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Abstract 
 
Technology scaling has driven the development of the computing industry during the past 

50 years. However, as soon as we reach the power and memory wall, the impact of Moore’s Law 

started to wear away. The lack of “free” performance gain by simply scaling the technology implies 

that architecture and circuit designers will have to make the most of the potential of available 

technology nodes to face the challenge, requiring significant effort to develop innovative 

architectures and circuits. One solution is to trade off the programmability and flexibility of current 

microprocessors for a more optimized data and control flow of a specific application, and thus, the 

concept of domain-specific hardware came about. Though not a brand-new concept, as epitomized 

by graphics processors, highly computation-hungry Machine Learning (ML) applications, which 

have thrived in recent years, have benefited greatly from it with respect to both performance and 

energy. 

This thesis presents three different domain-specific solutions for various emerging 

applications, including DNA sequencing, ML, and post quantum cryptography/homomorphic 

encryption, each of which employs different optimization schemes. 

The first application-specific solution demonstrates a seed-extension accelerator for next-

generation sequencing in 55nm process technology with a recently proposed automata 

architecture. With an array of 25 × 25 custom-designed processing elements, it performs 2.46M 

reads/s, rendering a 1581x improvement in power efficiency compared to a system with dual-

socket Xeon E5-2597 v3 server processors. The second prototype presents an RRAM and model 

compression-based DNN accelerator in 22nm process that features algorithm, architecture, and 



xii 
 

circuit optimizations. It achieves 16 million 8bit (decompressed) on-chip weights with the 24Mb 

RRAM, eliminating the energy-consuming off-chip memory access. The last work proposes and 

implements an architecture for accelerating third-generation FHE with AWS cloud FPGAs. A 

novel unbalanced PSI protocol based on third-generation FHE, optimized for the proposed 

hardware architecture, is introduced. The measurement results show that the proposed accelerator 

achieves >21× performance improvement compared to a software implementation for various 

crucial subroutines of third-generation FHE and the proposed PSI. 
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Chapter 1. Introduction 
 
For the past 50 years, the development of microprocessors has continued to push the limits 

of the computer industry, powering a marvelous, digitized world. As shown in Figure 1.1 [1], the 

frequency and single-threaded performance of microprocessors have grown by roughly 1000x 

during this time, following the improvement of the semiconductor technology guided by Moore’s 

Law, represented by the exponential increase in the number of transistors. However, this seemingly 

rocketing pace started to drop off at the beginning of the 21st century. The truth is that technology 

scaling accounted for 40% of the performance advance of microprocessors in the past decades, 

while microarchitecture innovation only contributed to 17% [2]. By simply scaling the transistors, 

computers could get almost “free” performance gain; thus, relatively little advances in 

 
Figure 1.1 48 Years of Microprocessor Trend [1]. 
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microarchitecture and circuits design were needed. It has even been called by some computer 

architects “the dark era of computer architecture.” But with the decline of Moore’s Law, 

innovations in microarchitectures and circuits are playing an increasingly pivotal role in the 

development of the computing industry. 

One of the most important aspects of microprocessor design that demands new 

architectures and circuits is the power budget, including thermal limitation. Internet of Things 

(IoT) devices, or even mobile devices, constantly run into problems with power budgets because 

of shrinking form factors. Furthermore, as suggested by Dennard’s Scaling, power density remains 

unchanged as technology scales, so cooling systems also limit the system power. Parallelism can 

help overcome these issues. By replacing one unit of a function with N units of the same function, 

all N units can operate at 1/N frequency while maintaining the overall performance. Furthermore, 

the voltage can be scaled down accordingly to get quadratic energy savings, or linear power saving, 

at the expense of a linear area increase [3]. Thus, as soon as microprocessors reach the cooling 

limit, multicore architectures emerged (Figure 1.1). 

 
Figure 1.2 Rough Energy Costs for Various Operation in 45nm 0.9V [2]. 
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However, this is just the tip of the iceberg. Modern CPUs typically employ complex 

instruction scheduling schemes to boost the instruction per clock (IPC), such as out-of-order (OoO) 

execution and branch prediction, which introduce high control overhead. In fact, even in an in-

order processor, the actual operation only accounts for a marginal portion of the total energy cost 

of one instruction, a few pJ vs. 70 pJ, in 45nm process, as listed in Figure 1.2 [4]. The principal 

reason lies in the fact that microprocessors are highly programmable and flexible so that they can 

perform any algorithm. However, it is not always necessary to have such flexibility in an actual 

application where high-level operation can be abstracted. For example, graphics processors are 

generally more efficient for graphical applications, not only because of the enormously large 

number of parallel processing cores but also because the graphics pipeline is so mature that the 

hardware designers can use the prior knowledge to simplify the control logic and optimize the data 

flow, thus reducing any wasted energy. Therefore, dedicated hardware functional units for 

frequently invoked complex functions, which are called domain-specific hardware [5], help with 

the overall efficiency, which is attested to by the various domain-specific accelerators for Machine 

Learning (ML) [6]-[10] that are proposed to cope with the computation slack and lower power 

efficiency of deploying the algorithm on microprocessors. 

Domain-specific hardware calls not only for optimized control flow but also for 

accommodated memory architecture since memory access energy also overshadows the actual 

computation energy cost (Figure 1.2). Cache hierarchy has been widely utilized in microprocessors 

to buffer the speed gap between the processor and the main memory by prefetching the required 

data to reduce the overall latency, following the principle of locality. However, in many 

applications, it is the memory bandwidth that renders the bottleneck. For instance, in modern 

graphics cards, the memory system is architected for high bandwidth to meet the massive 
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parallelism. The latest AMD Radeon 6000 series graphics card can push the bandwidth of the 

GDDR6 system to up to 512GB/s [11], while, in a typical desktop computer, 4 channels of DDR4-

3200 deliver merely ~100 GB/s. Furthermore, graphics processors also hold a large pool of on-

chip buffer for immediate results, thus reducing the write-back transaction to the main memory 

and improving the overall efficiency. In recent ML accelerators, optimized data flows were also 

introduced to reduce DRAM access by maximizing data reusage. Attempts in optimizing memory 

architecture by innovative memory systems were also made. The researchers in [12] replaced the 

DRAM in an ML system with a 3D-stacked SRAM using wireless communication and 

successfully reduced the overall memory access latency and power.  

Advances in memory architecture are also promoted by new memory technology. The 

primary memory components in current computing systems are SRAM, DRAM, and, in some 

cases, flash. These charge-based memories suffer from the reduced capability to hold sufficient 

charge to maintain the information as technology scales, resulting in reliability issues. Next-

generation storage solutions have emerged in recent years, such as MRAM (magnetoresistive) 

[13][14], RRAM (resistive) [15] and PCRAM (phase change) [16]. These advanced memories rely 

on a physical phenomenon to store information and are thus less impacted by technology scaling. 

Furthermore, the non-volatility and high speed also offer the potential for innovated memory 

circuits and architectures. Several accelerators, following the in-memory-computing concept, 

employed these non-volatile memories for better efficiency in some low precision scenarios 

[17][18].  

Together, the above principles combined with some other recently proposed approaches, 

are employed in domain-specific solutions for three emerging applications, DNA sequencing, ML, 

and post quantum/homomorphic encryption, with each area demanding a unique optimization.  
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1.1 Next-Generation Sequencing for Whole-Genome Sequencing 

The completion of the Human Genome Project (HGP) [19] has triggered immense interest 

in the application of Whole-Genome Sequencing (WGS), driving the development of Next-

Generation Sequencing (NGS) technology to reduce the cost. Since the advance of NGS, the 

production cost of whole-human genome sequencing has plummeted by 10,000x from $10 million 

to $1000 in the last decade [20], as shown in Figure 1.3. This has led to wide use of DNA testing 

in both research and clinical diagnosis, creating more personalized patient treatments [21]. For 

example, genetic tests are now commonly used to predict the effectiveness of specific breast cancer 

treatments for patients [22]. Furthermore, identifying somatic mutations in the human genome 

sheds light on the evolution of human cancers, information that can be leveraged to prevent these 

cancers in individuals [23]. Likewise, large-volume genome testing across diverse samples can 

provide a better understanding of the cause of Alzheimer disease [24]. As technology speeds up 

WGS, its use will likely become a standard clinical practice, as prevalent as a blood test, in the 

coming decade. 

 
Figure 1.3 Sequencing Cost Plummeting V.S. Moore’s Law [20]. 
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The fast reduction of sequencing cost that benefits the ubiquitous application of WGS 

stems from the rapid improvement of the NGS technology. Compared to the HGP, which required 

15 years to sequence the first human genome, NGS systems from Illumina can sequence over 45 

human genomes in a single day [25], rendering a 200,000x speedup. As shown in Figure 1.4, a 

typical current-generation DNA sequencing pipeline is composed of roughly two main steps. First, 

the input genome is split into short DNA fragments, which are sequenced in a DNA sequencer 

backed by NGS technology to produce billions of reads (short sections of the input genome 

sequence). Then, the reads are passed into a reference-guided secondary analysis, where the 

sequences are assembled into the original genome order by aligning to a previously sequenced 

genome, for example, the one obtained from the HGP. The secondary analysis is far from a simple 

string comparison in the sense that the input genome does not necessarily perfectly match the 

Human 
Genome

3B bp

DNA 
Sequencer

ACGTATGACTAGACGT...
TGCAGTAGATCATAGT...
ACACTGTTGACGTACG...
TTTGGCCAGAAATGCC...

.

.

.
Billions of 

Sequenced Reads

Reads Ref
Seeding

To find possible Ref position of reads

A T C A -- C G T A G A T

A -- C A A C C T A T A T
del ins sub sub

Ref(R)

Query(Q)

Seed Extension

ACGTATGACTAGACGT
ACGTATGAA
                  AATAG
               GAATAGACGT
        TATGAAT

Aligned 
reads

Variant Calling
Identify true variant of 

sequenced genome

Ref

Secondary analysis

Diagnosis  
Figure 1.4 Reference Guided Sequence Analysis Pipeline with Seed Extension Highlighted. 
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referenced genome due to DNA mutations, requiring approximate string alignment. Furthermore, 

the produced reads are not necessarily an exact copy of the input genome due to the potential errors 

introduced during the DNA sequencing process, further complicating the task. Altogether, for each 

sequenced human genome, on average, 396 GB of data must be processed through the complex 

secondary analysis [26], which not only poses a significant computational challenge to current 

general-purpose computing systems but also represents a critical bottleneck in the sequencing 

pipeline since the improvement of the DNA sequencer enabled by NGS technology is far outpacing 

Moore’s law. At such a rate, this computation bottleneck is projected to dominate the total cost 

and processing time of sequencing, becoming a key limiting factor in the growth of this important 

medical technology. 

1.2 Deep Neural Network Accelerator  

Deep neural network (DNN) algorithms, first introduced in the early 1960s [27], are the 

cornerstone of modern artificial intelligence (AI) because they achieve unprecedented accuracy on 

various computer vision and machine translation tasks. The next wave in the AI revolution is the 

deployment of these deep neural networks on mobile platforms to perform challenging tasks under 

real-world constraints. However, existing hardware and infrastructure cannot provide satisfying 

performance and energy efficiency for emerging deep-learning-based applications because of their 

excessive computation and large memory footprints in state-of-the-art DNN models. For object 

recognition with the ImageNet dataset [28], these DNN models [29][30][31] typically comprise 

more than 10 million parameters and require more than 10 GOP per inference, which translates to 

more than 50 MB on-chip storage and 300 GOPS throughput for real-time 30 fps operation. They 

consume >100 W of power with general-purpose graphics processing units (GPGPUs), which 

cannot be integrated on mobile platforms due to their excessive power consumption and form 
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factor. Therefore, there is a growing demand for high-performance, energy-efficient, and re-

configurable DNN processors for mobile and embedded AI applications [32]-[42]. 

To address the aforementioned challenges, various approaches targeting at both optimizing 

machine learning (ML) algorithms and efficient hardware designs have been proposed to reduce 

the complexity of the DNN inference and to improve the energy efficiency, thereby maintaining 

accuracy for applications. 

References [32][33] propose to re-architect the neural network models and leverage 

efficient building blocks to reduce both the model size and the number of multiply-and-accumulate 

(MAC) operations. However, despite the dramatic complexity reduction, these approaches create 

new DNN layers with novel memory-access and challenging computation requirements that are 

not well-optimized with existing hardware [42]. Alternative approaches such as [34][35] reduce 

the model complexity with pruning, quantization, entropy coding, and/or low-rank approximation 

of weights. However, their real-time energy-savings and performance gains are limited because of 

the inefficiency of running unstructured sparse models on the hardware. For example, [83] reports 

>1 W power consumption for real-time inference using compressed DNNs. 

In parallel with improving DNN models, many digital ASICs [36]-[42] were proposed 

recently to accelerate deep learning on mobile platforms. Various optimization techniques are 

explored in these designs, including dataflow optimizations [12][36][37], precision reduction 

[37][38][39], sparsity awareness [40][41], bit-serial operation [37], etc. Combining these 

techniques onto silicon implementations, state-of-the-art DNN processors achieve more than 100 

GOPS performance and ~2 TOPS/W efficiency during inference. 

However, as shown in Figure 1.5, most of these digital ASICs adopt a DRAM-NPU (neural 

processing unit)-style processing architecture for loading and computing DNN models [84]. The 
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weights and input activations are transferred on chip for processing while computed output 

activations (OA) are transferred back to the large off-chip DRAM for temporary storage. While 

the processing on the NPU is extensively optimized through various techniques [37]-[41] (Figure 

1.5), transferring data on/off the NPU to the DRAM becomes a major bottleneck in the overall 

system because of the frequent and extremely high-energy data access to external DRAMs. In fact, 

transferring a byte from DRAM consumes >3000× more power than performing an 8-bit MAC 

calculation [36]. To relieve this problem, [12][36][37] proposes to integrate dedicated weight and 

activation buffers and optimize the dataflow to reduce the data transfer to external DRAMs. 

