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ABSTRACT

Engineering and physical science often involve the design and manufacturing

of physical devices. Conventionally, optimizing the physical design and the

manufacturing process heavily relies on domain expertise and requires an

iterative trial-and-error process conducted by human experts before achieving

desired performance. Though numerical optimization methods have been

developed for assisting domain experts, they often rely on heuristics that could

be sub-optimal for the tasks of interest. Additionally, the performance of

conventional optimization methods does not improve as more tasks are solved.

This dissertation frames optimization as a learning problem, i.e., learning-to-

optimize, where machine learning models are trained to solve optimization

problems.

We propose three methods for solving practical optical inverse design and

manufacturing problems. Our first proposed method OML-PPO treats optical

multilayer thin films design tasks as sequence generation problems. Sequence

generation networks that can discover optimal designs corresponding to user-

specified optical properties are trained by reinforcement learning. The proposed

method has been used to design a perfect broadband absorber with reflectance

higher than 99%, an incandescent light bulb filter that can enhance the bright-

ness by 16.3 times, and chrome replacement coatings with a close appearance

to chrome films. Instead of targeting generic optical design tasks, our second

xvi



method NEUTRON is a hybrid machine learning and optimization approach for

efficiently designing optical multilayer thin films for structural color applica-

tions. By modeling the structural color inverse design as a bi-level optimization

problem, NEUTRON applies machine learning models for fast, approximate ma-

terial selection and particle swarm optimization for an exact search of the

optimal thickness. We applied NEUTRON to both the chrome replacement coating

and image reconstruction tasks. The results show that NEUTRON can achieve

more accurate designs than machine learning or optimization alone. Thanks

to the high efficiency of NEUTRON, we can reconstruct images with more than

200,000 pixels within a few hours. Our third method M2BOP addresses the costly

data collection problem common in manufacturing problems by combining

meta-learning and model-based offline reinforcement learning. By learning a

meta environment model using offline data collected from relevant tasks, M2BOP

can solve new tasks efficiently with a handful of data. On robot locomotion

control tasks, M2BOP outperforms baseline approaches, especially on offline

datasets that contain sub-optimal demonstrations.
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CHAPTER 1

Introduction

Many engineering and physical science problems concern designing and

manufacturing physical objects with desired properties. At the core of such

problems are inverse design and manufacturing process parameter optimiza-

tion, both critical for achieving the desired performance. Scientists and engi-

neers often rely on a manual trial-and-error process guided by domain expertise

to optimize the designs and the subsequent manufacturing process. However,

such an iterative process is slow and could lead to sub-optimal results. Thus,

it is highly desirable to develop tools for assisting domain experts with the

design and manufacturing process. Fortunately, with the rapid digital revolu-

tion of most scientific and engineering fields, it has started to become possible

to generate highly accurate simulation data or collect a large amount of real

data of the underlying process for many real-world science and engineering

problems. Thus, data-driven methods for aiding the design and manufacturing

process start to gain increasing interest.

Though many data-driven approaches, especially machine learning meth-

ods, for inverse designs and manufacturing process parameter optimization

1



have been proposed, systematic study of the challenges associated with these

problems is rare. In this dissertation, we treat the application of machine learn-

ing in engineering optimization problems as a learning-to-optimize problem

(Li and Malik, 2017; Dai et al., 2017). The logged interaction data from human

experts or existing solvers for specific optimization problems are treated as dat-

apoints. A machine learning algorithm can extract the relationship between the

features of different optimization problem instances and the optimal solutions.

Thanks to the strong generalization ability of modern machine learning models,

they can accurately predict the solutions for unseen optimization problems

similar to the problems used for training the model.

When applying machine learning to solve optimization problems, it can

either be used to predict solutions directly or be combined with existing

optimization solvers. Both approaches have their advantages and should be

appropriately chosen based on the specific optimization problem discussed

in the later chapters. Though the algorithm details are different, researchers

face the same challenges when applying both learning-to-optimize approaches

in real optimization tasks, and it is critical to understand these challenges to

allow seamless integration of the learned optimizers with the existing scientific

discovery and engineering pipeline. Therefore, we provide a brief introduction

to the most critical challenges we identified for the development of learning-to-

optimize methods in real-world physical science and engineering problems.
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1.1 Challenges and Opportunities

Engineering optimization is often not trivial due to the complexity of the

problems and the high cost associated with validating optimized solutions.

Specifically, solving engineering optimization problems share three common

challenges including large design space, non-uniqueness of global optima, and

costly data collection. In addition, extensive domain expertise is indispensable

for solving most engineering optimization problems. Instead of focusing

on a single domain, we aim to systematically study the common challenges

associated with engineering optimization. Thus, domain expertise is not listed

as one of the main challenges here.

Large Design Space The first and foremost challenge of real-world engineer-

ing optimization is the large design space to explore, as most of the problems

are combinatorial. For example, designing optical multilayer thin films can

easily require searching from a design space containing more than 1020 unique

solutions, which makes it impossible to search all possible designs exhaustively.

Thus, intelligent algorithms are required to navigate the promising design

space efficiently. To this end, we explore reinforcement learning and hybrid

machine learning and optimization approaches.

Non-uniqueness of Global Optima The mapping between the optimization

variables and the outcome for many engineering systems does not have a

one-to-one correspondence. Many different optimization variable values could

correspond to the same desired outcome. Thus, methods that can only return a

single solution for an engineering optimization problem may fail to identify
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potentially promising solutions. Stochastic machine learning models can solve

this problem by learning the full distribution of potential solutions conditioned

on given target outcomes. Thus, all the methods we develop throughout the

thesis are based on stochastic models.

Costly Data Collection Machine learning is prevalent in data-abundant ap-

plications, including medical diagnosis, facial recognition, traffic forecasting,

etc. However, the expensive collection process often makes datasets that can be

collected for many engineering optimization problems small. In addition, it is

often not possible to actively collect more data when optimizing an engineering

task because the data collection process could be dangerous or disruptive for

a mission-critical process. Both challenges make it hard to apply machine

learning to engineering optimization. Fortunately, many optimization tasks are

fundamentally related due to the shared underlying physical process. More-

over, offline data that have been previously collected by human experts or

existing solvers are also often available. Thus, one natural question is whether

it is possible to leverage the related offline small datasets to extract the shared

commonalities of similar optimization tasks to solve them more efficiently

without requiring a large amount of data collected from each task. A generic

offline meta-reinforcement learning algorithm is developed with real-world man-

ufacturing optimization tasks in mind to allow sample-efficient learning for

learning-to-optimize tasks.
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1.2 Summary of Contributions

This dissertation proposes learning-to-optimize methods that tackle the

challenges mentioned above. The organization of this dissertation is as follows:

1. In Chapter 3, we discuss an automatic optical design algorithm OML-PPO

(Wang et al., 2021) that can efficiently explore the multilayer optical thin

film design space through a novel sequence generation network trained

by reinforcement learning.

2. In Chapter 4, we present a hybrid machine learning and optimization

method NEUTRON (Wang and Guo, 2022) that treats the optical inverse

design problem as a bi-level optimization task to explore the design

space efficiently. We show that NEUTRON can efficiently identify highly

accurate designs on structural color design tasks.

3. In Chapter 5, we develop an offline meta-reinforcement learning algo-

rithm that can optimize the manufacturing process. On a standard robot

locomotion simulation environment, we show that the proposed algo-

rithm can efficiently learn from related tasks and perform well after

adaptation on little experience.

4. In Chapter 6, we discuss promising future directions for advancing

learning-to-optimize in real science and engineering problems.
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CHAPTER 2

Background

Most engineering and physical problems concern the design and manufactur-

ing of objects with specific properties, e.g., optical devices (Molesky et al., 2018),

integrated circuits (Zheng and Louri, 2019), protein structures (Angermueller et al.,

2020a), and mechanical parts (Guo et al., 2021), to name a few. The optimization

of both the design and manufacturing process are critical to scientific discover-

ies and engineering breakthroughs. However, despite the recent development

of computer-aided tools for speeding up the design and manufacturing op-

timization process, both still heavily rely on human expertise and require a

time-consuming trial-and-error process. This slow and potentially sub-optimal

design and manufacturing optimization process strongly limits the innovation

pace. Here, we formalize the problem of inverse design and manufacturing

optimization. In addition, we provide a review of existing methods for tackling

both problems. At the end, we briefly introduce machine learning tools studied

in this dissertation for developing learning-to-optimize methods for inverse

design and manufacturing process parameter optimization.
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2.1 Inverse Design

Inverse design is an optimization problem that aims to find a system’s

design parameters x that leads to a system property y closest to the target

property y∗. For example, a common inverse design task in optics is to find

the materials and thickness for optical multilayer thin films that have a specific

reflection spectrum.

Throughout this chapter, we assume the underlying relationship between

the design parameters x and the property y is determined by a mapping

g(·) : x → y endowed by specific underlying physical processes. Inverse

design aims to identify an inverse mapping or operation f (·) : y→ X that can

match a desired property target to corresponding design parameters. Due to the

complex underlying processes and the potential one-to-many mapping between

the target and the design parameters, it is often challenging to manually

identify the appropriate design for a user-specified target property. Thus, both

optimization-based methods and machine learning-based methods have been

developed for assisting human experts with inverse design.

Optimization-Based Methods Optimization-based methods are iterative ap-

proaches that update the design parameters x to minimize a merit function

h(x) that measures the performance of the design. Depending on whether

the merit function has an explicit analytical form based on the design param-

eter x, optimization-based inverse design methods can be categorized into

gradient-based methods and black-box methods.

Common gradient-based methods include first-order approaches such as

steepest descent and conjugate gradient methods, and second-order approaches
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including Newton’s method and L-BFGS-B (Boyd et al., 2004). All these methods

follow the same high-level update procedure

xk+1 = xk + αk pk, (2.1)

where αk is the step size at the kth step, and pk is the update direction based

on the gradient or the Hessian information. Such gradient-based methods

could be computationally expensive when the design involve high-dimensional

parameters x. For example, when optimizing the topology of a structure, the

gradient needs to be calculated for every point in the space. To address this

issue, adjoint methods that can efficiently compute the gradient for the entire

space have been applied for many real-world inverse design problems. To

obtain the adjoint gradient for updating the entire topology, one only needs to

perform a forward simulation and an adjoint simulation. However, the partial

differential equation describing the property-of-interest needs to be known to

computing the adjoint gradient (Lalau-Keraly et al., 2013).

Compared to gradient-based methods, black-box optimization methods is

applicable to a wider range of problems because no explicit analytical form de-

scribing the underlying system is required to be known (Audet and Hare, 2017).

Genetic algorithms (Deb et al., 2002), particle swarm optimization (Kennedy and

Eberhart, 1995), and Bayesian optimization (Pelikan et al., 1999) are widely used

black-box optimization algorithms. Genetic algorithms and particle swarm

optimization are both population-based heuristic search algorithms that main-

tain and iteratively update a group of solutions until the algorithm converge.

Bayesian optimization relies on an iteratively updated probabilistic surrogate
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model that can be used for deriving an acquisition function. The design

space is sequentially explored based on the acquisition function that is being

updated simultaneously with the design space exploration process. For all

three methods, the merit function needs to be evaluated either through simula-

tion or experimentation before each update iteration. However, compared to

heuristic-based methods, Bayesian optimization often requires fewer number

of iterations and is used more widely in problems where the merit function is

expensive to evaluate (Snoek et al., 2012).

Machine Learning-Based Methods Unlike optimization-based methods for

inverse design, machine learning-based inverse design approaches do not rely

on the iterative process required by all optimization-based approaches. In-

stead, a model f (·) : y→ x that directly maps the desired target properties to

designs is trained on a labeled dataset D = {(xi, yi)}N−1
i=0 containing pairs of

design parameters and design properties. Depending on whether the model

is deterministic or stochastic, a given target property could be mapped to a

single design y or a set of designs Y . Common machine learning-based inverse

design approaches include tandem networks (Liu et al., 2018a), variational

autoencoders (Kingma and Welling, 2013; Ma et al., 2019), generative adversarial

networks (Goodfellow et al., 2014; Liu et al., 2018b), invertible neural networks

(Ardizzone et al., 2019), mixture density networks (Bishop, 1994; Unni et al.,

2021), etc. Tandem networks and variational autoencoders are both based on

autoencoders. However, the decoder and the encoder in a tandem network is

trained sequentially while they are trained together in a variational autoen-

coder. Moreover, tandem networks can only map a desired target to a single
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design while variational autoencoders can maps the desired target to a distri-

bution of designs. Generative adversarial networks are similar to variational

autoencoders in the sense that they both implicitly learn the design distribution

corresponding to the target design. However, generative adversarial networks

can often better capture the multi-modality in the design distribution while

being significantly harder to train than variational autoencoders. Invertible

neural networks improves variational autoencoders by incorporating invert-

ible neural network architectures to allow exact likelihood inference, which

is useful for uncertainty estimation. Finally, mixture density networks model

the target-design mapping with a mixture of gaussians and is the simplest

stochastic machine learning model that can explicitly model the one-to-many

mapping.

In our recent work on benchmarking machine learning-based inverse design

models (Ma et al., 2022), we systematically compared the relative performance

of the most widely used inverse design methods in terms of their accuracy,

design diversity, and robustness to fabrication errors on nanophotonic inverse

design problems (Table 2.1).

Table 2.1: Comparison of common machine learning-based inverse design
methods on nanophotonic inverse design problems.

Method Accuracy Diversity Robustness

Tandem networks ⋆ ⋆ ⋆ ⋆ ⋆⋆
Variational autoencoders ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆
Generative adversarial networks ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆

The biggest difference between optimization-based methods and machine

learning-based methods is whether a dataset needs to be pre-collected. On the
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one hand, optimization-based methods can start without any pre-collected data

points but require the data to be continuously generated through the iterative

evaluation process. On the other hand, machine learning-based methods

require a large dataset to be collect through either simulation or experiments.

The dataset collection process could be costly but it is a one-time investment. If

the inverse design tasks will be performed many times with different property

targets, machine learning-based approaches is preferred because the model

prediction is much faster than optimization-based approaches.

2.2 Manufacturing Process Parameter Optimization

After the initial design phase, the designed object needs to be manufac-

tured. Most advanced manufacturing processes including semicondutor device

fabrication, additive manufacturing, and electric vehicles production involve

high-dimensional process parameters that need to be optimized (Mahadevan

and Theocharous, 1998; Dimopoulos and Zalzala, 2000; Cook et al., 2000; Köksal et al.,

2011; Spielberg et al., 2017; Pfrommer et al., 2018; Nian et al., 2020). Unlike most

inverse design problems, where accurate simulators can be build to predict

the properties of the designs, it is often much more challenging to build ac-

curate simulators for complex manufacturing processes and optimizing the

manufacturing process parameters largely relies on the data measured from the

real manufacturing process. Thus, optimization-based approaches that require

iterative evaluations of the manufacturing quality are often intractable due to

the cost of measuring real manufacturing data.

Surrogate-model based approaches that combines a trained machine learn-
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ing model and an optimization procedure is most widely to tackle the above

mentioned problem (Hutter et al., 2013). Here, a small amount of data are

initially collected through design of experiment (Pukelsheim, 2006) and used for

training a machine learning model such as support vector machines or deep

neural networks. The trained machine learning model serves as a surrogate

to the underlying manufacturing process and can be used to predict the man-

ufacturing quality given specific process parameters. Later, an optimization

procedure is applied to query the trained model until convergence criterion is

met. Due to the small size of the initial dataset used for training the surrogate

model, model bias is often unavoidable, which could lead to invalid solutions.

The most common strategy for addressing model bias is to iteratively update

the surrogate model with labeled query data (Hutter et al., 2011).

2.3 Machine Learning Methods for Learning to Optimize

Engineering optimization including inverse design and manufacturing

optimization share same challenges including 1) large design space, 2) non-

uniqueness of global optima, and 3) costly data collection. In this dissertation,

we propose machine learning approaches to tackle these challenges. Specifi-

cally, we propose to use reinforcement learning and hybrid machine learning and

optimization methods for efficiently explore the design space and obtain a set

of optimal solutions. For addressing the expensive data collection issue, we

propose to combine offline learning and meta-learning to leverage logged obser-

vational data from multiple related tasks to circumvent the expensive dataset

collection process.
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Figure 2.1: Reinforcement learning paradigm. An agent learns from interven-
tional interactions with the environmental.

2.3.1 Reinforcement Learning

Reinforcement learning is a machine learning paradigm that concerns

sequential decision making under uncertainty (Sutton and Barto, 2018). The

sequential decision making problem is often formulated as a Markov Decision-

Making Process (MDP) M = {S ,A, r, p, µ, γ}, where S is the state space, A

is the action space, r(s, a) is the reward function, p(·|s, a) is the transition

probability function (or transition dynamics), µ is the initial state distribution,

and γ is the discount factor (Figure 2.1).

