is bounded above by the integral on the whole region outside the circle of radius 2N δ. If we
now consider the integral on this infinite region, we observe that the value of the integral is the
same on each octant (i.e. the integral for θ ∈ (0, π

4
) and R ∈ (2N δ,∞) is the same as if we took

θ ∈
(
kπ
4
, (k+1)π

4

)
for any integer k). Thus, it suffices to consider the integral over 0 < θ < π

4
and

multiply the result by 8. In particular, it suffices to show that the following integral tends to zero
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exponentially. ∫ ∞
2Nδ

∫ π
4

0

exp(−C(−x(R cos θ)− x(R sin θ)))dθ dR (5.3.46)

On this region of integration, we have R cos θ >
√

2N δ and thus

− x(R cos θ) = −1 + (R cos θ −N δ + 1)∆ (5.3.47)

However, the picture for −x(R sin θ) is a bit more complicated. We get

− x(R sin θ) =

−1 + (R sin θ −N δ + 1)∆ θ < arcsin
(
Nδ

R

)
in [−1, 0] θ > arcsin

(
Nδ

R

) (5.3.48)

Therefore, we can split the integral into two parts, one with θ ∈ [0, arcsin(N
δ

R
)] and the second with

θ ∈ [arcsin(N
δ

R
), π

4
]. We begin by computing the second of these integrals.

∫ ∞
2Nδ

∫ π
4

arcsin(N
δ

R
)

R exp(−C(−x(R cos θ)− x(R sin θ)))dθ dR
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R
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−C(−2 + (R cos θ −N δ + 1)∆ + (R sin θ −N δ + 1)∆)
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dθ dR

(5.3.49)

Using the inequality ||z||1 ≥ ||z||2/∆, the quantity above has upper bound

e2C
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(5.3.50)

141



Since the integrand no longer depends on θ, this has upper bound

π

4
e2C

∫ ∞
2Nδ

R exp
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= C ′N−δ∆ exp
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(5.3.51)

where C ′ and C ′′ are constants. Thus, we conclude that∫ ∞
2Nδ

∫ π
4

arcsin(N
δ

R
)

R exp(−C(−x(R cos θ)− x(R sin θ)))dθ dR ≤ C ′N−δ∆ exp
(
−C ′′N δ∆

)
.

(5.3.52)
This integral tends to zero exponentially and it remains to show that the other integral does as well.

∫ ∞
2Nδ

∫ arcsin(N
δ

R
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R exp(−C(−x(R cos θ)− x(R sin θ)))dθ dR
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R
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R exp(−C(−2 + (R cos θ −N δ + 1)∆))dθ dR

≤ e2C

∫ ∞
2Nδ

∫ arcsin(N
δ

R
)

0

R exp

−C
R

√
1−

(
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(5.3.53)

Since the integrand no longer depends on θ, it can be simplified as

e2C

∫ ∞
2Nδ

R arcsin
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N δ

R
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exp

(
−C
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≤ e2C

∫ ∞
2Nδ
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exp
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−C
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R2 −N2δ −N δ
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)
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(5.3.54)

At this point we make a change of variable T =
√
R2 −N2δ and note that dT = R

T
dR. Then the

last line of the inequality above becomes

π

6
e2C

∫ ∞
√

3Nδ

T exp
(
−C(T −N δ)∆

)
dT (5.3.55)

The computation of this integral follows as in (5.3.51) and we conclude that, for some constants C ′
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and C ′′ (not necessarily the same values as before) this integral is bounded above by

C ′N−δ∆ exp
(
−C ′′N δ∆

)
(5.3.56)

Again, we have exponential decay, so we conclude that the A part decays exponentially on the
region between the circle of radius 2N δ and the square of side length 6N(γR − λN + a).

Showing the B part has at most polynomial growth

In each of the cases above, the integral of the A part shrinks exponentially with N . Therefore,
it is not necessary to show that the B part is bounded, but it suffices to show that it grows as a
polynomial of N .∣∣∣∣exp

(
N

2

(
B(λ1 + a+ u(t)N−1, λ1 + a+ v(r)N−1; a)−B(γR, γR; a)
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≤ exp

(
N

2
<(B(λ1 + a+ u(t)N−1, λ1 + a+ v(r)N−1; a))

)
= exp
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)

= exp
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numerator
denominator

)
(5.3.57)

where the numerator and denominator are given as follows:

numerator =

(2(λ1−λi+2a)+(x(t)+x(r))N−1)
[
(λ1−λi+a+x(t)N−1)(λ1−λi+a+x(r)N−1)−y(t)y(r)N−2−a2

]
−(y(t)+y(r))

[
(y(t)+y(r))(λ1−λi+a)N−1+(x(t)y(r)+x(r)y(t))N−2

]
N−2

(5.3.58)

denominator =
[
(λ1 − λi + a+ x(t)N−1)(λ1 − λi + a+ x(r)N−1)− y(t)y(r)N−2 − a2

]2
+
[
y(t)(λ1 − λi + a+ x(r)N−1)N−1 + y(r)(λ1 − λi + a+ x(t)N−1)N−1

]2 (5.3.59)

It is straightforward to show that when i = 1 this fraction has order 1. Now show that the fraction
is of polynomial order (uniformly for 2 ≤ i ≤ N ). We assume without loss of generality that
|t| ≥ N δ. I will also assume for now that |r| ≥ 1 (it should be relatively easy to separately check
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for |r| < 1). Given these assumptions, we have y(t) = t and y(r) = r.
The second line of the expression for the numerator will negative, so we have

numerator

≤ (2(λ1 − λi + 2a)− |x(t) + x(r)|N−1)

·
[
(λ1 − λi + a)2 + x(t)x(r)N−2 − (λ1 − λi)|x(t) + x(r)|N−1 − trN−2 − a2

]
≤ 2(λ1 − λi + 2a)3 + (x(t) + x(r))2(λ1 − λi + a)N−1

+ |tr|N−2[(λ1 − λi + 2a) + |x(t) + x(r)|N−1]

= O(1) +O(|t|2∆N−1) +O(|tr|N−2) +O(|tr| · |t|∆N−3)

(5.3.60)

For the denominator, we have:

• If |rt| � N
2
3 then denominator = Ω(r2t2N−4)

• If |rt| � N
2
3 then denominator = Ω((λ1 − λi + a)4)

• If |rt| = Θ(N
2
3 ) then denominator = Ω(r2t2(λ1 − λi)2N−2)

Putting this information together, we see that, when |rt| is sufficiently large (e.g. |rt| ≥ N ) then the
fraction has order

O

(
|t|2∆N3 + |tr|N2 + |tr| · |t|∆N

r2t2

)
This is of polynomial order since r, t > 1 and have larger order in the denominator. On the other
hand, for smaller values of |rt| (e.g. |rt| < N ), the numerator has order 1 and the denominator is
bounded below by a negative power of N . Thus, the growth is again of polynomial order.
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semicircle law. Ann. Probab., 41(3B):2279–2375, 2013.

[20] L. Erdös, H.-T. Yau, and J. Yin. Rigidity of eigenvalues of generalized Wigner matrices.
Advances in Mathematics (New York. 1965), 229(3):1435–1515, 2012.
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