Additionally, [39] proposes to leverage data compression technique to reduce the bandwidth to the 

DRAM. These methods significantly reduce the data access overhead to the DRAM but do not 

completely solve the problem. 

To reduce the off-chip data/parameter accesses, a few prior designs [12][38] attempt to 

store all parameters on chip. However, [38] suffers from very limited on-chip memory capacity 

(only ~100 kB of weights are stored), which is insufficient to support large applications with >10 

M weights. The design [12] achieves high capacity (7.68 MB on-chip weights and 96 MB SRAM 

stack) at the expense of high system power (3.3 W) due to the large SRAM stack and inductive 

inter-die communication. 

 
Figure 1.5 Conventional System-Level Dataflow of NPU. 
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1.3 Lattice-Based Post-Quantum Cryptography and Homomorphic Encryption 

For the past decades, RSA encryption/public key encryption [43] has been successfully 

securing internet transactions and has become the foundation of the Information Era. The hardness 

of RSA encryption lies in the hardness of decomposing large numbers into prime factors. To date, 

there is still no known efficient algorithm for solving it on classical computers. However, 

following the advance of the conception of the Quantum Computer, an efficient algorithm has been 

proposed [44], which seems to anticipate the end of all classical number-theory-based encryptions 

in the future as quantum computers develop at a steady pace[45]. Thus, various researches of post-

quantum cryptography that are resistant to quantum attacks have been proposed, including 

approaches that are lattice based, code based, multivariate based, etc. Among them, lattice-based 

cryptography, with its well-studied hardness, is the most widely adopted. Of the Round 3 finalists 

of the NIST Post-Quantum Cryptography Competition, 5 out 7 candidates are lattice based [45]. 

A lattice is an abstract mathematical structure that can be represented by a vector space 

that is formed by integer linear combinations of a set of bases. A 2-D example is shown in Figure 

1.6 with two bases b1 and b2. A lattice problem, expressed in linear algebra form, states that given 

a matrix 𝑨𝑨 and a vector 𝒎𝒎, and let 𝒃𝒃 = 𝑨𝑨 × 𝒎𝒎 + 𝒆𝒆, where 𝒆𝒆 is a vector of random noise, it is hard 

to recover 𝒎𝒎  solely from 𝑨𝑨  and 𝒃𝒃 . Obviously, without the added noise 𝒆𝒆 , 𝒎𝒎  can be easily 

b1
b2

 

Figure 1.6 A 2-D Lattice. 
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recovered by multiplying 𝒃𝒃 with the inverse of 𝑨𝑨. But with a decent amount of noise, it has proved 

to be hard even for quantum computers. This is known as the Learning with Errors (LWE) problem, 

which can be reduced to a lattice problem within polynomial time [47].  

This clear algebraic construction of Lattice Cryptography brings a rich pool of 

mathematical structure that facilitates fully homomorphic encryption (FHE). Homomorphic 

encryption (HE) is basically an encryption scheme that allows operations on encrypted data. More 

precisely, for a give function 𝑓𝑓(𝑥𝑥), a homomorphic encryption scheme satisfies 𝑓𝑓(𝐸𝐸𝐸𝐸𝐸𝐸(𝑚𝑚)) =

 𝐸𝐸𝐸𝐸𝐸𝐸(𝑓𝑓(𝑚𝑚)). If it is homomorphic to any function, it is called full homomorphic. 

Exploration of HE started following the advent of RSA encryption due to its multiplicative 

homomorphism. However, no scheme with fully homomorphic capability was devised until 2009, 

when Gentry proposed a general FHE framework [48] that all the subsequent works follow. It has 

been proven that from a Boolean circuit model perspective of computation, if an encryption 

scheme is homomorphic to its own decryption function followed by a universal logic gate, then it 

is homomorphic to any function. The operation that fulfills this property by transforming a partially 

HE or Leveled HE (LHE) into an FHE is called bootstrapping or recryption. Based on this idea, 

Gentry also presented a concrete construction based on an ideal lattice and sparse subset sum 

problem, but the software implementation reports around 30 minutes per bootstrapping [49]. Since 

then, various schemes have been proposed looking for more efficient implementation. Among 

them, the most well-known are BGV [50], BFV [51][52] and CKKS [53]. These second-generation 

schemes differ from Gentry’s approach in the underlying hard problem: they use a Ring Learning 

with Errors (RLWE) problem for its better-studied hardness analysis and efficiency fulfilled by 

SIMD-styled operation [54]. BGV and BFV schemes operate on polynomial functions of an 

integer number and have shared much in common during their development since the first 



 12 

publication, whereas CKKS works with complex numbers as plaintext space. Several open-source 

libraries that implement these schemes are accessible, including PALISADE [55], HElib [56] and 

SEAL [57]. These implementations can potentially reduce the recryption time to minutes 

depending on security parameters. Then after the GSW [58] scheme was proposed in 2013, two 

schemes, FHEW [59] and TFHE [60], were published as third-generation approaches. The third-

generation schemes, compared to second-generation ones, focus on finding an efficient 

implementation of single-bit logic and a bootstrapping operation. Although, performance wise the 

third generation may not be superior to earlier schemes, since the amortized cost of the second 

generation equipped with SIMD-like [54] construction is estimated to be in the same order of 

magnitude as that of the third generation, it is well accepted for its simplicity and flexibility in 

terms of both concept and implementation. The reported recryption time of the third generation is 

generally around 0.1s to 1s.  

1.4 Thesis Contribution and Organization 

This work presents domain-specific accelerators for three emerging applications, namely, 

DNA sequencing, ML, and post quantum/homomorphic encryption. The remaining chapters are 

organized as described below.  

In Chapter 2, an accelerator for seed extension, a critical and computationally intensive 

step in genome sequencing, is proposed. The accelerator, implementing a string-independent 

automata, consists of a triangular array of 25 × 25  custom-designed processing elements. It 

performs 2.46M reads/s, achieving a 1581x improvement in power efficiency and 165.5x smaller 

silicon footprint compared to a system with dual-socket Xeon E5-2697 v3 server processors. 

Chapter 3 presents an energy-efficient deep neural network (DNN) accelerator with non-

volatile embedded resistive random-access memory (RRAM) for mobile ML applications. This 
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DNN accelerator implements weight pruning, non-linear quantization, and Huffman encoding to 

store all weights on RRAM, enabling single-chip processing for large neural network models 

without external memory. A 4-core parallel and programmable architecture adapts to various 

neural network configurations with high utilization. We introduce a customized RRAM macro 

with a dynamic clamping offset-canceling sense amplifier (DCOCSA) that achieves sub-μA input 

offset. The on-chip decompression and memory error-resilient scheme enables 16 million (M) 8-

bit (decompressed) weights on a single chip using 24 Mb RRAM. The proposed RRAM-DNN is 

the first digital DNN accelerator featuring 24 Mb RRAM as all-on-chip weight storage to eliminate 

energy-consuming off-chip memory accesses. The fabricated design performs the complete 

inference process of the ResNet-18 model while consuming 127.9 mW power in TSMC-22nm 

ULL CMOS. The RRAM-DNN accelerator achieves peak performance of 123 GOPs with 8-bit 

precision, exhibiting measured energy efficiency of 0.96 TOPs/W. 

Chapter 4 presents the first accelerator architecture for third-generation FHE, targeting at 

the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ⊗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 operation, which is a fundamental function of both second-generation and 

third-generation FHE. By exploiting the asymmetric nature of the encryption, the architecture 

incorporates an asymmetric Inverse Number Theory Transform (INTT) module and Number 

Theory Transform (NTT) module, which are capable of maintaining high throughput with less 

resource usage while addressing different parameter sets. An extensive analysis of the architecture 

is included. A novel unbalanced PSI protocol that is based on third-generation FHE and is 

optimized for the proposed hardware architecture is proposed. The proposed PSI protocol makes 

the computation cost independent of the Sender’s set size. We introduce several additional 

algorithm-architecture co-optimizations to reduce the computation and communication costs, 

rendering a practical application of the proposed PSI protocol. A prototype of the proposed 
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architecture is implemented with AWS cloud FPGA service. We develop all necessary high-level 

functions in C++ and benchmark the implemented architecture with different parameter sets. We 

make the SystemVerilog HDL code of the proposed accelerator and supporting software code 

publicly available at [136]. At last, we quantify and analyze the performance of the proposed 

hardware accelerator and PSI protocol. The measurements show over 21× performance 

improvement compared to a software implementation for various subroutines of the third-

generation FHE and the proposed PSI. 

Chapter 5 summarizes the main contributions of this thesis and discusses about some future 
directions of the projects.  
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Chapter 2. A 2.46M Reads/s Seed-Extension Accelerator for Next-
Generation-Sequencing Using a String-Independent PE Array 

 

2.1 Introduction 

Before dealing with the bottlenecks mentioned in Chapter 1, it is worthwhile taking a close 

look at the secondary analysis (Figure 1.4). As mentioned before, the large number of reads, ~1.5B, 

produced by the DNA sequencer, are passed through the secondary analysis, which is further 

divided into three processing steps [61]. 1) In the seeding step, a set of possible locations where 

the read matches the reference is found by exactly matching small fragments (seeds) between the 

read and the reference. 2) The seed extension step evaluates these possible match locations by 

exploring approximate alignments between the read and the reference, including possible edits, to 

determine a final match location. 3) In the final step, the variant calling step, all the reads that are 

aligned to a particular base in the reference are evaluated to determine if a mutation occurred at 

that location. 

Various software packages have been devised to handle these steps since early 21st 

century. Some of them cover the first two steps, such as BWA-MEM [62], Bowtie2 [63] and 

SOAP2 [64], while some focus on the third step but use the above libraries for the first two steps, 

like GATK [65] that incorporates BWA-MEM. There are also other generic string/sequence 

analysis libraries such as SeqAn [66] and SSW [67]. Among them, BWA-MEM has become a 

standard for the analysis pipeline and is advocated by GATK best practice guide.  
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BWA-MEM, as well as other libraries, adapts two algorithms, FM-Index [68], based on 

Burrows-Wheeler Transform (BWT) [69], and Smith-Waterman (SW) Algorithm [70], for the two 

steps, seeding and seed-extension respectively. GPU implementations [71][72] of these software 

packages and algorithms were released within the software community to cope with the 

computation bottleneck due to the increasing amount of data to be processed. However, 

acceleration for them gained little interest until recent years, following the tapering-off of Moore’s 

Law. FPGA solutions were proposed at first for its versatility and better power efficiency 

compared to GPU systems, such as [73] for the seeding step and [74][75] for the seed-extension 

step. With the software stack getting stable, ASIC becomes appealing in terms of form factor and 

power efficiency. An ASIC designed for the seeding step was also presented in ISSCC 2018 [76] 

with 7.84 𝑚𝑚𝑚𝑚2 die size and 135 mW of power, achieving ~1,000x and ~400x improvement in 

terms of power efficiency and area efficiency compared to GPU implementation. Yet little or no 

dedicated acceleration ASIC has been proposed to address other steps in DNA sequencing. 

In this project, we target at the seed-extension step, which requires a total of 14 billion 

alignments for each human genome, which takes ~5/~273 hours for 56-thread/single-thread 

workload on a server equipped with dual-socket Xeon E5-2697 v3 processors, using the optimized 

SeqAn library [77]. Seed extension aligns two DNA strings of ~100 bases: the read or query (Q) 

A C T -- A
A C T G A

insert
Ref(R)

Query(Q)

A C T G A
A C T -- A

delete
R

Q

(3m, i, m)

(3m, d, m)

A C T G A
A C T T A

substitute
R

Q
(3m, s, m)

 
Figure 2.1 Levenshtein Edits. 



 17 

and the portion of the reference (R) where the query is expected to align. However, as mentioned 

above, there can be mismatches between R and Q due to sequencing machine errors or mutations 

in an individual’s DNA. Hence, approximate alignment is needed, allowing for the following 

Levenshtein edits as shown in Figure 2.1: insert (𝑖𝑖), delete (𝑑𝑑), and substitute (𝑠𝑠). Figure 2.2 shows 

two of many possible alignments for an R and Q pair, each with an edit distance or score. The goal 

of seed extension is to find the alignments with the best score and to report the score and its 

associated strings of edits. 

We use a 25x25 triangular array of processing elements (PEs) that implements a string-

independent automata algorithm for approximate string matching and also performs match score 

calculation and generation of the edit string. The proposed alignment accelerator, implemented in 

MIFS 55-nm DDC CMOS, operates at 670 MHz and achieves 2.46M reads per second with 

8 𝑚𝑚𝑚𝑚2 silicon area [78]. Marking, to our knowledge, the first seed-extension ASIC, it achieves a 

~1581x power efficiency improvement and 165.5x smaller silicon footprint compared to deploying 

SeqAn library on a server with dual-socket Xeon E5-2697 v3 server processors [77], operating on 

the same Genome dataset and producing the same output.  