Reinforcement learning aims to maximize the discounted accumulated

rewards for the entire task horizon by learning a mapping πθ(a|s) from the

observed states s to optimal actions a, i.e.,

max
θ

J(πθ) = Est∼p(·|st−1,at),at∼πθ(·|st)

[
H

∑
t=1

γt−1r(st, at)

]
(2.2)

Because of the flexibility of reward function definition, researchers can re-
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flect specific optimization targets through carefully designed reward functions

and engineering optimization problem is appropriately solved when the total

return is maximized. Thus, reinforcement learning can be readily applied to

inverse design and manufacturing optimization problems. Four families of

approaches including approximate dynamic programming (Mnih et al., 2013;

Van Hasselt et al., 2016), policy gradient (Lillicrap et al., 2015; Schulman et al.,

2017), actor-critic (Mnih et al., 2016; Haarnoja et al., 2018a), and model-based

reinforcement learning (Deisenroth and Rasmussen, 2011; Chua et al., 2018; Janner

et al., 2019) have been developed to solve the above maximization problem.

Approximate dynamic programming learns a parameterized state-action value

function Q(s, a) that measures the expected total future rewards when starting

from a specific state-action pair (s, a). The state-action value function can

later be used to obtain the policy π(s) = arg maxa∼A Q(s, a). Policy gradient

method directly learns a parameterized policy, often in the form of neural

networks, through the policy gradient

∇θ J (πθ) = Eτ∼pπθ
(τ)


H

∑
t=0

γt∇θ log πθ (at | st)

(
H

∑
t′=t

γt′−tr (st′ , at′)− b (st)

)
︸ ︷︷ ︸

advantage estimate Â(st,at)

 ,

(2.3)

where τ = (s0, a0, s1, a1, . . . , sH), pπθ
(τ) is the trajectory endowed by the policy

πθ and the environment dynamics p(·|s, a), b(st) is the baseline variable often

computed as the average reward measured in state st. Actor-critic methods are

improves upon both approximate dynamic programming and policy gradient

methods by estimating the advantage using learned value functions instead of
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Monte Carlo returns and update the policy through the policy gradient. Actor-

critic methods often achieve state-of-art performance on standard benchmark

tasks due to improved stability through the learning process when compared

to approximate dynamic programming or policy gradient methods (Haarnoja

et al., 2018b). Finally, model-based reinforcement learning trains a dynamics

model in the form of Gaussian Processes or probabilistic neural networks and

generate rollouts from the learned dynamics model to train a policy. It can

often be combined with the previously mentioned three families of methods

when learning the policy. Planning can also be combined with the learned

dynamics model to directly optimize the action sequence without learning a

policy explicitly (Clavera et al., 2019).

2.3.2 Hybrid Machine Learning and Optimization Methods

Hybrid machine learning and optimization methods initialize the optimiza-

tion procedure with predictions from machine learning models (Salcedo-Sanz

et al., 2003; Kuo et al., 2006). Such methods are well suited for solving bi-level

optimization problems, where the upper level optimization is challenging but

does not require very high accuracy. For example, when designing optical

devices, both the materials and the structural parameters need to be optimized.

The optical design problem can be considered as a bi-level optimization prob-

lem where one can treat the material selection as the upper level optimization

task and the structural parameter designs conditioned on the material selection

as the lower level optimization. Since the material selection task is often a

combinatorial optimization task, it is often challenging to optimize with con-

ventional optimization solvers. In this case, machine learning models can be

15



applied to predict the most promising material selections to improve the overall

optimization efficiency.

The bi-level optimization problem can be formulated as

max
x∈X ,z

F(x, z)

s.t. G(x, z) ≥ 0

z ∈ S(x),

(2.4)

where S(x) is the set of optimal solutions for the following lower level problem

max
z∈Z

f (x, z)

s.t. g(x, z) ≥ 0.
(2.5)

The function G(x, z) in the upper level problem and the function g(x, z)

in the lower level problem represent the constraints of the optimization prob-

lem. For optical device optimization, lower level variable z is the structural

parameters while upper level variable x is the material selection. Thus, the

bi-level optimization problem aims to identify the best structural parameter

and material selection combination.

Solving the bi-level optimization problem is often NP-hard. Hybrid machine

learning and optimization methods provide an efficient approximate solution

by using machine learning models to predict the promising upper level variable

range to reduce the complexity of the problem (Bagloee et al., 2018).
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2.3.3 Offline Reinforcement Learning

Most reinforcement learning and optimization algorithms require direct

feedback from the environment in the form of reward or merit function values.

However, for many real-world problems that rely on real measurements, ob-

taining a large amount of direct feedback while learning or optimizing the task

could be extremely expensive or even dangerous. Examples include learning

treatments for patients (Gottesman et al., 2019) , material designs (Zhou et al.,

2019), and autonomous driving (Sallab et al., 2017), etc. Offline reinforcement

learning solves this problem by learning a policy purely based on logged

observational data previously collected by human experts or other existing

working approaches (Levine et al., 2020). The observational dataset contains

transition tuples D = {(si
t, ai

t, si
t+1, ri

t)} that provide information on the tran-

sition dynamics and reward function of the environment. More importantly,

state-action pairs that lead to high future total rewards can inform the learning

of optimal policies. Essentially, offline reinforcement learning is a form a causal

learning that requires a good understanding the underlying “mechanics” of

the environment (Pearl, 2009).

A simple strategy to learn from the observational dataset is imitation learning

(Ho and Ermon, 2016), which directly trains a probabilistic regression model

or a generative model that maps the state to the action following the same

behavior that generates transition tuples in the observational dataset. However,

imitation learning can at most achieve the same performance as approaches

used for collecting the observational data. On the contrary, offline reinforce-

ment learning aims to extrapolate over the decisions collected from existing
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solutions to achieve better performance, which is often done through off-policy

reinforcement learning approaches that are able to learn a state-action value

function and a policy using experience generated from a different policy. Unlike

conventional off-policy reinforcement learning algorithms, which still require

sporadic online data collection from the environment, offline reinforcement

learning is constrained to the setting where online data collection is not possible

(Kumar et al., 2020). Though conventional off-policy reinforcement learning

methods such as deep Q-learning could perform well on some toy benchmark

environments in the offline setting (Agarwal et al., 2020), extrapolation with a

value-function learned on a static real-life dataset often leads to distributional

shift (Fujimoto et al., 2019), which can be easily mitigated by collecting additional

data as common in off-policy reinforcement learning but has been the major

challenge of offline reinforcement learning due to the inability to train a more

accurate function approximate with additionally collected state-action pairs

that are rare in the initial training dataset. Due to the unavoidable estimation

bias when learning from static data, distributional shift can lead to optimized

policy that turns out to perform poorly when deployed in the testing environ-

ment. To address this issue, existing approaches can be categorized into three

families 1) introduce policy constraints to force the learned offline policy to

stay close to the behavior policy (Kumar et al., 2020), 2) penalize the learned

value function with estimated uncertainty (Kumar et al., 2019), or 3) learning

a pessimistic model or uncertainty-aware model for model-based learning or

planning (Yu et al., 2020; Kidambi et al., 2020).
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Policy Constraint-based Offline RL The first category for offline reinforce-

ment learning is based on constraining the learned policy to the behavior

policy to reduce extrapolation error. Instead of policy gradient methods, these

methods are all based on approximate dynamic programming approaches

because their off-policy is more amenable to the offline learning setting. The

general form of policy-constrained offline reinforcement learning procedure

can be written as:

Q̂π
θ′ ←

arg min
θ

E(s,a,s′)∼D

[(
Q̂θ(s, a)π −

(
r(s, a) + γEs′∼πθ

[
Q̂π

θ

(
s′, a′

)]))2
]

π′ ← arg max
π

Es∼D
[
Ea∼πθ′ (a|s)

[
Q̂π

θ′(s, a)
]]

s.t. D
(
π, πβ

)
≤ ϵ.

(2.6)

where πβ is the behavior policy collecting the offline dataset, D(π, πβ) is a

divergence measure that quantifies the distance between the learned policy π(a|s)

and the behavior policy πβ(a|s). By introducing the constraint that the learned

policy must not deviate more than ϵ from the behavior policy, the overall

extrapolation error can be bounded. In practice, divergence measures including

KL-divergence (Kumar et al., 2020), maximum mean divergence (Kumar et al.,

2019), and Fisher-divergence (Kostrikov et al., 2021) have all been used for

measuring the policy distance.

Uncertainty-Penalized Offline RL Uncertainty-penalized methods are in-

spired by the fact that epistemic uncertainty for rare or unseen state-action pairs

when estimating the Q-value should be much higher than in-distribution pairs.

Thus, one can estimate the epistemic uncertainty and adjust the estimated

Q-value accordingly. The uncertainty-penalized Q-value learning procedure
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can be written as:

π′ ← arg max
π

Es∼D
[
Ea∼πθ′ (a|s)

[
Q̂π

θ′(s, a)− ζ · bQ̂(s
′, a′)

]]
(2.7)

where bQ̂(s
′, a′) is the estimated uncertainty of the Q-value function Q̂π

θ for

the state-action pair (s′, a′), which is adjusted by the hyperparameter ζ that

controls how conservative the learned policy is. The penalty term can prevent

over-optimistic actions due to the erroneous Q-value estimation on out-of-

distribution state-action pairs. In practice, bootstrap ensembles (Osband et al.,

2016) or probabilistic neural networks (O’Donoghue et al., 2018) have been

applied to estimate the Q-value uncertainty.

Model-based Offline Reinforcement Learning In addition to previous two

model-free approaches, learning a dynamics model and the reward function of

the environment also allows robust offline policy learning (Yu et al., 2020; Ki-

dambi et al., 2020; Argenson and Dulac-Arnold, 2021). When directly learning a pol-

icy from the rollouts generated by the learned model, uncertainty-based penalty

can be added to the predicted reward to prevent learning over-optimistic ac-

tions (Yu et al., 2020, 2021b). The learned model can also be combined with

planning for direct trajectory optimization without explicitly learning a policy,

as usually done in model-predictive control (Argenson and Dulac-Arnold, 2021;

Zhan et al., 2021).
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2.3.4 Meta-Learning

Meta-learning is the problem of learning-to-learn, which is highly related

to the field of learning-to-optimize as both can be viewed as meta-algorithms

that learn a lower-level algorithm. The goal is to learn from a distribution of

tasks so that a new task sampled from the same distribution can be quickly

solved with a small amount of data. This idea has been proposed in 90’s and

recently attracted revived interests due to the advancement in deep learning

and reinforcement learning (Schmidhuber, 1994). Meta-learning has been suc-

cessfully applied to image classification (Ren et al., 2018), domain adapataion

(Li et al., 2018a), continuous control (Yu et al., 2019), and disease prediction

(Zhang et al., 2019b) but hasn’t seen extensive adoption in physical science and

engineering fields. However, inverse design and manufacturing optimization

are both applications where similar tasks are being solved repetitively, which

are amenable to meta-learning. In addition, the fact that collecting data is

expensive for real-world physical science and engineering applications makes

meta-learning an important research direction that could reduce the sample

complexity of learning-to-optimize methods to allow a wider range of appli-

cations. Existing meta-learning approaches can be mainly grouped into two

categories including gradient-methods and contextual meta-learning.

Gradient-based Meta-Learning Model-agnostic meta-learning (MAML) (Finn

et al., 2017) is the first proposed gradient-based meta-learning approach that

learns a neural network initialization that is amenable to fast adaptation.

By sampling disjoint support set and query set from the same task, MAML

first updates the neural network initialization parameters with the support
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set through the inner update, then update the neural network initialization

parameters with the meta-gradient

θ′ ← θ − β

meta-gradient︷ ︸︸ ︷
∇θ ∑

τi∼p(τ)
Lqry

τi

 f
θ − α∇θL

spt
τi ( fθ)︸ ︷︷ ︸

adaptation

 . (2.8)

Since the computation of meta-gradient involves higher-order derivatives,

which could be computationally expensive. First-order approaches (Nichol

and Schulman, 2018) and latent-embedding approaches (Rusu et al., 2018) have

been proposed to improve the computation efficiency of gradient-based meta-

learning methods. The biggest advantage of such methods is that they do not

depend on specific neural network architectures, thus can be readily to many

different application domains that require specialized neural network models

such as LSTMs, CNNs, and Transformers, etc.

Contextual Meta-Learning Contextual meta-learning has been a popular

approach for meta-reinforcement learning (Duan et al., 2016; Vuorio et al., 2019;

Li et al., 2021). The idea is that one can extract the contextual information from

experience collected in a specific environment. Later, a prediction model or a

reinforcement learning policy can be conditioned on the extracted contextual

information to give adaptive outputs. In practice, LSTMs have been used for

extracting the contextual information from experience and multiple different

conditioning approaches including concatenation (Zintgraf et al., 2019), multi-

plication (Wang et al., 2014), and FiLM (Perez et al., 2018) have been explored.
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Contextual meta-learning often outperforms gradient-based meta-learning in

terms of few-shot performance. However, one disadvantage of contextual

meta-learning is that they require careful designs of the context-extraction

model and the conditioning mechanism based on the application domains.
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CHAPTER 3

Optical Multilayer Thin Film Design with Deep

Reinforcement Learning

3.1 Introduction

Optical multi-layer films have been widely used in many applications, such

as broadband filtering (Yang et al., 2016), photovoltaics (Agrawal and Peumans,

2008), radiative cooling (Raman et al., 2014), and structural colors (Li et al.,

2018b). The design of optical multi-layer films is a combinatorial optimization

problem that requires one to choose the best combination of materials and layer

thicknesses to form a multi-layer structure. Researchers and engineers often

make such designs based on their physical intuition. However, a completely

human-based design process is slow and often leads to sub-optimal designs,

especially when the design space is enormous. Thus, computational methods

for designing optical multi-layer structures, including evolutionary algorithms

(Schubert et al., 2008; Shi et al., 2017; You et al., 2020), needle optimization

(Tikhonravov et al., 1996), and particle swarm optimization (Rabady and Ababneh,

2014), have been proposed to tackle this problem. All of these previous methods
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frame the optical design task as an optimization problem and aim to synthesize

a structure that meets user-specified design criteria. However, these methods

for optical design are based entirely on heuristic search, i.e., they do not learn

a model to solve the design problems. When the heuristic approach is sub-

optimal for a task, the search process may fail to identify a high-performance

design.

visible light

infrared light

optical multi-layer films

Application 1: solar thermal panels Application 2: incandescent light bulb

Figure 3.1: Two energy applications of optical multi-layer films. For solar
thermal panels, we can use multi-layer films as ultra-wideband absorbers to
enhance light absorption efficiency. For incandescent light bulbs, we can coat
multi-layer films on them to improve luminous efficiency by reflecting infrared
light while transmitting visible light.

In contrast, deep reinforcement learning (DRL) is a learning framework that

learns to solve complex tasks through an trial-and-error process. It is proven

to be highly scalable for solving large-scale and complicated tasks (Silver

et al., 2017; Vinyals et al., 2019). Researchers have successfully applied DRL

to various combinatorial optimization problems (Bello et al., 2016; Khalil et al.,

2017; Mirhoseini et al., 2017, 2020). Unlike heuristic-based search, reinforcement

learning methods learn a model using the reward signal (Sutton and Barto,

2018) and do not depend on hand-crafted heuristics. On some combinatorial

optimization tasks, DRL has been shown to outperform classic heuristic search
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methods (Lu et al., 2020). Recently, researchers applied DRL on designing

optical devices with a structure template (Sajedian et al., 2019a,b), where the

number of layers is fixed. However, when designing the optical multi-layer

films, we often do not know the optimal structure template. Thus, the previous

DRL approaches are not suitable for multi-layer designs. In addition to DRL,

deep learning-enabled inverse design methods have seen great development in

recent years (Ma et al., 2018; Liu et al., 2018a,b). These inverse design models

learn a mapping between design targets and design parameters using a static

training set, which allows users to efficiently retrieve designs that match design

targets. However, if a design target does not lie within the training datasets

used for training the inverse design model, we will not be able to obtain the

corresponding design using the inverse design model. For our performance

optimization task, the optimal design is often not covered by a static training

dataset. Otherwise, it would mean that the optimization task has already been

solved through the training dataset collection process. Thus, reinforcement

learning is more suitable than deep-learning-based inverse design methods

when users want to optimize the design performance.

Because the multi-layer optical design task is equivalent to a sequence

generation problem, we propose a DRL method called Optical Multi-layer

Proximal Policy Optimization (OML-PPO) that can generate near-optimal multi-

layer structures. The proposed method uses a state-of-the-art DRL algorithm

PPO to train a deep recurrent neural network that outputs near-optimal optical

designs. We introduce two novel designs for the deep recurrent neural network

to allow it to efficiently explore the design space. With an ablation study, we

show that the proposed neural network architecture enables the RL agent to
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explore the design space efficiently.

We applied the proposed method to two optical design tasks that are rel-

evant to energy applications (Figure 3.1): 1) ultra-wideband absorbers that

can enhance light-harvesting efficiency, e.g. for thermal photovoltaics and

photothermal energy conversion 2) incandescent light bulb filters that can

improve light bulb efficiency in emitting visible light. On the task of design-

ing ultra-wideband absorbers, we show that OML-PPO can reliably discover

high-performance designs. A 5-layer structure with 97.64% average absorption

over the wavelength range [400, 2000] nm is discovered by OML-PPO, out-

performing a previously reported structure using the same number of layers

with 95.37% average absorption. When applied to generate absorbers with

more layers, OML-PPO discovers a 14-layer structure that achieves near-perfect

99.24% average absorption. We also applied our method to design a 42-layer

incandescent light bulb filter and achieved an enhancement factor of 16.60,

which is 8.5% higher than a 41-layer structure designed by a state-of-the-art

memetic algorithm. Our results demonstrate that the proposed algorithm is

efficient at discovering near-optimal designs and is scalable to complicated

design problems. We summarize our contributions:

1. We frame the multi-layer optical design task as a sequence generation

problem and develop a DRL method (OML-PPO) for solving this task.

