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ABSTRACT

New technologies call for the development of new materials. One new type of material

with exciting electronic, magnetic and optical properties are colloidal crystals. Binary

colloidal crystals, which incorporate two different types of colloidal particle into the same

structure, promise opportunities in designing multifunctional materials. In this thesis

we investigate the self-assembly of bidispere colloids into colloidal crystals. Despite the

simplicity of such colloids, they self-assemble into diverse colloidal crystals in experiment.

The primary focus of this thesis is to address the fact that much of the experimentally

reported behavior is not understood theoretically, limiting us from using simulation to

guide experiments. Here we seek to improve our understanding by finding the important

factors for the self-assembly of bidisperse colloids.

In the first project, we explore the influence of interaction softness on the stability of

binary crystals, finding that a minimal amount of softness will destabilize several dense

packings and promote the formation of experimentally observed crystals. In the second

project, we demonstrate that the stoichiometry of a binary colloidal mixture can be

tuned to promote self-assembly, finding that adding an excess of the smaller component

can enable self-assembly. In the third project, in collaboration with Chris Murray’s group

at the University of Pennsylvania, we demonstrate the short-ranged attraction enables

the self-assembly of binary nanoparticle superlattices, finding attraction necessary for

obtaining the structures observed experimentally by our collaborators. In the fourth

project, we construct a guide for the self-assembly of non-specifically interacting particles,

characterizing the phases (including a quasicrystal) that self-assemble from hard sphere-

like and attractive particles. In the fifth project, again in collaboration with the Murray

xiii



group, we explore the self-assembly of heterodimer nanoparticles, finding that they can

self-assemble into a colloidal crystal exhibiting alignment between the atomic lattices of

neighboring nanoparticles, which can lead to unique material properties.

In these projects, we uncovered many important factors for self-assembly in bidis-

perse systems, including interaction softness, stoichoimetry, and short-ranged attraction.

In doing so, we substantially pushed forward our ability to conduct self-assembly with

bidisperse colloids.
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CHAPTER I

Introduction

The design of new materials is critical for technological advancements. One relatively

new class of materials are colloidal crystals, which are solids composed of colloidal par-

ticles arranged in a periodic manner. A diverse array of colloids have been incorporated

into these “colloidal crystals,” including various types of nanoparticles[1, 2, 3, 4, 5, 6]

(distinguished by having diameters in between 1 and 100 nm), polymer beads[7] and

microgels[8, 9], natural silica spheres[10], and even virus particles[11, 12]. The properties

of the colloidal particles in combination with their arrangement in the crystal can give

rise to materials with unique electronic[13], magnetic[5, 14], and optical properties[15].

Multicomponent colloidal crystals have also been synthesized [16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26] and, like in atomic systems systems[27], tend to exhibit greater structural

diversity than in single-component systems. Particularly high structural diversity has

been observed in binary colloidal crystals[28], which incorporate two different types of

colloids into their structures. The two types of particles can be made of different materials,

which can lead to even more unique material properties[29, 30, 31, 32, 33].

Self-assembly, in which the constituents of a system organize themselves into ordered

structures, is a useful way to prepare colloidal crystals from a colloidal dispersion. A key

advantage of self-assembly is its simplicity. Frequently evaporation of the solvent suffices

to induce self-assembly[34, 35], and evaporation of a multicomponent colloidal solution

suffices to produces multicomponent colloidal crystals[22].
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The structure of the colloidal crystals obtained from self-assembly depends upon the

interactions between the colloidal particles and environmental conditions. Because the

structure exerts a strong influence on material properties[29, 15, 30, 31, 32, 33, 36] much

effort has been devoted to understanding how colloidal particles may be engineered to

self-assemble into a particular structure. Simulations have played an important role in

this effort, as they enable us to predict the self-assembly behavior of particles interact-

ing with exactly specified interparticle forces, like screened electric charges[37, 38] or

bonding between surface-bound strands of DNA[39, 40, 41, 42]. Furthermore, because

simulations enable interactions like dipole moments and charge[43, 44] to be tuned until

the experimentally observed behavior is reproduced, simulations can be used to infer the

interactions of experimental colloids.

Much progress has been had in understanding and predicting the self-assembly be-

havior of single-component systems. These include forward studies[45, 46, 47, 42, 48] in

which self-assembly is attempted with many different types of colloids, and inverse design

strategies[49, 50, 51, 52] where one searches for particles that self-assemble into a partic-

ular structure. Some key successes are understanding how attractive patches[45, 53] and

particle shape[47, 49] can lead to diverse self-assembly behavior.

Less progress has been had in understanding and predicting the self-assembly be-

havior of binary systems. There are many reports of binary colloidal self-assembly

in experiment[17, 18, 19, 21, 22, 23, 24, 25, 26], but, with notable exceptions like 2-

dimensional systems[54, 55] and systems in which unlike particles attract each other[39,

42], attempts to simulate the self-assembly of binary colloidal systems frequently fail to

replicate experiments or self-assemble at all. This inability extends to bidisperse mix-

tures of particles, in which the two types of particles are distinguished by their size. Our

inability to model the self-assembly behavior of even these simple particles, who exhibit

diverse self-assembly behavior in experiment[18, 22, 56] indicates that we are missing key

contributions to self-assembly in binary systems.
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In this thesis we examine the self-assembly of bidisperse mixtures of particles, focusing

on revealing the missing contributions that have stymied previous progress. In chapter II,

we review how thermodynamics and kinetics are used to explain and predict self-assembly.

In chapter III, we discuss the methods used in this thesis. In chapter IV, we examine the

influence of interaction softness on the stability of different binary crystals, finding that

a slight amount of softness can thermodynamically destablize many phases. In chapter

V, we demonstrate that the stoichiometry of binary mixtures can be tuned to enhance

self-assembly kinetics. In chapter VI, we, in collaboration with the Murray group at the

University of Pennsylvania, demonstrate the importance of short-range interactions in the

self-assembly of binary nanoparticle superlattices. In chapter VII, we present a guide to

the self-assembly of nonspecifically interacting particles developed by conducting a large

exploration of simulation conditions. In chapter VIII, we, again in collaboration with the

Murray group, show that a nanoparticle superlattice exhibiting atomic alignment can be

obtained through the self-assembly of heterodimer nanoparticles. Finally, we conclude in

chapter IX by discussing our current outlook on binary colloidal self-assembly.

1.1 Definitions

We use a variety of abbreviations throughout this work. We list commons ones in

Table 1.1.
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Table 1.1: Abbreviations

IPL inverse power law potential
WCA Weeks-Chandler-Anderson potential
MD molecular dynamics
MC Monte Carlo
E total energy
T temperature
P pressure
V volume
µ chemical potential
N particle number
A Helmholtz free energy
H enthalpy
G Gibbs free energy
ρ number density; N/V
ϕ packing fraction
ϕm maximum packing fraction that a crystal can have
k Boltzmann constant
NV T the thermodynamic ensemble in which N , V , and T are kept constant
NPT the thermodynamic ensemble in which N , P , and T are kept constant
Ω microcannonical partition function
FCC face-centered cubic crystal
BCC body-centered cubic crystal
BNSL Binary nanoparticle superlattice (In Ch.6 we use “nanocrystal” instead of “nanoparticle”)
xs fraction of small particles
xa fraction of particles of type a
µa
F chemical potential of a particles in the fluid

µC chemical potential of particles in a crystal phase
σij length scale of interaction between two particles i and j; depends on pair potential
σ length scale used in the simulations; typically set to σLL where L indicates large particles
ϵ energy scale of interaction between two particles, dependd on pair potential
γ size ratio between two particles in a binary mixture
NL:NS stoichiometry of a system in terms of the number ratio of large to small particles
m typically particle mass, but also parameter for attractive well range in Mie potential (Ch. 6)
τ units of time; typically τ = σ(m/ϵ)1/2

FLL intermediate scattering function between large particles
qi Steinhardt order parameter with ℓ = i
S(q) structure factor
s separation between lobes in a heterodimer
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CHAPTER II

Thermodynamics and Kinetics

According to second law of thermodynamics[57], the entropy of an isolated thermody-

namic system cannot decrease. Thus, entropy must increase during colloidal self-assembly.

In a system at constant volume, number of particles, and energy, the entropy (S) can be

written as:

(2.1) S =
1

T

(
E + PV −

∑
µiNi

)
where T is the temperature, E is the energy, P is the pressure, V is the volume, µi is the

chemical potential of species i, and Ni is the number of particles of species i. Because

entropy can only increase, an isolated system tends towards the state with the highest

entropy.

Specifying E and V is generally not the most convenient way to parameterize a system.

Instead, if the more convenient variables P and T are specified, the system tends towards

the state with the lowest Gibb’s free energy:

(2.2) G = E + PV − TS.

G accounts for the entropy of the environment (which may change due exchanging energy

and volume) in addition to the entropy of the system. G also isolates the chemical

potential of different species, as can be shown by substituting equation 2.1 into 2.2:

(2.3) G =
∑

µiNi.
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Statistical mechanics explores how the properties and interactions of individual par-

ticles (like atoms or colloidal particles) give rise to macroscopic quantities like S and P .

Specifically, S is related to the number of microstates (unique configurations of particles)

that a system can take:

(2.4) S = k lnΩ

where k is Boltzmann’s constant and Ω is the number of microstates. This formulation

provides another understanding of the second law: the system moves towards macrostates

(the macroscopic state of system; e.g, gas or liquid) with more microstates. For example,

if in an isolated system at -1 °C there are 1010 microstates associated with liquid water

and 10500 associated with ice, ice has a higher entropy than the liquid. If we assume

that each microstate is equally probable (as is done for isolated systems in equilibrium

statistical mechanics), we conclude that the system is 10500/1010 = 10490 times likelier

to be ice than liquid. The most probable phase is deemed the equilibrium phase and

“thermodynamically stable.” The most probable phase at constant T and P is computed

similarly, except the probability of each microstate must be weighted by the appropriate

Boltzmann factor[58].

In colloidal systems, the initial dispersion is analogous to a conventional fluid phase,

and the colloidal crystal is analogous to a solid phase. Thermodynamic calculations (see

chapter III) enable precise estimates at what density and temperature the crystal be-

comes favored over the dispersion. Multiple solid phases can exist, each distinguished by

their own crystal structure. By computing the G of the competing solid phases, we can

determine which is the equilibrium phase. For these reasons, thermodynamics underpins

many methodologies for designing particles with desirable self-assembly behaviors. These

methodologies include forward explorations of parameter space[59], in which the equilib-

rium structure is evaluated for many types of particles, and inverse techniques like digital

alchemy[49], in which the particles who possess the highest entropy for a given structure

is sought.
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However, deviations from equilibrium predictions are often observed. For example,

Lennard-Jones particles can self-assemble into a BCC phase under conditions where

FCC is the stable phase[60], and some liquids form glasses instead of equilibrium solid

phases[61]. These are not violations of the second law of thermodynamics, because there

is no upper limit on the time required to reach the equilibrium phase and thus non-

equilibrium phases may persist far longer than the time scales of interest. Additionally,

there is no guarantee that a system first transitions into the equilibrium phase; another

non-equilibrium phase may form instead[60, 62, 63]. These non-equilibrium phases are

called “metastable,” and their persistence hinders methodologies using thermodynamics

to predict self-assembly behavior.

The rate at which phase transitions occur is governed by their reaction kinetics. The

liquid-solid transition underpinning colloidal self-assembly generally begins with nucle-

ation, in which a small nucleus of the new phase forms and grows within the old[64].

The nucleation rate depends strongly on the degree of supercooling. At low supercool-

ing, nucleation is slow due to large energy barriers separating the phases, but at high

supercooling it can be slowed by low particle mobility because high supercooling tends

to correspond to high pressure or low temperature. Therefore an optimal supercooling

exists, intermediate between low and high, where the nucleation rate goes through a max-

imum. In many systems, nucleation is rapid enough to occur at supercoolings far away

from the maximum; however, in binary colloidal mixtures, where self-assembly may take

minutes to months[18, 26], proximity to the maximum can be a necessity.

Throughout this thesis, reaction kinetics play a role in determining the phases we get

from our self-assembly simulations. In Chapters V and VI, we will use the degree of su-

percooling to explain why the self-assembly kinetics are affected by system stoichiometry

and interparticle attractive forces.
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CHAPTER III

Methods

In this thesis we use a wide array of computational methods to characterize the be-

havior of colloidal particles. These include molecular dynamics simulations (MD), Monte

Carlo simulations, order parameter calculations, and free energy calculations. We discuss

these in this chapter, but include more chapter-specific methods within the respective

chapter.

According to Newton’s second law, a particle’s acceleration equals the force applied

to it divided by its mass. Therefore, if we know the force on every particle in a system,

we can compute the particles’ future trajectory. In many body systems, we must nu-

merically solve for the trajectory, as no analytical solution exists. This is the basis of

molecular dynamics. In this thesis, we specify force fields between colloidal particles in

terms of a pair potential. We use the HOOMD-blue simulation toolkit to conduct MD

simulations[65, 66].

According to equilibrium statistical mechanics, the probability of a given microstate

is proportional to e−E/kT , where E is the microstate’s energy as determined by a given

pair potential. Using Monte Carlo with the Metropolis-Hastings algorithm[67], one can

draw a chain of system configurations where the probability of each is proportional to

e−E/kT . If the chain is long enough, it represents the equilibrium distribution of system

configurations, and thus can be used to compute quantities like pressure and energy.

This is the basis of molecular simulation with Monte Carlo. Importantly, Monte Carlo
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provides a way to simulate hard (impenetrable), anisotropic particles, and we do so here

using HOOMD-blue.

To determine whether self-assembly is occurring, one must be able to classify particles

in the simulation as belonging to a fluid phase or a solid phase. We do so using Steinhardt

order parameters[68]. They are constructed for each particle by evaluating several spher-

ical harmonics over the relative positions of that particle’s neighbors and then combining

the spherical harmonics in a rotationally invariant fashion. Different coordination shells

return different values of the order parameters. Because solids tend to have very specific

coordination shells, Steinhardt order parameters can distinguish solid-like particles from

the fluid. An important application is tracking a solid’s growth with time. We use the

freud software package[69] to compute Steinhardt order parameters.

In Chapter II, we discussed the usefulness of the Gibb’s free energy (G) in predicting

phase behavior. Using thermodynamic integration, we can compute changes in G for a

system not undergoing a discontinuous phase transition:

(3.1) ∆G =

∫ P2

P1

V dP

(3.2) ∆(G/T ) = −
∫ T2

T1

H

T 2
dT.

If the Gibb’s free energy at any pressure and temperature is known, we can use equations

3.1 and 3.2 to find it at any other temperature and pressure.

Thus one needs a reference state where the free energy is known for each phase. For

fluid phases, the G of the ideal gas is a suitable reference state:

(3.3) Gig = kT ln
Pλ

kT

where λ is the de Broglie wavelength. The value of λ does affect phase behavior because

it is equal for all phases.

For solid phases we can use the Frenkel-Ladd method[70] to compute free energies.

With Frenkel-Ladd, we compute the difference in free energies between an Einstein crys-

tal, whose free energy is analytically calculable, and a real solid. Here we use a variant
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called the Einstein molecule method[71], where the position of a single particle is fixed

instead of the solid’s center of mass like in the original formulation. More details can be

found in other references[67, 71].

The free energy of each phase can be used to construct phase diagrams. Doing so in

single-component systems is straightforward because the equilibrium phase at any given

P and T is simply the one with the lowest G. Phase coexistence occurs at the T and P

where the G of different phases are equal. Once the phase diagram is known for constant

temperature and pressure, it can be mapped to other representations (e.g., T and V )

by computing values of the new coordinates at the coexistence lines. We note that, due

to Gibb’s phase rule[57], coexistence lines map to coexistence regions when going from

constant P to constant V .

Phase diagrams in binary systems are complicated by stoichiometry, which is typically

given as xs, the fraction of small particles. Crystalline phases typically have a particular

stoichiometry (e.g, the xs of NaCl is 1/2), and G may be minimized by the coexistence of

two phases. If both phases are solids, we can determine the stable combination of phases

by looking for the pair that minimizes G, but the situation is more complicated for fluid-

solid coexistence. In this case we can compute the chemical potential of individual species

a and b in the fluid:

(3.4) µa
F = µF − xb

∂G

∂xb

(3.5) µb
F = µF + (1− xb)

∂G

∂xb

.

where µF is the chemical potential of a fluid with b particle fraction xb.

A fluid is in equilibrium with a solid if

(3.6) µC = (1− xc)µ
a
F + xcµ

b
F

where µC is the chemical potential of the solid and xc is the fraction of b particles in the

solid structure.
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In addition to allowing us to compute phase diagrams, our free energy calculations

provide us with ∆µ, a measure of the degree of supercooling. In later chapters of this

thesis we use ∆µ to explain why varying system parameters can make self-assembly more

or less difficult.

Throughout this thesis we used Ovito[72] to visualize our systems and signac[73] for

data and workflow management.
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CHAPTER IV

The Influence of Softness on the Stability of Binary Colloidal
Crystals

The contents of this chapter were adapted from ”Influence of softness on the stability

of binary colloidal crystals.”, R. A. LaCour, C. S. Adorf, J. Dshemuchadse, S. C. Glotzer.

ACS nano (2019)[59].

4.1 Introduction

Binary systems of spheroidal colloids self-assemble into many more colloidal crystal

phases than do unary systems of the same particles. [16, 18, 22, 74, 75, 56] These phases,

which typically have structures analogous to intermetallic or ionic crystals, are interest-

ing for their structural diversity and promising functionalities. [13, 32, 31, 33, 35] The

particles may differ in composition, charge, size and shape, each of which influences their

self-assembly behavior and potential applications. Models based on hard particle pack-

ings are often invoked to explain experimentally observed phases, with varying degrees

of success[76, 77, 78, 79, 56, 80]. Failure of packing models to explain observed phases –

in particular for particles with screened electrostatics[81, 17] and/or ligand shells,[82, 56]

could be due to entropic forces [83], or because the interparticle interaction in those

systems is considerably softer than the excluded volume (hard particle) interaction con-

sidered by packing models[84, 85, 86, 26]. While the role of entropy has been widely

considered[87, 88, 89, 90, 74, 47, 83] the effect of interaction softness on self-assembled

colloidal crystal phases has received less attention[91, 92, 90, 86, 93], especially for binary
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systems.

Here we examine the enthalpic influence of softness on the colloidal crystal phase

behavior of binary mixtures of spherical particles of two different sizes interacting via

an additive inverse power law (IPL) potential. We investigate a much wider range of

softness than has been reported to date by tuning the exponent of the IPL to vary

the distance over which the repulsive interaction falls off from the surface of a particle.

Large exponents describe a very rapid decay (and thus “harder” interparticle interaction)

while small exponents describe a slow decay (becoming a 1/r decay with an exponent

of one). To isolate the role of softness from other effects, we perform zero-temperature

enthalpy calculations (which disregard entropy) to determine the ground state stability of

different phases. We find several experimentally observed phases that fail to be described

by packing models; instead, we show that these phases – which have a small number

of interparticle contacts and a tendency for icosahedral local order – are stabilized by

particle softness. We also use finite temperature free energy calculations to probe the

influence of temperature for a few phases, generally finding agreement with our ground

state calculations with the exception of a recently reported dense packing phase.[94]

We further find that a small amount of softness (described by a remarkably large IPL

exponent) can influence phase behavior away from that describable by packing models.

These deviations from hard sphere packing behavior partially explain why the packing

fractions of different phases do not solely determine their self-assembly behavior, as is

commonly invoked. We characterize the degree of softness necessary to destabilize any

binary phases relative to phase-separated unary phases for the additive IPL potential,

which has relevance for the modeling of binary systems and our understanding of the

interaction between different species of particles. Finally, we relate our results to recent

experimental reports, elucidating how repulsive forces contribute to the formation of

particular structures observed in experiments.
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4.2 Model

The use of packing models to understand the behavior of condensed phases stems in

part from the ground state of the hard sphere model, in which particles are prohibited

from overlapping; the ground state is the phase with the highest packing fraction at

infinite pressure. Throughout this work we use the term ϕm to describe the maximum

packing fraction obtainable by hard spheres in a particular structure. The binary hard

sphere model, in which the particles can be one of two different sizes, describes the phase

behavior of many binary colloidal systems, as shown by free energy calculations.[87, 95,

15, 90] However, no real particle is perfectly hard,[84, 85] and in many cases—particularly

the self-assembly of metal and semiconductor nanoparticles—experimental results differ

from binary hard sphere predictions.[17, 75, 74, 96, 22]

In contrast to hard particle models, softly repulsive pair potentials in binary systems

have received much less consideration. In 2009, Hynninen et al. found the CsCl and

Laves phases to be stable for a particular binary Yukawa potential.[90] In 2015 and

2016, Travesset and Horst found several more binary phases to be stable for a binary

IPL model. [86, 93] However, the Laves phases were the only binary structures found

to be stable when the potential was additive (where unlike particles interact as though

their size is the average of the two particles); observing other phases required reducing

the repulsion between unlike particles. Here we ascertain how softness affects crystal

stability by considering a much wider range of softness.