C A T A -- C G T A G A T
C A -- A A C C T A T A T

C A T A -- C G T A -- G A T
C A -- A A C C T A T -- A T

C A T A C G T A G A T
C A A A C C T A T A T

Alignment 1
Edit distance = 4 

Alignment 2
Edit distance = 5

✔

✖

Input strings R
Q

(2m, d, m,  i, m, s,  2m, s, 2m)

(2m, d, m, i, m, s,   2m,  i, d, 2m)  
Figure 2.2 Example of Alignment. 
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2.2 Seed-Extension Algorithms 

2.2.1 Smith-Waterman Algorithm 

The canonical solution for the approximate string alignment problem is a dynamic 

programming (DP) algorithm called the Smith-Waterman Algorithm [70], which is adapted as a 

submodule of BWA-MEM and other software libraries. The basic version of the algorithm that 

only identifies the edit distance is illustrated in Figure 2.3. 

To align two input strings Query (Q) and Reference (R), first a DP matrix of size 𝑛𝑛2 is 

initialized as all zeros, where 𝑛𝑛 is the length of the input strings (assuming w.l.o.g. the input strings 

are of the same length). Then all the cells identified by coordinate (𝑖𝑖, 𝑗𝑗), except for the ones in the 

first row and column, are filled by an alignment score calculated from the neighboring cells, 

according to Equation 2.1. The weight matrix denoted by 𝑊𝑊(𝑟𝑟𝑖𝑖, 𝑞𝑞𝑗𝑗) in Equation 2.1 assigns each 

Penalty = 0

A G C T
A 1 0 0 0
G 0 1 0 0
C 0 0 1 0
T 0 0 0 1

Weight Matrix

C T T A A - G A
G T T - A T G -

C -
C A

(Q)
(R)

(s, 2m, i, m, d, m, i, m, d)

n

G
T
T
A
T
G
C
A

C T T A A G A C
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1
0 0 1 1 1 1 1 1 1
0 0 1 2 2 2 2 2 2
0 0 1 2 3 3 3 3 3
0 0 1 2 3 3 3 3 3
0 0 1 2 3 3 4 4 4
0 1 1 2 3 3 4 4 5
0 1 1 2 3 4 4 5 5

Reference

Query

 

Figure 2.3 Basic Smith-Waterman Algorithm. 
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pair of the input characters in the input strings a score for match or mismatch. For example, here, 

the match score is set to 1 and mismatch score is set to 0. The penalty in the equation is reserved 

for the gap penalty calculation explained further in Section 2.3 and is set to 0 for simplicity in this 

example. Thus, Equation 2.1 is a rule of reward and penalty that accumulates the highest alignment 

score between the two input strings up to position (𝑖𝑖, 𝑗𝑗). 

𝐸𝐸[𝑖𝑖, 𝑗𝑗] = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐸𝐸[𝑖𝑖 − 1, 𝑗𝑗 − 1] + 𝑊𝑊�𝑟𝑟𝑖𝑖, 𝑞𝑞𝑗𝑗�
𝐸𝐸[𝑖𝑖, 𝑗𝑗 − 1] − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐸𝐸[𝑖𝑖 − 1, 𝑗𝑗] − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

 2.1 

In the meantime, each cell also keeps track of which one of the neighboring cells its score 

is calculated from. Finally, from the highest scores, the traces that hold the best scores are extracted 

backward. One of the best traces is shown in the example, which translates to an edit distance that 

equals 5. 

The time and space complexity of the Smith-Waterman Algorithm is 𝑂𝑂(𝑛𝑛2), where 𝑛𝑛 is 

the maximum length of the input string pair, rendering a string-dependent space complexity and 

preventing efficient hardware implementation. In practice, one often focuses, dynamically or 

statically, on a band of fixed width along the diagonal of the DP matrix [79], leaving out the corners 

colored in gray in Figure 2.3. The parameter that sets the width of the band is the maximum target 

edit distance 𝑘𝑘. This banded DP matrix correctly generates output as long as the edit distance of 

the input string pair is no greater than 𝑘𝑘. This optimization potentially reduces the complexity to 

𝑂𝑂(𝑘𝑘𝑘𝑘) since 𝑘𝑘 is much less than 𝑛𝑛 in practice. But it is still string dependent. 
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2.2.2 String-Independent Automata 

Another solution to sequence matching is based on Levenshtein Automata (LA). An LA is 

a finite state automaton that is defined on a sequence 𝑠𝑠 and a number 𝑘𝑘. It can recognize the set of 

all sequences that are at most 𝑘𝑘 edit distances away from the string 𝑠𝑠. For example, the state 

diagram of an LA, defined on string AGC and edit distance 𝑘𝑘 = 1, is shown in Figure 2.4. Each 

state is denoted by 𝑛𝑛𝑒𝑒, which means that 𝑛𝑛 characters consumed and 𝑒𝑒 edit distance encountered 

so far. The state machine starts from state 00 and takes the characters of input sequence one by 

one. And it determines whether the input sequence is at most 𝑘𝑘 = 1 edit distance away from the 

sequence 𝑠𝑠 = AGC. Discussion about the finite state automaton theory is beyond the scope of this 

work, the reader is referred to [80] for further information. Although the complexity of LA is 

𝑂𝑂(𝑘𝑘𝑘𝑘), which is comparable to SW. It suffers from the fact that it is specific to a given sequence, 

as the LA in Figure 2.4 is only able to compare strings to AGC. Thus, LA is rarely utilized in 

practical sequencing software libraries. 

While, our design adopts a recently proposed string-independent Levenshtein Automata 

algorithm [77]. The algorithm decouples the state machine from the specific sequence and has the 

advantage that varying length strings can be processed using the same matching hardware as long 

as the maximum edit distance remains fixed. Unlike the standard SW algorithm, where R/Q strings 

remain static and possible alignment paths are explored with an array of PEs, the R/Q strings of 

00 10 20 30

01 11 21 31

A G C

A G C

A G C

A G C

ε ε ε
*

 
Figure 2.4 The State Diagram of an LA for Sequence s= AGC and Edit Distance k = 1. 
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arbitrary length are shifted through a state machine that simultaneously evaluates all possible 

alignments between the two strings.  

The state machine for this algorithm consists of a 3D grid of tiny PEs, represented as circles 

in Figure 2.5, each performing a comparison of a base pair (BP), while the BPs of the input R/Q 

reads are supplied through the two shift registers, rightward and upward, one BP at a time. Starting 

from the PE at the bottom left, each PE reactivates itself when the BP matches, otherwise, it 
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simultaneously activates the neighboring PEs in a 3D fashion. The 3 dimensions represent 

insertion, deletion and substitution respectively, thus, each PE is uniquely assigned a state 

identifier (𝑖𝑖,𝑑𝑑, 𝑠𝑠) corresponding to the edit cost seen so far, e.g., PE120 corresponds to 1𝑖𝑖 + 2𝑑𝑑 +

0𝑠𝑠. So, the notations “PE” and “state” are referred interchangeably in the rest of the paper. In 

summary, the process propagates from PE000 diagonally into the 3 dimensions until the input R/Q 

reads are shifted out of the registers. 

The example in Figure 2.5 performs as follows. Initially, in clock cycle zero (𝑐𝑐 =  0), only 

PE000 is activated and compares the first BP of the R/Q strings (A, A). For clarity, only the 

activated PEs are shown in the figure. Since the BP matches, the PE reactivates itself, indicating a 

match (𝑚𝑚) edit string so far. In the next clock cycle (𝑐𝑐 = 1), the R/Q strings are shifted right/up, 

and PE000 compares BP (G, T). Since there is a mismatch, PE000 deactivates itself and instead 

activates its three neighbors, PE100, PE010 and PE001. PE100 evaluates possible alignment of 

R/Q after 1𝑖𝑖 and therefore uses the shifted base of R. Since it compares BP (G, G) in 𝑐𝑐 =  2, it 

finds a match and reactivates itself for the next cycle. Similarly, PE010 represents 1𝑑𝑑  and 

compares BP (T, T) and reactivates. PE001 represents 1𝑠𝑠 and therefore looks at the unshifted bases 

of its inputs and compares BP (T, G), which is a mismatch. It therefore deactivates itself and 

activates PE101, PE011 and PE002.  

In 𝑐𝑐 =  3, PE100 and PE101 compare BP (T, C) and find a mismatch. While they both 

compare the same R/Q BP, PE100 represents 1𝑖𝑖 and PE101 represents 1𝑖𝑖 and 1𝑠𝑠; hence, their edit 

distances are not the same, preventing them from being merged. Similarly, PE010 and PE011 

compare BP (C, G) and find a mismatch. PE002 represents 2s and compares BP (C, C), which is 

a match. However, if this pattern is followed, a full 3D grid of PEs develops, as shown by the large 

black circle in 𝑐𝑐 = 2, which would result in 𝑂𝑂(𝑘𝑘3) complexity. To reduce the complexity to 
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𝑂𝑂(𝑘𝑘2), instead, we use the observation that PE002 evaluates the same BP position in 𝑐𝑐 =  3 as 

PE110 will evaluate in the next cycle, 𝑐𝑐 =  4. In our example, since the R and Q strands are shifted 

right and up, respectively, in 𝑐𝑐 = 4, PE110 also compares BP (C, C) in 𝑐𝑐 =  4. Furthermore, in 

terms of edit distance, 𝑖𝑖 =  𝑑𝑑 =  𝑠𝑠 =  1, so the edit distances represented by both PE002 and 

PE110 are equal (1𝑖𝑖 +  1𝑑𝑑 =  2𝑠𝑠). Hence, they can be merged by replacing PE002 with a wait 

node that does nothing but activates PE110 in 𝑐𝑐 = 4 (indicated by the small black dot in 𝑐𝑐 =

3 𝑎𝑎𝑎𝑎𝑎𝑎 4). By offloading the evaluation of PE002 to PE110 in 𝑐𝑐 = 4, a full 3D structure is collapsed 

into a 2D structure. Hence, in 𝑐𝑐 =  4, PE110 finds a matched BP (C, C) and after reactivating 

itself, again finds the final match (C, C) in 𝑐𝑐 =  5 (not shown in Figure 2.5), marking the optimal 

alignment of 2 edits. Note that several other PEs are also active in c = 4. However, they all have 

higher edit distances and are sub-optimal. Finally, the process ends after both of the input strings 

are shifted out of the shift registers.  

Therefore, the resulting array has dimension (𝑘𝑘,𝑘𝑘, 2) . Compared to SW, the space 

complexity of the automata array, 𝑂𝑂(𝑘𝑘2), is only quadratic in terms of the maximum edit distance 

𝑘𝑘, making the size of the array much smaller and string independent. On the other hand, the process 

starts with R/Q shifted into the register and finishes with them shifted out, resulting in an additive 

linear time complexity 𝑂𝑂(𝑛𝑛 + 𝑘𝑘) instead of multiplicative time complexity 𝑂𝑂(𝑘𝑘𝑘𝑘) in the banded 

SW. Thus, the string-independent automata array renders a higher throughput for a given space. 
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2.3 Seed-Extension Accelerator 

2.3.1 Implemented Architecture 

The overall architecture of the accelerator and PE array is shown in Figure 2.6 (a). The PEs 

are extremely simple, consisting of only 6 gates, which OR incoming activations and activate 

self/neighbors depending on the comparison result. The BP comparisons are performed at the shift 

registers and are then passed diagonally to neighboring PEs since diagonal PEs use the same 

comparison result with a one-cycle delay as explained in Section II. This makes all communication 

local, allowing for very high-speed operation. The 25 × 25 triangular array can be decomposed 
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into three smaller triangular arrays of 12 × 12 (Figure 2.6 (b)), enabling a trade-off between 

throughput and maximum edit distance, which is further discussed in Section 2.4.  

2.3.2 Affine Gap Penalty and Score Machine 

The standard seed-extension algorithm typically uses a more sophisticated scoring scheme 

in addition to edit distance, based on empirical statistics [81]. This includes the affine gap penalty 

used in standard BWA-MEM software [62], complying to the clipping heuristic. Accordingly, the 

scoring scheme, as shown in the top of Figure 2.7, is adopted in our design. The penalty scheme 

favors consecutive insertions and deletions (penalty -1) over new insertions and deletions (penalty 

-7), preventing merging confluence paths, which can occur with simple edit distance scoring.  
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Figure 2.7 Score Scheme (Top) and Delayed Merging (Bottom). 
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According to this rule, two sample alignments (Figure 2.8) have the same edit distance (5 

insertions) but with different scores. Alignment 2 has two gaps separated by the matched T and T 

base pair in the middle, which imposes a doubled gap penalty compared to alignment 1 (two -7 

penalties versus one), making the first alignment more desirable. To support the affine gap penalty, 

a delayed merge of two converging paths is required as in Figure 2.8. When two paths converge, 

they cannot merge immediately based on the current state and input scores alone since the future 

score depends on whether the path opens a new gap. In the example, although the incoming score 

from the preceding insertion edge, 8, is lower than the current score, 9 + 1, the incoming score is 

not discarded immediately to merge the two paths. Instead, we latch it until a new gap opens in the 

next cycle to decide whether to take the incoming path and pass the higher score to the following 

PEs. Score calculation logic is introduced in addition to the basic PE to accommodate the 
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aforementioned scheme, which passes the calculated score from PE to PE along with the state 

activations (Figure 2.9). 

2.3.3 Collision Resolution and Traceback Machine 

After the forward process of the input read pair as described above, the best trace is then 

shifted backward and collected by the controller to generate the final output (Figure 2.10, Top). 