2. We propose a novel deep sequence generation network that allows effi-

cient exploration of the optical design space.

3. On two optical design tasks, we demonstrate that our method is effective

in discovering near-optimal solutions for complicated design tasks.
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3.2 Related Work

Researchers have developed reinforcement learning methods for solving

various combinatorial optimization problems. In (Bello et al., 2016), the authors

trained a Pointer Network (Vinyals et al., 2015) to solve the Traveling Salesman

Problem (TSP). Khalil et al. (Khalil et al., 2017) combined graph embedding and

RL for solving a diverse set of combinatorial optimization problems including

the Minimum Vertex Cover, Maximum Cut, and TSP. Chen and Tian (Chen and

Tian, 2019) proposed a method to learn policies that can rewrite the heuristics

in existing solvers for combinatorial optimization problems. Lu et al. (Lu

et al., 2020) showed that RL-based method could outperform a classic operation

research algorithm in terms of both average cost and time efficiency.

Many real-life applications can be formalized as sequence generation prob-

lems (Li et al., 2016; Popova et al., 2018; Angermueller et al., 2020b; Mirhoseini

et al., 2020). In (Li et al., 2016), the authors integrated RL and seq2seq to auto-

matically generate a response by simulating the dialogue between two agents.

In (Angermueller et al., 2020b), the authors proposed a model-based variant of

PPO to deal with the large-batch, low round setting for biological sequence

design (Angermueller et al., 2020b). Mirhoseini et al. (Mirhoseini et al., 2020)

combined graph neural networks with RL for sequentially placing devices on

a chip. These previous works all trained sequence generation models using

policy gradient algorithms. In this work, we introduced a sequence generation

network architecture tailored to the optical design task. Additionally, we com-

bined local search with DRL for finetuning the thicknesses of the generated

layers.
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Deep-learning-based inverse design (Ma et al., 2018; Liu et al., 2018a,b) has

been gaining popularity in recent years. In (Ma et al., 2018), the authors trained

convolutional neural networks to directly predict design parameters using the

design target as the input to the network. Liu et al. (Liu et al., 2018b) trained

a generative adversarial network (GAN) to inversely design optical devices

by generating 2D shapes of the optical structure. However, these approaches

all rely on a curated training set that contains diverse examples. When our

goal is to push the performance limit of certain devices, the near-optimal

structures is unlikely to be within the training data distribution. Thus, these

static methods are not appropriate for optimizing design performances. Our

proposed method tackles this problem by actively searching the design space

to generate high-performance designs via reinforcement learning. In (Jiang

et al., 2019), the authors also developed an active search process by adding

additional high-quality data to augment the initial training set. However, their

approach requires the users to retrain the neural network with the augmented

dataset while our RL-based method accomplishes the design task within one

training process.

3.3 Methods

Multi-layer films can be treated as sequences. Each layer is represented

as sl = (ml, dl). We can represent such a structure with N layers as S =

{(m0, d0), (m1, d1), (m2, d2), · · · , (mN−1, dN−1)}, where ml and dl denote the

material and the thickness of the l-th layer (counting from the top), respectively.

When designing optical multi-layer films, we hope to synthesize a sequence
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that has the desired target spectral response T̃ . Thus, the design task is

equivalent to a sequence generation problem, where we generate m and d

in each step. Generation tasks such as dialogue generation (Li et al., 2016),

molecule generation (Popova et al., 2018), and biological sequence generation

(Angermueller et al., 2020b) have been widely studied by machine learning

researchers. In these works, researchers train a neural network as a generator

for synthesizing sequences. Because we do not have ground-truth data for

optimal design tasks, we apply reinforcement learning (Sutton and Barto, 2018)

to train the sequence generator.

3.3.1 Sequence Generation Network

To generate the optical layer sequences, we use a recurrent neural network

(RNN) (Hochreiter and Schmidhuber, 1997). Unlike simple feed-forward neural

networks, RNNs maintain a hidden state h that contains useful information

from the history of the sequence. Thus, RNNs are suitable for tasks that require

memorizing history and have been widely used in sequence generation tasks

(Graves, 2013). Gated recurrent units (GRUs) (Chung et al., 2014) and long

short-term memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997) are

two popular variants of RNNs. Researchers have previously found that the

empirical performance of GRUs and LSTMs is similar. Because GRUs have a

simpler structure than LSTMs and require fewer parameters to train, we choose

to use a GRU for generating the optical multi-layer structures. Similar to

sampling words from a dictionary when generating a sentence, we sample the

material ml from a fixed set of materialsM for each layer. Though the thickness

dl is intrinsically a continuous variable, we choose to sample the thickness from
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a set of discrete values D to reduce the size of the exploration space. Later, we

apply quasi-Newton methods (Zhu et al., 1997) to finetune the layer thicknesses

of the generated structure for further performance improvement.

Sequence
Generator

<Start>

MgF2,100 nm

Sequence
Generator

Sequence
Generator

...

<EOS>

MgF2,100 nm

TiO2, 50 nm

Cr, 200 nm

Figure 3.2: Optical multi-layer design as sequence generation. The generation
process will stop when either the EOS token is sampled, or the length of the
sequence reaches the maximum allowed length L.

Our optical multi-layer sequence generation network consists of a GRU and

two multi-layer perceptrons (MLPs) (Goodfellow et al., 2016). Gated Recurrent

Unit (GRU) is a variant of recurrent neural network that has been widely

adopted in many applications Chung et al. (2014). The operation of GRU can be

summarized as below:

zt = σ (Wz · [ht−1, xt])

rt = σ (Wr · [ht−1, xt])

h̃t = tanh (W · [rt ∗ ht−1, xt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t,

(3.1)

where xt is the input at step t.
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At generation step l, the GRU takes its own output from the previous step

sl−1 = (ml−1, dl−1) and the previous hidden state hl as the inputs to compute

the hidden state hl. This auto-regressive generation process allows the GRU

to remember what has been generated so far. To generate the material and

thickness for layer l, the hidden state hl of the GRU is inputted to two MLPs.

One of the MLPs outputs logits vector σml ∈ R|M|+1 corresponding to all

possible materials and an end-of-sequence token (EOS). The other MLP outputs

a thickness logits vector σdl
∈ R|D| corresponding to all allowable thicknesses

in the set D. Then, we transform these logits vectors with the softmax function

to obtain proper probability distributions. Finally, the material and thickness

are sampled from their corresponding distributions. The generation process

will stop either when the length reaches the maximum length L set by the

user or when the EOS token is sampled. Thus, the number of layers N of a

generated structure is always lower than or equal to the maximum sequence

length L. The process for generating a sequence is illustrated in Figure. 3.2.

3.3.1.1 Non-repetitive gating

The aforementioned material sampling procedure does not prevent the

situation where the same material is sampled for adjacent layers. However,

such consecutive layers of the same material are equivalent to a single thicker

layer. Thus, allowing the sequence generator to generate the same material for

adjacent layers leads to redundant computation. Moreover, doing so increases

the exploration space size and makes the search problem harder. Thus, we

introduce a non-repetitive gating function that removes the logit element

corresponding to the most recently sampled material to prevent the sequence
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embedding
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Remove row
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Figure 3.3: Neural network architectures for generating optical multi-layer
films. (a) We show one generation step in the plot. The hidden state hl of the
GRU is passed to two MLPs to output material and thickness probabilities,
respectively. The actual material and thickness for layer l are sampled from
categorical distributions parametrized by pml and pdl

. Built-upon the baseline
architecture, our proposed model adds a non-repetitive gating function and
auto-regressive connection between the sampled material and the thickness
MLP. (b) Illustration of how the non-repetitive gating works. Here we suppose
there are a total of 5 materials. Thus, the gating matrix is of dimension 5× 6.

generator from generating the same materials in a row. This gating function is

a matrix INR ∈ R|M|×(|M|+1) formed by removing the row corresponding to

the most recently sampled material from an identity matrix. When multiplied

with the logits vector σml , the element corresponding to that material will be

removed, i.e., σ′ml
= INR · σml ∈ R|M|. Then, we pass the transformed logit

vector σ′ml
to the softmax layer to obtain the sampling probability. By doing

so, we set the sampling probability for the recurring material to 0. With the

non-repetitive gating, the generated material sequence is guaranteed to have

different materials for adjacent layers. Note that, we do not apply the gating

function for the first generation step because there is no previously sampled
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material.

3.3.1.2 Auto-regressive generation of material and thickness

Because the proper thickness of a layer should depend on the material,

we input the sampled material ml to the thickness MLP in addition to the

hidden state hl. A similar approach has been applied in RL problems where

the actions are dependent on each other (Vinyals et al., 2019). Instead of using

a one-hot vector to represent the material, we train a material embedding

matrix emb ∈ R|M|×d together with the sequence generator network. Each

row embm ∈ Rd of the embedding matrix is a continuous representation of one

material, where d is the embedding size. Using an embedding allows us to use

a large number of materials without significantly increasing the dimensionality

of the material representation. The material embedding vector for the sampled

material embml is concatenated with the hidden state hl to form the input

[embml , hl] to the material MLP.

The full sequence generator architecture is plotted in Figure. 3.3a. To

understand the effect of non-repetitive gating and modeling the dependency

between the material and the thickness, we compare the proposed OML-PPO

architecture against a baseline architecture Experiment section.

3.3.2 Training Sequence Generation Network with PPO

We train the sequence generation network with reinforcement learning. The

goal of reinforcement learning is to maximize expected cumulative rewards

G = E[∑∞
t=0 γtrt] by learning a policy πθ(a|s) that can map a state s to an

action a. Here, γ is the discount factor that penalizes future rewards and rt is

34



the reward at step t. The sequence generation network described above serves

as the policy.

We represent the state at the l-th generation step as the concatenation of

the last layer information and the GRU hidden state, i.e., sl = [(ml−1, dl−1), hl].

The actions al correspond to the material and thickness (ml, dl) of the current

layer. We set the reward to be 0 for all generation steps except the final step. At

the final step (i.e., the structure S has been completely generated), we compute

the spectrum of the generated structure with an optical spectrum calculation

package TMM (Byrnes, 2016) and assign the final reward based on how well

the structure spectrum matches with the target spectrum. We also tried to

calculate the spectrum following every generation step and assign intermediate

rewards. However, this dense-reward approach is slow and does not lead to

improved performance. Thus, we only report the final-only approach here. We

set the discount factor γ = 1. Thus, the cumulative reward G for the generated

sequence S is simply the reward at the final step, which is defined as one

minus the mean absolute error between the spectrum of the generated structure

and the target spectrum:

G(S) = 1− 1
K ∑

k=0

1
J

J−1

∑
j=0
|TS(λj, δk)− T̃(λj, δk)| (3.2)

where TS(λj, δk) is the spectrum of the generated structure S at wavelength λj

under incidence angle δk. Because T ∈ [0, 1], the cumulative reward is always

non-negative. The reward value will become higher as the spectrum TS gets

closer to the target spectrum T̃ until it reaches 1 when the structure spectrum

perfectly matches with the target spectrum.
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During training, the sequence generator πθ actively generates new struc-

tures and receive rewards. Our goal is to maximize the expected rewards for

structures sampled from the sequence generation network:

J(θ) = ES∼πθ
[G(S)]. (3.3)

Based on the calculated rewards for generated sequences, the agent adjusts

its parameters θ with gradient ascent so that future rewards can be improved.

Here, we use a policy gradient algorithm to compute the gradient ∇θ J(θ) for

updating the sequence generator πθ. From the policy gradient theorem (Sutton

and Barto, 2018; Schulman et al., 2017), we have

g = ∇θ J(θ) = ES∼πθ
[A(S)∇θ log Pθ(S)] , (3.4)

where Pθ(S) = ∏N−1
l=0 pθ(ml|sl−1, hl−1) · pθ(dl|ml, sl−1, hl−1) is the probability

of sampling a structure S from the generator network πθ and A(S) is the

estimated advantage function (Schulman et al., 2015), which measures the perfor-

mance of the generated sequence S compared against the average performance

of structures sampled from πθ.

Instead of directly updating the sequence generator using Eqn.3.4, we use

a state-of-the-art policy gradient algorithm Proximal Policy Optimization (PPO)

(Schulman et al., 2017) to compute the policy gradient from a surrogate objective

function:

g = ∇θES∼πθ
[min (r(θ)Aθv(S), clip (r(θ), 1− ϵ, 1 + ϵ) Aθv(S))] , (3.5)
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where r(θ) = Pθ(S)
Pθold

(S) is the importance weight that measures the distance

between the policies before and after the gradient update. The clip function

disincentivizes large update steps to the policy, where ϵ is a hyperparameter

that affects the actual update size. Here, the advantage Aθv is estimated by

Generalized Advantage Estimation (GAE) (Schulman et al., 2015), which achieves a

good balance between bias and variance of the estimated gradients. θv is the

model parameters for a critic network that is trained together with the sequence

generator. Compared to the vanilla policy gradient and actor-critic algorithms,

PPO is more sample-efficient because it allows multi-step updates using the

same batch of trajectories. Previous results show that PPO can achieve state-of-

the-art performance on many tasks (Schulman et al., 2017). With the computed

policy gradient, the sequence generator model parameters are updated using

the Adam optimizer (Kingma and Ba, 2014). The model training process is

summarized in Figure. 3.4. Similar to the active search approach in Bello et

al. (Bello et al., 2016), we output the best structure discovered throughout the

entire training process as the final design. The pseudocode that summarizes

our design generation process is given in Algorithm ??.

Our model is implemented using PyTorch (Paszke et al., 2019) and Spinning

Up (Achiam, 2018). The data used in this study and our code are publicly

available1.
1https://github.com/hammer-wang/oml-ppo
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PPOTMM
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Figure 3.4: Pipeline of the sequence generator training process. We first
generate multi-layer structures using the sequence generator πθ. The spectrum
of the generated structures are simulated by the TMM module. Next, PPO
algorithm is applied to compute the policy gradient g for updating the sequence
generator model. We keep pushing the best discovered structure into a buffer
with size 1. This process is repeated until convergence. Finally, we finetune the
layer thicknesses to obtain the design.

3.4 Experiments

We applied the proposed method to two optical design tasks that are

relevant to energy applications, i.e., 1) designing ultra-wideband absorbers

and 2) designing incandescent light bulb filters. The designed ultra-wideband

absorbers can help solar thermal panels to absorb the sunlight more efficiently

and the light bulb filter can enhance incandescent light bulb efficiency in

emitting visible light while suppressing the radiation in the infrared range that

represents energy loss. We also did an ablation study to understand the effect

of non-repetitive gating and auto-regressive materials/thickness sampling.

Performance evaluation: In task 1 ultra-wideband absorber design, we

measure the quality of the designed structure by average absorption. In task 2

incandescent light bulb filter, we calculate the visible light enhancement factor to

measure the performance of designed structures.
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3.4.1 Ultra-Wideband Absorber

Firstly, we apply our algorithm to the task of designing an ultra-wideband

absorber for the wavelength range [400, 2000] nm. We choose the target

spectrum as a constant 100% absorption under normal light incidence angle

(i.e., the light is shining at the absorber at a right angle) to represent an ideal

broadband absorber. This task has been previously studied by Yang et al. (Yang

et al., 2016) based on physical models, where the broadband absorption is

achieved by overlapping multiple absorption resonances and with an overall

graded-index structure to minimize reflection. The authors designed a 5-layer

structure using MgF2, TiO2, Si, Ge, and Cr. The simulated average absorption

of their structure over the wavelength range is 95.37% under normal incidence.

If not specified otherwise, we assume normal incidence when reporting average

absorption.

Table 3.1: Available materials for constructing the ultra-wideband absorber.

Ag Al Al2O3 Cr Fe2O3 Ge HfO2 MgF2
Ni Si SiO2 Ti TiO2 ZnO ZnS ZnSe

We hypothesize that, when choosing from a larger set of materials than

used in the previous work (Yang et al., 2016), it is possible to design a structure

with higher average absorption than the human-designed structure. Thus,

we expanded the original material set (Yang et al., 2016) to include 11 more

materials (16 total). The set of materials is listed in Table 3.1. We set the

available discrete thicknesses D to be {15, 20, 25, . . . , 200} nm with a total of 38

different values. When training the sequence generator, we set the learning rate

to 5× 10−5 and the maximum length to L = 6. The material embedding size d
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is set to 5, i.e., embm ∈ R5. The generator is trained for a total of 3, 000 epochs

with the batch size set to be 1, 000 generation steps. We repeat the training for

10 runs with different random seeds. The best structure discovered in each run

was recorded and finetuned using the quasi-Newton method.

Table 3.2: RL designed 14-layer structure with 99.24% average absorption.