We studied the IPL potential in Equation 4.1; its parameterization for binary systems

is shown in Figure 4.1.

(4.1) Uij = ϵ ·
(σij

rij

)n
The quantity n is related to the hardness of the particles, σij governs their size, and ϵ

determines the units of energy. The quantity γ in Figure 4.1 gives the size ratio between

large and small particles. The potential is specified to be additive as is physically accurate
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Figure 4.1: a) Plots of the IPL model for different values of n and b) the effective size of different types of
particles. The pair potential is given by Equation 4.1 and is plotted over r/σij—the distance
between two particles i and j divided by the average size of the particles. The large and
small particles are represented by “L” and “S”, respectively. The quantity σ is the size of the
large particles, and γ is the size ratio between the small and large particles. Unlike particles
interact as though they are the average size of the two particles.

in the limit of n approaching ∞. For n = ∞, we obtain the binary hard sphere model;

for n = 1, we obtain the potential describing Coulombic repulsion.

The phase behavior of our model depends upon n, γ, the stoichiometry, and a variable

incorporating both the pressure and temperature. Note that, for the IPL model, giving

ϵ as ϵij to depend on the types of particles interacting does not increase the generality of

the potential as any variation in ϵij can also be accounted for through variation in σij.

The ability to write the temperature and pressure of the IPL model as one variable results

from the its unique thermodynamic scaling properties and is not possible for most pair

potentials.[91] We review these scaling properties in section 4.6.2. By constraining T = 0,

we are then left with the aforementioned three parameters: n, γ, and the stoichiometry

of the system. We will present two slices of the model’s phase diagram at constant

stoichiometry and four slices at constant n.

We analyze the phase behavior of our potential at constant pressure because the

stability of densely packed phases for hard spheres at higher pressures can be justified on
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the basis of enthalpy alone. The stability of these phases is often understood in terms of

free volume theory, according to which particles in the densest packing phases will have

more volume available to them than in other arrangements, and thus be entropically

favored. However, at constant pressure, the Gibbs free energy in the limit of either zero

temperature or infinite pressure can be written as:

(4.2) lim
P→∞

G = lim
T→0

G = PV

Note that the equivalence of these two limits follows directly from the well-known ther-

modynamic scaling (Pσ3/kT ) between pressure and temperature in hard particle systems

(see section 4.6.2). Densely packed phases will minimize V , motivating the idea that they

are the ground states of the system. For completeness, we give two more rigorous proofs

that the densest packing phase has minimal free energy in the limit of zero temperature

at finite pressure: in section 4.6.1 we take the limit of infinite n in our equation for the

enthalpy of soft spheres, and in Section section 4.6.2 we take the zero temperature limit

of our NPT partition function. Thus, we should expect (and do observe) that densely

packed phases will arise in constant pressure ground state calculations of the enthalpy

for our potential as n approaches ∞.

The IPL model exhibits thermodynamic scaling of the form Pσ3

ϵ
/(kT

ϵ
)(3/n+1).[97] Note

that as n approaches ∞, the scaling reduces to that of hard spheres, and that the P → ∞

behavior is equivalent to that of T → 0. Likewise, one would expect the specific value

of the pressure to not affect phase behavior at T → 0 because the scaling term diverges

in that limit regardless of P . Indeed, we find this in our derivation of an equation for

H(T = 0, P ) in section 4.6.1.

Although the IPL model does not perfectly describe colloidal interactions, we believe it

is sufficiently general to account for the behavior of many colloids. In fact, the effective n

for several colloidal polymer particles have been previously estimated[84, 85, 98] and are

often similar to the values of n we investigate. In other binary self-assembly experiments,

the nature of the interparticle forces during self-assembly is less clear,[99] but similari-
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ties between the self-assembled structures formed from many metal and semiconductor

nanoparticles and those formed with other softly repulsive particles suggest that repulsive

forces play a key role in their assembly as well. Likely the most notable way in which our

model deviates from other notions of softness is our neglect of 3-body interactions, such

as the deformation of two particles in contact influencing the way they act with a third

particle (which has been implicated as important for understanding the self-assembly of

certain ligand-functionalized nanoparticles[56]). Many colloidal particles, such as those

in charge-stabilized or hard sphere-like colloids, will be less deformable and thus more

likely to correspond to our model.

Travesset and Horst previously investigated the binary IPL potential at n = 12 and

n = 6, while varying the additivity of the potential.[86, 93] Here we investigate n at values

from 6 to 100, a range inclusive of many experimental particles, as shown in a recent

analysis by Royall et al.[85] We keep our potential additive to maintain correspondence

with the hard sphere limit.

4.3 Results/Discussion

In Figure 4.2 we present phase diagrams calculated at stoichiometries of xS = 1/2

and xS = 6/7 in terms of γ and n. Due to the thermodynamic scaling properties of the

IPL model, its ground state phase diagram also corresponds to its infinite pressure phase

diagram and exhibits no pressure dependence (see section 4.6.1). We did not evaluate the

enthalpy of any dense unary sphere packings other than the face-centered cubic (FCC)

crystal due to their great structural similarities (i.e., consisting of hexagonal layers stacked

upon each other); we expect them all to have practically identical enthalpies at most n

examined. Visualizations of several stable structures without equivalents in the Inorganic

Crystal Structure Database[100] (ICSD) are included in section 4.6.3.

Regions of phase stability were calculated by finding the combination of phases that

minimizes the enthalpy for a given stoichiometry. Unless the stoichiometry of a phase
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Figure 4.2: Phase diagrams calculated at stoichiometries of a) xs = 1/2 and b) xs = 6/7 for the binary
IPL model. The diagrams are given in terms of particle size ratio γ and hardness n. We
show 95 values of n spanning from 6 to 100, and 61 values of γ spanning from 0.3 to 0.9.
The n = ∞ slice to the right of each plot was calculated from the densest packings. The
equilibrium state consists of two phases unless the stoichiometry of a phase is identical to
that of the system (e.g., CaB6 for xS = 6/7); the colors indicate a region corresponding to
a specific set of equilibrium phases. In regions denoted “Laves + FCCS”, the differences in
enthalpy between the different Laves phases were very small. If the difference in enthalpy
between two phases was < 0.001%, the point was colored to indicate the presence of the
phase nearest in stoichiometry to that of the entire phase diagram. In every region containing
“NaCl”, the difference in enthalpies between NaCl and NiAs was also < 0.001%. The black
dots indicate points at which basin hopping runs were performed.
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matches the system’s stoichiometry (e.g., NaCl for xS = 1/2), the enthalpy at each point

in the phase diagram is minimized by two phases: one with a stoichiometry greater than

that of the system, and one with a stoichiometry less than that of the system. Phases are

taken to be in the thermodynamic limit and thus no attempt was made to account for

interfaces between coexisting phases. The specific enthalpy for coexisting phases a and b

was calculated from the standard thermodynamic formula as xaHa+xbHb, where xa and xb

are determined through application of the lever rule to the natural stoichiometry of each

phase a and b and the global stoichiometry of the system. We examined every possible

combination of our candidate phases to determine the pair with the lowest enthalpy.

The phases present at n = ∞ correspond to the most densely packed combination

of phases at the particular γ and stoichiometry obtainable with our set of candidate

structures. With the exception of a densely packed phase we discovered, we generated

the n = ∞ regions from the work of Hopkins et al.[101, 102] and Filion et al.[103], who

both analyzed the densest packings of binary sphere systems. We denote structures with

no clear atomic counterpart by AxBy, with x and y giving the stoichiometry. Certain

structures that appear on Hopkins et al.’s phase diagram fail to appear on ours because the

region of size ratios over which they are the densest packing is smaller than the resolution

of our phase diagram (0.01), but we still examined the stability of these phases for finite

n at the size ratios we did investigate. AB4 is the aforementioned phase discovered

to be a densely packed phase over the course of this work. The regions denoted d-

NaCl and d-AlB2 contain versions of NaCl or AlB2 slightly distorted from their cubic

or hexagonal symmetry into orthorhombic or monoclinic crystals, respectively, to have

larger ϕm. Densest packing structures are also common at n = 100. A notable exception

is A3B7 (a slightly symmetrized version of a structure reported by Hopkins et al.[102]),

which is not present for n ≤ 100, despite being the densest packing for γ = 0.47.

For n ≤ 100, we found 11 equilibrium phases. Seven of these correspond to experimen-

tally observed phases[16, 18, 22, 104, 74, 75, 56]: FCC, NaCl, AlB2, MgZn2, AB4, CaB6,
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and NaZn13. The four remaining phases are known to pack very densely.[105, 101, 102]

AB6 is a distorted version (from cubic to orthorhombic) of the bcc-AB6 phase observed

experimentally.[106] AB2 is an orthorhombic phase with space group symmetry Cmc21

(no. 36). AB is an orthorhombic phase with space group symmetry Pmnc (no. 62) and

is particularly interesting for the high γ at which it appears. AB3 is an orthorhombic

phase with space group symmetry Pmmn (no. 59).

In general, lower symmetry sets of space groups and Wyckoff sites are capable of pro-

ducing multiple distinct structures through variation of their degrees of freedom. For

example, a structure in space group Pmnc (no. 62) with both the large and small par-

ticles in Wyckoff sites 4c will become the much higher symmetry structure NaCl for

particular values of the free parameters and can be converted into several other densely

packed structures for other values;[105] slight variations in the values will produce slightly

distorted structures. In this manner our basin hopping procedure enabled us to search

thousands of structures, including slightly distorted versions of common structures like

NaCl. Thus, while it is likely that we missed some structures, we think enlarging our

search space will not significantly alter the conclusions drawn in this paper.

4.3.1 Variable Stoichiometry Phase Diagrams

In Figures 4.3 and 4.4, we plot phase diagrams at constant n but variable stoichiom-

etry and particle size ratio. The values of n considered are 20, 40, 60, and 80. These

phase diagrams were generated in a manner similar to those in Figure 2: discrete values

of the parameters were selected and the combination of phases resulting in the minimum

enthalpy for those values were determined by comparing all possible combinations. Be-

cause we only consider the possibility of crystals of constant stoichiometry (as opposed

to liquids and solid solutions), every region will contain two phases bounded by the xs

of the phases present within the region. However, we observe deviations from this for

the AB + FCCL region of our phase diagrams in Figure 3, whose enthalpy is extremely

similiar to the AlB2 + FCCL region.
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Figure 4.3: Phase diagrams calculated at n of a) 20 and b) 40 for the binary IPL model. The diagrams
are given in terms of particle size ratio γ and concentration of small particles, xs. We use a
resolution of 0.01 in determining the phase boundaries with respect to both γ and xs. The
difference in enthalpy between the equilibrium phases and competing combinations of phases
is generally > 0.001%, with the only exceptions being the differences between MgZn2 and
the other Laves phases, the difference between AB + FCCL and AlB2 + FCCL at γ = 0.48,
and the difference between any region containing NaCl and an equivalent region containing
NiAs instead.
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Figure 4.4: Phase diagrams calculated at n of a) 60 and b) 80 for the binary IPL model. The diagrams
are given in terms of particle size ratio γ and concentration of small particles, xs. The
difference in enthalpy between the equilibrium phases and competing combinations of phases
is generally > 0.001%, with the only exception being the difference between any region
containing NaCl and an equivalent region containing NiAs instead.
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Although Figures 4.3 and 4.4 contain only phases present in Figure 2 (we chose the

slices in Figure 2 such that they would contain at least a small region of every phase we

found to be stable), we plot them to more clearly illustrate the influence of stoichiometry

and to inspire experimentalists to test our predictions. Of course, these thermodynamic

calculations will not account for experiments involving non-equilibrium phenomena or

polydispersity, such as the assembly of more than 3 different superlattices from a single

batch of nanoparticles[75] or heterogeneous effects, like the formation of wetting layers be-

tween different superlattices,[104] but should be a guide for the behavior of such particles

under certain ideal conditions.

4.3.2 Influence of Temperature

An immediate concern for our phase diagram is how well our our ground state cal-

culations reproduce actual assembly behavior at finite temperatures. Ideally, we could

use direct self-assembly simulations to determine the phase behavior of our systems, in

which we cool down a simulation of the fluid until we observe nucleation of the solids.

Such methods provide relatively unambiguous determination of the preferred solid con-

figuration of a particular set of particles, eliminating the need to examine the stability

of other solids. However, in binary systems of mutually repulsive particles, the slow as-

sembly kinetics often render such simulations computationally infeasible. [107, 108, 109]

This is less of an issue for experiment, in which the timescales and number of particles

are typically orders of magnitude larger than currently possible with computation. This

difficulty has resulted in equilibrium calculations[87, 95, 15, 90] providing much of our

basic understanding of self assembly in such systems. We do note two recent papers

where binary assembly was observed for mutually repulsive particles by using specialized

Monte Carlo techniques with particle swaps[109] or, intriguingly, tuning the softness of

the particles.[110] We discuss possible influences of kinetics on self-assembly structure in

the Experimental Relevance section.

More tractable is the issue of how increasing the temperature changes the relative free
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energies of different structures. While the ground state phase is often predictive of finite

temperature behavior, several cases exist in the literature in which raising temperature

changes the preferred solid structure.[111, 38] As self-assembly generally occurs at higher

temperatures, and large energy barriers may prevent solid-solid phase transitions at low

temperature, finite temperature free energies should be more predictive of actual behavior.

In Table 4.1 we present the absolute Gibbs free energies of several structures for five

points in our phase diagram, computed from a variant of the Frenkel-Ladd method.[70, 71]

We focus on less hard n between 12 and 40, where we see several experimental structures

on our phase diagram. We examined G at a range of pressures using thermodynamic

integration of pressure-volume data, but present it only for the lowest pressure (least

supercooled) in Table 4.1. We note that our calculations are unable to account for phase

behaviour all the way to the fluid-solid coexistence due to the lack of a comprehensive

equation of state for the binary IPL fluid; instead we were limited by the melting point of

an FCC crystal of the small particles.[112] These points were chosen to test the stability

of more unusual structures at finite temperatures. CaCu5 and bcc-AB6 are the only

two structures not mentioned previously; their symmetry and Wyckoff sites are given in

Table 2. The values in parentheses correspond to the standard deviation·103 across three

independent sets of simulations.

The most stable structures are generally in line with those for the ground states, with

a deviation only being observed in once case. For n = 40 and γ = 0.6, AB3 changes

from being the ground state to being less favorable than multiple other structures at

finite temperatures, which we discuss in our Experimental Relevance subsection. Our

free energy calculations also provide evidence that temperature will not destabilize the

AB, AB4, and CaB6 phases.

Naturally, we expect our phase diagram to be most relevant for systems under high

pressure and low temperature. From literature results on the free energies of binary hard

sphere systems, we can anticipate other changes to our phase diagram at high tempera-
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Table 4.1: Free Energies of Different Structures at kT/ϵ = 1, xs = 6/7
γ n Pσ3/kT Structures G/kT Ground State?
0.39 35 203 CaB6 38.729(15) Yes
0.39 35 203 NaCl + FCCS 38.806(2) No
0.39 35 203 FCCL + FCCS 39.601(1) No
0.39 35 203 bcc-AB6 39.924(4) No
0.43 40 151 AB4 + FCCS 33.673(3) Yes
0.43 40 151 AlB2 + FCCS 33.878(3) No
0.43 40 151 NaCl + FCCS 33.906(3) No
0.43 40 151 FCCL + FCCS 34.264(4) No
0.6 20 56 AB + NaZn13 23.828(2) Yes
0.6 20 56 FCCL + NaZn13 23.850(1) No
0.6 20 56 CaCu5 + NaZn13 23.893(3) No
0.6 20 56 AB3 + NaZn13 24.084(2) No
0.63 40 48 AB + FCCS 22.445(3) No
0.63 40 48 FCCL + FCCS 22.489(4) No
0.63 40 48 CaCu5 + FCCS 22.491(3) No
0.63 40 48 AB3 + FCCS 22.527(4) Yes
0.63 40 48 FCCL + NaZn13 22.5363(1) No
0.81 12 31 MgZn2 + FCCS 24.108(5) Yes
0.81 12 31 FCCL + FCCS 24.159(3) No

tures. In particular, we would expect the region over which the Laves phases are stable

to extend all the way to n = ∞, but over less size ratios at higher n.[90] We also expect

that NaZn13 would be present all the way to n = ∞.[87] Systematically mapping out

their (and the other phases’) region of stability would require a comprehensive equation

of state for the binary IPL fluid.

4.3.3 Minimization of Contacts

The variation in phase stability with n and γ shown in Figure 4.2 necessarily results

from the local environments of each type of particle in the structure. Considering that

our pair potential is purely repulsive, low energy (ground state) structures would seem to

be those that minimize the number of contacts between particles. However, at n = ∞,

the densest packing structure becomes favored regardless of the number of interparticle

contacts, so ϕm obviously plays a role as well (despite not being directly involved in our

calculations), and we find the structures stabilized by softness to have both high ϕm

and a low number of contacts. The importance of having a high ϕm for soft particles

comes from its correspondence with the nearest interparticle distance. When comparing

two structures at constant number density, the nearest contact distance (defined here as
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Figure 4.5: The a) optimal unit cell parameters (c and a) and local arrangements at the b) 1a (blue)
and c) 2d Wyckoff sites (red) of the AlB2 structure. The inset in a) shows the unit cell of
AlB2 for a c/a = 1. This particular AlB2 structure was optimized for minimal enthalpy at
n = 45 and γ = 0.46. C gives the number of particles at a particular contact distance, while
dc gives the distance to that particular set of neighbors divided by the average diameter of
the particles, i.e., the distance used in the IPL potential. Distances are all calculated with a
number density of 1/σ3.

the distance between two particles divided by the average diameter of the particles, σij)

of the densest packing structure will be largest for the structure with the greater ϕm.

The nearest contact will be the largest contribution to the energy of the structure; thus

higher ϕm structures tend to have lower energy than competing phases. This leads to

FCC being the stable unary phase for all n examined. The binary phase diagram is more

diverse because there are many structures with both high ϕm and few contacts. Here we

analyze how having a small number of contacts stabilizes two phases commonly observed

in experiment[16, 18, 22, 56]: AlB2 and NaZn13. In Figure 4.5, we highlight the structure

of AlB2 optimized for n = 45 and γ = 0.46.
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AlB2 is the densest known packing for 0.53 < γ < 0.62.[102] Its large particles are

arranged in simple hexagonal layers whose interstitial voids are occupied by the small

particles. The c/a ratio is the only degree of freedom of its unit cell; optimal c/a ratios

for particular n and γ and interparticle distances are shown in Figure 4.5. These distances

are scaled by σij, the quantity relevant for the IPL potential and for ϕm calculations.

Lowering n from ∞ can expand the region of stability for AlB2 down to γ = 0.43

despite it packing significantly less effectively than competing phases. For example, the

AlB2 structure reported in Figure 5 is more stable than AB4 despite AB4 having a higher

ϕm (0.759 vs. 0.722). We can use their ϕm values to estimate energy differences, as the

cube of the ratio of two structures’ nearest contact distances is proportional to the ratio

of their ϕm values if they have the same stoichiometry (see section 4.6.1). Therefore,

this difference in ϕm indicates that the nearest contact of AB4 (scaled to account for the

stoichiometry difference) is (0.759/0.722)1/3 = 1.018 times farther away than in AlB2,

which, at n = 45, corresponds to AlB2 having 1.01845 = 2.12 times more energy per

nearest contact. To define an “average” number of nearest neighbors, we note from

Figure 4.5 that the nearest contact is at a scaled distance of ∼ 1.51. The large particle

has 8 such contacts while the tow small particles have none; thus we can define the average

number of nearest contacts as 8/3 ∼ 2.67. The definition is reasonable as contacts from

both large and small particles contribute equally to the total energy. The competing AB4

structure has ∼ 9.4 nearest contacts (data not shown); this difference enables the less

densely packed AlB2 structure to have a lower energy than AB4 at n = 45. Non-nearest

neighbors will also contribute to the total energy of both crystals, but have a substantially

lesser influence than the nearest neighbor.