This in-place trace back is supported by augmenting the edit machine with a traceback machine 

and a score machine as shown in Figure 2.9. The principle is to keep track of the best score and 

the incoming state pointer (𝑖𝑖,𝑑𝑑, 𝑠𝑠) that activates current state with that best score and also to count 
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the matches that the current state meets before activating the next state. With this information, the 

traceback machine chains the winning states one-by-one during the backward propagation to form 

a complete winning path. However, during the forward process, it is possible for the correct pointer 

to be corrupted by a later, non-optimal path due to greedy affine gap scoring, thus breaking the 

backward trace of the best path. When such a collision is detected by the controller, the string is 

reprocessed up to the point when the broken state occurs and then traced back, as shown in Figure 

2.10, Bottom. Although this requires reprocessing the string, in practice, this is rare, less than 1% 

of the reads (Figure 2.11), resulting in negligible performance degradation.  

2.3.4 Complete Operating Sequence 

Figure 2.12 shows the complete sequence of operation: after the full read pair is processed 

(phase I), each PE passes the maximum score backward in back-propagation mode, and the best 

score is retrieved from PE000 (phase II). The array controller also counts the number of cycles 

until the best score exits the array and then reverses the machine and propagates the best score into 

the array again for the same number of cycles (phase III), at which point the node that matches the 
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best score self identifies. During forward processing, each PE also stores which of the incoming 

arcs (𝑖𝑖,𝑑𝑑, 𝑠𝑠) pass the best score. In phase IV, starting from the final winning state, the traceback 

pointers are connected in backward fashion until they reach PE000. Finally, in phase V, this 

backward trace is collected by shifting it back to PE000, revealing the edit string.  

2.4 Measurement 

A representative dataset, the Illumina Platinum Genomes ERR194147 dataset [82], is used 

to test our implementation. The distribution of edit distance of the reads in the dataset is shown in 

Figure 2.13, Left. From the distribution, 99.9967% of the reads are of edit distance no greater than 

25, so with 𝑘𝑘 =  25 for the PE array, 99.9967% of the reads are correctly processed. Since the 

 
Figure 2.13 Edit Distance Across the Test Dataset. 
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size of the array is quadratic in maximum edit distance supported, 25 is a good tradeoff point 

between accuracy and silicon area. For the decomposed mode, where 𝑘𝑘 = 12, 99.7907% of the 

reads are correctly covered. A time breakdown of the processing on the dataset (Figure 2.14) shows 

that 70% of the processing time is devoted to forward process and 30% is taken by the traceback 

phase. 

Implemented in Mie Fujitsu 55-nm DDC technology, the test chip achieves 670 MHz core 

clock frequency at 0.9 V VDD and consumes 508 mW of power. Figure 2.15 shows the test board 

and die photo. As shown in the VDD scaling plot (Figure 2.16), the frequency of the test design 

can scale up to 834 MHz with 1.2 V VDD and 704 MHz with 0.2 V forward body bias at 0.9 V 

VDD. Figure 2.17 gives a frequency distribution across 6 different test chips.  

To compare our work with the state-of-the-art, BWA-MEM is chosen as the ground truth 

to compare the output due to its popularity. But, because BWA-MEM also incorporates the seeding 
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step, the SeqAn library is implemented to study the performance of our work independent of the 

seeding step. The measured throughput is 2.46 million reads per second (MRPS) for the test 

dataset, and the results are identical to those obtained with BWA-MEM under the same settings of 

maximum edit distance 𝑘𝑘  and scoring scheme. This marks a performance improvement of 

~3x/~170x over SeqAn library deployed as 56-thread/single thread workload on a server with dual-

socket Xeon E5-2697 v3 processors under the same configuration [66][67] and ~32,000x over 

SSW library on a 2GHz AMD processor [67]. It also achieves improvement of ~10x over a GPU 

implementation [72] or an FPGA implementation [74], all of which have a much larger silicon 

footprint, yielding a performance improvement normalized by area and technology of over 1000x. 

The power efficiency is 4.24 MRPS/W, also marking an over 1000x improvement over SeqAn on 

the CPU [77] and 70x improvement on the FPGA [74]. Table 2-1 summarizes the above 

comparison.  

2.5 Conclusion 

An accelerator for seed extension is presented. The accelerator consists of a triangular array 

of 25 × 25 custom-designed processing elements, implementing a string-independent automata. 
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Figure 2.17 Frequency Distribution Across Test Chips. 
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Marking the first silicon implementation of the string-independent matching algorithm, it achieves 

2.46M reads/s throughput and 4.24 MRPS/W power efficiency, providing 1581x power efficiency 

and over 1000x area efficiency improvement compared to deploying SeqAn library on dual-socket 

Xeon E5-2697 v3 server processors, while maintaining the same output as standard BWA-MEM 

library under the same configuration.  

Publications related to the proposed accelerator can be found in [78] and [130]. 
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Chapter 3. RRAM-DNN: An RRAM and Model-Compression Empowered 
All-Weights-on-Chip DNN Accelerator 

 

3.1 Introduction 

3.1.1 Prior Work and Limitations on Non-Volatile Memories 

Although embedded Flash memory has been deployed in micro-controllers as non-volatile 

storage for code and data [85],[87], technology scaling poses a substantial challenge with regards 

to the use of such charge-based Flash, SRAM, and DRAM [86]. The reduced capacity to hold 

sufficient charge on the floating gate of Flash memory, the internal capacitive node of SRAM, and 

the cell capacitor of DRAM degrade the performance, reliability, and noise margin, limiting their 

applications. As possible solutions, emerging non-charge-based non-volatile memories have been 

proposed, such as RRAM [87]-[89], MRAM [90][91], and PCRAM [92]. Among them, RRAM is 

a promising candidate for wide adoption to ML/DNN applications as it has logic-process 

compatibility and a large on-off ratio between the high resistance state and low resistance state for 

potential multi-level operations [89]. Various DNN accelerators employing Computation-In-

Memory (CIM) techniques on RRAM have been proposed [93][94]. However, due to limited 

computing precision, these CIM accelerators are not readily scalable to high-accuracy DNNs. And 

to date, there have been few designs that leverage RRAM’s higher density and low standby power 

for all-on-chip parameter storage in large-scale digital DNN accelerators (versus a general-purpose 

non-volatile microcontroller [88]). 
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In this project, we present the first digital DNN accelerator featuring 24 Mb RRAM for all-

on-chip weight storage to eliminate energy-consuming off-chip weight accesses, thereby reducing 

the overall system operating power. The design employs a 4-PE (processing element) architecture 

in 22nm ULL CMOS technology with 24×1 Mb custom-designed embedded RRAM banks. Using 

pre-compressed DNN models with an on-the-fly weight decompression mechanism, we achieve 

on average ~1.5 b/weight for AlexNet, 3.2b/weight for ResNet-18, resulting in a maximum total 

capacity of 16 M weights on chip. Highly parallelized and mesh-connected MAC arrays in the PE 

enable various workload mapping schemes to support DNN layers with different memory and 

compute characteristics. To reliably read and write to the RRAM, we propose a dynamic clamping 

offset-canceling sense amplifier (DCOCSA) that achieves sub-µA input-sensing offset and a 

Write-Verify scheme for reliable programing. Combined with a mesh-connected MAC array 

architecture and 8 Mb shared SRAM, the proposed DNN accelerator operates at 120 MHz at 0.8 

V digital VDD, achieving 0.96 TOPS/W [95]. 

3.2 Overall Architecture 

Figure 3.1 shows the overall architecture of the RRAM-DNN chip. The design consists of 

4 PEs connected to a shared bus and a global shared memory. Each PE has its local memory for 

buffering the input/output activations, dedicated 6Mb RRAM memory banks for non-volatile 

parameter storage, MAC array units for highly parallelized processing, and instruction memory 

for controlling the layer functions. In the architecture, each PE has both read/write access to its 
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Figure 3.1 Overall Architecture of the RRAM-DNN Chip. 
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own local memory as well as read access to its neighboring PEs' local memories. The global shared 

memory is 8 Mb, and it supports parallel write and read access if the accesses are pre-partitioned 

to different memory banks. Due to the large chip size and the heterogenous memory hierarchy, 

different memories in the architecture have different access latencies. The local memories 

including the input and weight buffers achieve 1 cycle access latency. Accessing neighboring PE’s 

memories and the global memory incur access latencies of 2 cycles and 4 cycles respectively. 

Moreover, the shared global memory coalesces multiple accesses by broadcasting data to all or a 

subset of 4 PEs when their read addresses are identical. In simulation, broadcasting data to 

coalesced requests results in ~4× latency reduction when multiple PEs are fetching the same input 

activation (IA) from the global shared memory. 

During the execution of a layer function, a PE first loads a block of input activations from 

the global shared memory to its local memory following user-defined memory partitioning. The 

PE's neighbors can share its input activation because of the local connectivity between PEs. The 

PE then processes the layer function on the block of inputs with local stored weights. After all 

output activations are computed, the PE moves the output block back to the shared global memory. 

Each PE may process different data and execute different instructions, which can lead to a variable 

processing latency. Therefore, synchronization is necessary to ensure correct layer operations 

when the PEs are collaborating. The proposed design can be programed to synchronize all or a 

subset of 4 PEs. 
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3.2.1 Detailed Architecture of the Processing Element 

Figure 3.2 details the design of a single PE. Inspired by [96], the PE architecture exploits 

parallelism and data reusability across different input dimensions to improve energy efficiency. 

Each PE has a mesh of 128 8-bit multiply/32-bit accumulate MAC units in 4 clusters (each with a 

grid of 4 × 8 MAC units). Each MAC also contains 32-bit flipflops to locally store processed 

partial sums. In total, 4 PEs have 512 MAC units on chip, enabling massive parallel processing for 

compute-intensive CNN operations. Moreover, each PE processes 4 input channels (IC), 4 output 

channels (OC), and 8 input activations in parallel to maximize the data reusability in the MAC 

array. Each PE has its own private 6 Mb RRAM for parameter storage. During the CNN operation, 

weights are first read from the RRAM, decompressed through the decompression engine, and 

transferred to small 2-bank, 4-kB interleaved weight buffers for frequent local accesses. The MAC 

array processing and weight decompression occur concurrently (pipelined) to maximize 

throughput. Accessing the small 4 KB weight memory provides 128 bit/cycle memory access 

bandwidth with high access energy efficiency. The 4-bank, 32 kB local buffer stores input and 
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Figure 3.2 Detailed Architecture of the Processing Element. 
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output activation with 256 bit/cycle access bandwidth. The high data bandwidth from both the 

weight buffer and local buffers ensures the full utilization of the 128 MAC units.  

3.2.2 Instruction Set Architecture (ISA) 

To control the processing of MAC units for hundreds of cycles without explicit instruction 

decoding in each cycle, 256-bit Very long Instruction Word (VLIW) instructions are used. 

Moreover, the instructions are stored in the 32 kB instruction memory of each PE so that it can be 

programmed independently to control the processing sequence and synchronization of the DNN 

algorithm if necessary. Offset (direct) addressing with respect to each PE’s own base address is 

used in the ISA for arithmetic operations within a PE, including CONV, ADD and POOL etc., to 

reduce the bit-width of the instructions. Non-offset global direct addressing is used when the data 

are moved from/to the global memory. Figure 3.3 details the ISA of the proposed RRAM-DNN 

processor. The proposed ISA supports not only various layer functions such as convolution, 

pooling, matrix multiplication and ReLU, etc., but also flexible layer partition schemes such as the 
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number of split input and output channels. Data concatenation and scaling can also be achieved 

through MOV (move), ADD (addition) instructions. 

3.2.3 Decompression Engine 

The weight compression algorithm is adopted from [34]. During the training, unimportant 

weights are pruned to zero and all non-zero weights are non-uniformly quantized to 64 levels. To 

compress each weight, we use the Huffman encoded weight value (one of 64 levels) as well as the 

run length of the non-zero weight position. This algorithm compresses each weight to bit on 

average with negligible accuracy degradation for ResNet-18 [31]. Each PE is equipped with a 

decompression engine to decode the compressed weights stored in the RRAM. Each 

decompression engine contains two programmable Huffman tables: one for weight values and the 

other for run-length positions. These tables share a parallel look-up table (LUT)-based decoder. 

Decompressing Huffman encoded weight values and run-length positions to meet the processing 

bandwidth of the PE is challenging. On the one hand, decompressing the Huffman encoded 96-bit 

in a single cycle requires a logic with very long critical paths (>10ns) due to inter-bit dependency 

in the compressed bit sequence. On the other hand, if the Huffman decoding was performed in 

 
Figure 3.5 On-chip Huffman Table for Decompression. 
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series with single bit per cycle throughput, an entire weight packet would cost > 250 cycles to 

process. Decompression throughput needs to be balanced with the throughput of the MAC array 

which takes 72 cycles for processing 8 rows of 3x3 kernel. Therefore, instead of traversing a binary 

Huffman tree sequentially by advancing a single bit per clock cycle, we decode 4 bits in parallel 

to improve the performance (Figure 3.4) per cycle. This requires storing all possible 4-bit subtrees 

(Figure 3.5), which are stored in each PE and programmed through the PE programming interface. 

The critical path of decompressing 4 bits in parallel is 3 ns. Note that the layer-dependent non-

uniform weight quantization and pruning requires reprogramming of these Huffman tables/trees 

for each DNN layer. We minimize the programming overhead by programming multiple PEs 

simultaneously when they share the same table. 

3.2.4 RRAM Weight Storage and Static Error Resiliency 

The compressed weights for convolutional layers are stored in the RRAM as packets shown 

in Figure 3.6. Each packet has a variable length (because each weight length is variable) and is 

split into multiple RRAM words. Each packet contains a layer specification, Huffman coded 

weight values, and run-length codes for 4 input and 4 output channels. The layer specification 

consists of the kernel offset and location for weights. We insert this specification information for 

every packet to make the system resilient to RRAM word errors. Since each weight and packet has 
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variable length, a single RRAM word error can cause catastrophic decompression failure for 

subsequent packets. The proposed packet specification enables faulty word mitigation by repeating 

the same packet (including the specification) twice if the first packet was written on a faulty RRAM 

word(s). In that case, the second packet overwrites the first faulty packet during the decompression 

process. We assume RRAM word error locations are static and identifiable before programming 

the chip. 