ID Material Thickness ID Material Thickness

1 MgF2 123 nm 8 Si 15 nm
2 TiO2 32 nm 9 Cr 17 nm
3 MgF2 21 nm 10 Ge 15 nm
4 Si 15 nm 11 TiO2 33 nm
5 TiO2 15 nm 12 Cr 29 nm
6 Si 15 nm 13 TiO2 81 nm
7 Ge 15 nm 14 Cr 116 nm

It is worth noting that our algorithm can yield very similar structures as

that reported in (Yang et al., 2016), i.e., it can search for and find the structure

designed based by human experts. One of such structures is {(MgF2, 112

nm), (TiO2, 55 nm), (Ti, 30 nm), (Ge, 30 nm), (Cr, 200 nm)} with an average

absorption of 96.12%, which has exactly the same material composition as

the one reported previously (Yang et al., 2016). However, the best structure

discovered by the algorithm, exhibiting a higher average absorption of 97.64%,

is {(SiO2, 115 nm), (Fe2O3, 70 nm), (Ti, 15 nm), (MgF2, 124 nm), (Ti, 148 nm)}.

The spectrum under normal incidence are plotted in Figure 3.5a.

We plot the best absorption values before and after finetuning of all ten

runs in Figure. 3.6. After finetuning, the average absorptions for the discovered

structures across all runs were improved. We found that the algorithm is

robust to the randomness during training as 8 out of the 10 runs achieved an

absorption that is higher than 95% after finetuning.
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Figure 3.5: Normal incidence spectrum for the best discovered absorber struc-
tures with 5 and 14 layers. R: reflection, T: transmission, A: absorption. We
design the multi-layer thin film to have high absorption over the entire wave-
length range. (a) Normal incidence spectrum for the 5-layer structure. (b)
Normal incidence spectrum for the 14-layer structure.

In an additional experiment, we explore whether the algorithm can design

a structure with more layers to achieve even higher absorptions. We set the

maximum length L = 15 and sample layer materials from MgF2, TiO2, Si, Ge,

and Cr. The best discovered structure has 14 layers with an average absorption

of 99.24%. The structure configuration is summarized in Table 3.2. We plot the

normal incidence spectrum structure in Figure. 3.5b. The structure discovered

by OML-PPO reaches close-to-perfect performance under normal incidence

and has high absorption over a wide range of angles (Figure 3.7).

3.4.2 Incandescent Light Bulb Filter

To further test whether our method is scalable to more complicated tasks,

we apply the proposed method for designing a filter that can enhance the

luminous efficiency of incandescent light bulbs (Zhou et al., 2016; Ilic et al., 2016).

The idea is to reflect the infrared light emitted by the light bulb filament so that
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Figure 3.6: Absorption values before and after finetuning. finetuning improves
the average absorption of every structure discovered in each run. (a) Average
absorption values before and after finetuning for each individual run. (b)
Box-plot for ten average absorptions values
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Figure 3.7: Angle-dependent absorption map for the best discovered absorber
structures with 5 and 14 layers. Both achieves high absorption over a wide
range of angles. (a) 5-layer structure. (b) 14-layer structure.

its energy can be recycled. To this end, we set the target reflectivity to be 0%

in the range [480, 700] nm, and 100% outside this range (Figure. 3.8a). In this

way, the infrared light, which cannot contribute to lighting, will be reflected

back to heat up the emitter.

A similar design has been previously studied (Ilic et al., 2016; Shi et al., 2017).

We choose the same seven dielectric materials as the available materials: Al2O3,
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HfO2, MgF2, SiC, SiO2, and TiO2 (Shi et al., 2017). Similar to our previous

experiment, we train our policy for 10 runs with different random seeds. Here,

we set the maximum allowed length L = 45 and the learning rate to be 5× 10−5.

The number of epochs and batch size are 10,000 and 3,000, respectively. The

best discovered structure is reported in Table 3.3.
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Figure 3.8: Results on the incandescent light bulb design. (a) Target spectrum
and the average reflectivity of structures designed by OML-PPO and the
memetic algorithm. (b) Emissive power spectrum. A good design will have
high emissive power in the visible range [380, 780] nm. f is the view factor
that equals the proportion of emitted light from the light bulb filament that can
reach the light bulb filter. We report results under view factors 0.95 and 1.

For evaluating the performance of the design, we first calculated the angle

averaged emissivity ϵavg(λ) over a hemisphere:

ϵavg(λ) =
2π
∫ π/2

0 cos δ · sin δ · ϵeff(λ, δ)dδ

2π
∫ π/2

0 cos δ · sin δdδ
(3.6)

= 2
π/2∫
0

cos δ · sin δ · ϵeff(λ, δ)dδ, (3.7)

where ϵeff(λ, δ) = 1− f 2R(λ, δ). R(λ, δ) is the reflection of the structure at
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wavelength λ under the incidence angle of δ. f is the view factor that equals

to the proportion of the light from the emitter that can reach the filter. We

compared two different view factors f = 1 and 0.95 in our calculation. In

addition, we assume the light bulb operates at 100 W and the surface area of

the emitter is equal to Area = 20 mm2. Then, we can solve for the temperature

t of the light emitter with the equation:

Pemitter (t) = Area ·
∫

Iemitter(λ, t)ϵeff (λ)dλ, (3.8)

where Iemitter(λ, t) = 2hc2

λ5
1

ehc/(λkBt)−1
is the blackbody emission intensity spec-

trum. With view factor f = 1 (0.95), the OML-PPO designed filter leads to

the emitter temperature of 3810 K (3553 K) while the structure designed by

the memetic algorithm achieves a temperature of 3750 K (3498 K). The black

body temperature under the same condition is calculated to be t0 = 2578 K.

We measure the enhancement factor by:

χ =

∫
ϵeff(λ)Iemitter(λ, t)V(λ)dλ∫

Iemitter(λ, t0)V(λ)dλ
, (3.9)

where V(λ) is the human eye’s sensitity spectrum Sharpe et al. (2005). Our

structure achieves an enhancement factor of 16.60 (10.67) while the memetic

structure has an enhancement factor of 15.30 (9.72). The 42-layer structure

designed by OML-PPO outperforms the previous 41-layer design by 8.5% (9.8%)

in terms of the visible light enhancement.

In Figure 3.8, we compare the average reflectivity normalized over all

incidence angles (0 - 90 degree) of the 42-layer structure designed with our

algorithm and the 41-layer structure designed by a memetic algorithm (Shi
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Table 3.3: RL designed incandescent light bulb filter with 42 layers. The total
thickness is 8.54 µm.

ID Material Thickness ID Material Thickness ID Material Thickness

1 SiO2 289 nm 15 SiC 210 nm 29 SiC 117 nm
2 SiN 268 nm 16 SiN 168 nm 30 MgF2 224 nm
3 MgF2 185 nm 17 MgF2 200 nm 31 SiC 122 nm
4 SiN 189 nm 18 SiC 227 nm 32 MgF2 235 nm
5 SiC 214 nm 19 SiN 242 nm 33 SiC 127 nm
6 SiN 214 nm 20 MgF2 222 nm 34 MgF2 230 nm
7 MgF2 210 nm 21 SiC 228 nm 35 SiC 234 nm
8 SiN 206 nm 22 MgF2 216 nm 36 MgF2 218 nm
9 SiC 205 nm 23 SiC 229 nm 37 SiC 235 nm
10 SiN 183 nm 24 MgF2 203 nm 38 MgF2 220 nm
11 MgF2 184 nm 25 SiC 101 nm 39 SiC 231 nm
12 SiN 179 nm 26 MgF2 209 nm 40 MgF2 216 nm
13 SiC 203 nm 27 SiC 121 nm 41 SiC 233 nm
14 SiN 273 nm 28 MgF2 225 nm 42 Al2O3 95 nm

et al., 2017). Our structure has a higher average reflectivity in the infrared range

(> 780 nm) than the 41-layer structure.

Table 3.4: Visible light enhancement. Our RL-designed structure achieved 8.5%
higher visible light enhancement than the structure designed by a memetic
algorithm.

Model Enhancement factor

OML-PPO 16.60
Memetic (Shi et al., 2017) 15.30

We quantitatively evaluated the performance of the designed filter by cal-

culating the enhancement factor for visible light (400 - 780 nm) under a fixed

operating power. The results are reported in Table 3.4. The performance

improvement of the RL-designed filter can be attributed to the higher reflec-

tion than the structure designed by the memetic algorithm in the infrared

wavelength range (Figure 3.9).
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(a) (b)

Figure 3.9: Angle-dependent reflection map for RL-designed incandescent
light bulb filter structure and a structure designed by memetic algorithm.
(a) structure designed by RL algorithm. (b) structure designed by memetic
algorithm.

3.4.3 Chrome Coating Replacement Design

Lastly, we choose the highly task to demonstrate the effectiveness of OML-

PPO, where we design an environmental-friendly five-layer optical thin film

stack with an appearance similar to chrome, which could potentially replace

the traditional highly toxic chrome plating process that poses great dangers

to both workers and the environment. This is an important task because

chrome coatings are widely used in the automotive industry for aesthetic

purposes due to their pleasing appearance. Traditionally, the chrome layer

is electroplated to the surface of the object by submerging it in a chemical

electrolyte solution that contains hexavalent chrome (Cr (VI)). However, Cr

(VI) is a strong human carcinogen and has been found to greatly increase the

risk of lung cancer and nasal, and sinus cancer (OSHA, 2013). Cr (VI) can

also cause severe nasal septum ulcerations and perforations, gastritis, and

gastrointestinal ulcers (Lieberman et al., 1941; Lindberg and Hedenstierna, 1983).
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Workers can be exposed to Cr (VI) at the workplace from the mist generated

during plating. The electroplating process can also lead to air pollution through

the emissions of toxic air containing cadmium and cyanide, which could impact

the nervous system, hearts, and lungs of millions of people (EPA, 2005). Thus,

it is highly desirable to develop alternative solutions that can produce the

chrome appearance but do not require the dangerous chrome plating process.

Table 3.5: The designed four-layer structure. The layers from I to IV are from
the top surface where light is shone to the bottom layer.

Layer ID Material Thickness

1 Ge 17 nm
2 TiO2 18 nm
3 SiO2 82 nm
4 Ni 50 nm

Here, we set the spectrum target to the reflection spectrum of a 100 nm

thick Cr layer and optimize the designs with OML-PPO by constraining the

maximum number of layers to be five. As shown in Figure 3.10, the designed

structure (Table 3.5) has a reflection spectrum close to the Cr target reflection

spectrum. The optical stack was fabricated through thermal evaporation (George,

1992) for experiment validation of the design. When compared to commercial

Cr coatings (Figure 3.10b bottom row), the designed structure (Figure 3.10b top

row) has an almost unnoticeable difference.

3.4.4 Ablation Study

On the ultra-wideband absorber design task, we conducted an ablation

study to understand the effect of non-repetitive gating and auto-regressive

generation of materials and thicknesses. We trained four different models:
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(a)

(b)

Figure 3.10: Chrome coating design results. (a) Reflection spectrum of the
designed structure. (b) A photo for comparing the designed structure (top row)
and the commercial Cr coating (bottom row).

1) OML-PPO with both non-repetitive gating and auto-regressive generation,

2) non-repetitive gating only, 3) auto-regressive generation only, 4) neither

non-repetitive gating nor the auto-regressive generation. For each model, we

repeated the training for ten times. The maximum absorption values discovered

by each model before finetuning are reported in Table 3.6. Both non-repetitive

gating and the auto-regressive material/thickness generation improve the

performance of the baseline model.

Table 3.6: Highest absorption values discovered by each algorithm across 10
runs. The mean average absorption values and standard deviations of the 10
runs are reported.

Model Average Absorption

OML-PPO 94.98%± 0.99%
Only gating 94.05%± 1.39%
Only auto-regressive 91.55%± 1.14%
None (baseline) 91.03%± 0.87%

In Figure. 3.11, we plot the average absorption and maximum absorption

of the structures generated in each epoch over the entire training trajectory.
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Figure 3.11: Training trajectory of OML-PPO and other baseline algorithms.
(a) Average absorption trajectory. (b) Maximum absorption trajectory. The
non-repetitive gating enables the model to converge to better solutions than
models without the gating. The shaded area corresponds to one standard
deviation.

The effect of non-repetitive gating is more significant than auto-regressive

material/thickness generation as the OML-PPO and the only-gating variants

both significantly outperform the other two variants. The non-repetitive gating

significantly improves the model convergence during training. When non-

repetitive gating and the auto-regressive sampling are combined together, the

model achieves the best performance.

3.5 Conclusion

We introduced a novel sequence generation architecture and a deep rein-

forcement learning pipeline to automatically design optical multi-layer films.

To the best of our knowledge, our work is the first to apply deep reinforcement

learning to design multi-layer optical structures with the optimal number of

layers not known beforehand. Using a sequence generation network, the pro-

posed method can select material and thickness for each layer of a multi-layer

49



structure sequentially. On the task of designing an ultra-wideband absorber,

we demonstrate that our method can achieve high performance robustly. The

algorithm automatically discovered a 5-layer structure with 97.64% average

absorption over the [400, 2000] nm range, which is 2% higher than a structure

previously designed by human experts. When applied to generate a structure

with more layers, the algorithm discovered a 14-layer structure with 99.24%

average absorption, approaching perfect performance. On the task of designing

incandescent light bulb filters, our method achieves 8.5% higher visible light

enhancement factor than a structure designed by a state-of-art memetic algo-

rithm. Though the spectral requirements of our two examples are simpler than

some other real-life applications(Li et al., 2017), we expect no intrinsic difficulty

when applying our algorithm to tasks that require more complicated spectra.

Because the reward function used in our method can be easily calculated for

any arbitrarily complicated spectrum, we believe that our algorithm can be

directly applied to many other multi-layer thin film design tasks with more

complex spectral requirements. Moreover, with the recent development of

GPUs and TPUs, reinforcement learning algorithms could become more salable

than evolutionary approaches for solving complicated design tasks.

Through an ablation study, we showed that customizing the sequence

generation network based on optical design domain knowledge can greatly

improve the optimization performance. Our results demonstrated the high

performance of the proposed method on complicated optical design tasks.

Because the proposed method does not rely on hand-crafted heuristics, we

believe that it can be extended to many other multi-layer optical design tasks

such as lens design and multi-layer metasurface design by modifying the action
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space of the sequence generation network. However, for complex designs

that require micro-nano structures (Li and Fan, 2018), simulating the optical

response can be computationally expensive. Since most deep reinforcement

learning methods have a high sample complexity, it is important to develop

sample-efficient reinforcement learning algorithms before such methods can be

widely adopted for optical design tasks involving micro-nano structures.
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CHAPTER 4

Neural Particle Swarm Optimization for

Material-Aware Inverse Design of Structural Color

4.1 Introduction

Structural color refers to the color generated through the light interaction

with patterned or layered optical structures. It is more stable than colors

produced from chemical pigments, and serves as an environment-friendly

alternative. However, designing the structures for producing desired colors is

challenging due to the complex relationship between the optical structures and

their spectral properties. Additionally, color metamerism, i.e., different spectra

may correspond to the same color perceived by human eyes (Foster et al., 2006;

Best, 2017), makes the relationship between the structures and the perceived

color more complex because multiple different structures could have the same

color appearance. Human experts often design optical structures based on the

understanding of the physical properties of structures, including multilayer

thin films (Wang et al., 2018b; Yang et al., 2019) , metasurfaces (Sun et al., 2017;

Yang et al., 2020), and self-assembled colloidal particles (Kim et al., 2011; Liu et al.,
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2021), to name a few. Due to the complex relationship between the structures

and the generated color, the human-based design process is often slow and

could lead to sub-optimal performance.

Recently, machine learning-based optical inverse design approaches have

been developed to predict optical structures that can achieve user-specified

properties (Liu et al., 2018b; Ma et al., 2019; Unni et al., 2021; Yeung et al., 2021b;

Yao et al., 2019; Jiang et al., 2020; Wiecha et al., 2021; Ma et al., 2021). These inverse

design methods often involve training a machine learning model such as deep

neural networks (Gao et al., 2019) or support vector machines (Huang et al.,

2019) on a curated dataset that contains a large number of datapoints mapping

structural parameters to the corresponding color represented by coordinates in

CIE xyY (Gao et al., 2019) or LAB color space (Sajedian et al., 2019a; Dai et al.,

2021). Though previous methods have been demonstrated to be efficient in

designing a wide range of colors, they often require the materials constituting

the optical structures to be fixed. Because the refractive index of materials

affects their reflection and absorption properties, it could be challenging or even

impossible to produce specific colors when the materials are not appropriately

selected. Thus, the first step of screening appropriate materials for latter

inverse design with machine learning models still requires intensive effort from

human experts and could be time-consuming. For optical multilayer thin-film

design, the recently reported reinforcement learning approach (Wang et al.,

2021) addresses the material selection challenge by searching the material and

thickness design space simultaneously. However, this method can only design a

single color at a time because the reward function for training the reinforcement

learning algorithm has to be defined for a specific color. It could be impractical
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when many colors need to be designed, e.g., designing a large array of reflective

color pixels to reconstruct a colored picture, which would take an extremely

long time using the reinforcement learning method. To address the issues

mentioned above, we propose an inverse structural color design method that

can efficiently predict the materials and structural parameters.

The proposed method termed Neural ParTicle SwaRm OptimizatioN (NEU-

TRON) is a hybrid approach that combines a Material-aware Multitask Mixture

Density Network (M3DN) (Caruana, 1997; Bishop, 1994) and Particle Swarm

Optimization (PSO) (Kennedy and Eberhart, 1995). Instead of searching the

material and thickness space simultaneously, NEUTRON first predicts the most

suitable materials and provides a diverse set of initial guesses of the thicknesses

in the form of probability distributions that could fulfill the target color, then

applies particle swarm optimization to finetune the initial thickness designs.