In NaZn13 and several other structures, particles in a few Wyckoff sites have many

nearest neighbors, but the average number per particle is low. The local environments of

each Wyckoff site in NaZn13 are shown in Figure 4.6. The standard unit cell of NaZn13

contains 8 large particles and 104 small particles. Each large particle is surrounded by 24
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Figure 4.6: The a) NaZn13 unit cell and the environments of its b) 8a (blue), c) 8b (light red), and d) 96i
Wyckoff sites (dark red). This particular NaZn13 structure was optimized for low enthalpy at
n = 60 and γ = 0.57. C gives the number of particles at a particular contact distance, while
dc gives the distance to that particular set of neighbors divided by the average diameter of
the particles (the distance used in the IPL potential). The distances are all calculated with
a number density of 1/σ3.

small particles arranged at the vertices of a snub cube. Small particles in the 8b Wyckoff

site occupy the center of an icosahedron of small particles, while those in the 96i position

occupy the icosahedron’s vertices. In general the snub cube and icosahedron are slightly

distorted from the perfect shapes. Despite NaZn13’s structural complexity, it is the most

commonly observed binary structure in many colloidal self-assembly experiments, occur-

ring across a wide range of particle compositions.[18, 56, 17]

Particles in the 8a (snub cube-coordinated) and 8b (icosahedrally coordinated) Wyckoff

sites in NaZn13 both have nearest neighbors slightly closer than competing structures

(e.g., AlB2); furthermore, they both have a significant number of neighbors at the nearest

contact distance. On the other hand, the 96i Wyckoff site, which accounts for 6/7 of the

total number of particles, has relatively few nearest neighbors, so the average number of

nearest neighbors per particle is low. Thus, if the particles are softer, diminishing slightly
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the relevance of the first contact relative to further neighbors, NaZn13 is stable for several

values of γ.

It is interesting to consider NaZn13’s stability in light of its coordination polyhedron.

Both the icosahedron and snub cube are solutions to the Tammes problem, i.e, maximiz-

ing the smallest interparticle distance constrained on the surface of a sphere.[113, 114]

While these distances do not correspond to the nearest contacts in NaZn13, they influence

the energy for finite n. Due to their distance-maximizing nature, the occurrence of these

coordination polyhedra in structures in our phase diagram seems natural.

We suspect that this partially accounts for the icosahedral order observed in many

binary nanoparticles superlattices,[115] several of which[35] adopt the structures in our

phase diagram. Particularly notable is MgZn2, which, being a Frank-Kasper phase, ex-

hibits a significant amount of icosahedral local arrangements; we also find it to be stable

over a substantial region of our phase diagram.

4.3.4 High n Limit

In Figure 4.2 we see that the hard sphere limit is not yet reached for n = 100, although

the γ values where particular phases are stable do appear to be converging to the hard

sphere case. This result is surprising to us, as other studies indicate that, for certain

system properties (e.g., melting points, transport coefficients) in unary systems, the hard

sphere limit may be effectively reached for n = 72 or even n = 18.[116, 117] To better

understand the hard sphere limit, we analyzed the degree to which having few nearest

neighbors enhances the stability of a structure.

If n is sufficiently large, the energy of a structure can be approximated as

(4.3) E/N = Cϵ
(σ1

r1

)n
,

where C equals the average number of nearest contacts per particle and r1/σ1 is the

nearest contact distance in the structure. Thus, as mentioned earlier, a structure with
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low C may be stabilized over other structures with larger nearest contact distances (or,

equivalently, larger ϕm). By equating the energy of two structures with different C, we

can calculate the differences in nearest contact distance necessary for two structures with

different C values to have the same energy:

(4.4)

(
(r1/σ1)b
(r1/σ1)a

)
Eb=Ea

=
(Cb

Ca

)(1/n)
,

in which b and a are two different structures and the subscript Eb = Ea indicates that

the energy of the two structures are equal. We can also rewrite Equation 4.4 in terms of

ϕm:

(4.5)
(ϕm,b

ϕm,a

)
Eb=Ea

=
(Cb

Ca

)(3/n)
.

From this we calculate the minimum ϕm that a low C structure can have and still be

stable relative to a structure with high C and ϕm values. We show this in Figure 4.7

by comparing the energy for different C and n values to a structure with C = 12. The

y-axis represents the smallest ϕm that a structure with a given C value can have relative

to another structure with C = 12 and still be stable. In this calculation we are neglecting

any neighbor shells beyond the first one and assuming structures of equal stoichiometry.

We see in Figure 4.7 that a low C value can stabilize many low ϕm structures, even

when n > 100. This is essentially why, in Figure 4.2, differences exist between n = 100 and

n = ∞. As established earlier, AlB2 has 8/3 nearest contacts per particle for γ ≈ 0.46; we

indicate this point in Figure 4.7 for n = 100. We note that for many structures, including

the AlB2 and NaZn13 structures shown, the second shell of neighboring particles is only

slightly beyond the first, and thus the approximation in Equation 4.3 is large for smaller n,

and the curves shown in Figure 4.7 should be interpreted qualitatively for real structures.
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Figure 4.7: Plots of the lowest packing fraction ϕm that a structure b with a given number of nearest
contacts C can have and still be stable relative to another structure a with higher C and
ϕm values. In this plot we define structure a as having C = 12 in analogy with FCC.
The subscript Eb = Ea indicates that the energies of the two structures are equal, so the
curves represent lower bounds on what ϕm,b can be for a stable structure. These curves
were computed with Equation 4.5. In all cases we assume that any non-nearest neighbors
contribute negligibly to the energy, which is a more accurate approximation at higher n.
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4.3.5 Low n Limit

For n = 6, every binary phase becomes unstable with respect to two phase-separated

FCC structures containing only large and only small particles, respectively. While the

same observation has been made previously for a smaller group of candidate structures,[86,

118] we were surprised to see this occur for our much larger group of candidate struc-

tures. Excluding the Laves phases, which are destabilized for all γ only below n = 7,

every binary structure is destabilized for n ≤ 13. This destabilization necessarily results

from the energetic cost of neighbor shells beyond the first. Thus, it seems as though FCC

has a particularly favorable set of neighbor shells for very soft particles.

As mentioned previously, other work has shown that reducing the additivity between

unlike particles results in the observation of more binary phases.[86] We keep our potential

additive for consistency with our results at higher n, but, as others have noted,[118, 119] it

is likely that the assumption of additivity for very soft, repulsive particles is not applicable

to many binary self-assembly experiments. For our final optimization run at n = 6, we

truncate our potential at the fairly long distance of 12σ, which makes it very unlikely

that the truncation significantly influenced our results. We also note the previous reports

of fluid-fluid phase separation for the IPL model at γ = 1/3 and n = 6.[120]. In this

paper, our primary focus is on higher values of n.

4.3.6 Experimental Relevance

Here we discuss a few experimental systems where we believe softly repulsive forces

likely play a role in self-assembly: colloids thought to behave like hard spheres (“nearly-

hard spheres”), certain metal and semiconductor nanoparticles, and like-charged colloids.

We explicitly neglect discussing certain cases where we expect our model to fail, such

as colloids functionalized with complementary DNA or oppositely charged colloids, who

probably have a significantly different driving force for assembly.[121, 122] We also discuss

why certain phases we predict to be stable have not been observed experimentally, and
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possible implications for the behavior of atomic systems at high pressure.

Our results indicate that softness plays a role in binary colloidal crystals with “nearly-

hard” colloidal spheres, as their effective n is often less than or around 100.[85] The phases

observed thus far in experiment are NaCl, AlB2, NaZn13, and the Laves phases (with

various degrees of stacking disorder).[18, 123, 26] We find that intermediate hardness

(∼ 20 < n < 100) increases the range of γ over which each of these structures is stable

relative to n = ∞. Furthermore, we find that some densely packed phases that have not

been reported in experiment are destabilized by softness, including d-NaCl, AB3, and

d-AlB2. We suspect that particle softness may be partially responsible for their failure

to assemble in experiment.

Interestingly, all of the experimentally observed phases reported in the literature are

also known to be stabilized by entropy in binary hard sphere systems; thus entropy and

softness likely both play a role in their formation. While we do not quantify their relative

contributions in this study, we can say that increasing the softness of the particles (at least

to n ∼ 30) should increase their likelihood to self-assemble. In fact, a recent report found

that repulsive softness did promote the self-assembly of Laves phases, in direct agreement

with our predictions[110]. Decreasing the role of entropy in such systems by reducing the

temperature or increasing the density should further increase their correspondence with

our phase diagram; it would be interesting to see then if the stable phases we find that

have not been observed in experiment (e.g., AB, AB3) could be experimentally realized.

Our results are particularly interesting with regards to the self-assembly of the Laves

phases with polymer microgels reported by Schaertal et al.[26] The Laves phases are

known to be stabilized by entropy at finite temperatures in hard sphere systems—a fact

that was used to justify their appearance in these systems. However, Schaertal et al.,

estimated the n and γ values of their particles to be ∼ 45 and ∼ 0.77, respectively—only

slightly outside of the region in which we predict the Laves phases to be stable due solely

to the softness of the interparticle interactions. Thus, we strongly suspect that enthalpic
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effects played a role in the observation of the Laves phases in that study.[26]

Experiments with metal and semiconductor nanoparticles have yielded several new

phases in addition to those observed for nearly-hard spheres.[22, 56, 75] We also see two

of these additional phases in our phase diagram: AB4[104] and CaB6.[106] The appearance

of these phases in addition to those observed for nearly-hard spheres implies that repulsive

forces also play a key role in their assembly. Nonetheless, our results will not account for

several of the binary colloidal crystals observed in experiment. These include structures

with lower ϕm (e.g., AuCu, Li3Bi, Fe4C; with our model, structures generally must have a

fairly high ϕm value to be stable). For many of these nanoparticles, the size of the ligand

corona is comparable to that of the nanoparticle core, and accounting for the stability of

these structures has thus far only been accomplished by the orbifold topological model

for ligand behavior.[124, 125] In predicting some experimentally observed phases but not

others, our model may be useful in determining when interactions more complicated than

pairwise repulsion are influencing phase behavior.

Fewer reports of the self-assembly of binary structures with like-charged particles ex-

ist, but most of the reported structures are similar to those reported for other repulsive

particles. The most notable results are those of Hachisu et al.,[16, 17] who investigated

binary suspensions of charged latex particles over 30 years ago. They found every struc-

ture observed for nearly-hard spheres, as well as two additional ones: CaCu5, which is

commonly observed in nanoparticle assembly, and a structure with stoichiometry L1S4.

Further reports of the structures observed in nearly-hard sphere systems have appeared

since then[81, 126]; our finding that these phases are also stabilized by interaction soft-

ness explains their occurrence. Below we discuss the possible reasons why CaCu5 does

not appear in our phase diagram, but the few reports of the L1S4 structure make its ex-

perimental observation harder to understand. Recently, more self-assembly experiments

with polydisperse charged particles have been reported,[126] so hopefully future results

will clarify certain discrepancies between experiment and our phase diagram.
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We also find a few phases to be enthalpically stable for soft particles that have not

been reported in experiment. Most notable are AB and AB3; we find them to be stable

for γ values commonly examined in experiment. Our finite temperature results clearly

explain the instability of AB3. We could not rule out the stability of the AB phase on

the entropy, but instead suspect its nonappearance is due to kinetic effects. CaCu5 and

NaZn13 commonly self-assemble in experiment for similar γ values, and prior research has

indicated that both of these phases may have particularly low nucleation barriers, which

could cause them to form instead of the equilibrium phases.[17, 96]

Finally, we note that softness may be an important factor in preventing certain densely

packed phases from being observed in atomic systems. Many recently discovered densely

packed phases[103, 102] appear to not correspond to any known atomic structure. They

include phases represented in our phase diagram as d-AlB2, d-NaCl, AB3 and a few others

produced by the candidate structures listed in Table 4.2. Our results indicate that a very

small amount of interaction softness suffices to destabilize many of these new densely

packed structures in favor of more commonly observed structures (e.g., the Laves phases,

AlB2), even at the high pressures where densely packed phases are more likely to appear.

4.4 Conclusions

We investigated the influence of interparticle interaction softness on the solid phase

behavior of binary sphere systems by determining the ground state enthalpies of a wide

variety of structures modeled by an additive inverse power law potential. We found

that a surprisingly small amount of softness can influence the phase diagram, and that

considerable softness will destabilize every examined binary phase relative to coexisting

single-component FCC phases at zero temperature. We compared our results to a long list

of experimental findings. We suspect that the softness of colloidal particles is responsible

for the lack of observation of certain densest packings in experiment, and posit that

particle softness likely influences the frequent observation of structures with icosahedral
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local order.

In this study we neglected all kinetic influences on the phase behavior, and only

investigated entropic effects for a few cases. In doing so, we vastly enlarged the space of

structures we were able to examine, as both free energy calculations and crystallization

simulations from disordered initial conditions can be computationally expensive. Despite

this focus on ground state crystal phases, our work helps explain why certain structures

not described by dense packings are observed in experiments on binary colloidal crystals.

We expect our findings to be particularly useful for those working with particles of variable

softness, such as charged particles, polymer beads, or small nanoparticles functionalized

with sterically interacting ligands, and to guide the design of particle interactions to

self-assemble target structures, particularly in low temperature or high pressure systems

where entropy does not play a significant role.

4.5 Methods

We calculated the ground state phase diagram by computing the enthalpy H of differ-

ent structures at temperature T = 0 and reduced pressure Pσ3/ϵ = 1. The well-known

scaling properties of the IPL potential model[91, 97] allow the calculation of H at any

P for a configuration of N particles through a calculation of potential energy E at the

corresponding density ϕ = N/V , where V is the volume of the simulation box (see section

4.6.1 ).

We found low enthalpy structures using a basin hopping global minimization technique

on the free parameters of the Wyckoff sites of particular space groups. For example, we

optimized over structures with space group symmetry C2/m (no. 12) with the large

particles in Wyckoff site 2a and the small particles in Wyckoff site 4i. Wyckoff site

4i has two free parameters and the monoclinic unit cell of space group C2/m has an

additional 3 parameters that can be optimized (β, where a, b, and c correspond to the

lattice vectors of the unit cell and β is the angle between a and c), for a total of 5 degrees
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of freedom. In structures where we optimized the lattice vectors, we limited b/a and c/a

to between 0.25 and 4 if no dense known packings exist outside those bounds. In certain

cases where we know dense packings exist outside those bounds, we expanded the upper

bound from 4 to 6. For monoclinic structures we kept θ between 60◦ and 120◦, as every

known dense packing is within those bounds. Limiting these parameters reduced errors

resulting from finite size effects. Candidate space groups and Wyckoff sites (see Table

4.2) were selected from those thought to produce structures with high ϕm[103, 127] or

experimentally observed structures. Structures are labeled by their atomic equivalent

if known; other structures we found to be stable are labeled by their stoichiometry. In

general the stoichiometry of a phase is determined from the number of particles in large

(L) or small (S) Wyckoff sites. We did not include some known dense packing phases

because they have exceedingly low symmetry[101, 102] and thus would require extensive

time to optimize; however in such cases we included slightly symmetrized versions of

the structures with only marginally reduced ϕm (typically ∼ 0.2% less). Our overall

approach in optimizing the degrees of freedom of Wyckoff sites is similar to approaches

in the literature.[105, 103, 127]

Optimizing over particular space groups and Wyckoff sites enabled us to search a wide

array of possible structures while allowing for simple identification of the resulting low

energy structure. First, several of the higher symmetry structures had no free parameters

(e.g., NaCl) or had well-known free parameters (AlB2, CaB6, MgZn2, NaZn13), which

made their identification trivial. The values of the free parameters would typically vary

slightly for different n and γ, similarly to how they vary for atomic crystals. Second,

if the lower symmetry space groups produced structures with the same energy as those

of known identity that we also examined, we would conclude, after visual inspection,

that they were identical. This situation was extremely common, as several low symmetry

space groups reduced to NaCl or AlB2. Third, if the structure did not correspond to a

known higher symmetry structure, we compared their packing fractions and appearance
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Table 4.2: Candidate Structure Types
Structure type Space group Wyckoff sites

L S
cF8–NaCl Fm3̄m 225 4a 4b
hP4–NiAs P63/mmc 194 2a 2c
cP2–CsCl Pm3̄m 221 1a 1b
tP2–CuAu P4/mmm 123 1a 1d
oP8–AB Pnma 62 4c 4c
oC8 Cmmm 65 4g 4j
hP3–AlB2 P6/mmm 191 1a 2d
hP12–MgZn2 P63/mmc 194 4f 2a, 6h
hP24–MgNi2 P63/mmc 194 4e, 4f 4f , 6g, 6h
cF24–MgCu2 Fd3̄m 227 8b 16c
oP12 P212121 19 4a 4a, 4a
mC6 C2/m 12 2a 4i
oC12–AB2 Cmc21 36 4a 4a, 4a
hP6 P63/mmc 194 2b 4f
oP12 Pnma 62 4c 4c, 4c
mC12 Cm 8 2a, 2a 2a, 2a, 2a, 2a
oC20–A3B7 I222 23 2a, 4j 2c, 4j, 8k
mC14 Cm 8 2a, 2a 2a, 2a, 2a, 4b
cP4–Cu3Au Pm3̄m 221 1a 3c
cF16–Li3Bi Fm3̄m 225 4a 4b, 8c
cP8–Cr3Si Pm3̄n 223 2a 6c
oC16 Cmcm 63 4c 4c, 8g
oP8–AB3 Pmmn 59 2a 2b, 4f
oF20 F222 22 4a 16k
cP5–Fe4C P 4̄3m 215 1a 4e
tP20–AB4 P4bm 100 4c 4c, 2a, 2a, 8d
hP30 P63mc 186 6c 6c, 6c, 6c, 2a, 2b, 2b
hP6–CaCu5 P6/mmm 191 1a 2c, 3g
cP7–CaB6 Pm3̄m 221 1a 6f
cI14–bcc-AB6 Im3̄m 229 2a 12d
oI14–AB6 Immm 71 2a 4f , 4h, 4j
cF112–NaZn13 Fm3̄c 226 8a 8b, 96i
cP14 Pm3̄m 221 1a 1b, 12i

to structures reported to be dense packings in other papers, allowing us to identify AB,

AB2, AB3, and AB6. As with the more well-known structures the free parameters of

these structures would typically vary slightly with different γ and n. Finally, AB4 was

identified by comparison with a well-described experimental structure[104]. Note that

the last two tasks greatly simplified by the fact that most of our candidate space groups

were motivated by reports of dense packings and experimental structures.

Using the Python library Scipy’s[128] functions for basin hopping[129] and sequential

least squares programming minimization, we conducted global minimization on almost

every structure for IPL exponent n between 6 and 100 and γ between 0.3 and 0.9. The
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exceptions are two structures with a large number of degrees of freedom (specifically the

two with space group symmetry Cm (no. 8)); they were only optimized for γ in the

vicinity of where they are known to produce dense packings (0.43 ≤ γ ≤ 0.52).[102] We

performed at least two unbiased runs of 200 basin hopping steps for each structure with

more than two degrees of freedom. After conducting the unbiased global optimization

runs, we determined which structures are most stable for particular values of n and γ,

and for those structures we conducted another nine local minimization runs for each n

and γ, starting from the values of the free parameters found previously for the state

point, as well as those for the eight immediately neighboring n and γ values. The second

run had a lower tolerance for convergence and served to refine the boundaries of phase

stability. The presence of distinct regions of structural stability in our phase diagram

gives us confidence that we accurately detected each enthalpy minimum.

The lowest enthalpy phases in the n = ∞ limit correspond to the densest packing

phases at a given γ and stoichiometry. With the exception of AB4 (a dense packing

discovered in this project), the putative densest packing phases were taken from the

literature. For AB4 and the approximations of the densely packed phases, we conducted

short basin hopping runs to optimize their ϕm for particular γ values.