3.3 Dataflow of Proposed RRAM-DNN 

The proposed architecture and ISA support flexible mapping of heterogeneous DNNs for 

efficient hardware execution. This section discusses the various energy-efficient dataflows that are 

supported in the proposed architecture. The evaluations of different dataflows are performed with 

a python-based cycle accurate simulator, modeling the behavior of the designed 4-PE system. The 

simulator pre-allocates weights & activations onto the PEs and computes corresponding memory 

addresses based-on a given partitioning scheme. Then, the simulator profiles the chip behavior / 
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execution trace for evaluation / verification, and also generates VLIW instructions (Figure 3.3) to 

control the chip. 

3.3.1 Partition Workload onto PEs by Output Channels  

One example of mapping a DNN layer to the architecture is shown in Figure 3.7. The colors 

in Figure 3.7 indicate weight/kernel mapping of a convolutional layer to the architecture, where 

the weights are split by different output channels mapped on dedicated PEs. In this example, the 

weights are pre-partitioned on these 4 PEs, and each PE is programmed to compute different output 

channels through instructions. Meanwhile, the input activations are partitioned into 8 × 8 blocks, 

with all associated input channels, for processing to match the local memory capacity in each PE. 

When the processing of an 8 × 8 block for all input channels finishes, the PE re-organizes the 

output and moves it back to the global memory. The outputs from multiple PEs are concatenated 

in this process to form the complete layer output. The timing diagram of the process is shown in 

Figure 3.7 (bottom). Although each PE stores only 1/4 of the total weights and also processes only 

1/4 of the convolutions, the same complete input activations from the prior layer must be copied 

to the local memories of each PE. To minimize this potentially redundant traffic and save data 

PE4

Global 8Mb L2 Data Cache
1R 1W interface

PE3PE2PE1

Convolution and summationInput loading Moving Output & computing next block
PE1

Share IA on 
different PEs

Partial sum 
for ICs

Timing diagram

Splitting input channels to 
different PEs

PE2

PE3

PE4

Synchonization

+

+

+

Hierarchical 
sum among 

PEs

Input loading CONV ADD Output loading  
Figure 3.8 Split Convolution onto Multiple PEs by Input Channels. 



 42 

transfer time, we enable the bus to broadcast input activation to all PEs. In simulation, the 

combination of input activation broadcasting and global memory access coalescing improves the 

MAC utilization and reduces the inference latency by 7% (Figure 3.9).  

3.3.2 Partition Workload onto PEs by Input Channels  

Another possible mapping of a convolutional layer to different PEs is input channel-based 

partitioning. In that case, each PE processes a partial sum of different input channels as shown in 

Figure 3.8. A selected PE merges the results from neighboring PEs hierarchically and then writes 

the merged results to the global memory (Figure 3.8, bottom). Thanks to the local connection 

between neighboring PEs, no extra data movement is needed as each PE has read access to each 

neighboring PE’s local memory. Similar to the output channel split mapping in Section 3.3.1, 

weights are pre-partitioned on these 4 PEs and input activations are partitioned into 8 × 8 blocks 

(and ¼ of all input channels) for processing. Compared with splitting the output channels, this 

input channel partitioning scheme involves uneven workload distribution among the PEs because 

a selected PE(s) needs to perform the extra merge and move operations. This can potentially lead 

to idle cycles and low MAC utilizations for the other PEs. However, the workload can be balanced 

throughout the entire convolution layer if the merge and move operations are mapped onto all PEs 
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in a round-robin fashion. Because the input activations are partitioned into 8 × 8 × 4 (input 

channels) blocks per PEs, and typically there are > 64 blocks in a layer, the workload can be 

balanced for the overall layer. This workload balancing scheme improves the overall MAC array 

utilization by 2.5%. Figure 3.9 summaries the different workload partitioning methods and their 

impacts on MAC utilization with ResNet-18. 

Each individual layer in the network can be separately programmed for the best workload 

partitioning based on the layer characteristic. For the ResNet-18 example shown, 8% overall 

latency reduction can be achieved with layer-dependent best combinations of aforementioned 

partitioning schemes compared to a naïve approach (Figure 3.9). 

3.3.3 Data Reuse for Efficient Convolution Processing 

Convolution operations on a single PE are optimized with massive parallelism and data-

reuse. Similar to the CNN design in [96], each PE consists of 4 clusters of 8 × 4 MAC arrays, 

processing 8 consecutive pixels and 4 consecutive input channels in parallel. Partial convolution 

is performed with shifting input activations (IAs) using a row of 8 MAC units with k (kernel size) 

cycles. This operation is repeated on the second and third row of IAs to complete the 2D 

convolution. The pooling operations are performed in the same fashion except that MAC is 
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replaced by Max in the 128 MAC units. Partial products in 2D convolution are accumulated locally 

in each MAC unit to improve the energy efficiency without unnecessary memory accesses. 

3.3.4 Data Reuse for Efficient Processing of Sparse Fully Connected Layers 

The compressed weights for the fully connected layers (FCL) are very sparse, with 

typically less than 20% density [34] (Table 3-1), whereas the input activations for the fully 

connected layers are densely populated. Inspired by [97], we deploy outer-product-based matrix 

vector multiplication to efficiently compute the FCL and skip all zero multiplications. Similar to 

the convolution operation, sparse FCL weights are stored in the compressed format and are pre-

partitioned onto each PE during the compile time to enable highly parallelized processing with 

multiple PEs (Figure 3.10). Different from convolution layers, weights for FCL are only pruned 

and quantized without Huffman coding to increase the decompression rate to match the throughput 

of parallelized processing without weight reuse. During processing, each element of input 

activations is multiplied with sparse non-zero weights from RRAM in each PE. Partial outputs are 

then accumulated and stored in the accumulators depending on the location of the non-zero 

Table 3-1 Example of Applying Compression Scheme on Resnet18 

Weight 
bitwidth (w)
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bitwidth (r)

Total number non-zeros 
parameters (TNZ)
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weights. As multiple PEs finish processing subsets of an FCL, selected PEs merge the FCL output 

hierarchically and write the results to the global memory. 

3.4 Compressed Model for Simulation and Measurements 

To enable the single-chip implementation for DNN models, we leverage an idea from a 

state-of-the-art deep compression scheme [34] for compressing DNN models. However, the 

compression scheme also has to be co-designed to maximize the performance and efficiency of 

the architecture. The convolution layers typically require less bandwidth to decompress weights 

because each weight can be reused over multiple cycles for different input/output activations. 

Therefore, the weights for convolution layers are pruned, non-linearly quantized with 64 weight 

centroids and run-length coded using 5-bit codes to achieve maximum compression. On the other 

hand, weights are only used once for fully connected layers. Thus, it is necessary to simplify the 

compression scheme to balance the weight decompression throughput with the FCL computation 

throughput. The weights for fully connected layers in our design are pruned without any entropy 

coding. On average, the proposed compression scheme achieves ~5.5 bit per weight in convolution 

layers and 2.4 bit per weight in FC layers. Table 3-1 shows an example of applying the 

compression on ResNet18 when trained and evaluated under the ImageNet dataset [98]. Pruning 

the weights reduces the model size of the convolution layers by 68% and fully connected layers 

by 82%. Run-length coding and Huffman coding further compress the pruned convolution layers 

by 40% (from 8-bit weight and 5-bit run-length to 5.5-bit weight and 2.4-bit run-length for non-

zero weights). With both methods combined, the average bits/weight is 3.2. 

After the proposed weight compression, the DNN model exhibits negligible accuracy 

degradation compared with 8-bit uncompressed weights under ImageNet [98] evaluation. 
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3.5 Customized Memory 

The 1 Mb custom-designed RRAM bank uses a butterfly architecture, as shown in Figure 

3.11 (a), which is composed of four 256 × 1024 RRAM arrays with 32b word length. The three 

colors denote the three main power domains used in the bank for testing flexibility: 1.4V for the 

word line (WL, green), 1.25V for the column mux (red), and 1V for the sense amplifier (SA) and 

ctrl (blue). The RRAM array employs a common source line (SL) cell arrangement [99]. Thus, the 

column-wise peripherals include an equalizer (Figure 3.11 (b)) to virtually short the half-selected 

column when the other one is being written. 
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Figure 3.11 RRAM Bank Architecture(a) and Common SL Arrangement(b). 
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3.5.1 Dynamic Clamping Offset-Canceling SA 

RRAM typically suffers from high variation in cell resistance which can vary by 2~10x for 

the low resistance state and 5~100x for the high resistance state [100], leaving a small sensing 

margin on sensing circuits. To address the high variation nature of the RRAM, the 2-stage offset-

cancelling current-mode SA shown in Figure 3.12 is proposed. The first stage is composed of two 

cross-coupled current sampling branches similar to the scheme in [101], which doubles the input 

current difference and effectively halves the offset. In addition, the first stage incorporates dynamic 

clamping, instead of typical static clamping, to bring down the bit line settling time and increase 

the sensing speed. Unlike conventional clamping amplifiers, which are large and power hungry, a 

carefully designed self-biased inverter provides the feedback loop. The settling time is reduced by 

50% (simulation) compared to a static clamping SA under the same load. The second stage 
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provides further amplification and offset-reduction with a single-cap auto-zero regenerative 

amplifier [91]. 

Figure 3.13 details the operation of the proposed SA. In step ①, the input and output of the 

inverter are shorted to self-bias the clamp transistors, with bias voltage sampled on the Ci’s. 

Meanwhile, the regenerative amplifier of the second stage is also shorted to sample the offset and 

cancel it out in the following steps. This step overlaps with address decoding to avoid a timing 

penalty. Then, in step ②, the shorted inverter in phase one is disconnected to function as a negative 

feedback amplifier, and the WL is turned on to allow the two diode-connected PMOS headers to 

sample the currents 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 on their respective branches. After the current settles, in step ③, 

the two headers are switched to the other branch and function as a current source, which generates 

current difference 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 on both input nodes of the second stage. However, note that the 

directions of the two current differences are opposite, which effectively doubles the current 

difference of the input to the second stage to 2(𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟). Finally, in step ④, the second stage 

is fired and latches the output. The voltage waveforms of the internal nodes are shown in Figure 

3.14. A sub-µA current offset is achieved at 21 µA common mode input under 1.2 V VDD from 
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Figure 3.14 Timing waveform of DCOCSA. 
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Monte Carlo (MC) simulation with 500 samples; Figure 3.15 gives the offset distribution at 

different temperatures. 

3.5.2 Write-Verify Process 

RRAM also suffers from variation in write time. At a fixed write voltage, the write time of 

slow cells and fast cells can differ by more than 100× [102]. Thus, applying a write pulse of the 

same length to both fast and slow cells causes unnecessary power and endurance losses on the fast 
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cell. So, a fine-grained iterative Write-Verify control is adopted. Each bit in a word is separately 

controlled based on the read result, ruling out correlation between fast and slow cells, which 

alleviates locality-dependent variation. Furthermore, with Write-Verify, each cell automatically 

adapts to the corresponding SA offset, further reducing the locality dependency. 

Figure 3.16 illustrates the block diagram of the Write-Verify control. Following a write 

request, each RRAM cell of the target address is read out first to compare with the input data (DG) 

initiated by the global control. If the read-out value (d) of a cell is the same as the corresponding 

bit in DG, the write process of that cell concludes for better endurance. On the other hand, the cell 

is programed to the desired value by the iterative Write-Verify process. 

3.6 Measurement 

We implement the proposed accelerator in 22nm ULL CMOS technology with each PE of 

size 1614 × 1394 𝑢𝑢𝑚𝑚2 and each 1 Mb RRAM bank of size 235 × 514 𝑢𝑢𝑚𝑚2 as shown in the die 

photo (Figure 3.17 (a)). The test chip achieves 120 MHz core clock frequency at 0.8 V VDD and 

consumes 42.4 mW when evaluating a CNN layer of size 4×3×3×16 as depicted in the measured 

power/frequency vs. VDD plot (Figure 3.17 (b)) for core digital logic, which is everything except 

the RRAM banks.  
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Figure 3.17 Die Photo (a) and Power/Freq vs. VDD for Core Digital Logic (b). 
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In the implementation, the RRAM clock is hard coded to be half of the core clock; the 

RRAM operates at 60 MHz for the 120 MHz core frequency. A power breakdown of the four 

RRAM power domains is shown in Figure 3.18 (a), with 1V for the SA and control, 1.4 V for the 

WL, 1.25 V for the column mux, and 1.1 V for the inverter amplifier, noting that this breakdown 

includes the effect of the possible static errors in RRAM. A measured RRAM resistance 

distribution across ~10k cells randomly sampled from the 24 banks in one test chip at room 
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Figure 3.18 RRAM Power Breakdown (a) and Measured RRAM Resistance Distribution (b). 