We demonstrate the effectiveness of the proposed approach on two optical

multilayer thin film design tasks. The results show that our approach can

lead to accurate color inverse designs efficiently. We believe that the proposed

approach can be readily applied to many other optical design tasks where

material selection and structural designs are important.

4.2 Related Work

The design task of optical structures for structural color generation is often

high-dimensional. It may involve many degrees of freedom, including but

not limited to the geometry of nanophotonic structures, number of layers,

material selections, etc. In addition, different spectra could lead to the same
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perceived color by human eyes due to color metamerism (Foster et al., 2006),

which makes the high-dimensional color design task even more challenging

due to the ambiguous many-to-one relationship between the design parameters

and the generated color. Thus, manually designing optical structures for color

generations could be time-consuming and may lead to sub-optimal designs. To

speed up the optical structural color design process, intelligent inverse design

algorithms that can automatically find the optical designs corresponding to

specific color requirements have been previously applied for the design of

multiple different types of optical structures for structural color generation

(Yang et al., 2013; Wiecha et al., 2017; Gao et al., 2019; Baxter et al., 2019; Dai et al.,

2021; Xu et al., 2021). These inverse design methods can be categorized into

optimization-based approaches and machine learning-based approaches. In

this part, we give detailed comparisons between these two different families

of approaches for structural color inverse design based on case studies from

previous works. In addition, we provide recommendations on how researchers

should select inverse design methods to best suit their research needs. Such

machine learning-based inverse methods can also be applied to many other

photonic applications including photon detection (Zhao et al., 2017), lasing

(Zhu et al., 2017), photonic integrated circuits (Song et al., 2022), to name a few.

We refer the readers to comprehensive reviews regarding machine learning

methods for generic photonic design tasks (Campbell et al., 2019; Ma et al., 2021;

Wiecha et al., 2021; Jiang et al., 2020).

All inverse design algorithms for metasurface-based structural color design

take the color target potential design constraints as inputs and output the

metasurface designs (Figure 4.1 (a)). However, optimization-based approaches
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Figure 4.1: Sructural color inverse design paradigms. (a) An inverse design
algorithm takes in the color design target and additional design constraints
as the input to generate the design. (b) (left) Optimization-based inverse
design approaches involve iterative evaluation of designs through EM simula-
tions and update of the designs until an accuracy requirement is met. (right)
Machine-learning based approaches require the users to first synthesize a
dataset containing pairs of designs and color labels through EM simulations. A
machine learning model is later trained on the synthesized dataset to predict
the accurate design. When reinforcement learning is used instead of super-
vised learning, additional design data predicted by the model are added to the
dataset to expand the explored design space for training a more accurate mode
(indicated by the dotted arrow). After the model has been trained, machine
learning-based inverse design process can directly predict designs correspond-
ing to the desired color target without time-consuming iterative evaluations of
the intermediate designs through EM simulations.
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rely on iterative updates and evaluations of the designs through the feedback

of EM simulations, and machine learning-based approaches train a model on

a large training dataset to directly predict the design without iterative EM

simulations during the design process.

Among all optimization algorithms, particle swarm optimization (PSO) and

genetic algorithms (GAs) are most widely used for structural color designs.

Both methods aim to maximize a merit function that measures the closeness

between the properties of the designed structures and the target properties.

PSO is inspired by the group movement of bird flocks (Kennedy and Eberhart,

1995). To identify the global optimal that maximizes the merit function, PSO

first creates a set of particles with randomly initialized positions, where each

particle’s position corresponds to a specific design. During the optimization

process, each particle’s position is updated with a velocity determined by the

best position the particle itself has encountered and the best position found by

all particles. The quality of each position is evaluated by EM simulations. After

many rounds of iterations, all particles will converge to the same position that

corresponding the final design found the PSO.

In (Yang et al., 2013), the authors applied PSO for the design of color filters

with high angular tolerance based on 2D gratings. To achieve this target,

PSO is used to optimize the grating parameters including grating ridge, unit

interval, and grating thickness. The merit function is a weighted sum of the

difference between target reflection spectrum and reflection spectrum of the

designed structure and the color difference between the color measured at

normal incidence and 45°. The authors successfully obtained red, green, and

blue filters with less than eight CIEDE2000 for incident angle up to 45°.
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Similar to PSO, GAs also maintain a group of solutions (Whitley, 1994;

Deb et al., 2002) throughout the optimization process. However, GAs update

the solutions not based on a velocity computed from previously found best

solutions, but based on the survival of the fittest rule. Each iteration the GAs

compute the fitness of each solution measured by the merit function value,

and only select solutions with largest merit function values to proceed to the

crossover step. During crossover, solutions are randomly paired to generate

offspring solutions with a small probability of mutation, i.e., some design

parameters are randomly changed by chance. The selection-crossover-mutation

process of GAs stops when a convergence criterion is met.

In (Liu et al., 2020), the authors applied genetic algorithms for meta-atom

multiplications, i.e., including multiple meta-atoms within the same unit cell

for metasurface designs. With the genetic algorithm aided meta-atom mul-

tiplication, the authors enlarged the achievable area in the CIE diagram by

106%. Genetic algorithms can also be applied for multiobjective optimization,

where multiple potentially conflicting merit functions are being maximized at

the same time. In (Wiecha et al., 2017), the authors applied NSGA-II, a widely

used multiobjective genetic algorithm for designing dielectric nanoantenna

with double resonances at two different wavelengths for mutually crossed

polarizations.

Machine learning based methods for photonic designs can be grouped into

model-based optimization and reinforcement learning. Model-based optimiza-

tion is based on supervised learning that trains a model on a fixed dataset

without actively exploring the design space, while reinforcement learning does

not require an initial dataset and can actively explore the design space through
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the feedback of a reward function that measures the quality of designs it has

generated.

In model-based optimization, a surrogate forward model that can predict

the color based on the design parameters is used to guide the design process.

An inverse model that can directly predict the design parameters are also often

trained to either provide the initial solutions for a search process or trained on

a fixed forward model to directly predict the final solution.

In (Huang et al., 2019), the authors trained four machine learning models

including kernel ridge regression models to predict the CIE xy coordinates

for dielectric ring arrays and dielectric pyramid arrays with different design

parameters. The trained models are later used as a surrogate model for the

computationally expensive EM simulation. With the surrogate model, the

authors search the optimal design parameters that could lead to the target

design with a simple greedy search process that iteratively updates each design

parameter and evaluate the design’s performance based on the surrogate model.

Deep neural networks have also been trained as surrogate models to predict

the structural color given fabrication parameters. In (Baxter et al., 2019), authors

trained neural networks to predict the RGB values based on laser machining

parameters for producing plasmonic nanoparticles. A greedy search process

is later applied to find the laser machining parameter that could produce the

desired color.

Instead of relying on searching the input space of a trained forward model,

Gao et al. (2019) applied a tandem network that combines the forward model and

an inverse model to predict the metasurface designs for user-specified CIE xyY

coordinates. Importantly, the forward model and the inverse model are trained

59



in two separate steps. The forward model are used to guide the optimization

of the inverse model while its own parameters being fixing during the training

of the inverse model. The tandem network has recently been improved by

using the Lab target to allow more uniform color design accuracy Dai et al.

(2021), and introducing a mean squared error regularizers to avoid outputting

infeasible designs (Xu et al., 2021). In (Roberts and Keshavarz Hedayati, 2021),the

authors augmented the labeled data with unlabeled synthetic data containing

only the CIE xy coordinates to further improve the inverse design accuracy.

In addition to supervised learning, reinforcement learning (RL) has been

applied to design silicon metasurfaces that can generate desired colors based

on the CIE xyz coordintaes (Sajedian et al., 2019a). RL is similar to conventional

optimization-based approaches in the sense that both require iterative prop-

erty evaluation. However, RL differs from conventional optimization-based

approaches that a strategy is learned to map the color target to the optimal

design parameters by intelligently explore the design space while conventional

optimization-based approaches do not involve the learning process. As more

data are encountered through the learning process, reinforcement learning

can gradually learn a better strategy to efficiently come up with designs corre-

sponding to a wide range of color targets. It has been shown that reinforcement

learning based strategy can be applied to solve complicated optical design

tasks (Wang et al., 2021).

Both optimization and machine learning approaches can expedite the struc-

tural color design process. However, both have their pros and cons. When

researchers choose the method that are most suitable to their design tasks,

it is important to have good understanding of the differences between these
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two families of inverse design algorithms. The major difference between the

optimization-based approach and machine-learning based approach is whether

a model is trained on a dataset. Training a model allows one to efficiently

predict for a new design target while optimization-based approaches always

require a time-consuming iterative search process for every new design targets.

However, collecting a large dataset for training accurate machine learning

models is not trivial. If the researchers expect to only solve for a handful of

designs, optimization-based inverse design approaches could be more practical.

When many designs are needed (e.g., design structures for reconstructing all

pixels in a high-resolution image), investing time in synthesizing datasets for

training machine learning models would be worthwhile because the dataset

generation process is a one-time cost. As more and more design targets are

encountered, machine learning-based approaches tends to save more and more

time than optimization-based approaches.

In addition to the consideration of efficiency, researchers should also

consider the design accuracy of different inverse design methods. Because

optimization-based approaches and reinforcement learning both involve itera-

tive dataset collection that allows an active exploring the design space, they are

often more accurate than the static model-based methods. Thus, if researchers

value the efficiency more than accuracy, MBO approaches should be used for

the design process while PSO, GAs, and RL are more suitable for obtaining

highly accurate designs for a small set of color targets.
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4.3 Methods

Unlike most previous machine learning-based inverse design work, where

the datasets are synthesized with randomly sampled structural parameters of

optical structures, we uniformly sample from the sRGB color target space to

ensure good coverage of the entire color gamut. PSO is also used to obtain

the datapoints to ensure high-quality designs to be included in the dataset.

Additionally, we introduce a novel data augmentation approach that generates

synthetic material refractive index data to broaden the input distribution that

allows the trained neural network to general better. We also develop a novel

multitask neural network that combines both a classification network and a

mixture density network for material screening and layer thickness prediction,

respectively. The chosen materials and predicted thickness distributions based

on the multitask neural network are later used as the input for particle swarm

optimization to further finetune the thickness for better approaching the color

target. We present the dataset generation, neural network architecture and

training, and the integration with PSO in this section. Later, we highlight

the exceptional performance of the proposed approach with results on two

applications, including 1) environmental-friendly chrome coating replacement

design and 2) picture reconstructions.

4.3.1 Dataset Generation

Previous research shows that five-layer optical thin films with two absorbing

layers sandwiched by two dielectric layers and a bottom metal reflecting layer

(Figure 4.2 (a)) can achieve high color purity and brightness (Yang et al., 2019),
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Figure 4.2: Five-layer optical structure and the data distribution. (a) A five-layer
optical layer thin-film structure for generating a wide range of reflective colors
covering the sRGB color gamut. Both the materials and their thicknesses are
designed to obtain the target RGB color. (b) The dataset generation process.
400,000 datapoints are obtained through PSO for randomly sampled RGB color
target and material combinations. (c) The color distribution of the validation set
is visualized in the CIE 1931 xy space. The datapoints achieve good coverage
of the entire sRGB color gamut spanned by the standard Red, Blue, and Green
colors. (d) Randomly sampled RGB color target and the obtained RGB color
through PSO. (e) RGB value design error in the validation set obtained with
PSO through the data collection process.

where the layers can be easily deposited by physical vapor evaporation. Due

to the high performance and feasibility for large-scale fabrications of such

structures, we synthesize a dataset with diverse designs based on the same
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five-layer structural template by varying both the material and thickness of

each layer. All designs are based on randomly sampled materials from ten

candidate metal materials Au, Ag, Al, Cu, Cr, Ge, Ni, Ti, W, Zn and ten

dielectric materials Al2O3, Fe2O3, HfO2, MgF2, SiO2, Ta2O5, TiO2, ZnO, ZnS,

ZnSe. Both absorber layers and the bottom reflective layers are composed of

metals while the other two layers are based on dielectric materials. Including

a wide range of candidate materials with different refractive indices makes

it possible to search for the most suitable materials combinations for specific

color targets.

When sampling the materials for the adjacent absorbing layers, we introduce

a constraint that the two adjacent absorber layers must be composed of different

materials. Thus, the total number of unique material combinations of the five-

layer stack is 10× 10× 9× 10× 10 = 9× 104. Because sRGB is widely used in

display industry design and production, we aim to provide the best coverage

over the sRGB color gamut through our model. Most previous works randomly

sample the layer thicknesses from a prefixed range to generate datapoints with

different designs and color properties. However, this approach often leads

to non-uniform coverage in the color space, i.e., the density of datapoints in

a certain color regime is higher than other regimes. Since non-uniform data

coverage could lead to an undesirable skewed inverse design performance

where the inverse design model is more accurate for colors corresponding to

the color regime with more datapoints, we propose to directly sample from

the color target space uniformly to avoid this problem. To this end, instead of

randomly sampling the thicknesses of the layers as in most previous works,

we randomly sample the sRGB color target from the 3D sRGB space with a
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value range [0, 255] for each dimension. In Figure 4.2 (c) - (d), we show that

this random color target sampling ensures uniform coverage of the color space.

Then, for each randomly sampled material combination and color target

pair, we use PSO to optimize the thickness of the top four layers to minimize

the color difference between the color of the designed structure and the color

target while fixing the bottom reflective layer at 100 nm. PSO is a widely

used global optimization algorithm for optical designs (Shokooh-Saremi and

Magnusson, 2007; Yang et al., 2013; Rabady and Ababneh, 2014). When solving a

minimization problem, PSO maintains a group of particles (i.e., solutions) that

individually explore the solution space and communicate with each other to

share information about the explored solution space. All particles’ positions

are iteratively updated based on the best solution each particle has found and

the best solution found by the entire group until a convergence criterion is met.

In our five-layer optical thin film design task, each particle’s “position” is a

4D vector corresponding to the top four layers’ thickness. The final position

all particles converge to is the final thickness design obtained through PSO.

Throughout the optimization process, the reflection spectrum of multilayer

designs is computed with transfer matrix method (Byrnes, 2016) for the wave-

length range [400, 700] nm with a step size of 10 nm. Thus, each material’s

complex refractive index is described by a 62-dimensional vector for the entire

31 wavelength points. We use the Python package Colour (Mansecal et al., 2021)

for the conversion of reflection spectrum to sRGB and Lab color coordinates.

Additionally, we use the industry-standard CIEDE2000 metric based on Lab

coordinates to measure the color difference (Sharma et al., 2005) between the

target color and the color obtained through the designs. After particle swarm

65



optimization converges, if CIEDE2000 for the given material combination and

the color target is lower than or equal to two, we consider that the specific

material combination allows accurate generation of the target color because

CIEDE2000 lower than or equal to two is almost imperceivable by untrained

people with normal visions (ViewSonic, 2021), and we assign a label e = 1;

otherwise the label is e = 0. Overall, we observe that the average success ratio

of obtaining the accurate color following the random data generation process

is about 25%. Note that the Lab color coordinates and the sRGB coordinates

for the same design have a one-to-one correspondence, and we only use Lab

color coordinates for computing CIEDE2000. In contrast, sRGB coordinates

are used explicitly as the color target. If users need to design specifically for a

given Lab or CIE xyY target, sRGB coordinates can be uniquely obtained from

the provided color coordinates defined on other color spaces.

In terms of the thickness of each layer, we set the thickness range for

both dielectric layers from the range [5, 250] nm and the thickness of the

absorbing layers to be in the range [5, 15] nm during the particle swarm

optimization process. Again, the thickness of the bottom metal layer is fixed to

be 100 nm because it is used as a reflector, whose thickness has a negligible

effect on the reflective color as long as the layer is thick enough to reflect

the light completely. Additionally, we constrain the thicknesses of all layers

to be integers to allow fabrications. Thus, the size of the design space after

considering variations in materials combinations and thickness designs is

9× 104 × 112 × 2462 = 6.6× 1011.

Since the small number of primitive materials limits variations in the refrac-

tive index data, we augment the dataset by randomly mixing two dielectrics or
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two metals to form synthetic dielectric or metal composite materials to broaden

the training dataset distribution through convex combination of their complex

refractive indices. Inspired by our previous finding that the mixture of two thin

material layers can be considered as a linear combination of the two materials

and helpful to improve color purity (Yang et al., 2019), we obtain the complex

refractive index of synthetic mixture materials through the following formula:

ni = βi · nM1,i + (1− βi) · nM2,i , (4.1)

whereM1,i andM2,i are the two sampled materials for ith layer, βi ∼ (0, 1) is

the mixing factor for the ith layer, nM1,i , nM2,i , and ni are the complex refrac-

tive indices for randomly selected two primitive materials and the composite

material synthesized from them for the ith layer. Note that, the composite

material refractive index is synthetic and does not require to be experimentally

achievable. It only serves as additional data to improve the data variation so a

machine learning model can learn more efficiently from the data. Similar data

augmentation strategies have been widely adopted in other fields (Zhang et al.,

2018). Following the described data generation procedure, we generated a total

of 400,000 datapoints and about half of the samples are based on primitive (i.e.

actual) materials while the others are based on synthetic materials via linear

superposition. The entire dataset is randomly split into 380,000/10,000/10,000

datapoints for training/validation/testing. Importantly, both validation and

test sets are based on primitive materials only because we are interested in

the model’s design accuracy for designs based on attainable actual materials,

and mixtures materials are introduced only in the training set for the data
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augmentation purpose. Unless stated otherwise, all results reported in the

paper are based on the test sets. Each datapoint (x, y, ctarget, cPSO, e) is a tuple

comprising of the refractive index data for all five layers concatenated as a

single vector x with 310 dimensions (each material’s complex refractive data is

a 62-dimensional vector), the thickness of top four layers y obtained with PSO,

the target color sRGB color ctarget, the obtained color through PSO cPSO, and

the binary label e ∈ [0, 1] indicating whether the CIEDE2000 between ctarget

and cPSO is smaller than or equal to 2. We transform continuous variables

(x, y, ctarget, cPSO) to the range [-1, 1]. A pictorial illustration of the full data

generation pipeline is included in Figure 4.2 (b).