The enthalpy of the candidate structures during optimization was evaluated by con-

structing a perfect crystal containing many unit cells and evaluating the enthalpy of a

single, central unit cell. These perfect structures were all constructed at a number density

of 1/σ3. The number of particles was varied from ∼ 500 to ∼ 100, 000, depending on the

n used. For the unbiased basin hopping runs, we truncated our potential at distances

varying from 4σ to 10σ; for the final nine local optimization runs we truncated it at

distances varying from 6σ to 12σ. Long-range corrections were applied to account for the

finite cutoffs of the potential. The signac data management framework supported our

computational workflow and data management.[73]

The free energies of particular phases at finite temperature were calculated using the
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Einstein molecule method with the HOOMD-blue simulation toolkit. [65, 66] The Ein-

stein molecule method is a variant of the Frenkel-Ladd method in which the position of a

single particle within the simulation box is constrained instead of the center of mass.[71]

The methods involve using thermodynamic integration to compute the free energy dif-

ferences between a crystal of harmonic oscillators to the real crystal under scrutiny; the

accuracy of the method is limited only by numerical precision. Further details of the

method have been reported in several places.[70, 71, 130] We set the de Broglie wave-

length of each particle equal to unity; doing so does not affect phase equilibrium. The

integration was performed in 20 steps using an Einstein molecule with a harmonic con-

stant of 2 · 105. To reduce the errors from using a large harmonic constant, we used a

time step of 10−4 σ(m/kT )1/2.

Einstein molecule calculations were performed at constant density and kT/ϵ = 1 on

crystals of at least 1000 particles. The density was chosen to be close to the melting point,

and the temperature was maintained with the Langevin thermostat. Pressure-volume

data was obtained from conducting NPT simulations with the Nosé-Hoover thermostat

and barostat; this data was thermodynamically integrated to find G at a particular

pressure. The pressure presented in Table 4.1 was chosen to be slightly lower than the

melting point of FCCS (as determined by interpolating the data of Agrawal et al.[112])

but high enough for the crystal to be metastable. Standard deviations were computed

by running 3 independent replicas of every simulation.

4.6 Supplement

4.6.1 Ground State Enthalpy

Here we derive the equation used to calculate the enthalpy of our structures at constant

pressure. For completeness we begin our derivation from basic thermodynamic principles

and the inverse power law (IPL) model. Some of what we present is already known or

easily extendable from the literature.[97]
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Definitions

E = Total Energy

H = Enthalpy

A = Helmholtz Free Energy

G = Gibbs Free Energy

K = Kinetic Energy

U = Potential Energy

T = Temperature

S = Entropy

P = Pressure

V = Volume

N = Number of Particles

ρ = Number Density (N / V )

Thermodynamic Potentials

At constant P and T, the expected macrostate of a system is the one with minimal

G :

(4.6) G = E − TS + PV.

At T = 0, G is given by:

(4.7) G(T = 0) = E + PV,

or, alternatively,

(4.8) G(T = 0) = H.
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Therefore, we can say that at zero temperature and constant pressure that the enthalpy

must be minimized in equilibrium.

For T = 0, the system has no kinetic energy, and thus

(4.9) E(T = 0) = U,

and

(4.10) P (T = 0) = −

(
∂U

∂V

)
N,V,T

.

Pressure of Inverse Power Law Potential

With the IPL potential, the energy of interaction between two particles i and j is

given by

(4.11) Uij = ϵ
(σij

rij

)n
.

The value of σij is σ, (σ + σγ)/2, or σγ depending on whether the interacting pair

consists of two large particles, a large and a small particle, or two small particles, respec-

tively. The total potential energy of the system is then

(4.12) U =
∑
i

∑
j

ϵ

2

(σij

rij

)n
.

We can write the density of the system in reduced units ρσ3 . For T = 0 all interparticle

distances rij in the system scale with the density or volume:

(4.13)
rij(ρσ

3 = ρ2σ
3
2)

rij(ρσ3 = ρ1σ3
1)

=
(ρ1σ3

1

ρ2σ3
2

)1/3
.

Thus we can write:
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(4.14) rij(ρσ
3) =

rij(ρσ
3 = 1)

ρ1/3σ
.

Substituting this into Equation 4.12:

(4.15) U =
∑
i

∑
j

ϵ

2

( σij · ρ1/3σ
rij(ρσ3 = 1)

)n

(4.16) = U(ρσ3 = 1) · (ρσ3)n/3.

Thus, if we calculate U at one density we can easily compute it at any other density.

In addition, we can compute P from Equation 4.10:

(4.17) −

(
∂U

∂V

)
N,V,T

= −
∂
(
U(ρσ3 = 1) · (ρσ3)n/3

)
∂V

.

The internal energy at a density of 1/σ3 is a constant. The density term can be

rewritten in terms of the volume:

(4.18) P = U(ρσ3 = 1)
−∂
(
(Nσ3/V )n/3

)
∂V

(4.19) = U(ρσ3 = 1)
n(Nσ3)n/3

3V n/3+1

(4.20) = U(ρσ3 = 1)
n(ρσ3)n/3

3V

(4.21) =
nU

3V
.

The finite temperature version of this result was given by Hoover et al. in 1970.[91]
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Enthalpy at Zero Temperature

Our goal is to calculate H at constant P. With our results from Section S1.3, we can

find an exact result for H at T = 0:

(4.22) H = E + PV

(4.23) =
3PV

n
+ PV

(4.24) = PV

(
3

n
+ 1

)
.

We can find V (P ) by rearranging Equation 4.19:

(4.25) V =
(n(Nσ3)n/3U(ρσ3 = 1)

3P

) 1
n/3+1

(4.26) = Nσ3
(nU(ρσ3 = 1)

3PNσ3

) 1
n/3+1

.

Substituting this into Equation 4.24 we obtain:

(4.27)
H

N
= Pσ3

(
3

n
+ 1

)(n(U(ρσ3 = 1)/N)

3Pσ3

) 1
n/3+1

.

Varying P in Equation 4.27 will not affect the relative stability of different phases;

only varying U(ρσ3 = 1) or n will.

Enthalpy at Zero Temperature and Infinite n

As n approaches ∞, Equation 4.12 becomes
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(4.28)
U

N
= ϵ
(σ1

r1

)n
,

where σ1/r1 is the largest value in Equation 4.12. Its inverse r1/σ1 is the nearest

contact distance in a structure. Substituting this equation into Equation 4.27 and taking

the limit as n approaches ∞:

(4.29)
H

N
= Pσ3

(σ1

r1

)3
ρσ3=1

.

We know that at any density ρ in which the particles do not overlap, ϕm will be the

volume occupied by spheres multiplied by ρ:

(4.30) ϕm = ρ(xL + xSγ
3)
4π(σ/2)3

3
.

To calculate a structure’s maximum packing fraction we need to determine how much

the structure can be compressed without the particles overlapping. We can compute this

from the nearest contact distance and the scaling relation between interparticle distances

and the density (Equation 4.14):

(4.31) ρmax = ρref

( r1
σ1

)3
ref

.

Thus if we know the nearest contact distance at any given reference density we can cal-

culate the maximum density and, through Equation 4.30, its maximum ϕm. We prepared

structures at a density of 1/σ3 and calculated their packing fraction with

(4.32) ϕm =
4π(xL + xSγ

3)(σ/2)3

3σ3
·
( r1
σ1

)3
ρσ3=1

.

We can now compute H of hard spheres directly from ϕm. Through combining Equa-

tions 4.29 and 4.32:
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(4.33)
H

N
=

4πP (xL + xSγ
3)(σ/2)3

3ϕm

.

Equation 4.33 shows that the enthalpy of a structure is inversely proportional to its

packing fraction, and thus, for a system of particular xL and xs (which, of course, depend

on each other) and σ and γ, the phase with the highest packing fraction will minimize

the enthalpy.

4.6.2 Scaling Properties and Behavior in Different Limits of the IPL Model

Here we discuss certain aspects of the IPL model that we make use of in the main text.

Much of the discussion focuses on the n → ∞ limit (i.e. the hard sphere model). We also

verify our theoretical expression for the T = 0 enthalpy of IPL systems (Equation 4.27)

by comparison with simulation.

Thermodynamic Scaling of Inverse Power law and Hard Sphere Models

We review the previously known[91] scaling properties of the inverse power law (IPL)

and hard sphere model for completeness. At constant volume, these scalings follow from

the classical configuration integral:

(4.34) Z(NV T ) =

∫
exp

[
− U(x)

kT

]
dx,

in which x is a vector containing the coordinates of all N particles.

For hard spheres at finite temperature, for which U/kT can be 0 or ∞, the configura-

tion integral reduces to:

(4.35) Z(NV T ) = Ω(NV ),

in which Ω is the volume of configuration space in which the particles do not overlap. This

quantity does not depend on the temperature, and thus neither does the thermodynamic

behavior of hard spheres in the NV T ensemble.
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For soft spheres, whose potential energy can be written in the form of Equation 4.16,

the configuration integral instead becomes:

(4.36) Z(NV T ) =

∫
exp

[
− (ρσ3)n/3

kT
U(ρσ3 = 1,x)

]
dx,

in which U(ρσ3 = 1,x) is the potential energy of a particular configuration (x) of particles

scaled to a density of 1/σ3.

Changing the density or temperature will not change the value of U(ρσ3 = 1,x), so the

configuration integral will only change with quantity (ρσ3)n/3

kT
, a thermodynamic scaling

parameter incorporating both temperature and density. Note that the parameter can be

made unitless by extracting ϵ from U(ρσ3 = 1,x).

One expression for the classical partition function of the NPT ensemble is::

(4.37) ∆(NPT ) =
1

Λ3NN !

∫
exp

[
− U(x) + PV (x)

kT

]
dx.

Denoting an indicator function for all nonoverlapping configurations as 1U=0(x), which

is unity if the particles do not overlap but zero otherwise, we can rewrite the partition

function as:

(4.38) ∆(NPT ) =
1

Λ3NN !

∫
1U=0(x) exp

[
− PV (x)

kT

]
dx,

which reveals the scaling parameter of hard sphere systems at constant pressure to be

P/kT , and that approaching the high P limit is equivalent to approaching the low T

limit. Note that the expression can become unitless by extracting σ3 from V (x).

For soft spheres, we will not derive the scaling parameter, but instead present the

one used recently by Travesset[97] :
(

Pσ3

ϵ

)(
ϵ
kT

)(3/n+1)

. One can clearly see that as n

proceeds to ∞, the expression reduces to the hard sphere case.

As evidence for the expression’s accuracy, we present some NPT data in Table 4.3

which we generated using the HOOMD-blue simulation toolkit[65, 66]. We computed

the density from NPT simulations to show that, at different values of Pσ3

ϵ
and kT

ϵ
which
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Table 4.3: Thermodynamic Scaling Examples

n
(

Pσ3

ϵ

)(
ϵ
kT

)(3/n+1)
Pσ3

ϵ
kT
ϵ ρσ3 (ρσ3)n/3

kT

25 13.84 13.84 1.0 1.033(1) 1.310(12)
25 13.84 1.0 0.09556 0.779(2) 1.309(22)
10 30.64 30.44 1.0 1.338(1) 2.640(6)
10 30.64 1.0 0.07190 0.607(1) 2.640(9)

produce the same value of the PT scaling variable, we obtain the same values of the V T

scaling parameter, indicating thermodynamic equivalence. Properties were computed for

systems of 2048 particles in the FCC lattice. The specific state points were chose to

match some of those from Agrawal et al., [112] and we confirmed that our computed

densities agree with their results.

Dense Packings as the Ground States of Hard Particle Systems

In section 4.6.1 we show that dense packings are the ground states of hard sphere

systems at constant pressure by taking the n → ∞ limit of the equation for the enthalpy

of the IPL model at T = 0. Here we present an alternative derivation by taking the

T → 0 limit of the Gibbs free energy in terms of the NPT partition function:

(4.39) lim
kT→0

G = lim
kT→0

−kT ln

(
1

Λ3NN !

∫
exp

[
− U(x) + PV (x)

kT

]
dx

)
.

For kT → 0, the term kT ln

(
1

Λ3NN !

)
→ 0, and for any hard shape at finite temper-

ature U/kT can only be 0 or ∞. Denoting an indicator function for all nonoverlapping

configurations as 1U=0(x), we can rewrite the partition function as:

(4.40) lim
kT→0

G = lim
kT→0

−1

1/kT
ln

∫
1U=0(x) exp

[
− PV (x)

kT

]
dx,

which is an indeterminate form. For finite P we can apply L’Hopital’s rule to obtain
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(4.41) lim
kT→0

G = lim
kT→0

(kT )2

∫
1U=0(x)

PV (x)
(kT )2

exp

[
− PV (x)

kT

]
dx

∫
1U=0(x) exp

[
− PV (x)

kT

]
dx

,

(4.42) = lim
kT→0

∫
1U=0(x)PV (x) exp

[
− PV (x)

kT

]
dx

∫
1U=0(x) exp

[
− PV (x)

kT

]
dx

.

We can rewrite this integral in terms of V , writing the degeneracy of each V as Ω(V ).

Furthermore we can multiply both the numerator and denominator by exp[PVmin/kT ],

where Vmin is the smallest possible volume the system can take in which the spheres do

not overlap:

(4.43) lim
kT→0

G = lim
kT→0

∫
Ω(V )PV exp

[
− P (V−V min)

kT

]
dV

∫
Ω(V ) exp

[
− P (V−Vmin)

kT

]
dV

,

We are also free to multiply both the numerator and denominator by P/kT . As

kT → 0, the exponential function multiplied by this term proceeds to a delta distribution

centered at Vmin. After integration we arrive at:

(4.44) lim
kT→0

G =
Ω(Vmin)PVmin

Ω(Vmin)
,

(4.45) = PVmin.

As the phase with Vmin is also the densest packing, we find that the densest packing

phase represents the ground state of hard sphere systems at constant pressure.
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Figure 4.8: The enthalpy of a system of IPL spheres with n = 12 in an FCC crystal at low temperatures
and a pressure of 1ϵ/σ3. The light blue points indicate enthalpies computed for the system
from simulations at different temperatures. The red dotted line is a fit to the simulation
data, and is extrapolated to 0. The blue dotted line indicates a theoretical calculation of the
enthalpy from Equation 4.27 using prior knowledge of the first 6 coordination shells of FCC.
Simulation results were obtained for an FCC crystal of 2048 particles. Error bars for the 4
simulation measurements are smaller than the data points.

Low Temperature Behavior of Inverse Power Law Model

While we derived Equation 4.27 analytically, here we present some small simulation

results showing that the enthalpy of our systems actually proceeds towards the predicted

value for low temperature. We again use NPT simulations executed with the HOOMD-

blue simulation toolkit, computing the enthalpy of an FCC crystal composed of IPL

spheres with n = 12 at Pσ3/ϵ = 1 and temperatures approaching 0. In Figure 4.8, we

compare our simulation results with those from our theoretical expression, finding strong

agreement. This is to be expected, as Equation 4.27 should be exact.

4.6.3 Visualizations of Unusual Structures

Here we present visualizations of structures not found in the ICSD.

50



Figure 4.9: The unit cell of the AB structure from the main text. The parameters will change slightly
at different n and γ.
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Figure 4.10: The unit cell of the AB2 structure from the main text. The parameters will change slightly
at different n and γ.

52



Figure 4.11: The unit cell of the AB3 structure from the main text. The parameters will change slightly
at different n and γ.

53



Figure 4.12: The unit cell of the AB4 structure from the main text. The parameters will change slightly
at different n and γ.
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Figure 4.13: The unit cell of the AB6 structure from the main text. The parameters will change slightly
at different n and γ.
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CHAPTER V

Tuning Stoichiometry to Promote Formation of Binary
Colloidal Superlattices

The contents of this chapter were adapted from ”Tuning Stoichiometry to Promote

Formation of Binary Colloidal Superlattices.” R. A. LaCour, T. C. Moore, S. C. Glotzer,

Submitted.

5.1 Introduction

Binary colloidal mixtures are known to self-assemble into a diverse array of binary

superlattices, providing a simple way to prepare colloidal co-crystals with novel com-

binations of properties. In many cases, including with polymer beads[18], microgel

particles[26], metal nanoparticles[22, 35], and quantum dots[77], mixtures of particles

differing only in their sizes can produce a compositionally ordered superlattice[76, 16, 18,

87, 95].

The structure of the superlattice dictates important material properties, e.g. photonic

response [15] and catalytic activity[31]; thus much effort has focused on designing particles

that self-assemble particular colloidal crystal structures [49, 131, 132, 133, 47, 134, 135, 49,

131, 136]. However, less well understood is how to ensure that the equilibrium structure

is kinetically accessible via self-assembly. The self-assembly of co-crystal phases appears

particularly susceptible to kinetic limitations, as these phases frequently fail to assem-

ble, instead forming glasses[137, 138, 139], or assemble into metastable phases[140, 141].

Glass formation is expected when assembly kinetics are slow relative to particle mobility;
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metastable phases are expected when the equilibrium phase has slower assembly kinetics

than thermodynamically competing phases.

Many colloidal systems are characterized by purely repulsive or hard (excluded vol-

ume) interparticle interactions, including some micron-sized colloidal spheres, polymer

microgels, and nanoparticles. Because their interactions are well characterized[142, 84,

143], they are especially useful for comparing experiment with theory[95]. Binary mix-

tures of purely repulsive (hard) particles are known to resist self-assembly in many

instances[144, 139, 145], but their self-assembly has been observed in experiments un-

der certain conditions[18, 123, 81, 26]. Understanding why self-assembly occurs in some

situations but not others is necessary for further advances.

In this Letter, we demonstrate using computer simulation that variation of the stoi-

chiometry can enhance the kinetics of co-crystal self-assembly in binary mixtures whose

components differ in size. Self-assembly of binary crystals is usually attempted “on-

stoichiometry,” in which the initial fluid phase has the same stoichiometry as the target

crystal[146, 108, 145, 139, 147]. We show that going “off-stoichiometry” by adding an

excess of the smaller component can dramatically improve self-assembly. We demonstrate

that this enhancement can be attributed to two mechanisms, both of which we observe

in our simulations. Specifically, we show that the excess of small particles (i) enables the

large component to remain mobile at higher supersaturation, facilitating self-assembly

of the equilibrium structure and avoiding kinetic arrest; and (ii) can disfavor competing

structures that may interfere with the growth of the equilibrium structure.

5.2 AlB2 Self-Assembly

We first investigate a binary inverse power law (IPL) system at a size ratio (γ) of

0.55, similar to many experiments[16, 18, 123, 22]. Setting the power n to 50 makes

the particles similar in softness (steepness of repulsion with interparticle distance – less

steep is softer) to some experimental microgels[26] but slightly softer than most PMMA
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beads[85]. We make them slightly soft so as to be able to use standard molecular dynamics

(MD) algorithms; from our previous work[59] and the phase diagram computed here, we

do not expect their phase behavior to deviate significantly from hard spheres. We used

HOOMD-Blue[148, 66] to conduct, freud[149] to analyze, and signac[73] to organize the

MD simulations. We describe stoichiometry throughout this work in two ways: using the

ratio NL:NS, where NL and NS are the number of large and small particles respectively,

or using the fraction of small particles xS = NS/(NL +NS).

Via free energy calculations[70, 71], we computed the thermodynamic phase diagram

of the binary IPL model at kT/ϵ = 1, as shown in Figure 5.1, plotted in terms of reduced

pressure P ∗ = Pσ3/ϵ and xS, where ϵ and σ are the energy and length scales of the IPL.

Because of comparable experimental[18] and simulation[87] studies, we considered the

following candidate phases: a face-centered cubic crystal of the large particles (FCCL),

a face-centered cubic crystal of the small particles (FCCS), an AlB2 co-crystal, and a

NaZn13 co-crystal. Their stoichiometries NL:NS are 1:0, 0:1, 1:2, and 1:13, respectively.

The phase diagram tells us the equilibrium phase(s) for a given set of conditions,

but does not tell us whether the phases are kinetically accessible. For self-assembly to

occur, the average time for another phase to nucleate and grow must be shorter than

the time accessible in experiment (or simulation). Both nucleation and growth rates

are strongly influenced by the degree of supersaturation. For a fluid-to-solid transition,

increasing the degree of supersaturation has contrasting effects: the free energy barrier for

nucleation decreases, favoring assembly, but the particle mobility decreases, disfavoring

assembly[150]. If the mobility decreases too much before the free energy barrier becomes

surmountable, the particles become kinetically arrested, inhibiting the formation of the

equilibrium solid phase.