Table 3-2 Comparison to Other Works 

* Including power of loading weights from RRAM to SRAM and MAC
† Including power of loading weights from 3D SRAM to on-chip SRAM & MAC
‡ Excluding power of loading weights from off-chip memory  

This Work QUEST[12] SNAP[103] STICKER[41] UNPU[37]
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7.68M+96M 
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Freq. (MHz) 60 RRAM
120 Core 300 33-480 20-200 200

TOPS/W *0.96@8b †0.59@4b ‡3.61@16b ‡1.038@8b ‡5.57@8b
GOPS 123@8b 1960@4b 65.52@16b 102@8b 690@8b

Power (mW) 127.9
@120MHz

3300
@300MHz
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@480MHz

284.4
@200MHz
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@200MHz

Chip Area 
(mm2) 10.8 122 2.4 12 16

Envision[104]
28FD-SOI

148K
148K@8b 

Volatile
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256

(8x8b)

1.05

200
‡1@8b

102@8b
44
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temperature is shown in Figure 3.18 (b). The proposed accelerator consumes 127.9 mW in total, 

including weight decompression and transfer from RRAM to SRAM, resulting in a power 

efficiency of 0.96 TOPS/W. Table 3-2 compares the work to recent NN accelerators. The proposed 

design achieves the highest number of on-chip stored weights due to the model compression and 

better density of RRAM and is also the only design employing non-volatile memory as dedicated 

weight storage, thereby reducing standby power for edge devices.  

3.7 Conclusion 

In summary, we present the first energy-efficient digital DNN accelerator featuring RRAM 

for dedicated weight storage to enable efficient single-chip inference of NN models for mobile 

devices. Using on-the-fly weight decompression, we achieve a total capacity of 16 M 8bit weights 

on chip. To reliably read from and write to the RRAM, we propose a dynamic clamping offset-

canceling sense amplifier (DCOCSA) achieving sub-μA input-sensing offset. Together, these 

techniques help us eliminate fully off-chip weight access. The proposed processor is prototyped 

and measured in TSMC 22nm ULL with RRAM technology. This design supports single-chip NN 

model inference with ~16 million parameters. It achieves 123 GOPs throughput in real-time, 

consuming 127.9 mW from a 0.8 V supply, with measured 0.96 TOPS/W efficiency. The proposed 

design achieves the highest number of on-chip-stored weights and is also the only design 

employing non-volatile memory as dedicated weight storage, reducing standby power for edge 

devices. 

Publications related to the DNN accelerator can be found in [95] and [131]. 
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Chapter 4. Accelerator Design for Third Generation Fully Homomorphic 
Encryption and Private Set Intersection 

 

4.1 Introduction  

The past decade has witnessed the rapid development of Neural Networks (NN) / Machine 

Learning (ML) with unprecedented accuracy on various emerging computational tasks such as 

computer vision (CV) and Natural Language Processing (NLP). These data-driven approaches are 

being adopted in almost every aspect of human life, extending from online advertising, stock 

trading, and autopiloting vehicles to biomedical research. However, such ubiquitous employment 

of ML introduces severe concerns regarding the privacy of the users’ data. 

As modern NNs grow in parameter size and complexity of network structure to achieve 

higher accuracy and cope with more complex tasks, it is common to outsource ML computation 

to data centers for their excellent storage capacity and computational performance. For example, 

it took approximately 16 TPUv3s (equivalent to ~100–200 GPUs) of Google Cloud and a few 
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Figure 4.1 Conventional Client/Server Computation Model. 
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weeks of time to train AlphaFold2, which is a state-of-the-art protein structure predictor NN that 

achieves groundbreaking accuracy in predicting protein structure [132]. Although most research 

in NNs takes advantage of public data sets, the scenario is quite different when it comes to 

commercial applications. For instance, when outsourcing data analysis to a third-party cloud 

service provider, a medical institute has to reveal patients’ medical records to said provider, which 

not only violates HIPAA regulations but also allows the data to be potentially exploited by security 

loopholes in the cloud, even if the data is encrypted during transfer. As illustrated in the typical 

client/server computation model (Figure 4.1), the client input is secure until the computation takes 

place. However, to work on the input from a client, the encrypted client data must be decrypted 

first, which reveals the private data to a potentially untrusted cloud server. 

In fact, not only ML, but any computation that complies with a server/client or multiparty 

model can potentially leak a user’s private data, even if the data being transferred is securely 

encrypted. For a social media app to discover which person in a cellphone contact list also owns 

an account with the same social media, the contact list needs to be uploaded to the cloud for cross 

comparison, which reveals private information to the cloud. Privacy is not only a personal concern 

but also has profound implications for other aspects of society. For instance, in an e-voting system, 
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although the ballots filled in by voters are encrypted, counting the results requires all individual 

ballots to be decrypted first, which renders the results susceptible to tampering. Thus, with the 

expansion of data centers and cloud services, and as a growing number of services are moving 

online, especially after the COVID-19 pandemic, privacy-preserving computation (Figure 4.2) is 

expected to play a pivotal part of this industry in the future. 

There have been extensive investigations focused on the use of security primitives to 

preserve privacy in various aspects of computation. Examples include but are not limited to the 

following: Private Set Intersection (PSI) [105][106] [110][117][133]-[135], which allows two 

parties to learn about the intersection of their private data base without leaking any excess 

information beyond the intersection; Oblivious RAM (ORAM) [108][109][111], which conceals 

the data access pattern of a user when accessing a cloud storage; and Fully Homomorphic 

Encryption (FHE) [48]-[54][58]-[60] [113], which permits a more general direct computation on 

encrypted data without decrypting it first. 

Since 2009, when the first general FHE framework [48] was proposed by Gentry, several 

FHE schemes have been published [50]-[53][58]-[60]. Due to the generality of the concept, FHE 

can also be employed to build other security primitives, like PSI [110][117] and ORAM [111]. So 

far, although several open-source libraries [55]-[57] have pushed the processing time of the above 

FHE schemes from weeks to seconds or even milliseconds, the computation on encrypted data is 

still order of magnitudes slower than computing on plaintext data, due to the prohibitive amount 

of compute power that challenges the current compute systems. Thus, hardware and software 

optimization for accelerating the FHE process is critical to the practical employment of it.  
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4.1.1 Fully Homomorphic Encryption 

Homomorphic encryption (HE) is an encryption scheme that allows operations to be 

performed directly on encrypted data. To be precise, for a given function f(x), a homomorphic 

encryption scheme satisfies 𝑓𝑓(𝐸𝐸𝐸𝐸𝐸𝐸(𝑚𝑚)) =  𝐸𝐸𝐸𝐸𝐸𝐸(𝑓𝑓(𝑚𝑚)). If it is homomorphic to any function, it 

is characterized as fully homomorphic encryption. 

Exploration of HE started following the advent of RSA encryption due to its multiplicative 

homomorphism. However, no scheme with fully homomorphic capability was devised until 2009, 

when Gentry proposed a general FHE framework [48][113], which all the subsequent works 

follow. It has been proven that from a Boolean circuit model perspective of computation, if an 

encryption scheme is homomorphic to its own decryption function followed by a universal logic 

gate, then it is homomorphic to any function. The operation that fulfills this property by refreshing 

the noise level of the ciphertext after each operation, thus transforming a partially HE or Leveled 

HE (LHE) into an FHE, is called bootstrapping or recryption. Based on this idea, Gentry also 

presented a concrete construction based on the ideal lattice and sparse subset sum problem; 

however, the software implementation requires around 30 minutes of computation time per 

bootstrapping [49].  

Since then, various schemes have been proposed offering more efficient implementations. 

Among them, the most well-known are BGV [50], BFV [51][52], and CKKS [53]. These second-

generation schemes differ from Gentry’s approach in the underlying hard problem: the Ring 

Learning with Errors (RLWE) problem is employed for its better-studied hardness analysis and 

efficiency obtained via SIMD-styled computation [54]. BGV and BFV schemes operate on 

polynomial functions of integer numbers and have shared much in common during their 

development since the first publication, whereas CKKS works with complex numbers in the 
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plaintext space. Several open-source libraries that implement these schemes are available, 

including PALISADE [55], HElib [56] and SEAL [57]. These implementations can potentially 

reduce the recryption time to minutes depending on the security parameters. 

After the GSW [58] scheme was proposed in 2013, two schemes, FHEW [59] and TFHE 

[60], were published as third-generation approaches. Compared to the second-generation 

solutions, the third-generation schemes focus on finding an efficient implementation of single-bit 

logic and the bootstrap operation. Although performance-wise the third generation may not be 

superior to earlier schemes (since the amortized cost of the second generation equipped with 

SIMD-like construction is estimated to be within the same order of magnitude as that of the third 

generation), the third generation is superior in its simplicity and flexibility in terms of both concept 

and implementation. Typically, to achieve a 128-bit security level, the polynomial length is less 

than 2048, which is much shorter than the 10K required in the second generation. Further, the 

ciphertext modulus is less than 64 bits, compared to ~200 bits in the second generation. The 

reported recryption time of the third generation is generally around 0.1s to 1s.  

Although the FHE processing time is reduced from about half an hour [48] to minutes 

[55][56] in second-generation schemes or even sub-seconds [59][60] in third-generation systems, 

it is still many orders of magnitudes slower compared to operations on plaintext due to the 

prohibitive requirement of compute power that challenges current computing systems. This still 

renders FHE largely impractical. Thus, various hardware solutions have been proposed in recent 

years [119]-[129]. [119][121] focused on encryption/decryption of RLWE in a post-quantum 

scenario, which is less computation demanding due to the smaller size of the polynomial. 

Reference [120] presented a crypto-engine for the encryption/decryption of RLWE for 

homomorphic encryption, which is less heavy lifting compared to homomorphic evaluation. The 
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authors in [128] explored acceleration for large number multiplication, while [126][127] discussed 

approaches to accelerate long polynomial multiplications in homomorphic encryption. Other 

works [123]-[125][129] implemented accelerators for LHE schemes based on the BFV scheme, 

with limited computation depth and security levels. Finally, an architecture for the CKKS scheme 

was proposed in [122]. To date, there has been no hardware acceleration published for third-

generation FHE schemes. 

4.1.2 Private Set Intersection 

PSI allows two parties (Sender and Receiver) to exchange the intersection of their private 

sets without leaking any excess information other than the intersection set. In other words, it 

protects the privacy of two parties that exchange information. Thus, its applications include private 

human genome testing, contact list discovery of social media apps, and conversion rate measuring 

of online advertisement. Recently, Microsoft introduced Password Monitor in the latest release of 

the Edge web browser, which compares a user’s private passwords saved to Edge with a known 

database of leaked passwords to figure out whether there is a leak in the user’s passwords. With 

the underlying PSI protocol, privacy of the comparison is ensured, meaning that the server that 

facilitates the comparison learns nothing about the user’s passwords. 

The PSI problem has been explored extensively, seeking efficient protocols 

[105][106][133]-[135]. However, most of them have a communication complexity linear with the 

size of both sets. Therefore, in an unbalanced scenario where one set is significantly smaller than 

the other, these protocols still perform linearly based on the size of the large set. In recent years, 

unbalanced PSI protocols based on second-generation FHE [110][117] were proposed that provide 

significant communication overhead reduction compared to previous approaches but maintain 

comparable performance. However, they still suffer from the large encryption parameters of 
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second-generation FHE. Therefore, it is worth exploring a possible PSI protocol that exploits the 

lightweight parameters of third-generation FHE. 

4.1.3 Our Contributions 

This paper has four major contributions:  

1) We present the first accelerator architecture for third-generation FHE, targeting the 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ⊗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  operation (defined in the following section), which is a 

fundamental function of both second-generation and third-generation FHE. By 

exploiting the asymmetric nature of the encryption, the architecture incorporates an 

asymmetric Inverse Number Theory Transform (INTT) module and Number 

Theory Transform (NTT) module, which are capable of maintaining high 

throughput with less resource usage while addressing different parameter sets. An 

extensive analysis of the architecture is included. 

2) We propose a novel unbalanced PSI protocol that is based on third-generation FHE 

and is optimized for the proposed hardware architecture. The proposed PSI protocol 

makes the computation cost independent of the Sender’s set size. The core block of 

the PSI that facilitates the cross comparison of the PSI in [110] is replaced with a 

homomorphic lookup table (LUT) implemented with third-generation FHE. Unlike 

the multiplication used in [110], which returns a nonzero value when the cross 

comparison misses and potentially leaks the content of the Sender’s set, the LUT 

only returns one bit indicating whether an element is inside the Sender’s set and 

thus avoids sending any excess information about the Sender’s set. Therefore, the 

noise flooding process adopted in [110] is not necessary. We introduce several 

additional algorithm-architecture co-optimizations to reduce the computation and 
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communication costs, rendering a practical application of the proposed PSI 

protocol. 

3) A prototype of the proposed architecture is implemented with AWS cloud FPGA 

service. We develop all necessary high-level functions in C++ and benchmark the 

implemented architecture with different parameter sets. We make the 

SystemVerilog HDL code of the proposed accelerator and supporting software code 

publicly available at [136]. 

4) We quantify and analyze the performance of the proposed hardware acceleator and 

PSI protocol. The measurements show over 21× performance improvement 

compared to a software implementation for various subroutines of the third-

generation FHE and the proposed PSI. 

4.2Preliminaries 

Before diving into the detailed algorithm and architecture, it is worth to review the 

preliminary knowledge on which the aforementioned FHE schemes are built.  

4.2.1 Notations  

In the remaining chapter, bold face lower-case letters 𝒂𝒂,𝒃𝒃, 𝒄𝒄, … are used to denote vectors 

or polynomials depending on the context, and bold face upper-case letters 𝑨𝑨,𝑩𝑩,𝑪𝑪, … are used for 

matrices. The set of integers is denoted by ℤ, and the quotient ring of integers modulo 𝑞𝑞 is denoted 

by ℤ𝑞𝑞. “×” denotes the scalar multiplication with either another scalar or a vector/polynominal. 

“∙” denotes vector inner product or polynomial product depending on the context, while “⨀” 

denotes the outer product or element wise product of polynomial. At last, “⨂” is used to represent 
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a special operation that multiplies and accumulates a polynomial with a set of polynomials, which 

will be defined later.  