4.3.2 Material-Aware Multitask Mixture Density Networks

Mixture density networks (MDNs) have been previously applied for inverse

problems extensively (Bishop, 1994; Li and Lee, 2019; Unni et al., 2021). Instead

of mapping the input to a single output, which is done by deterministic neural

network models, an MDN maps the input to the probability density function

of a multivariate Gaussian Mixture with m isotropic Gaussian mixture compo-

nents. Because each Gaussian mixture component can learn a different mean

and standard deviation value, MDNs are able to learn a one-to-many mapping,

which is critical to solving the often ill-posed inverse design problems with

non-unique solutions. The probability density function given by a Gaussian

mixture for a pair of refractive data input, thickness design, and corresponding
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Figure 4.3: (a) Probability density function for the first two layers’ thickness
from a randomly initialized MDN. (b) The trained MDN predicts the probability
density function for the top two layers’ thickness. The probability density
function converges to two modes after training, which indicates the training
process has learned the corresponding thickness ranges are the most promising
for producing the target color. (c) Average weights for all Gaussian mixture
components. (d) Gaussian mixture weights for ten different inputs (x, ctarget).
The predicted weight vary based on the input data (x, c), which shows that
different Gaussian mixture components are responsible for different regimes of
the input space. (e) An illustrative example of the PSO process. The plots show
the optimization trajectory of PSO for a simple 2D square function based on 50
randomly initialized particles. The global minimal of the function is located at
the center of the 2D space. In the five-layer optical thin film design problem,
each particle is initialized with the trained MDN in a 4D space (excluding the
last layer with fixed 100 nm thickness) and optimized with PSO iteratively until
convergence.

color (x, y, c) can be written as :

p(y|x, c) =
m−1

∑
j=0

π(x)j pj(x)(y|x, c)
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e
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where π(x), µ(x), σ(x) are the mixing weights, mean, and standard deviation

outputted by the MDN with the input refractive data x and the color target c.

D is the dimension of the design parameter vector y, which equals 4 in our

design problem. Note that the mixing weights sum up to one (i.e., ∑m−1
j=0 πj = 1)

so that the mixed function p(y|x, c) is a proper probability density function.

In addition to predicting the thickness, we also predict whether a given

refractive index data x can lead to accurate designs for a target color c with

no greater than two CIEDE2000 (i.e., ∆E00 ≤ 2) after the thickness of each

layer has been optimized. To this end, we include a sub-network to form a

material-aware multitask mixture density network (M3DN) that is composed

of a mixture density network and a classification network (Figure 4.4 (a)).

To train the M3DN, we minimize the multitask loss function:

LM3DN =
N−1

∑
i=0
− log p(yi|xi, cPSO

i ) + α · BCE(ei, p∆E00≤2(xi, ctarget
i )) (4.3)

where the first term on the right hand side is the negative log likelihood for

training the MDN, and the second term is the binary cross entropy loss for

training the classifier, i.e.,

BCE(ei, p∆E00≤2(xi, ctarget
i )) = − ei · log p∆E00≤2(xi, ctarget

i )

− (1− ei) · log (1− p∆E00≤2(xi, ctarget
i )).

The hyperparameter α in the M3DN loss controls the knowledge sharing among

the material screening task and the thickness prediction task. Note that, ctarget
i

is used as input for training the MDN while cPSO
i is used as input for training
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the classifier because the thickness yi corresponds to cPSO
i , which could differ

slightly from the ctarget
i in the generated dataset because PSO may only be able

to find solutions with a color coordinate slightly different from the target color,

i.e., cPSO
i = ctarget

i + δi.

Through an extensive hyperparameter search based on the CIEDE2000

measured on the validation set, we found a seven-layer neural network with

four separate output heads to give the best inverse design accuracy, which is

shown the in Figure 4.4 (a). The number of of Gaussian mixture components is

51,200. We visualize the learned probability density function and the mixing

weights in Figure 4.3 (a) - (d). Note that we use the softplus activation function

for the σ output head to ensure the standard deviation prediction is always

greater than 0, and softmax activation function is used for the mixing weight π

output so that all mixing weights sum up to 1. We use ELU activations for all

other layers except the last layer in the base network and the output layer for µ,

where tanh is used to ensure their outputs are in the range [-1, 1].

The advantage of training a single multitask network for both classification

and thickness prediction tasks is two-fold: 1) the classification module allows

users to screen among possible material combinations to select those that could

lead to an accurate generation of the target color; 2) improved sample efficiency

through sharing knowledge among the related classification and thickness

prediction tasks.

The test results for the classification AUC (area under the receiver operating

curve, or AUROC) and the inverse design accuracy in terms of CIEDE2000 for

both the target color and the PSO obtained color are shown in Figure 4.4. The

material classification network achieves excellent performance with an AUC
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of 0.91. Both average test CIEDE2000 values are slightly above ten and can be

further improved by finetuning with the PSO.

We train the M3DN with PyTorch (Paszke et al., 2017) on NVIDIA RTX 3090

GPUs with 24 GB of internal memory. Both our code and data are publicly

available 1.

Based on the downstream task, the material screening module can be used

in various ways with the predicted probabilities p∆E00≤2. On one hand, when

the goal is to select the best material corresponding to a single color (e.g. in

the first example below searching for chrome color replacement), the top K

material combinations with largest p∆E00≤2 among all possible combinations

can be chosen for further examinations of their performance. On the other

hand, when researchers have a set of target colors to produce (e.g. in the

second example of reproducing a color picture), the average p∆E00≤2 over the

set of target colors can be computed for ranking and selecting the material

combinations.

Given the selected materials, the thickness designs are predicted based on

the color target and the material index data. However, since the output of

the mixture density network is probabilistic, it is possible that the thickness

output by the trained mixture density network does not correspond to the

optimal value. To address this issue, we further finetune the designs with PSO.

Combining the dataset generation process, M3DN, and the PSO finetuning

process completes the proposed NEUTRON method for structural color design.

In all of our experiments, for each material combination, we randomly

sampled 32 thickness designs from the MDN to be used as the initial positions

1https://github.com/hammer-wang/NEUTRON
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(a)

(c)(b)

Figure 4.4: Material-aware multitask mixture density network (M3DN). (a)
M3DN architecture with a shared base network for extracting features from the
high dimensional refractive index data, and four subnetworks for outputting
the µ, σ, π, p∆E00≤2, separately. (b) Mixture density for a two-dimensional
design space. (c) Receiver operating characteristic curve. (d) Design accuracy
measured in CIEDE2000 with respect to both PSO optimized RGB colors and
the corresponding original RGB color targets.

of the particle swarm optimization. Then, we optimize until convergence with

a tolerance level of 1× 10−5. In each optimization iteration, the designs are
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evaluated through the transfer matrix method (Byrnes, 2016) and compared

with the target spectrum. Compared to randomly initializing the positions of

the particles, starting with designs sampled from the MDN allows PSO to find

better solutions. More importantly, conventional PSO requires the materials

to be provided by the user while NEUTRON predicts the best materials to

be used with the PSO. Since the manual material screening process could be

time-consuming, using NEUTRON for structural color design can significantly

speed up the entire design process by directly predicting the best materials.

4.3.3 Model Implementation Details

For training the M3DN, we random search hyperparameters from the range

listed in Table. 4.1. The model with the best CIEDE2000 on the validation set

has a learning rate of 0.000176, hidden dimension 128, the number of mixtures

51,200, weight decay of 0.0000117, and α = 5. We train the model on the

training set for 500 epochs and store the model with the model checkpoint

with the best validation CIEDE2000. Our reported results in the main text are

all based on the best model unless stated otherwise.

Table 4.1: Hyperparemeter search values for training the M3DN model.

Hyperparameters Values

Learning rate loguniform(10−5, 10−3)
Hidden dimension of FC layers [128, 256, 512, 1024]

Number of mixtures [200, 400, 800, 1600, 3200, 6400,
12800, 25600, 51200]

Weight decay factor loguniform(10−6, 10−4)
α [1, 2, 5, 10]

In particle swarm optimization, each particle’s position at time t is updated
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with a velocity that is determined by both the best solution found by the

particle itself and the best solution found by the entire group. In the optical

multilayer thin-film design task, the position vector x is the thickness designs

for all layers. The velocity v is the update to each layer’s thickness between

two optimization steps. The velocity is calculated as:

vt+1
i = w · vt

i + c1 · r1 · (xt
i,best − xt

i) + c2 · r2 · (xt
best − xt

i), (4.4)

where xt
i,best is the best solution found by the ith particle by time step t, while

xt
best is the best solution found by the entire group of particles by time step t.

r1, r2 are two random numbers in the range [0, 1]. w is the inertia coefficient

that controls how much the previous velocity is maintained, c1 is the cognitive

coefficient that controls how much the best solution found by the particle

itself contributes to the velocity, and c2 is the social coefficient that determines

how the best solution found by the entire group alters the velocity. In our

implementation, we set the w = 0.9, c1 = 0.5, c2 = 0.3 based on the results from

a manual search. After the velocity is obtained at the (t + 1)th step, we update

the particle’s position by:

xt+1
i = xt

i + vt+1
i . (4.5)

4.4 Experiments

4.4.1 Chrome Coating Replacement Design: A Revisit

Here, we apply the NEUTRON method to the chrome coating replacement

design task again to explore whether different designs from those presented in
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Chapter 3 can be discovered.

In the material screening phase, we exclude Cr from the available metals,

and predicted the likelihood p∆E00≤2(ctarget|x) for all 10× 9× 8× 10× 10 =

720, 000 possible material combinations. Then, we sample initial thickness

designs from the MDN and finetune the designs with PSO for the top 100

combinations with the largest likelihoods. The emulated color of the five best

designs are shown in Figure 4.4. We also provide the detailed designs and

CIEDE2000 of all five designs in Table 4.2. PSO significantly improved the

initial designs predicted by the MDN in terms of the CIEDE2000. All five

final designs obtained CIEDE2000 lower than two and are highly promising

for replacing the traditional Cr plating process through the environmental-

friendly thermal evaporation process. Moreover, the discovered designs all

have dielectric materials as the top materials, which is different from the

design in Chapter 3. This top dielectric layer could provide a protection to the

bottom metal layers from environmental degradation, thus making the designs

presented here more practical than designs in Chapter 3 (Table 3.5).

Table 4.2: Chrome color designs based on M3DN only and the finetuned design
by PSO (bold).

Design
Antireflective
Layer (nm)

Absorber
Layer I (nm)

Absorber
Layer II (nm)

Dielectric
Layer (nm)

Reflective
Layer (nm) ∆E00

I HfO2 W Ge SiO2 Zn
120 / 105 13 / 15 15 / 10 122 / 83 100 /100 7.6 / 0.8

II HfO2 Zn Ge Al2O3 Ni
12 / 7 14 / 14 8 / 13 160 / 98 100 / 100 15.8 / 1.2

III SiO2 Ag Ge SiO2 Au
273 / 250 14 / 14 15 / 15 147 / 130 100 / 100 9.8 / 1.4

IV HfO2 Zn Ge Al2O3 Au
61 / 5 14 / 14 15 / 15 202 / 207 100 / 100 25.0 / 1.6

V HfO2 Zn Ge MgF2 Au
97 / 93 15 / 15 12 / 11 249 / 218 100 / 100 5.4 / 1.6
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(a)

(b)

(c)

(d)

Figure 4.5: Single color design pipeline and chrome color design results. (a)
The top K material combinations obtaining the target color is obtained through
ranking the predicted probability vector p∆E00 for all allowed material combi-
nations. Then a set of initial designs are sampled from the M3DN as the initial
solutions for particle swarm optimization to finetune the thickness of each layer.
(b) Top five designs based on the final CIEDE2000 values. The particle swarm
optimization step leads to significant performance improvement compared to
the designs sampled directly from the mixture density network. (c) CIEDE2000
before and after the particle swarm optimization finetuning for the top 100
material combinations. (d) The reflection spectrum of the best design and a
100 nm thick Cr film.
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4.4.2 Picture Reconstruction

Next, we apply NEUTRON to design optical thin film structures for a large

set of color targets. We choose the picture reconstruction task (Gao et al., 2019;

Dai et al., 2021) because it has been previously studied in machine learning-

based structural color inverse design works. High-resolution pictures generally

have more than ∼ 105 unique pixel RGB values, which makes it impossible to

directly reconstruct when iterative optimizations are is involved. In our work,

the particle swarm optimization process for finetuning a single pixel requires

∼ 10 seconds, and reconstructing the entire picture takes ∼ 106 seconds. To

speed up the reconstruction, we apply a quantization approach to group similar

pixels values to the nearest integer values that can be divided by a quantization

step size s. We explored quantized step size s ∈ [5, 10, 20, 30] and found the step

size s = 10 led to the best tradeoff between the compression ratio of unique

pixels values and the quality of the quantized picture. In 4.6, we compare the

pictures before and after quantization with a step size 10. With a negligble

difference in picture appearance, we achieved more than 40X compression ratio

of unique pixel values for all pictures.

The detailed design pipeline is provided in Figure 4.5 (a), where the top

material combination is selected based on the average p∆E00≤2 computed over

the entire picture to be reconstructed. Note that we select the same material

combination of all pixels across the entire picture to make it possible for

fabrication through grayscale lithography (Wang et al., 2018b). We plot average

p∆E00≤2 distributions for all allowed material combinations in Figure 4.5 (b),

which show that only a few material combinations can lead to high average
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Figure 4.6: Picture quantization results. All pictures are 512-pixel wide. The
quantization process does not lead to noticeable difference but significantly
reduces unique pixel values. The White Orchard picture’s unique pixel values
were reduced to 2,428 from 156,778. The Tulip Field picture’s unique pixel
values dropped to 2,279 from 96,906. The Great Wall picture’s unique pixel
values decreased to 1,395 from 67,007.

success design rates and also demonstrate the importance of the material

classification network. Again, in Figure 4.5 (c), we show that PSO significantly

improved the average design accuracy upon the initial designs based on the

trained MDN.

As another demonstration, we applied our method to pictures obtained
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(a)

(c)(b)

Figure 4.7: Picture reconstruction design pipeline. (a) Similar to the design
pipeline of a single color, the material screening is the first phase of the design
process for identifying the best material for each layer to reconstruct the entire
picture. Unlike the single-color case, the average probability is computed for
all target colors, through which the material combination that gives the largest
probability is selected. (b) Average p∆E00≤2 distribution for all 100,000 allowed
material combinations. (c) Average CIEDE2000 computed over entire images
before and after particle swarm optimization finetuning.

through neural style transfer (Gatys et al., 2016), which is a computer vision

method that can transform images to possess an appearance similar to a style

source image. As shown in Figure 4.8, we first apply the neural style transfer
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(a)

(c)

(b)

Figure 4.8: Picture reconstruction results. The first column is the target picture.
The second column is the reconstruction based on NEUTRON. The last column
is without the particle swarm finetuning. (a) The White Orchard by Vincent van
Gogh. (b) The Tulip Field by Vincent van Gogh. (c) A photo of The Great Wall
of China taken by photographer Severin Stalder. (a - b) are reproduced with
the permission from the Van Gogh Museum, Amsterdam (Vincent van Gogh
Fundation). (c) is reproduced with the permission from Wikimedia Commons.

method to transfer real photos into stylized pictures, then apply NEUTRON to

obtain designs for reconstructing the transferred pictures.

Results in Figure 4.7 and Figure 4.8 demonstrates that NEUTRON allows

accurate picture reconstructions with almost unnoticeable errors. Additionally,

the entire design process can be accomplished within a few hours for high-
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(a)

(c)

Figure 4.9: Picture reconstruction results based on neural style transferred
photos. (a) Flower. (b) Street. Both original photos in (a - b) were taken by the
authors. (c) The source style painting Vase with Gladioli and Chinese Asters for
generating the style transferred photos is reproduced with the permission from
the Van Gogh Museum, Amsterdam (Vincent van Gogh Foundation).

resolution pictures (Table 4.3), which makes NEUTRON a highly practical

algorithm for real applications. Note that, although PSO also achieves good

performance in terms of ∆E00, the PSO results reported in Table 4.3 is based on

the material combination predicted by the classification model of the trained

M3DN and does not take the amount of time required for screening the

materials when such a model is not available. Additionally, when initializing

the PSO with the initial designs predicted by the M3DN, the design accuracy

∆E00 can be further improved upon using randomly-initialized PSO.