We first investigate whether AlB2 will homogeneously nucleate from a fluid for a variety

of pressures and stoichiometries. The simulations were initialized in a fluid-like state with

27,000 particles at constant temperature T and pressure P (i.e., an NPT ensemble), and
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Figure 5.1: Thermodynamic phase diagram for the binary inverse power law model (IPL) at γ = 0.55,
n = 50, and kT/ϵ = 1. Five phases are present: fluid, FCCL, FCCS , AlB2, and NaZn13.
Together they form 7 distinct regions.

run for 4·105τ timesteps, where τ = σ(m/ϵ)1/2 and m is particle mass. Because we

observed some crystal growth at NL:NS = 1:3 and P ∗ = 70 and wanted to verify that

the crystal continued to grow, we continued that simulation for an additional 4·105τ

timesteps. In Figure 5.2a we show the evolution in the number of AlB2-like particles up

to 200 particles to observe the initial growth of the co-crystal nuclei.

Figure 5.2a shows that NAlB2 never exceeds 16 for the on-stoichiometry systems at the

chosen pressures, indicating that self-assembly never occurs. In contrast, we find that

NAlB2 increases to 200 and beyond for systems with an excess of small particles. The

results are consistent with the system snapshots shown in Figures 5.2c-e, where crystals

grains are only apparent at 1:3 and 1:5. We note the presence of small grain sizes,

which mirrors the results obtained by Bommineni et al. with particle swap moves[151] in

binary mixtures of hard spheres. At the highest pressure we simulated for NL:NS = 1:2

(P ∗ = 74), particle mobility is extremely limited, as shown in Figure 5.2b where we plot

the temporal decay of the first peak (q∗) in the intermediate scattering function calculated

for the large particles (FLL(t)). We thus conclude that self-assembly is only possible with

an excess of small particles on the time scale of our simulations. We attribute this result

in part to particles being more mobile at higher xs. For example, by fitting the decay of
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Figure 5.2: Self-assembly of AlB2. The plot in a) shows the evolution of the number of large particles
identified as AlB2 for NPT simulations at the given pressure and stoichiometry. All simu-
lations at NL:NS = 1:2 (colored blue on the plot) overlap substantially because they never
exceed NAlB2 = 16. The plot in b) shows the decay of the intermediate scattering function
for certain combinations of stoichiometry and pressure. The lines are fits to the data. The
dotted black line indicates the duration of simulations in a). Snapshots of the results are
shown for stoichiometries and pressures of c) NL:NS = 1:2, P ∗ = 70, d) NL:NS = 1:3,
P ∗ = 70, and e) NL:NS = 1:5, P ∗ = 75. The simulations all began in a fluid state.
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FLL(t) to a stretched exponential (indicated by the lines in Figure 5.2b), we computed

that the structural relaxation time is around 76 times longer at a stoichiometry of 1:2

than at 1:3 (14,700τ versus 202τ) at P ∗ = 70, which indicates much slower equilibration

at 1:2.

We next analyze the growth of AlB2 in the presence of crystalline seeds. By construc-

tion, these simulations bypass the need to form a critical nucleus and thus may allow

self-assembly on shorter time scales than required for homogeneous nucleation. Each

simulation was prepared by compressing a fluid around a perfect (constructed) seed of

AlB2 and then allowing the fluid and seed to evolve in an NPT simulation. The seed

crystals were chosen to be small but post-critical, as evidenced by their persistence in the

simulations.

igure 5.3a shows the evolution of the fraction of large particles classified as AlB2-like

(NAlB2/NTotal). We consistently find more crystal growth off-stoichiometry at NL:NS =

1:3, with final values of NAlB2/NTotal ranging from 0.25 to 0.48, than on-stoichiometry,

for which NAlB2/NTotal never rises above 0.035.

Inspection of the growing seeds at NL:NS = 1:2 revealed the accumulation of non-

AlB2 layers of particles on the seed (an example at P ∗ = 55 is shown in Figure 5.3b). We

identified many of these layers to be two (or more) subsequent close-packed planes of large

particles. This possibility seemed likely because FCCL, which consists of close-packed

planes, is metastable under the conditions we investigate, and AlB2 has a close-packed

layer of large particles in its structure onto which additional close-packed layers could

grow. We call a layer of these particles a “mixed layer” and the associated coordination

environment “mixed FCC-AlB2;” we denote the number of these particles Nmix. In Figure

5.3b we illustrate their presence in dark green for a seed grown at P ∗ = 55 and NL:NS =

1:2.

We quantify the formation of the mixed layer during the seeded simulations in Figure

5.3c, plotting Nmix/NAlB2 versus NAlB2 . For NL:NS = 1:2 we plot only the results for
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Figure 5.3: Crystal growth in seeded simulations. The plot in a) shows the evolution of the number of
large particles identified as AlB2 from seeded simulations for different xs, Pσ3/ϵ, and initial
seed size (Nseed). The image in b) is a snapshot of the end of the seeded simulation at NL:NS

= 1:2 and Pσ3/ϵ = 55. Large and small particles belonging to the initial seed are colored dark
grey and light grey, respectively, respectively; large particles classified as mixed FCC-AlB2

are colored dark green. The plot in c) shows the number of particles classified as AlB2 (NAlB2)
versus the ratio of the number classified as mixed FCC-AlB2 to NAlB2

(NMix/NAlB2
). The

two inset figures illustrate the mixed FCC-AlB2 and AlB2 environments. The plot in d)
shows the chemical potential driving force ∆µC,F for the FCCL and AlB2 as a function of
pressure and stoichiometry, where ∆µC,F is defined by Equation 5.1. Errors are smaller than
the size of the points.
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Pσ3/ϵ ≤ 55 because at higher pressures NAlB2 never exceeds 100 (i.e., those seeds grow

negligibly over the simulation). Off-stoichiometry at NL:NS = 1:3, the proportion of

mixed layers decreases with crystal growth in all cases. In contrast, on-stoichiometry at

1:2 the proportion always increases, indicating that mixed layers form more frequently

than AlB2 layers.

We identify a thermodynamic reason as to why the mixed layers are more prevalent at

NL:NS = 1:2. Because the mixed layer is essentially the formation of an FCC layer where

an AlB2 layer should have formed, its appearance likely correlates with the thermody-

namic stability of the competing FCCL phase. In Figure 5.3d we examine the chemical

potential difference between the particles in the fluid and the solid:

(5.1) ∆µC,F = µC − (1− xC)µ
L
F − xC · µS

F

The quantity µC is the chemical potential of the crystal; xC is the fraction of small

particles in the crystal; and µL
F and µS

F are the chemical potentials of the large and

small species in the fluid, respectively. More negative ∆µC,F values indicate stronger

thermodynamic driving forces for nucleus formation.

Figure 5.3d shows that the ∆µC,F of both crystals decreases with pressure but in-

creases with a greater proportion of small particles. However, we find that ∆µFCCL,F

is more sensitive to stoichiometry than ∆µAlB2,F . For example, at P ∗ = 70, changing

the stoichiometry from 1:2 to 1:3 increases the ∆µC,F of FCCL by 0.37 kT while only

increasing the ∆µC,F of AlB2 by 0.02 kT, resulting in a greater preference of the fluid to

form AlB2 relative to FCCL.

To summarize these results, we find that AlB2 does not self-assemble or even grow

from a seed crystal in on-stoichiometry fluid. We identified two reasons its formation

is inhibited: slow dynamics and interference from a competing phase. Both issues are

alleviated by adding excess small particles.
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Table 5.1: Crystals Observed in Simulation and Experiment
NL:NS Sim. Structures Exp. Structures∗

1:2 Amorphous Amorphous
1:3 AlB2 -
1:4 AlB2 AlB2

1:5 AlB2 -
1:6 AlB2 AlB2

1:9 AlB2/NaZn13 NaZn13

1:13 NaZn13 -
1:14 NaZn13 NaZn13

1:20 NaZn13 NaZn13

1:30 NaZn13 NaZn13
∗Bartlett et al.[18]

5.3 Experimental Comparison

Our simulations should be most comparable with the experiments of Bartlett et al.[142,

18] using PMMA particles because our results are for a similar size ratio (0.55 vs. 0.58)

and they explore how stoichiometry affects assembly. In Table 5.1, we compare the binary

crystals we obtain with theirs. Our results at NL:NS of 1:2, 1:3, 1:5, are shown in Figure

5.2; results for the other stoichiometries are shown in the section 5.7. We denote any

experiment not reported with “-”.

Overall, we see strong agreement between simulation and the published experimental

results. We both obtain an amorphous structure at 1:2, but see AlB2 with a slight

excess of small particles. Around a stoichiometry of 1:9, we both begin to see NaZn13

self-assemble, and continue to see it self-assemble at stoichiometries up to 1:30.

5.4 Binary Shapes

To establish whether the self-assembly of other binary crystals may be assisted by an

excess of small particles, we also simulated a binary mixture of hard cuboctahedra and

octahedra at a volume ratio of 5:1, which has proven difficult to crystallize despite being

capable of comprising a space-filling CsCl-type structure.[146] Like the IPL spheres, the

particles in this system are purely repulsive (hard). To our knowledge, the CsCl structure

has never been self-assembled from these hard shapes; in previous work, attractive patches

on the particles’ surface were required for self-assembly[152]. In Figure 5.4, we present
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our results for self-assembly conducted at stoichiometries of 1:1 and 1:2. Due to the

higher computational cost of simulating anisotropic particles[153, 154], we used a slow

compression scheme with 4096 particles.

Figure 5.4: The self-assembly of hard cuboctahedra and octahedra. The plots show the radial distribution
functions (RDFs) averaged over the final few frames of self-assembly at stoichiometries of
a,c) 1:1 and b,d) 1:2. Also shown are the RDFs for a perfect CsCl structure. We show the
RDF for large particles (gLL) and for large and small particles (gLS); the RDF for small
particles is dominated by fluid-like small particles. Snapshots of the results are shown for e)
1:1 and f) 1:2. Simulations were run in an NPT ensemble with 4096 particles under a slow
compression starting at a volume fraction of 0.565.

By comparison with the radial distribution functions of perfect CsCl, we identified the

result at 1:2 to be CsCl. At 1:1, a single-component structure composed of the large par-

ticles self-assembles, while the small particles remain fluid-like. It is thus apparent that,

although particle mobility is not limited, the single-component structure (successfully)

competes with CsCl when the fluid is on-stoichiometry, and an excess of small particles

is necessary to observe the thermodynamically preferred binary structure.

5.5 Conclusions

In summary, we demonstrated that the self-assembly of binary nanoparticle super-

lattices can be promoted by adding an excess of the smaller component to the colloidal

fluid mixture. While some crystals, like NaZn13, do not require an excess of small parti-
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cles, the surprisingly dramatic influence of excess small particles on the assembly of AlB2

and CsCl suggests many other binary systems may best – or only – self-assemble off-

stoichiometry. Our results likely apply best to purely repulsive systems; we will examine

attractive systems in future work.

5.6 Methods

5.6.1 Simulation Details

We used molecular dynamics (MD) with the HOOMD-Blue simulation toolkit[65, 66]

to study the binary inverse power law (IPL) potential with power n = 50:

(5.2) U(rij) = ϵ
(σij

rij

)50
.

The quantity U is the potential energy of interaction between two particles i and j at a

distance of rij. The quantity σij represents the diameter of the particles; for interactions

between unlike particles, we set it to their average diameter. We denote the diameter

of the large particles as σ and diameter ratio between small and large particles as γ.

The unit of energy is ϵ, which is set to 1 temperature unit (kT ) throughout this work.

The IPL exhibits thermodynamic scaling between temperature and pressure such that a

change in temperature can be mapped to an equivalent change in pressure[91]; thus we

only need to investigate its behavior at a single temperature. We truncated the potential

at a cutoff of 1.3σij and shifted it from an energy of 2.0·10−6ϵ at the cutoff to zero.

We used NPT simulations based on the MTK equations[155] to collect data on nu-

cleation from a fluid and growth from a seed and when computing the intermediate

scattering function between large particles (FLL(q, t)).

We used HOOMD-Blue’s Hard Particle Monte Carlo module to simulate the mixtures

of cuboctahedra and octahedra. On-stoichiometry simulations at NL:NS = 1:1 consisted

of a slow compression from a packing fraction of 0.565 to 0.635 in increments of 0.001.

Off-stoichiometry simulations at NL:NS = 1:2 consisted of a slow compression from a

packing fraction of 0.565 to 0.615 in increments of 0.001. We compressed to a higher
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packing fraction at NL:NS = 1:1 because the system had not finished crystallizing at

0.615, while the system at NL:NS = 1:2 was crystalline by that packing fraction.

Free energy calculations were performed with HOOMD-blue to obtain the phase di-

agram shown in Figure 2. Pressure-Volume (PV) data were gathered for the fluid and

solid phase from NVT and NPT simulations respectively. Free energies at different Pσ3/ϵ

were computed by integrating curves fit to the PV data. The reference free energy for the

fluid was taken to be that of a dilute gas; the reference free energy for the solid was com-

puted from the Einstein molecule method[71], a variant of the Frenkel-Ladd method[70]

in which a single particle is fixed instead of the center of mass. By comparing free ener-

gies differences computed by PV integration to those from two Einstein molecule method

calculations, we estimated our errors to be below 0.05 kT . The Langevin integrator[156]

within HOOMD-Blue was used when performing the Einstein molecule method.

We used Steinhardt order parameters[157] to classify particles as having AlB2, mixed

FCC-AlB2, or fluid environments. The freud software library[149] was used to calculate

radial distribution functions and Steinhardt order parameters. We used Ovito[72] to

visualize particles throughout the work.

The computational workflow was supported by the signac data management framework

[73].

5.6.2 Order parameter

We use Steinhardt order parameters to classify particles according to their coordination

environment. We show in Figure 5.5 that a combination of two order parameters can

distinguish whether large particles are in fluid, AlB2 (Figure 5.5a), or “mixed FCC-

AlB2” (Figure 5.5b) environments, which we show to be a common defect during AlB2

self-assembly. The black lines in Figure 5.5c show how we classify particles with specific

qLL6 and qLL,LS8 into the three environments. For the mixed FCC-AlB2 environments, we

simulated a structure involving alternating layers of a hexagonally close packed crystal

and AlB2 crystals and computed the order of the particles at the interface; a visualization
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of the structure is shown in Figure 5.6. We note that our order parameter will somewhat

underestimate the number of crystalline particles because it does not detect particles at

the edges of crystal grains. We computed that our order parameter misclassified particles

in the fluid with a rate under 0.25%.

Figure 5.5: The coordination of large particles in a) AlB2 and b) mixed FCC-AlB2 environments; c) the
Steinhardt order parameters of large particles in those environments and a fluid environment
at NL:NS = 1:2. In a) and b) the reference particle is colored dark blue We use the Steinhardt
order parameter q8 for the first 20 neighbors (the number of neighbors of each large particle in
the perfect AlB2 crystal) of either type, and the q6 for the first 10 large neighbors. The data
for AlB2 and mixed FCC-AlB2 were generated from simulations of pre-assembled versions of
the structures. The structure used for mixed FCC-AlB2 is shown in Figure S4. The black
lines in c correspond to how we classified particles. The distribution of order parameters
shown in c) is computed at P ∗ = 60.
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Figure 5.6: Snapshot of the structure we used to determine the order parameter for “mixed FCC-AlB2”
environments. We only computed the order parameter for layers denote ”Mixed Layer”.
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5.7 Supplement

We present RDFs and snapshots for our results at each stoichiometry in Figures 5.7

to 5.9.

Figure 5.7: Radial distribution functions (RDFs) and and snapshots of NPT simulation results at (a,d)
NL:NS = 1:2, P ∗ = 70, (b,e) NL:NS = 1:3, P ∗ = 70, (c,f) NL:NS = 1:4, P ∗ = 78, (g,i)
NL:NS = 1:5, P ∗ = 75, and (h,j) NL:NS = 1:6, P ∗ = 80. These simulations all began in a
fluid-state. The RDFs are averaged over the final 5 frames of the simulations; the snapshots
are the last frames of the simulations. We only show the RDFs for large-large and large-
small interactions because that of small-small interactions tends to be dominated by fluid-like
small particles. At both stoichiometries, we see crystal grains in both the snapshots and the
RDFs. Visual inspection and comparing the RDFs to the perfect ones for AlB2 show the
crystal structure to be that of AlB2.
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Figure 5.8: Snapshots showing different angles of an NPT simulation run at NL:NS = 1:9 and P ∗ = 98.
The simulation began in a fluid-state. Both AlB2 and NaZn13 self-assemble in the simulation,
as point out by the arrows. The crystal grains are small in both cases.
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Figure 5.9: Radial distribution functions (RDFs) and and snapshots of NPT simulation results at (a,c)
NL:NS = 1:13, P ∗ = 98, (b,d) NL:NS = 1:14, P ∗ = 98, (e,g) NL:NS = 1:20, P ∗ = 98, and
(f,h) NL:NS = 1:30, P ∗ = 98. These simulations all began in a fluid-state. The RDFs are
averaged over the final 5 frames of the simulations; the snapshots are the last frames of the
simulations. We only show the RDFs for large-large and large-small interactions because
that of small-small interactions tends to be dominated by fluid-like small particles. At both
stoichiometries, we see crystal grains in both the snapshots and the RDFs. Visual inspection
and comparing the RDFs to the perfect ones for NaZn13 show the crystal structure to be
that of NaZn13. We note presence of an unexpected peak at r/σ = 1; this is due to large
particles in contact with each. There are no such contacts in perfect NaZn13, but they occur
in our self-assembly due to some large particles not being incorporated into the crystal.
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CHAPTER VI

Short-Range Attraction Enables the Self-Assembly of Binary
Nanoparticle Superlattices

The contents of this chapter were adapted from ”Short-Ranged Attractive Forces En-

able the Self-Assembly of Binary Nanocrystal Superlattices.”, E. Marino, R. A. LaCour,

T. C. Moore, S. W. Dongen, A. W. Keller, D. An, S. Yang, D. J. Rosen, G. Gouget, E.

H. R. Tsai, C. R. Kagan, T. E. Kodger, S. .C Glotzer, C. B. Murray, Submitted.

All experimental work (Figures 6.1 and 6.2) was performed by our collaborators in the

Murray group.

6.1 Introduction

Recent advances in colloidal synthesis have enabled the fabrication of colloidal nanocrys-

tals (NCs) with different sizes, shapes, and compositions, creating a library of nanoscale

building blocks with well-defined optical, electronic, and magnetic properties. These

properties have been exploited to develop optoelectronic devices like photodetectors[158,

159], light-emitting diodes[160, 161], field-effect transistors[162, 163], and solar cells[164,

165] by assembling NCs into ordered solids, or superlattices. While single-component

NC superlattices have already revealed structure-property relationships[166, 167], multi-

component NC superlattices are still in the early stages of investigation[168]. The hetero-

integration of NCs with orthogonal functionalities is crucial in unlocking a vast design

space for material properties resulting from the synergistic interaction of the individual

components[29, 169, 33, 170, 31, 171, 172, 173]. So far, the exploration of this design space
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has been restricted by our limited understanding of the formation of multi-component

NC superlattices.

Binary nanocrystal superlattices (BNSLs) with diverse crystal structures have been re-

ported, integrating combinations of semiconducting, magnetic, and metallic NCs.[19, 22]

However, predicting which BNSL self-assembles from a given combination of NCs has

proven extremely challenging[174]. With rare exceptions[145, 175, 147], simulation mod-

els of binary mixtures of NCs frequently fail to self-assemble, indicating that the current

understanding of NC interactions, and their contribution to BNSL self-assembly, is incom-

plete. By contrast, experimental in situ studies have already revealed the self-assembly

mechanism of single-component NC superlattices[176, 177, 178, 179, 180, 181, 182, 183,

184] enabling a priori structure prediction by capturing both kinetic and thermodynamic

aspects of how different inter-NC interactions influence self-assembly[185, 41, 186, 121,

43, 20, 175, 187]. Yet, in almost two decades since the first observation of BNSLs[19],

only one in situ study has been reported for BNSLs of iron oxide NCs[187], and no in

situ studies have investigated the assembly of different materials into BNSLs.

Here we combine experiments and simulations to understand the formation of BNSLs.

We use synchrotron-based in situ small-angle X-ray scattering (SAXS) to follow in

real-time the self-assembly of two commonly observed BNSLs isostructural to AlB2 and

NaZn13. The NCs were confined to emulsion droplets that were slowly dried to trigger

crystallization, resolving with unprecedented detail the formation of high-quality BNSLs.