Throughout the paper, boldface lower-case letters 𝒂𝒂,𝒃𝒃, 𝒄𝒄, … are used to denote vectors or 

polynomials depending on the context, and boldface upper-case letters 𝑨𝑨,𝑩𝑩,𝑪𝑪, … are used for 

matrices. The set of integers is denoted by ℤ, and the quotient ring of integers modulo 𝑞𝑞 is denoted 

by ℤ𝑞𝑞. The polynomial ring is denoted by 𝑅𝑅 = ℤ[𝑋𝑋]/(𝑋𝑋𝑁𝑁 + 1), where 𝑁𝑁 is a power of two. And 

𝑅𝑅𝑄𝑄 = 𝑅𝑅/𝑄𝑄𝑄𝑄  represents the residue ring of 𝑅𝑅  modulo an integer 𝑄𝑄 . “ × ” denotes the scalar 

multiplication with either another scalar or a vector/polynomial. “∙” denotes the vector inner 

product or polynomial product depending on the context, while “⨀” denotes the outer product or 

element wise product of a polynomial. Lastly, “⨂” represents a special operation, which will be 

defined later in this section. 

4.2.2 Learning with Errors 

Just like RSA encryption relies on the hardness of factoring large numbers, almost all FHE 

schemes published so far are built upon Learning with Errors (LWE) or Ring Learning with Errors 

(RLWE) problem, which can be reduced to a lattice problem that is proved to be quantum safe 

within polynomial time [47][115]. 

The LWE problem states that given a polynomial number of vectors of form [𝒂𝒂, 𝑏𝑏 = 𝒂𝒂 ∙

𝒔𝒔 + 𝑒𝑒], where 𝒂𝒂, a vector of dimension 𝑛𝑛, is sampled uniformly from the integer vector space ℤ𝑞𝑞𝑛𝑛 

and error 𝑒𝑒 is sampled from an error distribution 𝜒𝜒, it is hard to extract the secret vector 𝒔𝒔 [47]. 

In practice, given a plaintext modulo 𝑡𝑡 and a ciphertext modulo 𝑞𝑞, an LWE encryption of 

a plaintext 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡 is defined as  

𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔
𝑞𝑞
𝑡𝑡(𝑚𝑚) = �𝒂𝒂, 𝑏𝑏 = 𝒂𝒂 ∙ 𝒔𝒔 + 𝑒𝑒 + 𝑚𝑚 ×

𝑞𝑞
𝑡𝑡
�, 4.1 
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with the vector 𝒂𝒂  and noise 𝑒𝑒  as described above. As long as |𝑒𝑒| < 𝑞𝑞
2𝑡𝑡

, the plaintext can be 

successfully recovered by 𝑚𝑚 = �(𝑏𝑏 − 𝒂𝒂 ∙ 𝒔𝒔) × 𝑡𝑡
𝑞𝑞
�, which rounds off the noise. 

A special operation called key switch can convert a LWE ciphertext encrypted under a 

secret key 𝒔𝒔𝟏𝟏 into another LWE ciphertext encrypted by a different secret key 𝒔𝒔𝟐𝟐. The operation is 

fulfilled by a LWE key switch key that encrypts the first key 𝒔𝒔𝟏𝟏 into a lookup table (LUT) using 

the second key 𝒔𝒔𝟐𝟐. For each element 𝒔𝒔𝟏𝟏[𝑖𝑖] in 𝒔𝒔𝟏𝟏, a vector of LWE ciphertexts with secret key 𝒔𝒔𝟐𝟐 

is built, as in Equation 4.2. As a result, a 2-dimensional LUT is generated, which contains 𝑛𝑛 × 𝑞𝑞 

LWE ciphertexts encrypted by key 𝒔𝒔𝟐𝟐. 

[𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔𝟐𝟐(0 × 𝒔𝒔𝟏𝟏[𝑖𝑖]),𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔𝟐𝟐(1 × 𝒔𝒔𝟏𝟏[𝑖𝑖]), … , 𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔𝟐𝟐((𝑞𝑞 − 1) × 𝒔𝒔𝟏𝟏[𝑖𝑖])]  4.2 

For a LWE ciphertext 𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔𝟏𝟏(𝑚𝑚) = [𝒂𝒂, 𝑏𝑏] with key 𝒔𝒔𝟏𝟏, to switch to key 𝒔𝒔𝟐𝟐, the new ciphertext is 

generated by Equation 4.3, with each LWE ciphertext from the LUT index by 𝑖𝑖 and 𝑎𝑎[𝑖𝑖]. It is easy 

to verify the correctness of the process with a small amount of noise increase. A formal definition 

can be found in [116]. 

𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔𝟐𝟐(𝑚𝑚) = [𝟎𝟎, 𝑏𝑏] −�𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔𝟐𝟐(𝒂𝒂[𝑖𝑖] × 𝒔𝒔𝟏𝟏[𝑖𝑖]) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
𝑛𝑛−1

𝑖𝑖=0

 4.3 

There exists a time-space trade-off for the key switch process. Given a decomposition base 

𝐵𝐵𝐾𝐾𝐾𝐾, the product of each 𝒂𝒂[𝑖𝑖] × 𝒔𝒔𝟏𝟏[𝑖𝑖] in Equation 4.3 can be rewritten with a decomposed 𝒂𝒂[𝑖𝑖] as 

Equation 4.4, where ∑ 𝒂𝒂
log𝐵𝐵𝐾𝐾𝐾𝐾(𝑞𝑞)−1
𝑗𝑗=0 [𝑖𝑖][𝑗𝑗] × 𝐵𝐵𝐾𝐾𝐾𝐾

𝑗𝑗 = 𝒂𝒂[𝑖𝑖] . Therefore, when building the LUT, 

instead of a vector of LWE ciphertexts for each 𝒔𝒔𝟏𝟏[𝑖𝑖], a 2-D array of LWE ciphertexts is built, 

with each element of the form 𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔𝟐𝟐(𝑣𝑣 × 𝐵𝐵𝐾𝐾𝐾𝐾
𝑗𝑗 × 𝒔𝒔𝟏𝟏[𝑖𝑖])  for 𝑣𝑣 ∈ [0,𝐵𝐵𝐾𝐾𝑠𝑠 − 1]  and 𝑗𝑗 ∈

[0, log𝐵𝐵𝐾𝐾𝐾𝐾(𝑞𝑞) − 1]. In total, the new LUT is of 3 dimensions. When switching the key from 𝒔𝒔𝟐𝟐 to 

𝒔𝒔𝟏𝟏, each 𝒂𝒂[𝑖𝑖] is first decomposed by 𝐵𝐵𝐾𝐾𝐾𝐾, and then the new ciphertext is generated by Equation 



 63 

4.5. With the decomposition, the size of the 3-D LUT is 𝐵𝐵𝐾𝐾𝐾𝐾 × 𝑙𝑙𝑙𝑙𝑔𝑔𝐵𝐵𝐾𝐾𝐾𝐾(𝑞𝑞) × 𝑛𝑛, and with a proper 

𝐵𝐵𝐾𝐾𝐾𝐾 , it can be much smaller than the size of a 2-D LUT, 𝑛𝑛 × 𝑞𝑞 , at the cost of more LWE 

additions/subtractions, facilitating a time-space trade off. 

� 𝒂𝒂[𝑖𝑖][𝑗𝑗]

log𝐵𝐵𝐾𝐾𝐾𝐾(𝑞𝑞)−1

𝑗𝑗=0

× 𝐵𝐵𝐾𝐾𝐾𝐾
𝑗𝑗 × 𝒔𝒔𝟏𝟏[𝑖𝑖] 4.4 

𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔𝟐𝟐(𝑚𝑚) = [𝟎𝟎, 𝑏𝑏] −� � 𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔𝟐𝟐�𝒂𝒂[𝑖𝑖][𝑗𝑗] × 𝐵𝐵𝐾𝐾𝐾𝐾
𝑗𝑗 × 𝒔𝒔𝟏𝟏[𝑖𝑖]�

𝑙𝑙𝑙𝑙𝑔𝑔𝐵𝐵𝐾𝐾𝐾𝐾(𝑞𝑞)−1

𝑗𝑗=0

 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
𝑛𝑛−1

𝑖𝑖=0

 4.5 

Another operation that can be applied is modulus switch, which converts a LWE ciphertext 

that is defined on a modulus 𝑞𝑞1 to another LWE ciphertext with a different modulus 𝑞𝑞2. This 

operation is simple in practice by scaling and rounding the LWE ciphertext to the nearest integer, 

as in Equation 4.6. A formal definition can be found in [116]. 

𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔
𝑞𝑞2
𝑡𝑡 (𝑚𝑚) = �

𝑞𝑞2
𝑞𝑞1

× 𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔
𝑞𝑞1
𝑡𝑡 (𝑚𝑚)� = ��

𝑞𝑞2
𝑞𝑞1

× 𝒂𝒂� , �
𝑞𝑞2
𝑞𝑞1

× 𝑏𝑏�� 4.6 

4.2.3 Ring Learning with Errors 

LWE suffers from low ciphertext efficiency, as the ciphertext utilization is 1
𝑛𝑛+1

. So, most 

of the FHE schemes exploits a polynomial ring construction. A ring is defined as a nonempty set 

𝑅𝑅, equipped with two operations, denoted as + and ×, that satisfies the following conditions:  

1) if 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅, then 𝑎𝑎 + 𝑏𝑏 ∈ 𝑅𝑅 and 𝑎𝑎 × 𝑏𝑏 ∈ 𝑅𝑅. 

2) 𝑎𝑎 + (𝑏𝑏 + 𝑐𝑐)  =  (𝑎𝑎 + 𝑏𝑏) + 𝑐𝑐, and 𝑎𝑎 × (𝑏𝑏 × 𝑐𝑐) = (𝑎𝑎 × 𝑏𝑏) × 𝑐𝑐. 

3) 𝑎𝑎 + 𝑏𝑏 = 𝑏𝑏 + 𝑎𝑎. 

4) There exists an element 0𝑅𝑅 such that 𝑎𝑎 + 0𝑅𝑅 = 0𝑅𝑅 + 𝑎𝑎 = 𝑎𝑎 for every 𝑎𝑎 ∈ 𝑅𝑅. 

5) For each 𝑎𝑎 ∈ 𝑅𝑅 the equation 𝑎𝑎 + 𝑥𝑥 = 0𝑅𝑅 has a solution in 𝑅𝑅. 
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6) 𝑎𝑎 × (𝑏𝑏 + 𝑐𝑐) = 𝑎𝑎 × 𝑏𝑏 + 𝑎𝑎 × 𝑐𝑐 and (𝑎𝑎 + 𝑏𝑏) × 𝑐𝑐 = 𝑎𝑎 × 𝑐𝑐 + 𝑏𝑏 × 𝑐𝑐. 

The polynomial ring that is adopted in FHE is the set defined by 𝑅𝑅𝑄𝑄 = 𝑍𝑍𝑄𝑄[𝑥𝑥]/(𝑥𝑥𝑁𝑁 + 1) 

with 𝑁𝑁 being a power of 2, which is the set of all polynomials, with coefficients in integer ring ℤ𝑄𝑄, 

modulo the cyclotomic polynomial 𝑥𝑥𝑁𝑁 + 1. And similar to LWE, the RLWE problem states that 

it is hard to extract the secret polynomial 𝒛𝒛 from samples of the form [𝒂𝒂,𝒃𝒃 = 𝒂𝒂 ∙ 𝒛𝒛 + 𝒆𝒆], where 𝒂𝒂 

is sampled uniformly from the set 𝑅𝑅𝑄𝑄 , and e is a noise polynomial sampled from an error 

distribution 𝜒𝜒 [115]. The “∙” and “+” here represent polynomial multiplication and addition.  

Similarly, in practice, given a plaintext modulo 𝑇𝑇 and a ciphertext modulo 𝑄𝑄, an RLWE 

encryption of a plaintext 𝒎𝒎 𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇 is defined as in Equation 4.7, with the vector 𝒂𝒂 and noise 

vector 𝒆𝒆 as described above. As long as |𝒆𝒆|∞ < 𝑄𝑄
2𝑇𝑇

, the plaintext can be successfully recovered by 

𝒎𝒎 = �(𝒃𝒃 − 𝒂𝒂 ∙ 𝒛𝒛) × 𝑇𝑇
𝑄𝑄
�, which rounds off the noise. In some contexts, the scale 𝑄𝑄/𝑇𝑇 is omitted for 

clarity.  