Though the designs across an entire picture are based on the same material
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combination, varying the top four layers’ thickness is still challenging for

fabrication. When the user can accept a higher CIEDE2000, it is possible to

reconstruct the picture by varying only a single layer. In Figure. 4.10, we show

results when fixing the top antireflective to be 150 nm, both absorber layers

to be 9 nm, and only optimizing the bottom dielectric layer. These thickness

values are the majority predicted values by the mixture density network for the

entire picture. Compared to varying all four layers thickness, the reconstruction

quality of varying a single layer is significantly worse. However, if fabrication

constraints are the top priority for the reconstruction task, such an approach of

varying a single layer could be adopted to allow an easy fabrication process.

Original Reconstructed

(a) (b)

Figure 4.10: Picture reconstruction results when tuning only the dielectric layer,
i.e., the fourth layer counting from the top. The average CIEDE2000 is 13.36.

4.4.3 Understanding Algorithmic Design Choices

We conducted a series of experiments to understand the effects of three

important algorithmic design choices for the proposed algorithm NEUTRON,
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Table 4.3: The best material combinations and CIEDE2000 with MDN only,
PSO only, and NEUTRON for reconstructing pictures in Figure 4.7 and Figure
4.8. The results reported for the last two pictures in italic font are for the style
transferred photos.

Picture Material Combination MDN PSO NEUTRON Time (s)

White Orchard Al2O3 Ge Al Al2O3 Zn 18.55 5.16 3.76 9,917
Tulip Field Ta2O5 Au Ti Al2O3 Au 19.45 4.34 3.48 9,246
Great Wall HfO2 Au Ti SiO2 Au 21.46 6.45 5.69 6,835
Flower Ta2O5 Au Ti Al2O3 Au 19.37 5.00 3.93 11,249
Street ZnO Ti Au MgF2 Au 21.60 4.45 3.28 7,349

including the number of mixture components, multitask learning, and dataset

augmentation with mixture materials.

4.4.3.1 Effect of Number of Mixture Components

The optimal number of mixture components m is dependent on the one-

to-many mapping between the input (x, c) and the potential designs {y}. A

large m is required when many designs could lead to the similar color target.

Here, we vary the number of mixtures from 200 to 51,200. As shown in Figure

4.11, m = 51, 200 leads to the best performance while reducing m cause the

validation CIEDE2000 to increase significantly.

4.4.3.2 Effect of Multitask Learning

We vary the weighting parameter α to investigate if positive transfer exists

between the material classification task and the design prediction task. Results

in Figure 4.11 (c) and (d) show that α = 5 leads to the best CIEDE2000

measured on the validation set while the classification AUC is insensitive

to nonzero α values. This indicates that positive knowledge transfer exists
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(f)

Figure 4.11: Effects of important algorithmic design choices. All results are
based on three runs initialized with different random seeds. The shaded area
corresponds to one standard deviation. (a) Varying the number of mixtures.
The network with 51,200 mixture components achieves the best validation
performance among the nine experiments. (b) Effect of weighting parameter
for the classification loss. (c) Effect of dataset augmentation with mixed
materials. By adding 50,000 datapoints from mixed materials (A 150K), the
trained network achieves a more significant improvement of CIEDE2000 over
the dataset with 100,000 datapoints simulated from primitive materials (P
100K), compared to adding 50,000 additional datapoints simulated from only
primitive materials (P 150K). Further increasing the dataset size to 400,000
datapoints with 50% of the data simulated from the mixed materials leads
to further performance improvement of both validation CIEDE2000 and the
validation AUC.

between the material classification task and the thickness prediction task. Thus,

incorporating the material classification task does not only allows users to

select the best material combinations for downstream tasks but also improves

the thickness inverse design accuracy due to the benefit of multitask learning.
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4.4.3.3 Effect of Dataset Augmentation

Introducing datapoints simulated from a mixture of materials increases the

variation of the input refractive data x, which could allow the trained M3DN

to generalize better. To test this hypothesis, we first train M3DN on a dataset

with 100,000 datapoints simulated entirely based on primitive materials. Then,

we add additional 50,000 datapoints either simulated from primitive materials

or mixture materials and train two networks separately. By comparing the

validation ∆E00, we observe that adding 50,000 additional datapoints from

mixture materials leads to greater performance improvement than adding

50,000 datapoints simulated from primitive materials.

4.5 Discussion

In both the chrome color design and the picture reconstruction tasks, NEU-

TRON achieves exceptional design accuracy efficiently through combining a

material classification network, a mixture density network for thickness pre-

dictions, and the final PSO finetuning. Unlike previous methods that either

assume fixed materials (Gao et al., 2019; Dai et al., 2021) or search the materials

and thickness designs simultaneously (Wang et al., 2021), our method split the

materials and thickness design into two stages to enable an approach that can

search for the best materials and design the thickness accordingly in an efficient

manner. The reason why splitting the material and thickness design is helpful

can be understood by the fact that the entire design space is much larger than

the material design space or the thickness design space alone. In our five-layer

optical thin film design task, the material design space size is 9× 104, and

86



the thickness design space size is 7.3× 106, which lead to a huge full design

space with a size of (9× 7.3)× 1010 = 6.3× 1011 when considering the material

design space and the thickness design space simultaneously. With the two-step

process, we first narrow down the promising material combinations with the

material classification model and only optimize the thickness designs for the

selected small set of materials. Thus, we only need to consider a design space

that is one or multiple times of the thickness design space, which is a ∼ 10, 000X

complexity reduction compared to searching both materials and thickness in

one step.

We combine M3DN and PSO by initializing the particle positions with

designs sampled from the MDN. This process is easy to implement and highly

effective in obtaining optimal designs due to the probabilistic nature of the

mixture density network. On both design tasks, we show that PSO significantly

improved the initial solutions by the M3DN. This result is not surprising

because PSO involves iterative updates of the design parameters based on

the feedback from optical simulations. Additionally, the exceptional design

accuracy after finetuning the initial M3DN designs with PSO indicates that

probabilistic machine learning models that can output diverse predictions are

highly compatible with PSO, which requires an initial population of designs to

begin with.

Our experiment on the number of mixtures suggests that a strong degree

of one-to-many mapping exists (Figure 4.9 (a), (b)) for the problem of inverse

designing the structural color with a five-layer optical stack, thus a large

number of mixture components of 51,200 is required to obtain an accurate

inverse prediction of the designs. Due to the limit of GPU memory, we cannot
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further increase the number of mixture components, but we expect the design

accuracy to improve as the number is increased further.

Another interesting finding on multitask learning suggests that future opti-

cal inverse design models should leverage the task relationships by learning

the main and auxiliary tasks simultaneously. As shown in the experiment for

varying the classification loss weight α, we observe optimal inverse design

performance at α = 5. In optical design problems, many tasks are related,

such as the electric field distribution prediction, far-field intensity prediction,

spectrum prediction, and color prediction, etc. Learning multiple tasks simul-

taneously could allow researchers to obtain high inverse design accuracy with

fewer datapoints.

Moreover, our results show that data augmentation that increases the re-

fractive index data variation by mixing the primitive materials is an efficient

strategy to improve the inverse design accuracy. We believe such data aug-

mentation should be incorporated for training material-aware inverse design

models when possible.

NEUTRON combines a classification model, a probabilistic regression

model, and particle swarm optimization for finetuning the designs predicted by

the M3DN. Compared to using ML or the optimization approach alone, NEU-

TRON brings the best of both worlds to allow efficient and accurate inverse

designs for large-scale design tasks.
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4.6 Conclusion

We develop a material-aware inverse design algorithm that combines a

multitask mixture density network and particle swarm optimization to select

the optimal material combination and optimize structural parameters. On two

practical tasks for producing reflective structural color with a five-layer optical

stack, NEUTRON demonstrates the proposed algorithm’s exceptional design

accuracy and efficiency. Though we develop NEUTRON for structural color

design based on multilayer optical thin films, it can be adopted for wide range

of other optical design tasks that require optimizing the material selections and

structural parameters.
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CHAPTER 5

Model-based Offline Meta-Reinforcement Learning

via Planning

5.1 Introduction

Most manufacturing problems can be treated as a sequential decision mak-

ing problem. Modern industrial manufacturing systems are often powered by

classical control algorithms, such as PID controller or Linear-Quadratic Reg-

ulator (LQR), etc. However, classical control algorithms often do not involve

learning, i.e., their performance does not improve as more experience is gained.

Also, the shared dynamics among similar manufacturing systems could not

be shared to boost the control performance. On the other hand, reinforce-

ment learning holds a great premise in learning from diverse experiences from

similar systems to achieve a better control performance than classical control

algorithms.

However, most existing reinforcement learning algorithms require learning

from online feedback from the environment, which is infeasible for many

high-stake manufacturing applications. In addition, these algorithms often
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Figure 5.1: Meta model-based offline planning. The proposed method combines
meta-learning for environment models and planning based on the environment
models. Planning trajectories are averaged based on the expected returns. And
the first action in the average trajectory is executed in the real environment.

do not leverage the fact that many control problems share similar underlying

dynamics, allowing the learning to be more sample efficient. Thus, it is

important to enable reinforcement learning to learn from offline datasets

collected from related tasks. This way, we can enable a data-driven decision-

making engine similar with a much broader impact than what the current

reinforcement learning algorithm can achieve. To this end, we propose a model-

based offline reinforcement learning algorithm that can effectively combine

gradient-based meta-learning and offline planning. Our contributions are:

1. we proposed the first model-based offline meta-RL algorithm by combin-

ing gradient-based meta-learning and offline planning.

2. our method achieves superior performance than baseline approaches on

standard MuJoCo environments.

3. we provided detailed empirical analysis of the proposed algorithm and

discussed the benefits of model-based approaches for offline meta-RL.
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5.2 Background

Our work concerns the offline meta-reinforcement learning problem. By com-

bining gradient-based meta-learning and model-based offline planning, we propose

a novel offline reinforcement learning approach that can efficiently adapt to

new environments. We review the related work in this section.

5.2.1 Gradient-based Meta-Learning

Gradient-based meta-learning is based on the idea of learning neural net-

work initialization parameters that are amenable to fast adaptation (Finn et al.,

2017; Nichol and Schulman, 2018). It has been widely used for both supervised

learning and reinforcement learning (Vanschoren, 2018). Here, the neural net-

work initialization parameters are treated as the meta-parameters and learned

through meta-gradient, which is computed based on two disjoint sets of data

used for simulating the few-shot learning setting during training. One of

the most widely gradient-based meta-learning methods is model-agnostic

meta-learning (MAML), which is also used in our work. Specifically, the

meta-gradient of MAML is computed through the following second-order

derivative:

θ′ ← θ − β

meta-gradient︷ ︸︸ ︷
∇θ ∑

τi∼p(τ)
Lqry

τi

 f
θ − α∇θL

spt
τi ( fθ)︸ ︷︷ ︸

adaptation

,

where Lspt
τi ,Lqry

τi are loss function values evaluated on two disjoint sets of data

called the support set and the query set. Note that support set is used for the

inner loop update called adaptation and the query set is used for the outer
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loop meta-gradient evaluation.

5.2.2 Offline Meta-Reinforcement Learning

Meta-reinforcement learning studies the application of meta-learning in

reinforcement learning for improved sample efficiency (Rakelly et al., 2019).

Most previous meta-reinforcement learning methods are based on the online

setting, where the agent can interact with the environment during training.

However, training an RL agent in this online manner is prohibited in many

real-world applications, such as healthcare and autonomous driving, due to

the expensive or even dangerous online data collection. Thus, offline meta-

Reinforcement learning methods (Mitchell et al., 2021; Li et al., 2021; Pong et al.,

2021; Dorfman and Tamar, 2020) have been proposed recently to tackle this

problem by enabling the meta-RL agents to learn from static offline datasets

containing useful demonstrations. Such demonstrations are often logged

observational data generated by human experts and exist for many important

applications.

In (Dorfman and Tamar, 2020), the authors proposed the BoREL, which

is based on the recent Bayesian RL method VariBAD (Zintgraf et al., 2020).

BoREL can efficiently explore a new environment after being meta-trained on

offline meta-datasets. In (Li et al., 2021), a contextual meta-RL approach called

FOCAL is applied to the offline setting and demonstrates good performance.

MACAW (Mitchell et al., 2021) is a gradient-based offline meta-RL method based

on MAML. However, instead of learning a model, MACAW directly learns

a policy through advantage-weighted regression (Peng et al., 2019). BoREL,

FOCAL, and MACAW all require reward information when adapting to a new
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task, which may not always be available. In (Pong et al., 2021), the authors

proposed SMAC that can adapt itself through state observations only via a

self-supervised approach.

Table 5.1: Comparison between offline meta-RL methods.

Method Online
Reward
Labels

Model-
based

Gradient-based
Meta-Learning

BoREL (Dorfman and Tamar, 2020) ✓ ✗ ✗

FOCAL (Li et al., 2021) ✓ ✗ ✗

MACAW (Mitchell et al., 2021) ✓ ✗ ✓

SMAC (Pong et al., 2021) ✗ ✗ ✗

M2BOP (ours) ✓ ✓ ✓

5.2.3 Model-based Offline Planning

Model-based planning is a popular approach for solving reinforcement

learning problems without explicitly learning a policy (Chua et al., 2018). Re-

cently, Argenson and Dulac-Arnold (2021) extended the idea to the offline setting

by training a deep ensemble as the environment model. Specifically, ensembles

for the behavior policy, dynamics, and reward models are trained to evaluate

rollouts without interacting with the real environment. Then model-predictive

path-integral (Chua et al., 2018) is applied to optimize the action trajectory

based on the model only. The action noise parameter σ when rolling out the

behavior policy and the path-integral temperature κ are the two most important

hyperparameters that require careful tuning.
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5.3 Methods

Offline model-based meta-reinforcement learning can be implemented in

two ways. In the first approach, meta-model and meta-policy can be trained

simultaneously by meta-train a Dyna-style approach that uses the model to

generate rollouts for training a policy. However, the meta-training process

could be challenging due to coupling the meta-model and the meta-policy.

Additionally, computing meta-gradient that flows back to the meta-model

through the meta-policy becomes computationally intractable when long roll-

outs are used for training. Thus, we take the second approach by combining a

meta-trained model with a planning procedure, which avoids the complexity

of training a meta-policy with the meta-model. The same idea was previously

studied in online meta-RL (Clavera et al., 2019). Here, we extend the idea to

the offline setting with a carefully designed offline-planning method (Argenson

and Dulac-Arnold, 2021). Next, we provide the details on the neural network

architecture of the environment model, the meta-training, and the meta-testing

process that performs planning with the meta-trained environment model.

5.3.1 Environment Models

Similar to MBOP (Argenson and Dulac-Arnold, 2021), we train models to

predict the transition state, immediate reward, behavior cloned action and a

truncated value function for a fixed horizon. However, instead of training

these models separately, we train a multitask network to boost the sample

efficiency (Caruana, 1997). The activation from a shared backbone network is

concatenated with either the previous action at−1 or the current action at as the
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Figure 5.2: Mutlitask Neural Network for predicting environment dynamics
and rewards.

input to three separate output heads for predicting the targets (Figure 5.2).

Instead of outputting a point estimate of each target, we predict the mean

and standard deviation of an isotropic Gaussian distribution with each. Instead

of training a single multitask network, we train a bootstrap ensemble with M

randomly initialized base learners (Lakshminarayanan et al., 2017) to alleviate the

model-bias issue due to the distributional shift when the model is later deployed

in a testing environment. The outputs of all base learners form a mixture of

Gaussian distribution (Figure 5.3), whose mean and standard deviation is

plugged in the negative log-likelihood loss for training the deep ensemble

model. Specifically, the loss function is the total negative log-likelihood that

counts for all four prediction targets i.e.,

L = E(a−,s,a,r,s′,RH)∼D [NLLs′ + NLLr + NLLa + NLLRH ] (5.1)
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Figure 5.3: Bootstrap ensemble for combining base learners.

where a− is the previous action, s is the current state, a is the current action, r

is the immediate reward after taking action a in state s, s′ is the next state, and

RH is the truncated value function that equals to the sum of rewards for the

next H steps. And

NLLs′ =
log σ2

s′(s, a)
2

+
(s′ − µs′(s, a))2

2σ2
s′(s, a)

NLLr =
log σ2

r (s, a)
2

+
(r− µr(s, a))2

2σ2
r (s, a)

NLLa =
log σ2

a (s, a−)
2

+
(a− µa(s, a−))2

2σ2
a (s, a−)

NLLRH =
log σ2

RH(s, a−)
2

+

(
RH − µRH(s, a−)

)2

2σ2
RH(s, a−)

.

5.3.2 Meta-Learning with MAML

Gradient-based meta-learning is applied to the environment model learning

to allow fast adaptation to new tasks when only a limited amount of offline

data is available. Specifically, we resort to MAML-style training (Finn et al.,

2017) to learn a set of neural network initialization parameters that can be

updated with a few gradient steps to a local optimum using data collected

from a new task. The pseudocode for meta-learning is described in Algorithm.
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1. Note that, instead of randomly sampling from the offline buffer on the

transition tuple level, we always sample on the trajectory level to mimic how

the model will be deployed in practice. Unlike online gradient-based meta-RL

(Rakelly et al., 2019), the environmental model is trained entirely with offline

data without any online data collection.