This approach was combined with molecular dynamics (MD) simulations to determine the

interparticle interactions allowing the formation of these BNSLs. We find that only the

presence of a strong, short-ranged attraction between NCs results in a self-assembly be-

havior consistent with experiment. This short-ranged attraction dramatically accelerates

the self-assembly kinetics by stabilizing the crystalline solid phase at low NC densities,

resulting in higher crystallization driving forces than possible for the hard-sphere mod-

els commonly used in the literature[175, 188]. We next elucidate the early stages of
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self-assembly; in contrast to single-component superlattices[176, 178, 179, 189], BNSLs

undergo homogeneous nucleation into the final crystal structure without any intermedi-

ate phases. By establishing a direct link between experiments and simulations, our work

provides crucial insights into the formation of BNSLs and represents a significant step

towards a priori structure prediction of these complex, 3D artificial solids.

6.2 Results and Discussion

We conduct self-assembly of binary mixtures of NCs using emulsion-templating[190].

We prepare a surfactant-stabilized oil-in-water emulsion containing a dispersion of larger

(L) super-paramagnetic Fe3O4 and smaller (S) PbS semiconductor NCs with an effective

size ratio of 0.56, a number ratio of 1:2, and a total inorganic volume fraction of ≈ 0.001.

To collect in situ scattering patterns, we flow the emulsion in a closed loop through

a quartz capillary aligned with the X-ray beam. Figure 6.1a illustrates the continuous

kinetic evolution of the structure factor, S(q). Initially, the structure factor is featureless

and centered around 1, as expected for a colloidal gas. During the first 3 hours drying

the emulsion, broad features arise across the wave vector range, q. After 3.6 hours, a

succession of sharp peaks suddenly emerges from the background, growing in intensity

while shifting with time towards higher q. As highlighted in Figure 6.1b, the shape of the

structure factor at 3.6 hours resembles that of a low-density colloidal fluid, but within 0.1

hours rapidly develops into a fully-formed diffraction pattern featuring at least 7 sharp

peaks from growing crystallites. Immediately thereafter, all peaks shift synchronously

toward higher q, indicating a contraction of the crystal lattice. We identified the crystal

as isostructural to AlB2 with parameters a = b ≈ c; see Figure 6.1c. This structure is

characterized by stacked hexagonal layers of the larger NCs intercalated by hexagonal

layers of the smaller NCs that occupy the trigonal prismatic voids left by the larger NCs.

To understand the formation of these BNSLs, we extract the evolution of the structural

parameters from the in situ measurements as shown in Figure 6.1d. After nucleation,
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Figure 6.1: Formation of colloidal AlB2 BNSLs. (a) Kinetic structure factor, S(q), of a binary disper-
sion of PbS and Fe3O4 NCs under spherical confinement of a drying emulsion. (b) S(q)
patterns showing the emergence and evolution of diffraction peaks around the time of BNSL
nucleation. (c) Final S(q) pattern identifying the BNSL structure as AlB2. (d) Evolution of
the crystalline lattice after nucleation, highlighting the kinetics of surface-to-surface distance
between larger (L) and smaller (S) NCs, d (top), and average crystal size, ξ (bottom). The
proposed assembly mechanism is shown as inset. (e) TEM micrograph of PbS and Fe3O4

NCs crystallized into a 3D AlB2 BNSL. The fast-Fourier transform is shown as inset. (f)
Model of the AlB2 BNSL shown in (e).
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lattice contraction induces a slow decrease in the surface-to-surface distance between NCs,

d. This decrease takes place over several hours to reach an inorganic volume fraction of

ϕ = 0.357. In stark contrast to this steady compression of the lattice, the average crystal

size extracted from the Scherrer equation[191], ξ, increases rapidly: Within 0.1 hours after

nucleation, the crystal size increases to reach ξ ≈ 330 nm, corresponding to ξ/a ≈ 23

unit cells of the BNSL. Eventually, the crystal size slowly decreases to ξ ≈ 280 nm as the

result of lattice compression.

Based on these observations, we hypothesize the assembly mechanism shown in the

inset of Figure 6.1d: crystallization occurs as a single-step transition from the fluid to the

crystalline phase. The relative positions of the diffraction peaks do not change during

assembly, implying the absence of intermediate phases between the fluid and the final

crystal. This is a simpler process compared to previous reports for single-component

NC superlattices reporting crystal-to-crystal transitions[178, 179, 189]. The continuous

compression of the BNSL follows crystallization. We attribute this compression to the

evaporation-driven desorption of solvent from the ligand shell of the NCs, consistently

with reports on single-component systems[176, 178, 192]. The fast-Fourier transform of

the BNSL shown in Figure 6.1e reveals a discrete set of spots, as expected for a crystalline

structure. Combining in situ and ex situ experimental results leads to the model shown

in Figure 6.1f.

We test the robustness of this approach by using a pair of larger plasmonic CdO

NCs co-doped with fluorine and indium (FICO), and smaller semiconductor PbS NCs

with comparable size ratio, number ratio, and initial volume fraction: their assembly in

emulsion yields the same AlB2 BNSL structure with similar kinetics. We next target a

different BNSL, NaZn13 , by increasing the number ratio of these FICO and PbS NCs from

1:2 to 1:13. The experimental structure factor reveals the onset of diffraction peaks from

the flat background shortly after 2.3 hours of drying. The diffraction pattern appears

qualitatively different from Figure 6.1, with at least 10 discernible reflections. A more
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Figure 6.2: Formation of colloidal NaZn13 BNSLs. (a) Kinetic structure factor, S(q), of a binary dis-
persion of PbS and FICO NCs under spherical confinement of a drying emulsion. (b) S(q)
patterns showing the emergence and evolution of diffraction peaks around the time of BNSL
nucleation. (c) Final S(q) pattern identifying the BNSL structure as NaZn13 with a minority
AlB2 phase. (d) Evolution of the surface-to-surface distance between larger (L) and smaller
(S) NCs, d (top), average crystal size, ξ (middle), and phase fraction (bottom) of the two bi-
nary phases during lattice compression. (e) Dark-field STEM micrographs of a single-crystal
NaZn13 BNSL, and (f) its structural model. (g) Micrograph of a hetero-structure showing
the coexistence of NaZn13 with a secondary phase.
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careful examination of the final diffraction pattern indicates the coexistence of a majority

phase isostructural to NaZn13 with a minority AlB2 phase, as shown in Figure 6.2c. The

NaZn13 structure consists of a body-centered icosahedral cluster of 13 smaller particles

contained within a simple cubic subcell of the larger particles, as illustrated in the inset

in Figure 6.2c.

We study the synchronous evolution of the NaZn13 and AlB2 phases in Figure 6.2d.

The lattice parameters of the two crystalline phases slowly decrease as a function of

time, to reach maximum inorganic volume fractions of ϕ = 0.360 and 0.384 for NaZn13

and AlB2 , respectively. Within 0.1 hours after nucleation, the average domain sizes of

the NaZn13 and AlB2 phases rapidly increase and saturate at their final values of ξ ≈

510 nm and 200 nm, respectively. We quantify the fraction of each crystalline phase by

comparing with the assembly performed at a NC number ratio of 1:2. After nucleation,

the fraction of both NaZn13 and AlB2 phases quickly increases to reach the values of 0.74

and 0.21, respectively, confirming NaZn13 as the majority phase. Interestingly, while the

fraction of the AlB2 phase shows a slow increase in the late stages of the assembly, that

of the NaZn13 phase shows a comparable decrease. This suggests that even though the

NaZn13 phase readily nucleates to occupy most of the available volume, this structure

might be thermodynamically less stable than AlB2 . The relative strengths of inter-NC

interactions may be responsible for shifting this equilibrium towards one specific phase.

Ex situ dark-field STEM confirms the formation of 3D colloidal NaZn13 BNSLs; see

Figure 6.2e. The [200] projection clearly illustrates the cubic symmetry of the NaZn13

phase, as well as the four-fold symmetry of the smaller NCs surrounding each larger

NC. In Figure 6.2f we illustrate a 3D model of this colloidal BNSL, obtained by carving a

sphere out of a NaZn13 lattice with experimentally determined structural parameters. We

also observed superstructures characterized by a heterostructure of NaZn13 with a second

phase, shown in Figure 6.2g, confirming the presence of a minority phase as suggested by

SAXS.
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In situ measurements draw a detailed picture of the self-assembly process that we

juxtapose with simulations to reveal the driving force behind the formation of BNSLs.

The formation of AlB2 and NaZn13 BNSLs is frequently attributed to entropy[96, 193]

because of their high packing fractions[76, 194] and because these are both equilibrium

phases of the hard-sphere model[87], whose phase behavior is solely dictated by entropy.

However, in Chapter V of this thesis we discovered that the self-assembly of the AlB2

phase is kinetically prohibited in hard-sphere mixtures at a NC number ratio of 1:2,

indicating that more complex interactions are necessary for its formation.

The NCs used in this work interact through van der Waals interactions between in-

organic cores and between ligands, mediated by the choice of solvent, and superpara-

magnetic interactions in the case of Fe3O4 NCs[195]. Previous efforts have focused on

computing the potential of mean force between two NCs, leading to results that are lim-

ited to specific compositions[196, 197, 198, 199, 82, 200]. Furthermore, many of these

results pertain to NCs in vacuum, while the superlattice contraction observed in our ex-

periments indicates that the ligand coronas are still swollen with solvent at the time of

self-assembly. These considerations warrant the use of a more general approach. Here,

we infer the overall interaction potential by directly comparing the experimentally deter-

mined self-assembly results with simulation. The inability of AlB2 to form from purely-

repulsive NCs at a number ratio of 1:2 implies the key role of attractive interactions. The

introduction of an isotropic, attractive force is consistent with the expected van der Waals

and superparamagnetic interactions and may promote self-assembly behavior consistent

with experiments. Such interaction is well-described by a Mie potential[201],which is

characterized by a repulsive core and an attractive well whose depth and width control

the strength and range of attraction, respectively. Similar NC interaction potentials have

been found in previous studies[196, 197, 198, 199, 82, 200]. Here, we pinpoint the spe-

cific shape of the potential driving the formation of BNSLs. We test two different well

widths, described as “narrow well” and “wide well” and shown in Figure 6.3a-b, scaling
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the range of the interaction between two NCs by the average of their effective sizes to

account for the size difference. For simplicity, the well depth, ε, is kept constant for all

interspecies interactions, i.e. ε = εLL = εLS = εSS. To reveal how the range and strength

of interaction affect the phase behavior, we computed phase diagrams for a NC number

ratio of 1:2, as shown in Figure 6.3c-d. In the presence of the narrow well, the gas and

solid AlB2 phases are both stable. In contrast, in the presence of the wide well a region of

vapor-liquid coexistence is stable above a critical well-depth εc; see Figures 6.3d and 6.5.

This is consistent with the Noro-Frenkel law of corresponding states[202], which predicts

that wider potential wells exhibit a stable liquid–gas transition.

While these phase diagrams show the equilibrium predictions for a given set of param-

eters, they do not indicate whether a phase is kinetically accessible. To study whether

the AlB2 phase will form, we slowly compress an initially disordered fluid under peri-

odic boundary conditions. A combination of Steinhardt order parameters[68] enables the

quantification of the fraction of larger NCs that become crystalline as a function of time,

NAlB2/NTotal; see Figure 6.6 for calculation details. When using a narrow well at least as

deep as 1.0 kT , over 50% of larger NCs crystallize by the end of the simulations, as shown

in Figure 6.3e. There is limited crystallization for a shallower well of 0.5 kT , and no crys-

tallization when the NCs are purely repulsive. In contrast, only minimal crystallization

occurs with the wide well, with at most 6% of larger NCs registering as crystalline even

for the deepest well investigated, 2.5 kT , as shown in Figure 6.3f.

These results show that short-range attractive forces substantially improve the crys-

tallization kinetics of NCs into AlB2. The rate at which AlB2 nucleates and grows is

related to both the degree of supersaturation of NCs and their mobility. Since the NC

mobility depends strongly on density, self-assembly occurs more readily when higher su-

persaturations are reached at lower densities, which is the case for the narrow, deep well.

In contrast, the dense liquid phase found for the wide, deep well reduces the degree of

supersaturation for AlB2 and thus hinders self-assembly. We quantify these effects by
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Figure 6.3: The influence of attractive forces in binary mixtures. (a-b) Mie pair potentials shown as a
function of the normalized interparticle distance, U(r/σ), calculated for a well depth of 1 kT
and for length scale parameters m = 25 (a) and m = 6 (b). The potential in (a) is described
as the “narrow well” and the one in (b) as the “wide well” in the main text. For each
potential, three types of interactions are shown: between larger NCs (LL), between larger
and smaller NC s (LS), and between two smaller NCs (SS). (c-d) Thermodynamic phase
diagrams computed from free energy calculations for the narrow (c) and wide well (d) as a
function of well depth, ε, and normalized particle density, ρσ3. The blue and orange lines
demarcate the regions of gas-solid coexistence and vapor-liquid coexistence, respectively.
Errors in the phase boundaries are smaller than the points. The dashed red line in (d)
indicates the critical well depth εc above which vapor-liquid coexistence occurs. The phase
diagrams are computed at a NC number ratio of 1:2. (e-f) The evolution of the number of
AlB2-like particles in self-assembly simulations through slow compression for the narrow (e)
and wide well (f).
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showing a measure of the degree of supersaturation, the difference in chemical potentials

between the crystal and fluid phases, as a function of NC mobility in Figure 6.7. The

acceleration of crystal nucleation with isotropic, short-ranged attractive forces was re-

ported previously in single-component systems[203, 204, 205], and attributed to either

critical fluctuations[203], or the presence of a metastable liquid phase[204, 205]. These

factors are not relevant for our systems as the narrow well is simulated away from its

metastable critical point, as shown in Figure 6.8. Instead, our results are reminiscent of

the increased driving force for crystallization observed in colloids with small attractive

patches[206].

These results indicate that the interaction between NCs during self-assembly is con-

sistent with a pair potential characterized by a narrow, deep well. After settling on a

specific potential shape, we check for further consistency with experiment by simulating

conditions closer to experiment by adding NC polydispersity and spherical confinement

to the simulations. We determine the polydispersity of each NC species by SAXS and

simulate each NC’s interaction with the confining boundary of the droplet using a Weeks-

Chandler-Anderson potential[207]. Each simulation system is initialized as a colloidal

fluid in a droplet, then slowly compressed to induce self-assembly. In close agreement

with experiment, AlB2 forms at a NC number ratio of 1:2, while NaZn13 forms at 1:13.

Interestingly, crystallization begins at a slightly lower volume fraction for NaZn13 than

AlB2, 0.528 and 0.572 respectively, as shown in Figure 6.4a. Simulations performed at

lower volume fractions did not result in self-assembly. As shown by the kinetic change

in the fraction of crystalline particles, rapid crystal growth follows nucleation. Con-

sistent with experiments, we find no intermediate crystal phases that precede the final

phases[178, 179].

Simulations provide the unparalleled advantage of directly visualizing crystal nucle-

ation, a process notoriously elusive to capture in experiments. The early stages of assem-

bly for NaZn13 and AlB2 BNSLs are shown in Figures 6.4b-c, respectively. To highlight
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Figure 6.4: The self-assembly of AlB2 and NaZn13 in spherical droplets. In (a) we show the results of
attempts to self-assemble AlB2 and NaZn13 with the deepest (2.5 kT ), narrow well used in
Figure 6.3. The curve labelled “NaZn13” was obtained at a stoichiometry of 1:13, while the
curve labelled “AlB2” was obtained at a stoichiometry of 1:2; Ncrys/Ntotal is the fraction of
large particles we identify as NaZn13-like or AlB2-like respectively. In (b) and (c) we show
early stages of the growing NaZn13 and AlB2 crystals, respectively. We show two different
time points, (i) and (ii); the color of the images’ borders match that of the corresponding
timepoints in (a) from which they were taken. We show large particles identified as crystalline
in blue and small particles neighboring a crystalline large particle in pink; all other particles
are reduced in size and colored grey. In (d) and (e), we visualize an inner slice of each droplet
at the final time point of our simulations, coloring every particle. Unlike the simulations in
Figure 6.2, each species is set to have the polydispersity of the corresponding experimental
nanoparticles.
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the crystalline nuclei, we color only the NCs identified as being in a crystalline environ-

ment, while fluid-like NCs are shown as smaller grey spheres. For both NaZn13 and AlB2

BNSLs, the critical nuclei emerge from the fluid multiple particle diameters away from

the surface of the droplet, allowing us to conclude that these BNSLs undergo homoge-

neous nucleation. Only after nucleation do the crystallites of NaZn13 and AlB2 BNSL

spread to the wall. This behavior is unaffected by the size of the droplet, as shown by

replacing the spherical walls with flat walls to simulate significantly larger droplets, as

shown in Figure 6.9. We find no evidence for exotic pre-nucleation clusters. The final

stages of growth result in the crystals shown in Figures 6.4d-e. The NaZn13 grains are

easily identifiable by the simple cubic arrangement of the larger NCs. A single crystal

grain spans most of the spherical superstructure, consistent with the experimental results

shown in Figure 6.2. In contrast, multiple grains of AlB2 are present. This qualitatively

agrees with the SAXS measurements showing smaller grains for AlB2 than NaZn13, al-

though specific crystal grains are harder to visualize in the TEM micrographs, making a

quantitative comparison between simulation and experiment challenging.

An apparent discrepancy remains between experiment and simulation: experimental

results indicate the presence of 20% AlB2 as a second phase for samples prepared at

a NC number ratio of 1:13, while simulations show less than 1% AlB2. Interestingly,

reducing the magnitude of the attraction between smaller NCs results in the coexistence

of AlB2 and NaZn13 at a NC number ratio of 1:13, removing the discrepancy as shown

in Figure 6.10. This adjustment is consistent with the dependence of van der Waals and

superparamagnetic interactions on NC size[195].

6.3 Conclusions

We demonstrate a remarkable correspondence between experiment and simulation of

the self-assembly of BNSLs. Under spherical confinement, NCs readily nucleate into

binary phases isostructural to AlB2 and NaZn13 without intermediate liquid or crystal
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phases. The burst of crystal nucleation is followed by a gradual lattice contraction to

result in multifunctional, 3D, dense, crystalline binary phases. We can accurately repro-

duce these experimental results in simulation by introducing a short-ranged, attractive

potential, which we find kinetically promotes self-assembly. This direct link between

experiments and simulations reveals that BNSLs nucleate homogeneously and directly,

without intermediate solid phases preceding the final crystal. In achieving a closer cor-

respondence between experiment and simulation, and demonstrating the importance of

short-range attraction for assembly kinetics, this work represents a crucial first step in a

priori prediction of BNSLs towards the deterministic hetero-integration of NCs into mul-

tifunctional structures, targeting applications in photonics, excitonics, phononics, and

catalysis.

6.4 Methods

Note that we have ommited details on the experiments from this chapter.

We used molecular dynamics (MD) with the HOOMD-Blue simulation toolkit[148] to

simulate a binary mixture of NCs with interactions modeled by the Mie (IPL) potential:

(6.1) Uij = εij

(
n

n−m

)(
n

m

)m/n−m
((

σij

rij

)n

−
(
σij

rij

)m
)

is the energy between two NCs (particles) i and j separated by a distance rij. The

potential is described by four parameters: a measure of the particle’s size, σij; the power

of the repulsive component, n; the magnitude of the interaction, varepsilonij; and the

length scale of the attractive interaction, m. We set σij to match the effective size ratio of

the NCs used in experiment: σSS = 0.55σLL, σLS = (1+ 0.55)σLL/2, and σLL = 1, where

L represents the larger NCs and S the smaller NCs. For simplicity, we set the depth of

the potential well to be equal for all particle pairs: ε = εLL = εLS = εSS. We also use

σ to represent σLL in the text. For consistency with Chapter V, we set the power n to

a value of 50. We analyze systems with m of 6 and 25, which we refer to as “wide well”
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Table 6.1: Density Range for Compression Simulations
m ε/kT Densities (ρσ3)
25 0.0 2.60-2.70
25 0.5 2.60-2.70
25 1.0 2.52-2.62
25 2.0 2.37-2.47
25 2.5 2.18-2.28
6 0.0 2.60-2.70
6 0.5 2.61-2.71
6 1.0 2.54-2.64
6 2.0 2.44-2.54
6 2.5 2.41-2.51

and “narrow well” respectively. The resulting potentials are shown in Figure 6.3a-b for a

well-depth of 1.0 kT . Throughout the paper we manipulate the well depth by changing

the temperature, which is inversely proportional to the well depth. We define the units

of time as τ = σ(w/ε)(1/2), where w is mass and set to 1 for every type of particle.

To compute the free energies of different phases in Figure 6.3c-d, we combined thermo-

dynamic integration with the Einstein molecule method[71], a variant of the Frenkel-Ladd

method[70], using at least 2,000 particles in every case. The free energies of the gas and

liquid phases were computed at a stoichiometry of 1:2. Self-assembly was attempted with

27,000 particles by slowly compressing the particles from an initially disordered fluid state

to a crystalline or kinetically arrested amorphous state. In Table 6.1 we give the range

of densities compressed over for each well depth and width. The densities were chosen

because of their proximity to where crystallization or kinetic occurs. We also compute

the diffusion coefficients in the vicinity of kinetic arrest; see Figure reffig:diffusion. We

used NVT simulations based on the MTK equations[155] to thermostat our simulations

in Figure 6.3e-f and NVT simulations using a Langevin integrator[156] to thermostat our

simulations in Figure 6.4.

For the simulations in Figure 6.4, we treat the distribution of particle sizes as a mixture

of two normal distributions: one centered at a size of 1σLL and one centered at a size of

0.55σLL. The standard deviations (s) of the normal distributions were chosen to match

experiment: s = 0.047σLL for that of the larger particles and s = 0.063σSS for that of
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the smaller particles. We then discretized the distributions, with 13 bins associated with

each peak. We placed the particles inside a spherical droplet, whose edges repel the

particles with a Weeks-Chandler-Anderson potential. We computed an effective packing

fraction by calculating an effective particle size according to the prescription of Barker

and Henderson[208]. We scaled the wall’s range of interaction by σi/2, which accounts for

the different sizes of the particles. We used Steinhardt order parameters[68] in Figures

6.3 and 6.4 to identify crystalline particles. The specific combinations for each crystal are

shown in Figure 6.6. The parameters were calculated using the freud software library[69].

We used Ovito to visualize our simulations throughout this work[72]. The computational

workflow and data management for this publication was primarily supported by the signac

data management framework[73].

6.5 Supplement

Figure 6.5: Our estimation of the critical point using pressure-volume data. The downward slope between
a few points at ε/kT = 1/0.725 indicates that vapor-liquid separation occurs while the lack
of a downward slope for ε/kT = 1/0.75 indicates the lack of phase separation. We thus
estimated the critical point to be ε/kT = 1/0.738. Note that this estimate is not used in any
of our free energy calculations, and thus the estimate’s uncertainty does not propagate into
those calculations. We collected the pressure-volume data by simulating 8,000 particles for
16,000τ at a stoichiometry of 1:2.
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Figure 6.6: The order parameters we used to distinguish between liquid and solid particles. Large par-
ticles in the AlB2 phase can be distinguished using the q8 using the closest 20 particles
(large or small). We also computed the q6 of the nearest 8 large particles but do not use
it identify particles as being in the AlB2 phase. Large particles in the NaZn13 phase can
be distinguished using the q4 using the closest 6 large particles and the q9 of the closest 24
particles (large or small). The number of neighbors was chosen to match that of particles
in the perfect crystal. The results for the liquid phase were taken from the first few frames
of our self-assembly simulations shown in Figure 6.4. The results for the solid phases were
gathered at Pσ3/ε = 1. To account for the fact that our self-assembly results tend to have
many defects, we removed about 10% of the particles from each simulation frame of the solid
phases before computing the order parameters. The specific bound used to distinguish AlB2

is qLL,LS
8 > 0.42. The specific bounds used to distinguish NaZn13 are qLL,LS

9 > 0.38 and
qLL
6 > 0.45.

89



Figure 6.7: The diffusion constant versus the chemical potential driving forces for every pair potential
we attempted self-assembly with in Figure 6.3. The chemical potential driving forces are
computed as |∆µC,F | = |µAlB2 −µL/3− (2/3)µS |, where µ is computed in the same manner
used to generate the phase diagrams in Figure 6.3. Nucleation should be most favorable if a
high |∆µC,F | can be achieved with highly mobile particles, which corresponds to the upper
right corner of the graphs. We see a trend towards that corner with increasing well depth,
with the trend being much stronger for the narrow well system.
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Figure 6.8: Pressure-volume data for the narrow well at the 4 different well depths examined in the text.
We do not see a critical point for any well-depth, although the trend in the data indicates
that it may form for well-depths only slightly larger 2.5 kT . However, every system self-
assembles in our simulations at a number density higher than 2/σ3 which is much higher
than the likely critical density.
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Figure 6.9: BNSL formation with flat walls. We show any large NC identified as crystalline as blue and
any small particle neighboring a crystalline large NC as pink; all other NCs are reduced in
size and colored grey. The simulations were run under conditions close to those shown in
Figure 6.4. The AlB2 nucleus forms at a stoichiometry of 1:2, while the NaZn13 nucleus
forms at a stoichiometry of 1:13. In no case does the nucleation begin on the wall.
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Figure 6.10: Crystal formation with unequal attractive wells. As shown in the plot, the well-depth is 2.5
kT between large particles, 1.75 kT between large and small particles, and 1 kT between
small particles. With this pair potential we obtain a small region of AlB2 alongside a larger
region of NaZn13 at a stoichiometry of 1:13. We did not use polydisperse particles for this
simulation because polydispersity slows equilibration.
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Figure 6.11: The diffusion constants (D) of the large particles as a function of density for different well-
depths and well-widths. We computed D from simulations of 27,000 particles at a NC
number ratio of 1:2. We could collect data up until crystallization began to occur; thus,
we could go to higher densities, and lower diffusion coefficients, for the wide well. Note
that we varied well depth by changing the temperature instead of explicitly ε . We expect
that changing ε instead would change the diffusion coefficients by less than an order of
magnitude.
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CHAPTER VII

Guide to Binary Colloidal Self-Assembly with Non-Specific
Interactions

7.1 Introduction

Self-assembly is powerful way to prepare binary colloidal crystals.[16, 18, 22, 121, 56,

75, 209] Because the structure of the superlattice can dictate its properties[29, 15, 30, 31,

32, 33, 36], a common goal is to design colloidal particles such that they self-assemble into

a desired structures. Doing so requires understanding how the interparticle interactions

and system parameters influence self-assembly.

Many previous efforts involve designing “specific” interactions between the colloidal

particles such that they bond in a desired manner. These include particles with attractive

patches that promote a desired bonding valence[45, 53, 206, 210, 211, 212] and particles

which prefer to bond with a specific species of particle[20, 39, 121, 213, 48]. With specif-

ically interacting particles, the structure that self-assembles can frequently be predicted

by considering the energetic favorability of different candidate structures[121].

It is more difficult to predict the self-assembly behavior of nonspecifically interact-

ing particles, which include bidisperse mixtures of hard spheres or mixtures of mutually

attractive spheres. Nonetheless, many colloids which self-assemble can be classified as

interacting non-specifically or near non-specifically[18, 22, 104, 74, 32, 26]. A particu-

larly common idea is that the densest packing structure will self-assemble because at

densities below the densest packing the structure will provide the most free volume and

therefore maximize the entropy[76]. However, while most crystal phases reported to self-
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assemble for nonspecifically interacting particles are very dense (compared to those that

self-assemble for patchy particles[206]), phases besides the densest packing are frequently

reported to self-assemble[18, 22, 104, 74, 32, 26].

Here we use simulations to map out the self-assembly behavior of bidisperse, non-

specifically interacting particles. We examine both hard sphere-like and attractive par-

ticles, characterizing their self-assembly as a function of stoichiometry and size ratio.

Surprisingly, we find that hard sphere-like and attractive particles self-assemble similar

phases, but at different size ratios and stoichiometries. We also find that both sets of

particles can self-assemble into a quasicrystal phase, providing further evidence that qua-

sicrystal formation does not require complicated interactions. Our work will function as

a guide for those working with these particles.

7.2 Self-Assembly Results

To mimic hard spheres we use the Weeks-Chandler-Anderson (WCA) potential[207]

at a low temperature, as shown in Figure 7.1a. The WCA potential is a Lennard-Jones

potential truncated and shifted at its minimum to eliminate the attractive interactions:

(7.1) Uij =


4ϵ

((
σij

rij

)12
−
(

σij

rij

)6)
+ 1 rij < 21/6σij

0 rij > 21/6σij

where Uij is the potential energy between two particles i and j, σij represents their

diameter, rij is interparticle distance, and ϵ is the unit of energy. We simulate it at

a temperature of 1/200 kT ; at that temperature previous reports[110] indicate that it

nucleates similarly to hard spheres. For reference, if we evaluate d(U/kT )/dr ( a measure

of softness) at the interparticle distance corresponding to U/kT = 1, we find it maps to

an inverse power law potential with an exponent of 164.

We use the Mie potential[201] with a short-ranged attractive well to simulate attractive

particles:

(7.2) Uij = 23/2ϵ

((σij

rij

)50
−
(σij

rij

)25)
.
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In Chapter VI we found that narrow attractive wells can self-assemble on much shorter

time scales than with wider wells or hard sphere-like particles.

Figure 7.1: The potentials used here. The hard sphere-like WCA potential at kT = 1/200 is shown in
a), and the attractive Mie potential is 0.4kT is shown in b). We always simulated WCA
particles at 1/200 kT , but with Mie particle we slowly dropped the temperature from 0.41
to 0.31 kT .

We used the HOOMD-blue simulation toolkit[148] to conduct molecular dynamics

simulation in this work. With WCA particles, we slowly compressed the system in NVT

simulations to induce self-assembly. With Mie particles, we slowly dropped the tem-

perature in NPT simulations at low pressure (0.1 ϵ/σ3) to induce self-assembly. The

temperature range examined was 0.41 > kT/ϵ > 0.31. This alternative scheme was de-

signed to increase the strength of attraction (which is inversely proportion to kT ) at the

time of self-assembly. Our simulations had 216,000 particles.

Our results for the self-assembly of the WCA and Mie systems are shown in Figures

7.2a and 7.2b, respectively. We used Steinhardt order parameters[68] to identify if a

particle’s local environment resembled that of a crystal. If we observed 10 particles with

the same local environment within a cluster, we indicate that crystal with a marker in

Figure 7.2. We examined a range of stoichiometries between 1:1 and 1:19 (particle number

ratio of large to small). We did not look at cases where the large particles outnumber

the small particles because the large particles usually self-assemble into single-component

crystals in such cases. We suspected more phases might be present for the WCA spheres

below a size ratio of 0.54, so we examined those size ratios with a higher resolution. Our

suspicion was incorrect.

97



Figure 7.2: The crystal phases self-assembly with a) WCA and b) Mie particles. For a given stoichiometry
and size ratio, we report a given crystal as forming if we observe a cluster of 10 particles of
that crystal. The size of the marker is proportional to the log of the largest cluster of that
crystal in the simulation box. We induced self-assembly through slow compression in a) and
slow cooling in b). We indicate the stoichiometry of a crystal and the size ratio where it
packs most densely with stars outlined in black.
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With the WCA particles we see six distinct phases. These include FCC crystals of

the large (FCCL) and small (FCCS) particles; three binary crystals reported previously

for hard sphere-like particles: the Laves phases, AlB2, and NaZn13; and a quasicrystal

phase previously observed in binary nanoparticle superlattices[104]. We note that many

of the octahedral voids in FCCL are occupied by small particles, like in an interstitial

solid phase[214] (ISS), but we do not distinguish between the FCCL and ISS. We do not

distinguish between Laves phases, which differ in the stacking of their layers, because we

observe a mixture of stackings in our crystallites.

Our detailed sweep of parameter space enables us to better characterize the regions

where specific phases self-assemble. It may seem intuitive that a crystal will self-assemble

best from a fluid at the crystal’s stoichiometry and at the size ratio where the crystal

can pack most densely. We indicated these points with stars outlined in black in Figure

7.2. However, with WCA spheres, self-assembly generally occurs most readily with an

excess of small particles and at size ratios lower than that at which phase can pack most

densely. For example, AlB2 has a stoichiometry of 1:2 and can pack most densely at

γ ≈ 0.53; but the region where it self-assembles is centered around stoichiometries of

1:3-1:5 and γ = 0.5. We explained the stoichiometry dependence in Chapter V, in which

we found that excess small particles promotes mobility and disfavors competing phases

with non-attractive particles. The benefit of having smaller particles is less clear, but we

suspect it stems from smaller particles having more local free volume (and thus higher

entropy).

We observe similar phases with the Mie particles, with the only difference being

the appearance of the CaB6 phase, which has been reported in binary nanoparticle

superlattices[106]. This is surprising, as it seemed likely that the attractive well would

perturb the system such that multiple new phases self-assemble. Instead, it usually only

shifts the size ratios and stoichiometries at which the phases self-assemble. On the phase

diagram, the binary phases appear to shift upwards (to higher size ratios) and leftward
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Figure 7.3: The quasicrystal phase self-assembled from WCA particles. In a) and b) we show two per-
spectives on a quasicrystal spontaneously grown from the fluid a 1:13 and γ = 0.43. The
inset in a) show the 12-fold symmetric diffraction pattern. In c) we show a quasicrystal
grown from a fluid phase with a crystalline seed. The grey particle denote the original seed,
which was taken from an quasicrystal approximate phase. The 12-fold diffraction pattern
shows the quasicrystalline nature of the phase that grew from the seed. In d) we show the
bonds between the large particles in c) for a small slice of that simulation. We just show the
bonds for two layers, shown by the side view in e), because defects can occur between layers
that obscure the triangle-square tiling.
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(to fewer small particles), making self-assembly easier at the stoichiometry of the crystal

and at or above the size ratio of densest packing.

Better self-assembly at the stoichiometry of the crystal likely stems from less compe-

tition from other phases. Removing large particles from the fluid increases the volume

available to the remaining particles more so than removing small particles, which can

lead to the preferential self-assembly of solid phases richer in large particles than the

fluid, as we found in Chapter V. However, when the particles are attractive, the many

bonds formed by large particles will decrease their desire to leave the fluid relative to

small particles.

Better self-assembly at or above the size ratio of densest packing is likely related to

Pauling’s first rule[215]: at or above those size ratios, the particles are in contact with

more of the neighbors and thus can form more bonds.

It is curious that the same set of phases self-assemble for repulsive and attractive

particles. This probably occurs in part because densely packed phases, which tend to be

favorable for hard sphere-like particles, tend to have many interparticle contacts, which

are favorable for attractive particles. But this does not answer why some phases (NaZn13;

the Laves phases; the quasicrystal at γ > 0.46 and γ < 0.45) that are dense, but not the

densest packings, self-assemble for both the WCA and Mie particles. For hard sphere-like

particles, the Laves phases[15, 103] and NaZn13[87] were found in free energy calculations

to benefit from entropy in ways that other phases do not, but it remains to be seen if

attractive particles in the same phases also benefit.

7.3 Quasicrystal Formation

The quasicrystal and CaB6 are the only phases not reported previously for bidisperse

particles in simulation[110, 147]. We analyze the self-assembly of the quasicrystal from

WCA spheres in more detail due to the novelty of such a complex phase forming from

simple interparticle interactions. To grow a larger quasicrystal, we ran a longer simulation
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at a stoichiometry of 13:14 and γ = 0.43. In Figure 7.3a we show a view down the

quasicrystalline axis. The inset diffraction pattern shows that it has 12-fold symmetry.

In Figure 7.3b, we show a rotated perspective of the same quasicrystal. Many small

particles remain in the fluid after the quasicrystal finished growing.

In Figure 7.3c) we show a quasicrystal grown from a columnar seed crystal of an

approximate quasicrystal phase. The original seed particles are denoted in grey. We

flattened the simulation box to increase the area of the quasicrystalline plane. In Figure

7.3d) we show the bonds between just the large particles of two planes within the struc-

ture. The bonds illustrate that the quasicrystal is composed of square and triangle tiles

with large particles decorating their vertices. We only show two planes because defects

can obscure these tiles; we show a different perspective of these planes and the simula-

tion box in Figure 7.3e). Inline with the quasicrystal reported for binary nanoparticle

superlattices[104], the the squares have the same motifs present in a CaB6 crystal and

the triangles have the same motifs present in an AlB2 crystal.

It is difficult to say whether this quasicrystal is the equilibrium phase, as standard free

energy calculations like the Frenkel-Ladd method do not work well on quasicrystals. It is

metastable on the time scale of our simulations and grows from the seed of a quasicrystal

approximate (as shown in 7.3c). The approximate consists of the square and triangle

motifs arranged in a snub-square tiling, which we previously found to be dense packing

of binary spheres around size ratios of 0.45 in Chapter IV.

The quasicrystal is notable for being the first quasicrystal reported for hard sphere-

like interactions. A quasicrystal approximate (of structure very different from ours) was

found for bidisperse hard spheres using type-swap Monte Carlo moves[109]. We did not

find their approximate in our simulations, indicating that it is kinetically inhibited.

The quasicrystal observed by Talapin et al.[104] likely does not result from hard sphere-

like nanoparticles because (unlike them) we find that a substantial excess of small particles

are required to observe it. However, Mie spheres do self-assemble into the quasicrystal at
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similar stoichiometries to their experiments. This is consistent with our work in chapter

VI, in which we concluded that inter-nanoparticle interactions are characterized by short-

ranged attractive forces. Other phases were observed coexisting with the quasicrystal

in experiment[104, 216]; we suspect additional forces (like dipole interactions[216]) are

responsible their appearance.

7.4 Conclusions

In summary, we constructed a guide for the self-assembly of bidisperse colloidal spheres

with nonspecific interactions. We examined both attractive and repulsive particles, find-

ing that they self-assembled similar structures but at different size ratios. We found a

quasicrystal phase, indicating that very simple interparticle interactions are required to

produce this complex phase of matter.

7.5 Methods

We conducted our simulations using the HOOMD-blue simulation toookit. We trun-

cated interaction range of the WCA spheres at a distance of 21/6. All simulations with the

WCA spheres were conducted with an NVT integrator based on the MTK equations[155].

We truncated the interaction range of Mie spheres at a distance of 1.7 and shifted the

potential by −7 · 10−6 such that it is zero at the cutoff. All simulations with the Mie

spheres were conducted with an NPT integrator based on the MTK equations[155]. In

each case we used 216,000 particles.

We used Steinhardt order parameters and a clustering algorithm[69] to distinguish if

particles were in a solid phase. Specifically, we used the Steinhardt order parameters to

identify solid-like particles, and then classified a crystal as forming if we detected at least

10 particles of the same crystal in a cluster. In Table 7.1 we give the combinations of

parameters used for each crystal.
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Table 7.1: Order Parameters for Crystal Identification
NL:NS Sim. Structures
Laves (qL4 < 0.1)(qL6 < 0.25)(qL6 > 0.17)(qL9 < 0.158)(qL8 < 0.3)
AlB2 (qL4 < 0.1)(qL8 > 0.4)(qL9 < 0.19)(qL10 < 0.23)(qL12 < 0.2)
NaZn13 (qL6 < 0.2)(qL9 > 0.38)
Quasi (qL5 < 0.09)(qL6 < 0.09)(qL9 > 0.16)(qL10 < 0.2)(qL12 < 0.17)
CaB6 (qL4 > 0.14)(qL6 < 0.15)(qL9 < 0.10)(qL10 > 0.18)
FCCL/ISS (qL8 > 0.35)(qL9 < 0.15)(qL12 > 0.25)
FCCS (qS6 > 0.45)(qS6 < 0.6)(qS8 > 0.35)
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CHAPTER VIII

The Self-Assembly of Atomically Aligned Nanoparticle
Superlattices From Heterodimer Nanoparticles

This is a collaborative work with Chris Murray’s group at the University of Pennsyl-

vania. Our collaborators in the Murray group performed all experimental work (mostly

alluded to in the text).

8.1 Introduction

Multicomponent nanoparticle superlattices, which are composed of two or more species

of nanoparticle, have shown promise in integrating nanoparticles made of different materi-

als into the same structure[22, 30, 74, 31, 32, 75, 56, 216, 217, 106, 96]. Typically, these su-

perlattices are synthesized by conducting self-assembly with two distinct types of nanopar-

ticles. An alternative method is to self-assemble conjoined nanoparticles[218, 219], in

which the nanoparticles are composed of two different materials segregated into sepa-

rate lobes. These nanoparticles are called heterodimers[220, 221, 222, 223] and their

self-assembly inherently results in a multi-component structure.