Algorithm 1 M2BOP (train time)

1: Require: Offline buffers {Di}N
i=1

2: Require: inner loop learning rates α, outer loop learning rates, β, training

iterations n

3: Randomly initialize meta-parameters θ

4: for n steps do

5: for i = 1, . . . K do

6: Sample offline buffer D ∼ {Di}N
i=1

7: Sample disjoint episodes Dtr = {τtr
1 , . . . , τtr

K }, Dte = {τte
1 , . . . , τte

K } ∼

D

8: θ′i ← θ − α∇θL
(
θ,Dtr)

9: end for

10: θ ← θ − β∇θ
1
K ∑K

i=1 L(θ′i , Dte
i )

11: end for

12: Return θ as θ∗

5.3.3 Meta Model-Based Offline Planning

After the environment model has been properly trained with MAML, it can

achieve accurate dynamics and reward function with only a few trajectories

collected on a new environment. After adaptation steps on the new environ-
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ment, the environment model can be plugged into a planning controller for

deployment (Algorithm. 2). The controller used for offline planning can be

variants of cross-entropy method (Rubinstein, 1999) or model predictive path

integral (Williams et al., 2016). Specifically, we apply the planning procedure

developed in MBOP (Argenson and Dulac-Arnold, 2021) during the testing phase.

Algorithm 2 M2BOP (test time)

1: Require: θ∗,D
2: Require: controller
3: Initialize a0 ← 0, R← 0, θ0 ← θ∗

4: for k = 0 . . . K− 1 do
5: θk+1 ← θk − α∇θL (θk,D)
6: end for
7: for t = 1 . . . H do
8: Observe st, rt by executing at−1 in the real environment
9: Tt = controller(st, θ′)

10: at = Tt
0

11: R← R + rt
12: end for
13: Return R as the episodic return

5.4 Experiments

We tested the proposed method on the standard meta-RL benchmarks

based on the robot locomotion environments in the MuJoCo simulator. First

we collected the offline data by training the state-of-the-art online RL algorithm

soft actor-critic (SAC, (Haarnoja et al., 2018a)) on MuJoCo tasks with randomly

initialized different reward functions (cheetah-dir, cheetah-vel, ant-dir), or

different dynamics (walker-rand-params).
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(a) (b) (c)

Figure 5.4: MuJoCo environments for testing the proposed offline meta-RL
algorithm. (a) Half-cheetah. (b) Ant. (c) Walker.

• Cheetah-dir: This meta-testing benchmark is based on the half-cheetah

robot (Figure. 5.4a). Two different reward functions that assign large

rewards when the robot moves towards the left or the right direction create

two tasks. Both tasks are used for both meta-training and meta-testing.

This experiment does not test the meta-generalization performance but

instead serves as a simple sanity check.

• Cheetah-vel: Same to cheetah-dir, cheetah-vel is also based on the half-

cheetah robot. However, we randomly generated 40 reward functions

that assign the highest reward when the robot moves at a specific velocity

toward the right direction, each corresponding to a unique task. Thirty-

five tasks are used for meta-training, and five tasks are held-out sets for

meta-testing.

• Ant-dir: Ant-dir is another benchmark where we vary the reward function

among tasks. It is based on the ant robot (Figure 5.4b) that has more

complicated dynamics than the half-cheetah due to a larger number of

joints. We generated fifty random tasks with the different target moving
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directions in the entire 360-degree horizontal plane, among which five

are held out for meta-testing.

• Walker-rand-params: Unlike the above three benchmarks, walker-rand-

params are based on randomly initialized joint parameters of the walker

robot (Figure. 5.4c) that determines the environment dynamics. Same

as ant-dir, we create forty-five tasks for meta-training and five tasks for

meta-testing.

For each unique task in all four tasks, we train a SAC policy for one million

steps. The policy checkpointed at 0th, 40,000th, and 960,000th steps are used

for performing rollouts in the corresponding task to collect offline buffers with

random, medium, expert quality data, respectively. All offline buffers contain

one-million steps of transition tuples. Additionally, the entire transition data

encountered by the SAC policy during training is used as another type of

dataset that contains a mixture of random, medium, and expert-level data. The

SAC policy training results for all four environments are shown in (Figure 5.5).

Next, we evaluate the performance of M2BOP on all 16 offline datasets (four

environments, each with four different quality levels). Through the experiment,

we aim to answer three questions: 1) can M2BOP outperform previous offline

meta-RL methods, especially when low-quality demonstrations exist in the

offline buffer? 2) how do different quality levels affect the performance of

M2BOP? 3) how sensitive is M2BOP to hyperparameters, including the total

number of adaptation steps K, and the planning parameters including action

noise σ and temperature κ?
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Figure 5.5: Training progress of SAC on all four environments. We rollout the
saved policy at step 0, 40,000, and 960,000 collecting random, medium, and
mixed datasets, respectively. For mixed datset, we use the entire experience
replay buffer accumulated throughout the entire training process.

Table 5.2: Hyperparameters for grid search of M2BOP.

Hyperparameter Values

Adaptation steps K [1, 3, 5, 10, 20, 40, 100]
Action noise σ [0.1, 0.2, 0.3, 0.4]
Temperature κ [1, 2, 3, 4]

5.4.1 Impact of Dataset Quality

As the first experiment, we evaluate M2BOP on all four MuJoCo environ-

ments, each with four different dataset quality levels. For each testing task,

we did a grid search of three critical hyperparameters (Table. 5.2) of M2BOP

and report the best performance. We randomly sampled five trajectories from

the offline dataset for each task to adapt the environment model. We used

an inner learning rate of 0.01 and an outer learning rate of 0.00005 for all our
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experiments during the meta-training and meta-testing process.

As a comparison, we also include the performance of meta-behavior cloning

(Meta-BC), which is the ablated version of M2BOP without the planning module,

and two state-of-the-art offline meta-RL algorithms including FOCAL (Li et al.,

2021) and MACAW (Mitchell et al., 2021) in Table 5.3.

Table 5.3: Comparison between our proposed algorithm and baseline algo-
rithms on all four environments, each with four dataset types. Return values
of MACAW and FOCAL are the test performance obtained through processing
the original papers’ learning curve figures. Some cells are filled with *****
because the results were not reported.

Dataset Type Environment Meta-BC M2BOP MACAW
(Mitchell
et al., 2021)

FOCAL
(Li et al.,
2021)

Random

cheetah-dir -9.62 −3.35 ***** *****
cheetah-vel -278.24 −273.60 ***** *****
ant-dir 185.26 194.06 ***** *****
walker-params 75.60 122.64 ***** *****

Medium

cheetah-dir 826.44 881.75 ***** *****
cheetah-vel -241.70 -230.71 ***** *****
ant-dir 439.40 572.65 ***** *****
walker-params 377.18 380.99 ***** *****

Expert

cheetah-dir 1212.36 1276.06 ***** *****
cheetah-vel -65.31 -59.19 ***** -122.57
ant-dir 646.92 626.52 ***** *****
walker-params 395.50 424.49 ***** *****

Mixed

cheetah-dir 1155.72 1275.60 919.22 1139.71
cheetah-vel -85.81 -62.46 -114.18 *****
ant-dir 525.47 620.64 354.93 537.41
walker-params 339.02 358.96 381.80 379.01

Notably, M2BOP outperforms meta-BC on 15/16 tasks, which proves the

effectiveness of the offline planning module. Additionally, M2BOP outperforms

MACAW and FOCAL on 3/4 mixed type datasets. This result confirms our
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hypothesis that M2BOP is especially useful when low-quality demonstrations

exist in the offline dataset.

5.4.2 Effect of Adaptation Steps

Next, we performed a fine-grained analysis of the meta-testing performance

by varying the number of adaptation steps K (Algorithm 2). We note that a

small number of adaption steps (≤ 3) suffice for the half-cheetah environment

with the simplest dynamics, while it’s beneficial to have more adaptation steps

in environments with more complicated dynamics (Figure 5.6). The same trend

holds for both meta-BC and M2BOP.

5.4.3 Sensitivity to Planning Hyperparameters

Another important factor that affects the performance of M2BOP is the

hyperparameters used in the planning phase. Specifically, we investigate the

sensitivity of M2BOP to action noise σ and temperature κ (Figure 5.7). Notably,

for datasets that allow accurate environment model training and behavior

policy (i.e., expert, mixed), the highest return was obtained with a low action

noise and a relatively large temperature value. This is reasonable because

the learned behavior policies provide high-quality action samples, making a

high-level of exploration unnecessary. Additionally, since the trained models

accurately estimate the returns, a large temperature value can be selected to

focus on action trajectories that are predicted to give high returns.
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Figure 5.6: Effects of the number of adaptation steps on the testing returns.

5.5 Conclusion

We proposed the first model-based offline meta-RL algorithm M2BOP. On

four different MuJoCo environments across random, medium, expert, and

mixed datatype, M2BOP demonstrates superior performance compared to

baseline methods. The proposed method is especially effective in learning per-

formant policies when the dataset contains both low-quality and high-quality

demonstrations. We believe the superior performance of M2BOP is due to the
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Figure 5.7: Sensitivity of M2BOP to the planning parameters σ and κ. The
highest returns on random datasets are obtained with large σ values. As the
data contain more optimal demonstrations, a smaller action perturbation of 0.1
is required for achieving the optimal performance.

benefit of learning an explicit model, which could provide better extrapolation

that counter-strikes the distributional shift issue in offline reinforcement learn-

ing. In the future, improved variants of model-based offline planning can be

incorporated to further improve the offline learning performance of M2BOP.
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CHAPTER 6

Conclusions and Future Work

Learning to optimize is an efficient approach to solving complicated op-

timization problems in physical science and engineering, including inverse

design and manufacturing process parameter optimization. We identify 1) large

design space, 2) non-uniqueness of global optima and 3) costly data collection

as the most common challenges when developing learning-to-optimize meth-

ods. To tackle these challenges and make the learning-to-optimize paradigm

widely adopted in physical science and engineering fields, we developed re-

inforcement learning, hybrid machine learning, and optimization approaches

to efficiently navigate the promising design space. Specifically, we applied the

developed methods for multiple important applications, including perfect ab-

sorber, incandescent light bulb filter, and chrome coating replacement designs.

The discovered optimal designs can outperform previous designs obtained by

experts. Additionally, we proposed a generic offline meta-reinforcement learn-

ing algorithm that can be used for manufacturing optimization applications

when observational datasets on related manufacturing tasks are available. We

demonstrated that the proposed methods could perform better than several
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baseline approaches on standard robotic locomotion simulators. However,

challenges remain when applying learning-to-optimize to solve real-world

problems. We list the important future research directions as follows.

6.1 Offline Model-Based Optimization

Similar to the offline meta-reinforcement learning problem we investigated

in Chapter 5, offline model-based optimization aims to learn to optimize a

target property with completely offline data (Trabucco et al., 2021a,b; Fu and

Levine, 2021; Yu et al., 2021a; Kumar and Levine, 2020). Like offline reinforcement

learning, offline data for model-based optimization problems allows one to

train a machine learning model with an adequate understanding of the un-

derlying process. Due to the inability to collect additional data, model-based

optimization shares the distributional shift challenge with offline reinforcement

learning. The major difference between offline model-based optimization and

offline reinforcement learning is the procedure used to obtain the best solution

from the offline-trained model. In offline reinforcement learning, approximate

dynamic programming or planning is used for obtaining the best action se-

quence. The offline model-based optimization process is arguably much easier,

which can be a simple gradient-based procedure. As long as the distributional

shift issue is under control, the optimized solution can often outperform the

best solution contained in the dataset (Trabucco et al., 2021a). Offline model-

based optimization is especially suitable for inverse design and manufacturing

process parameter optimization problems involving expensive or dangerous

merit function evaluation processes.
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Figure 6.1: Offline model-based optimization. An observational dataset is
collected from the real environment and later used for training a surrogate
model for the true underlying process. A query process, often a gradient-based
approach, is applied to query and find the best input to the trained surrogate
model. The optimized input to the model is returned as the optimal solution.

In Chapter 5, we proposed an offline meta-reinforcement learning algo-

rithm that can be used for closed-loop control in the manufacturing process.

Another family of manufacturing process optimization problems does not

require adaptive control. Instead, the optimal process parameters are chosen at

the beginning of the manufacturing process and fixed throughout the entire

process. Additive manufacturing methods for printed electronics including

inkjet printing (Minnette and Sebastian, 2021) and aerosol printing (Zhang et al.,

2019a) are notable examples. Offline model-based optimization has not been

applied to the additive manufacturing process optimization problem yet, but

we believe that adopting the offline model-based optimization paradigm can

greatly speed up the additive manufacturing process optimization process.

As a concrete application example, we are working with our collaborators

from Boise State University on both inkjet printing and aerosol jet printing to
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optimize both manufacturing processes using offline data. Two performance

metrics for the printing process are overspray and line smoothness. As the first

step, we used design of experiment (DOE) to sample process parameters that

uniformly cover the entire design space and collected real printing results (Fig-

ure 6.2). The next step is to apply offline model-based optimization to optimize

the printing process parameters and validate the optimization parameters via

experiments.

(a)

(b) (c) (d)

Figure 6.2: Aerosol jet printing data collection process. (a) The apparatus for
aerosol jet printing. (b) Process parameters sampled with Latin Hypercube
Sampling. (c) A printed conducting line structure. Original microscope image
(top) and processed image for measuring printing quality (bottom). (d) Image
processing process for obtaining the overspray and line smoothness labels from
the collected images.
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6.2 Integrating Physics with Learning-to-Optimize

Meta-learning provides an efficient approach to reduce the sample complex-

ity of learning-to-optimize methods. However, it still has a strong limitation

that data from related tasks must be provided in order to meta learn, which may

not always be feasible. Other methods that could reduce the sample complexity

must be considered in this case. Fortunately, most real-world engineering

problems are grounded on well-studied physics models in the form of partial

differential equations (PDEs), which can provide the machine learning model

with valuable information and speed up the learning-to-optimize process.

Recently, physics-informed neural networks have been proposed to infuse

knowledge of PDEs into neural network training (Raissi et al., 2019) and solve

inverse design problems (Chen et al., 2020; Lu et al., 2021). However, the inverse

design problems solvable with existing physics-informed neural networks are

mostly simple toy examples and can be accurately described by a set of PDEs. It

remains an open research question on how physics-informed neural networks

could be applied to problems where PDEs can only describe partial behavior

or provide an approximation to the underlying physical process.

6.3 Extracting Knowledge from Learned Optimizers

Finally, obtaining new knowledge from solving a physical science or engi-

neering problem is as, if not more, important than solving the problem itself.

Fortunately, various methods have been developed to interpret trained neural

networks. Such methods include 1) knowledge extraction approaches such as

symbolic regression (Udrescu and Tegmark, 2020) and 2) indirect model explana-
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tion approaches such as counterfactual explanation (Karimi et al., 2020), LIME

(Ribeiro et al., 2016), and SHAP (Lundberg and Lee, 2017; Yeung et al., 2021a),

to name an important few. To allow the learning-to-optimize paradigm to

truly revolutionize the scientific discovery and engineering innovation pro-

cess, methods that allow knowledge extraction should be incorporated in

learning-to-optimize methods. Additionally, researchers should carefully study

the interaction between users and such interpretation methods to allow easy

adoption by domain experts (Wang et al., 2018a; Rudin, 2019).

Concluding Remarks We believe that integrating physics with sample-efficient

and explainable machine learning approaches for learning-to-optimize can lead

to a data-driven scientific discovery engine. The research is still in its infancy. Such

an AI system could revolutionize how science and engineering are done and

lead to new innovations at a pace we could never imagine before. However, we

believe humans will always be at the center of innovation. To maximize the

utility of scientific AI systems, researchers should build to assist rather than to

replace domain experts for a synergistic combination of human intelligence and

machine intelligence that can advance the frontiers of science and technology.

112



BIBLIOGRAPHY

Achiam, J. (2018), Spinning Up in Deep Reinforcement Learning.

Agarwal, R., D. Schuurmans, and M. Norouzi (2020), An optimistic perspective
on offline reinforcement learning, in Proceedings of the 37th International
Conference on Machine Learning, Proceedings of Machine Learning Research, vol.
119, edited by H. D. III and A. Singh, pp. 104–114, PMLR.

Agrawal, M., and P. Peumans (2008), Broadband optical absorption enhance-
ment through coherent light trapping in thin-film photovoltaic cells, Optics
express, 16(8), 5385–5396.

Angermueller, C., D. Belanger, A. Gane, Z. Mariet, D. Dohan, K. Murphy,
L. Colwell, and D. Sculley (2020a), Population-based black-box optimization
for biological sequence design, in Proceedings of the 37th International Confer-
ence on Machine Learning, Proceedings of Machine Learning Research, vol. 119,
edited by H. D. III and A. Singh, pp. 324–334, PMLR.

Angermueller, C., D. Dohan, D. Belanger, R. Deshpande, K. Murphy, and L. Col-
well (2020b), Model-based reinforcement learning for biological sequence
design, in International Conference on Learning Representations.

Ardizzone, L., J. Kruse, C. Rother, and U. Köthe (2019), Analyzing inverse prob-
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