The structure of the resulting nanoparticle superlattices can influence their material

properties[29, 15, 30, 31, 32, 33, 36]. Phases reported for self-assembling heterodimer

particles include a 2D film[218] and an orientationally ordered face-centered cubic crystal

(FCC)[219]. Several more structures have been predicted to be stable thermodynamically

in simulation[224, 225, 226], although the the lack of experimental reports indicates that

their self-assembly may be kinetically limited.
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The orientation of the nanoparticles within the superlattice also affects material prop-

erties. Particularly interesting are orientations that lead to the long-range alignment

between the atomic lattices comprising the nanoparticles. Nanoparticle superlattices ex-

hibiting such order are predicted to have a variety of remarkable properties[227].

Here we show that heterodimer nanoparticles can self-assemble into an atomically

aligned nanoparticle superlattice. Our heterodimers are composed of a larger Fe3O4

component and a smaller Pt component. Using simulations to guide our efforts, we

self-assemble a superlattice in which the Fe3O4 components exhibit long-range positional

order. Furthermore, the atomic lattices within the Fe3O4 components exhibit long-range

ordering across the superlattice. We show that the asymmetric shape of our nanoparticles

can drive the nanoparticles to adopt a specific orientation, indicating that it is a general

method for preparing atomically aligned nanoparticle superlattices.

8.2 Self-Assembly Predictions

To guide our experiments, we first conducted self-assembly simulations examining

how the shape of the heterodimers influences their self-assembly behavior. Specifically,

we examined the influence of the diameter ratio (γ) of the components and the separation

distance (s) between their center of masses. We used a minimal model to simulate the

heterodimers, treating each component as hard sphere-like using the Weeks-Chandler-

Anderson pair potential[207]. Our model is similar to one used previously[225, 226],

but we conduct self-assembly simulations, which capture kinetic limitations, instead of

free energy calculations. Our self-assembly simulations consist of a slow compression

using molecular dynamics with the HOOMD-blue simulation toolkit[148]. Our results

are shown in Figure 8.1a.

We observed the self-assembly of three phases in our simulations: a rotator FCC phase

(Figure 8.1c), a NaCl-type phase (Figure 8.1d), and a double FCC phase (Figure8.1e).

In the rotator FCC phase, the large components sit at the lattice sites of an FCC crystal
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Figure 8.1: Predicting the self-assembly behavior of heterodimer nanoparticles. In a) we show the results
of self-assembly simulations conducted at differentcomponent separations (s) and size ratios
(γ). We illustrate these two parameters in b). We observe the self-assembly of a c) rotator
FCC phase (R. FCC), d) an NaCl phase, and a e) double FCC (D. FCC). We target self-
assembly of the rotator FCC phase, so we attempted to synthesize Fe3O4-Pt heterodimers
at γ = 0.4 and s = 0.25. A transmission electron microscopy image of a single heterodimer
is shown in f).

while the small components rotate freely. The NaCl phase is similar, except the small

components are confined to octahedral voids formed by the lattice of the large compo-

nents. We observed these phases when the large component is significantly larger than

the small component. In the double FCC phase, both components sit at the lattice site

of an FCC crystal. We observed this phase only when the components were equal in size.

Because NaCl and the double FCC phase required separations of 1.0, which are hard to

achieve with our nanoparticles, we targeted the experimental self-assembly of the rotator-

FCC structure. We synthesized the Fe3O4-Pt heterodimer nanoparticles at a target size

ratio of 0.4. A transmission electron microscopy image of one of the heterodimers is

shown in Figure 8.1f.

8.3 Atomic Alignment

Our experimental collaborators induced self-assembly using the liquid-air interface

method. From peaks in the small-angle electron diffraction (SAED), they characterized
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the larger Fe3O4 component as being in an FCC superlattice, in accordance with the

rotator FCC phase. Curiously, they also found distinct peaks within the wide-angle elec-

tron diffraction (WAED) pattern, indicating that there is long-range order with regards

to the atomic superlattices of each Fe3O4 component. Atomic alignment in nanoparticle

superlattices has been predicted to have a variety of remarkable properties[227].

The atomic alignment implies that Fe3O4 components are orientationally ordered

throughout the superlattice and that the position of the Pt component is not random, as

we would expect for the rotator FCC phase. Indeed, using the SAED and WAED data,

they characterized the Pt component as pointing towards an octahedral void formed by

the FCC lattice of Fe3O4, contradicting our predictions. The unexpected phase is not

NaCl, because each octahedral void is capable of accommodating multiple small compo-

nents.

We hypothesized that the shape of the heterodimer drives the orientational ordering at

high densities. We saw little orientational ordering in our self-assembly simulations, but at

higher densities the small components may develop a greater preference for the octahedral

voids. We next ran a series of simulations at different packing fractions to quantify this

preference. Specifically, we measure the angle θ formed between the orientation vector

describing the small component’s position and the nearest <100> lattice vector. We

initialized this simulations from an already formed rotator FCC phase. In Figure 8.2a,

we quantify the probability of a given θ relative to randomly orientated particles.

In Figure 8.2a we clearly see that increasing ϕ drives the smaller component towards

the octahedral voids. For example, at ϕ = 0.58, we find that the small components are

≈ 4 times more likely to point towards the voids than randomly orientated particles, but

at ϕ = 0.74, they are around ≈ 70 times more likely. The increased preference likely

results from packing effects, as it is well known that FCC structures can accommodate

interstitial species in their octahedral voids (as with NaCl) structure. In driving this

orientational alignment, the atomic lattices of different nanoparticles are also driven to
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Figure 8.2: Increase in orientational order with packing fraction. In a) we show how the angle θ formed
between the orientation vector describing the small component’s position and the nearest
<100> lattice vector changes with the packing fraction ϕ. The inset illustrates θ. We also
show snapshots from our simulations at b) ϕ = 0.58, c) ϕ = 0.68, and d) ϕ = 0.74. The small
components are clearly more ordered as ϕ increases.
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align.

8.4 Conclusions

In summary, we have self-assembled atomically aligned nanoparticle superlattices from

heterodimer nanoparticles. Our nanoparticles were composed of a larger Fe3O4 compo-

nent and a smaller Pt component. We found that the shape of the nanoparticles appears

to drive the orientational ordering and consequent alignment between the atomic lattices

of the Fe3O4 component. The generality of our methods should be useful for future work

on self-assembling nanoparticle superlattices with atomic alignment.

8.5 Methods

We conducted all of simulations using the HOOMD-Blue simulation toolkit[148]. We

used the Weeks-Chandler-Anderson potential[207] to represent each component of the

heterodimer. The distance between the two lobes was constrained by a rigid bond. We

simulated our particles at kT = 0.025, at which they behave similarly to hard spheres in

many aspects[228]. We used the Langevin integrator to thermostat our simulations[156].

In Figure 8.2, we computed the effective packing fraction by approximating the diameter

of each component using the prescription given by Barker and Henderson[208].
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CHAPTER IX

Conclusions and Outlook

In this dissertation we sought to understand the gaps in our understanding concerning

the self-assembly of bidisperse colloids. We have been successful in several respects, but

there is still experimental behavior that we cannot explain and questions that we cannot

answer.

9.1 Summary

In Chapter IV, we probed the influence of softness on the stability of binary colloidal

crystals. We concluded that a very small amount of softness is required to destabilize

several dense packings and that several experimentally observed phases are stabilized by

softness.

In Chapter V, we demonstrated that stoichiometry could be tuned to promote binary

colloidal self-assembly. We found this occurred due to an excess of the smaller component

increasing particle mobility and disfavoring competing phases.

In Chapter VI, we collaborated with Chris Murray’s group at the University of Penn-

sylvania to demonstrate that short-ranged attractive forces enabled the self-assembly

of binary nanoparticle superlattices. The experimentally observed self-assembly behav-

ior was kinetically limited with the hard sphere models more commonly used to model

nanoparticles, but not with particles possessing a narrow attractive well. We then showed

that both superlattices observed experimentally formed through homogeneous nucleation

in our simulations.
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In Chapter VII, we used simulations to construct a guide for the self-assembly of a

binary systems with non-specific interactions. We found that hard sphere-like particles

and attractive particles self-assemble into similar phases but at different size ratios and

stoichiometries. We additionally found a quasicrystal phase, highlighting that complex

phases can form for simple interactions.

In Chapter VIII, we again collaborated with the Murray group to examine the self-

assembly of heterodimer nanoparticles, which represent a different way to obtain a binary

nanoparticle superlattice. We used simulations to guide experiments and explain why an

atomically aligned nanoparticle superlattice formed.

9.2 Outlook

Several questions still remain with regards to the self-assembly of bidisperse nanopar-

ticles. Most notable is the formation of phases in experiment that we cannot account

for. These include Cu3Au, Li3Bi, Cacu5, and BCC-AB6 phases[22, 56]. We suspect their

formation is due to specific and non-additive interactions[99], so exploring these kinds of

interactions (particularly dipole interactions[22]) would likely be fruitful. We also note

that the work of Alex Travesset[125] concerning the deformation of nanoparticle ligand

coronas likely points the way to understanding the formation of some of the remaining

the structures.

A second open question is why binary mixtures of shapes typically fail to self-assemble.

In this work we revealed that adding an excess of the smaller shape can help in some cases,

but many binary mixtures still fail to self-assemble. A colleague, Yuan Zhou, is currently

investigating why they are so difficult to self-assemble. Answering this question could

lead to new and general ways of designing particles for desirable self-assembly behaviors.

A third open question is why the rate of defect formation is so high in many of

the binary crystals we observe. The defects can be observed in every chapter that we

attempted self-assembly (Chapters 5 – 8). They include point defects, grain boundaries,
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stacking faults, etc. A particularly common defect in systems of IPL and WCA particles

is the replacement of a large particle with a cluster of small particles. Here we did not

investigate why these defects form, but it would be interesting to examine how varying

the parameters of the particles and the system promotes or disfavors these defects.

A fourth open question is why phase separation sometimes occurs in experimental

attempts at binary nanoparticle self-assembly. This frequently manifests as the for-

mation of two coexisting nanoparticle superlattices, each containing only one type of

nanoparticle[217]. While here we predict phase separation for some types of particles, it

can be observed experimentally even for size ratios and stoichiometries where we predict

co-crystallization. We could investigate this phenomena by conducting simulations with

various combinations of intraspecies and interspecies interactions between particles and

seeing where phase separation occurs. Presumably phase separation occurs if intraspecies

interactions are more favorable than interspecies interactions, but it would be interest-

ing to quantify the degree of preference necessary to see phase separation and how it is

influenced the range and depth of attractive forces.

Finally, it would be interesting to examine the self-assembly of mixtures containing

three or more components. Only a few ternary nanoparticle superlattices have been re-

ported in experiment[35], but this may be because fewer researchers have tried ternary

self-assembly. It seems intuitive that more components could lead to more structures,

as is the case when going from single-component to binary systems, but, as discussed

throughout this thesis, co-crystallization can suffer from issues (particularly with regards

to the kinetics) that are not present for single-component crystallization. It would be

interesting to examine whether a diverse set of colloidal crystals could be obtained in

ternary and quaternary systems, as this has large implications for future efforts in ob-

taining colloidal crystals.
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9.3 Concluding Remarks

All things considered, we feel that we pushed past previous boundaries in our knowl-

edge of the self-assembly of bidisperse systems. We expect the principles we elucidated,

especially regarding the importance of stoichiometry and short-range attraction, to apply

to a wide range of systems beyond those we studied here. We also expect that our guide

for self-assembly in nonspecifically interacting systems will be useful for those looking

to understand and predict the behavior of their colloidal particles. Finally, it is our

hope that others extend our work to conquer the remaining challenges in binary colloidal

self-assembly.
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APPENDIX A

The Influence of Thermostats on Nucleation

The contents of this appendix were adapted from a final project report for Professor Yue

Fan’s course ME 599 in Fall 2018.

A.1 Introduction

In the main text I used a variety of methods to thermostat my simulations. Here I

examine the effects of using different thermostatting procedures on nucleation rates for

a liquid-solid phase transition. I use brute-force molecular dynamics simulations and

a mean first passage time formalism to calculate the nucleation rates. I find that the

thermostat can have a large influence on the nucleation rates of a system, but that these

differences can be understood largely by examining how the thermostat alters the self-

diffusion coefficient of the liquid. My results extend previous work in the literature[229,

230, 228] examining the influence of thermostats on non-equilibrium processes.

A.2 Background

Molecular dynamics (MD) simulations, in which Newton’s equations of motion are

iteratively solved to produce the time evolution of a system, are commonly used to study

dynamic processes such as nucleation. In standard MD simulations, the number of par-

ticles, volume, and total energy are conserved. This differs from many experimental

systems, for which the energy may vary but the temperature is usually constant, To

make better contact with experiment, the dynamics in MD simulations are often altered
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to keep the temperature of the simulation constant. These alterations may be designed

with the goal of minimizing perturbations to the Newtonian dynamics of a system (e.g.

the Nose-Hoover thermostat[231]), or may incorporate other, implicitly simulated phe-

nomena such as Brownian motion to provide thermostatting (Brownian and Langevin

Dynamics). At equilibrium in the thermodynamic limit, all thermostats should accu-

rately sample the static properties of a system, which should be identical to those ob-

tained with constant-energy MD. But for dynamic quantities, such as the self-diffusion

coefficients, and non-equilibrium processes, such as phase transitions, thermostats may

influence measured quantities or even the specific products produced in a reaction. Thus,

understanding the influence of thermostats is critical to their application in dynamic

simulations. Brief summaries of the thermostats examined here are presented in Figure

A.1.

Figure A.1: Description of Thermostats Used in this work.

The equations of motion are listed for NVE, Langevin, and Brownian dynamics in

Figure A.1. The more complicated dynamics of the Nose-Hoover thermostat can be

found in the literature[231]. NVE dynamics are MD without any thermostat, and should

reproduce the correct physical behavior of atoms to the degree that atomic interactions
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are accurately accounted for in simulation. The Nose-Hoover thermostat is designed to

equilibrate a system to a particular temperature with minimal perturbation of the natural

dynamics of the system. No random forces are applied to the particles, and certain

dynamic properties of NVE simulations are reproduced. The rate at which a simulation

equilibrates is controlled by the τ parameter. Langevin dynamics incorporates dampening

of the particles velocities and random forces to equilibrate a system. Brownian dynamics

is very similar except the particles no longer have inertia, so their momentum returns to

zero at the end of every time step. The strength of the random forces in Langevin and

Brownian dynamics is controlled by the γ parameter: larger γ will lead to larger random

forces and thus stronger perturbations to the natural dynamics.

Crystal nucleation involves an escape from a metastable fluid into a more stable solid.

The nucleation of many simpler liquids can be understood qualitatively within the context

of classical nucleation theory (CNT)[150]. According to CNT, at any given time the

fluid contains many “precritical” nuclei, which are small clusters of particles ordered

similarly to the solid. Precritical nuclei continuously form and deform within the fluid.

Despite the thermodynamic stability of the solid with respect to the liquid, further growth

of the precritical nuclei is disfavored by the interfacial tension between the solid and

liquid. However, one precritical nucleus will eventually reach the critical size at which

further growth of the crystal will decrease the system’s free energy despite the solid-

liquid interface. Fluctuations in precritical nuclei are affected by the dynamics of fluid

and the particles constituting the nucleus. Thus, it seems reasonable that thermostatting

techniques may influence the rate at which crystal nucleation occurs.

A few similar investigations have already been conducted[229, 230, 228] including an

examination of the nucleation rates obtained from standard Monte Carlo simulations and

MD[230]. In this case the Monte Carlo simulations could essentially be looked at as

another form of thermostatting. Inspired by experiment, they found only small devia-

tions from rates calculated with Monte Carlo and MD simulations after normalized their
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calculated nucleation rates by the diffusion coefficient of their particles. This indicated

that the dynamics differences between the methods only mattered to the degree that it

changed the diffusion coefficient of the particles.

A.3 Methodology

MD simulations were conducted with the HOOMD-Blue simulation toolkit[148]. Seven

thermostatting schemes were used: (1) no thermostat; Noose-Hoover thermostats[155]

with (2) τ = 0.2 and (3) τ = 2; Langevin Dynamics[156] with (4) γ = 1 and (5) γ = 10;

and Brownian Dynamics[156] with (6) γ = 1 and (7) γ = 10. At least 80 independent

simulations were conducted with each thermostat. Each simulation consisted of 4000

particles in a cubic box at a number density of 0.78153. Particle interactions were given

by a Weeks-Chandler-Anderson[207] (WCA) potential. The simulations would run for

≈ 1.6 · 106 steps at kT = 1/4 to produce an equilibrated fluid followed by ≈ 1.6 · 107

steps at kT = 1/40 during which we looked for nucleation, where the units of kT are

the energy units of the WCA potential. These conditions have been used in previous

works to study crystallization[228] and likely correspond to minor (but still present)

finite size effects[150]. The self-diffusion rates of the particles were determined from the

mean-squared deviation of the fluid in trajectories that did not crystallize. For each

thermostat, there were at least 4 such trajectories. At long times, variation in the mean-

squared deviation of the particles with time becomes linear; the slope of this relation

was used to find the diffusion coefficients. Nucleation rates were determined from the

mean-first passage time method (MFPT)[232]. With MFPT, the average time it takes a

system to first produce a nucleus of a given size is measured. For a specific nucleus size,

the time required to reach nuclei of larger sizes drops very close to zero, and the system

rapidly crystallizes. This time is average time needed for nucleation and the inverse of

the nucleation rate. We used Steinhardt order parameters[68] to determine the size of

the largest crystal nucleus in the system at a given time.
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A.4 Results and Discussion

The diffusion coefficients as a function of the thermostat are shown in Figure A.2. The

thermostat abbreviations are given in Figure A.1. Standard deviations in the computed

values are smaller than the points.

Figure A.2: The self-diffusion constants obtained with the thermostats used in this work.

The diffusion coefficients D for the constant energy and Nose-Hoover thermostats are

identical, as is commonly the case. They are also larger than those involving stochastic

dampening, as expected. D for the L10 and B10 thermostats, who heavily damp the

motion of the particles, are an order magnitude lower than the others. D is a measure

of the long-time dynamics of a system, so these differences highlight the large influence

that thermostatting can have on a system’s dynamic properties.

Calculated nucleation rates as a function of thermostat are shown in Figure A.3.

Dividing the “raw” nucleation rates by D may partially account for the influence of the

thermostats, so those rates are shown as well. No nucleation events were observed for the

B10 thermostat.
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Figure A.3: The nucleation rates obtained with the thermostats used in this work. Raw rates were
directly calculated from simulations. The rates in the plot to the right are the raw rates
divided by the diffusion coefficients shown in Figure A.2.

The raw nucleation rates shown in Figure A.3 exhibit a clear dependence on the

thermostat. NVE has the highest rate, while that of L10 and B10 were much lower. In

fact, no nucleation events were observed for B10, demonstrating that thermostatting can

have a very large effect on nucleation rates. The other thermostats exhibited nucleation

rates only slightly below that of NVE.

Dividing the raw nucleation rates by D generally brings them closer to the NVE

rate, as previously reported in similar systems. B10 is an exception because no nucle-

ation events occurred and thus the calculated nucleation rate remained 0. This close

correspondence indicates that the long-time diffusion of particles in the system largely

controls the nucleation rate.

From these results, we can conclude than any of these thermostats (excepts perhaps

B10) are suitable for measuring nucleation rates from experiment, if both computational

and experimental nucleation rates are divided by the diffusion coefficient of the particles.

Due to the higher raw nucleation rates obtained with the NH thermostats, they seem to

be the optimal thermostat when computational costs may be significant.
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A.5 Conclusion

Here we have compared MD nucleation rates obtained with a variety of thermostatting

schemes. We found that, while the thermostatting scheme affected the “raw” nucleation

rate, accounting for the diffusion brought all obtained nucleation rates within 40% of

the NVE results. Slight differences do exist in the nucleation rates between different

thermostats, which could be the subject of a further study, but the close correspondence

in nucleation rates strongly suggests that the thermostatting scheme does not affect the

general nucleation pathway taken by the systems under consideration here.
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