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛
𝑄𝑄
𝑇𝑇(𝒎𝒎) = �𝒂𝒂,𝒃𝒃 = 𝒂𝒂 ∙ 𝒛𝒛 + 𝒆𝒆 + 𝒎𝒎 ×

𝑄𝑄
𝑇𝑇
�, 4.7 

A similar key switch can also be applied to RLWE to convert an RLWE ciphertext 

encrypted under a secret key 𝒛𝒛𝟏𝟏 into another RLWE ciphertext encrypted by a different secret key 

𝒛𝒛𝟐𝟐. Given a decomposition base 𝐵𝐵𝐾𝐾𝐾𝐾, a RLWE key switch key is created by encrypting the secret 

key 𝒛𝒛𝟏𝟏  into a vector of RLWE ciphertexts, as in Equation 4.8. And for a RLWE ciphertext 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛𝟏𝟏(𝒎𝒎) = [𝒂𝒂,𝒃𝒃] encrypted with key 𝒛𝒛𝟏𝟏, to switch to key 𝒛𝒛𝟐𝟐, the new ciphertext is generated 

by Equation 4.9, with 𝒂𝒂 = ∑ 𝒂𝒂[𝑗𝑗]
log𝐵𝐵𝐾𝐾𝐾𝐾(𝑄𝑄)−1
𝑗𝑗=0 . And the product of a polynomial 𝒑𝒑 and RLWE 

ciphertext  𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒎𝒎) = [𝒂𝒂,𝒃𝒃] is defined as 𝒑𝒑 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒎𝒎) = [𝒑𝒑 ∙ 𝒂𝒂,𝒑𝒑 ∙ 𝒃𝒃]. A formal definition 

of the process can be found in [50]-[52]. 
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�𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛𝟐𝟐(1 × 𝒛𝒛𝟏𝟏),𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛𝟐𝟐(𝐵𝐵𝐾𝐾𝐾𝐾 × 𝒛𝒛𝟏𝟏), … ,𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛𝟐𝟐 �𝐵𝐵𝐾𝐾𝐾𝐾
log𝐵𝐵𝐾𝐾𝐾𝐾(𝑄𝑄)−1

× 𝒛𝒛𝟏𝟏�� 4.8 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛𝟐𝟐(𝒎𝒎) = [𝟎𝟎,𝒃𝒃] − � 𝒂𝒂[𝑗𝑗] ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛𝟐𝟐�𝐵𝐵𝐾𝐾𝐾𝐾
𝑗𝑗 × 𝒛𝒛𝟏𝟏� 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄,

𝑙𝑙𝑙𝑙𝑔𝑔𝐵𝐵𝐾𝐾𝐾𝐾(𝑄𝑄)−1

𝑗𝑗=0

 4.9 

Finally, since RLWE is a special form of LWE, each coefficient of the polynomial 𝒃𝒃 of an 

RLWE ciphertext 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒎𝒎) = [𝒂𝒂,𝒃𝒃] can be converted into multiple separate LWE ciphertexts 

under the same secret key, with some transformation of polynomial 𝒂𝒂. For example, in an RLWE 

ciphertext 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑧𝑧(𝒎𝒎) = [𝒂𝒂 = ∑𝒂𝒂[𝑖𝑖]𝑋𝑋𝑖𝑖 ,𝒃𝒃 = ∑𝒃𝒃[𝑖𝑖]𝑋𝑋𝑖𝑖], the coefficient at index 0,  

𝒃𝒃[0] = 𝒛𝒛[0] × 𝒂𝒂[0] − ∑𝒛𝒛[𝑖𝑖] × 𝒂𝒂[𝑁𝑁 − 𝑖𝑖] + 𝒆𝒆[0] + 𝒎𝒎[0], 4.10 

can be viewed as an LWE ciphertext 𝐿𝐿𝐿𝐿𝐸𝐸𝒛𝒛(𝒎𝒎[0]) = [𝒂𝒂𝑳𝑳𝑳𝑳𝑳𝑳,𝒃𝒃[0]] encrypted by secret key 𝒛𝒛, 

where 𝒂𝒂𝑳𝑳𝑳𝑳𝑳𝑳 = [𝒂𝒂[0],𝑄𝑄 − 𝒂𝒂[𝑁𝑁 − 1],𝑄𝑄 − 𝒂𝒂[𝑁𝑁 − 2], …𝑄𝑄 − 𝒂𝒂[1]].  

4.2.4 Number Theory Transform 

The polynomial multiplication of RLWE can be efficiently computed with Number Theory 

Transform (NTT), which is also advantageous compared to the matrix-vector multiplication of 

LWE. NTT is a generalization of the famous FFT algorithm, which reduces the complexity of 

polynomial multiplication from 𝑂𝑂(𝑁𝑁2) to 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑁𝑁)).  

For a polynomial of the above polynomial ring 𝑅𝑅𝑄𝑄  with coefficients 𝑎𝑎(𝑥𝑥) =

[𝑎𝑎0,𝑎𝑎1, … 𝑎𝑎𝑁𝑁−1], the NTT representation of it, 𝐴𝐴(𝑥𝑥) = [𝐴𝐴0,𝐴𝐴1, …𝐴𝐴𝑁𝑁−1], is defined as 

𝐴𝐴𝑖𝑖 = �𝑎𝑎𝑗𝑗𝜔𝜔𝑁𝑁
𝑖𝑖𝑖𝑖

𝑁𝑁−1

𝑗𝑗

 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄. 4.11 

And the inverse NTT (INTT) operation is defined as 

𝑎𝑎𝑖𝑖 =
1
𝑛𝑛
� 𝐴𝐴𝑗𝑗𝜔𝜔𝑁𝑁

−𝑖𝑖𝑖𝑖
𝑁𝑁−1

𝑗𝑗

 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄. 4.12 
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Notice that the major difference from FFT is that the 𝑁𝑁-th primitive root of unity 𝜔𝜔𝑁𝑁 of the 

ring ℤ𝑄𝑄 , which satisfies 𝜔𝜔𝑁𝑁
𝑁𝑁 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄  and 𝜔𝜔𝑁𝑁

𝑗𝑗 ≠ 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄 ∀ 𝑗𝑗 ∈ (0,𝑁𝑁) , takes place of the 

complex root of unity 𝑒𝑒−
2𝜋𝜋𝜋𝜋
𝑁𝑁  to form the twiddle factors. 

However, direct application of this NTT process to a polynomial multiplication, for 

example,  

𝒄𝒄 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑁𝑁𝑁𝑁𝑁𝑁(𝒂𝒂)⨀𝑁𝑁𝑁𝑁𝑁𝑁(𝒃𝒃)�, 4.13 

gives out polynomial modulo reduction with respect to (𝑥𝑥𝑁𝑁 − 1), rather than (𝑥𝑥𝑁𝑁 + 1), which 

means the polynomial product is not in the desired polynomial ring. In order to fix this, 

negacyclic/anticyclic convolution is adopted [112]. With 𝜓𝜓𝑁𝑁 = √𝜔𝜔𝑁𝑁 as the 2𝑁𝑁-th primitive root 

of unity of the ring ℤ𝑄𝑄, the polynomial multiplication is defined as  

𝒄𝒄 = �1,𝜓𝜓𝑁𝑁−1, …𝜓𝜓𝑁𝑁
−(𝑁𝑁−1) �⨀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 �𝑁𝑁𝑁𝑁𝑁𝑁(𝒂𝒂�)⨀𝑁𝑁𝑁𝑁𝑁𝑁�𝒃𝒃���, 4.14 

where 𝒂𝒂� = �1,𝜓𝜓𝑁𝑁1 , …𝜓𝜓𝑁𝑁
(𝑁𝑁−1) � ⨀ 𝒂𝒂 and 𝒃𝒃� = �1,𝜓𝜓𝑁𝑁1 , …𝜓𝜓𝑁𝑁

(𝑁𝑁−1) � ⨀𝒃𝒃. 

Further optimization can be achieved by merging the powers of 𝜓𝜓𝑁𝑁 into the twiddle factors. 

A detailed description is beyond the scope of this work, the reader is referred to [112] for more 

information. In the remaining text, NTT/INTT is referred to the negacyclic version, unless stated 

otherwise.  

4.2.5 Framework of Fully Homomorphic Encryption 

The last piece of the puzzle for getting a taste of the FHE schemes is the general blueprint 

proposed in Craig Gentry’s dissertation [113] in 2009. Besides Gentry’s initial construction, all 

following FHE schemes comply with this blueprint. Thus, a good understanding of it is necessary.  

Almost all present FHE schemes starts with a partially homomorphic encryption, such as 

LWE and RLWE. It is easy to find that LWE, for example, is homomorphic to addition. Let 
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�𝒂𝒂𝟏𝟏, 𝑏𝑏1 = 𝒔𝒔 ∙ 𝒂𝒂𝟏𝟏 + 𝑒𝑒1 + 𝑚𝑚1 × 𝑞𝑞
𝑡𝑡
�  and �𝒂𝒂𝟐𝟐, 𝑏𝑏2 = 𝒔𝒔 ∙ 𝒂𝒂𝟐𝟐 + 𝑒𝑒2 + 𝑚𝑚2 × 𝑞𝑞

𝑡𝑡
�  be two ciphertexts that 

encrypt two plaintext integers 𝑚𝑚1 and 𝑚𝑚2 with secret key vector 𝒔𝒔. By adding the two ciphertexts, 

a new ciphertext that encrypts 𝑚𝑚1 + 𝑚𝑚2 can be achieved, as in Equation 4.15. 

[𝒂𝒂𝟑𝟑, 𝑏𝑏3] = [𝒂𝒂𝟏𝟏, 𝑏𝑏1] + [𝒂𝒂𝟐𝟐, 𝑏𝑏2] 

= [𝒂𝒂𝟏𝟏 + 𝒂𝒂𝟐𝟐, 𝑏𝑏1 + 𝑏𝑏2] 

= [𝒂𝒂𝟏𝟏 + 𝒂𝒂𝟐𝟐, 𝒔𝒔 ∙ (𝒂𝒂𝟏𝟏 + 𝒂𝒂𝟐𝟐) + 𝑒𝑒1 + 𝑒𝑒2 + (𝑚𝑚1 + 𝑚𝑚2) ×
𝑞𝑞
𝑡𝑡

] 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞. 

4.15 

And as long as the new noise 𝑒𝑒1 + 𝑒𝑒2  is small enough, the sum can be successfully 

decrypted by 𝑚𝑚1 + 𝑚𝑚2 = �(𝑏𝑏3 − 𝒂𝒂𝟑𝟑 ∙ 𝒔𝒔) × 𝑡𝑡
𝑞𝑞
�. This homomorphism also applies to a plaintext or a 

clean ciphertext, by setting the second ciphertext as [𝟎𝟎,𝑚𝑚], where 𝟎𝟎 stands for zero vector. But if 

the addition continues, eventually, the excessively growing noise will contaminate the plaintext, 

rendering a decryption failure. So, the operation should be stopped before the noise exceeds the 

limit. And from this perspective, LWE is a somewhat homomorphic encryption (SHE). 

However, if one can “secretly” reset the noise level after each addition, then the operation 

can resume. In fact, it is shown by Gentry that, from a circuit point of view, an encryption scheme 

can achieve full homomorphism if it is homomorphic to its own decryption function plus a 

universal gate [113][114]. Although most SHE schemes do not naturally come with this nice 

property, a process called “bootstrap”, which reset the noise in the ciphertext homomorphically, is 

introduced. An excellent physical analogy about the “bootstrap” process can be found in [114] that 

is highly recommend, the reader can refer to it for better understanding. 

Thus, all present FHE schemes can be decomposed into two parts. One is the basic SHE 

that facilitates the encryption of plaintexts. And another is a bootstrap process that convert the 

SHE into FHE by homomorphically reset the noise after the computation. 
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4.3 Adapted FHEW Scheme 

Ever since the advent of the FHE framework proposed by Gentry in 2009, there have been 

several generations of schemes. FHEW [59][116] is one of the third-generation schemes. 

Compared to second-generation schemes, like BGV [50] and BFV [51][52], FHEW focuses on 

efficient implementation of homomorphic Boolean logic operation and the corresponding 

bootstrap process. The performance of it is on the same order of magnitude compared to second-

generation schemes due to the widely adopted SIMD-like construction [54] which amortizes the 

computation cost of second-generation schemes. But it is well accepted for the simplicity and 

flexibility of both its concept and implementation. And in practice, these two types are used in 

different scenarios. 

Figure 4.3 gives an overview of the FHEW scheme, which is divided into two parts, local 

and remote, since FHE is intended to be used in such scenario. The local part covers the key 

generations, encryption of the input and decryption of the output. And the remote part is 

Basic LWE ciphertext
b1 = <a1, s> + e1 + m1*q/4
b2 = <a2, s> + e2 + m2*q/4

RGSW encryption
Encrypt LWE key s with 

RLWE key z

[a1,b1] 
[a2,b2]

Bootstrap key 

Evaluation 
of NAND

LWE encryption
Encrypt RLWE key z 

with LWE key s

LWE key switch key 

LWE ciphertext with increased noise
bL = <aL, s> + eL + NAND(m1,m2)*q/2

Homomorphic 
Accumulator 

Key Switching

Modulus Switching
Basic LWE 

b3 = <a3, s> + e3 + 
NAND(m1,m2)*q/4

Bootstrapping

Local Remote 

One-time process 

 
Figure 4.3 An Overview of the FHEW Scheme. 
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responsible for the evaluation of the Boolean logic and the bootstrap process. The task on the 

remote side is much more heavy lifting compared to what is on the local side, which will be clear 

in the following sections, so the remaining chapter focuses mainly on the acceleration of the 

bootstrap process on the server. 

4.3.1 The Basic LWE/SHE of FHEW and the Evaluation of Boolean Logic 

Since FHEW [59] deals with Boolean logic, it is natural to set the plaintext of the LWE 

encryption to 𝑡𝑡 = 2. However, since LWE is only homomorphic to addition, Boolean logic cannot 

be directly applied to it. Instead, the sum of two bits is relied on to extract the Boolean logic result. 

Take NAND(𝑚𝑚1,𝑚𝑚2) for example, with 𝑚𝑚1,𝑚𝑚2 being either 0 or 1, it can be extracted from the 

sum of 𝑚𝑚1 + 𝑚𝑚2 + 2 𝑚𝑚𝑚𝑚𝑚𝑚 4. If the sum is 2 or 3, then NAND(𝑚𝑚1,𝑚𝑚2) = 0. Otherwise, if the sum 

is 0, then NAND(𝑚𝑚1,𝑚𝑚2) = 1. Therefore, the LWE of FHEW uses 𝑡𝑡 = 4 as the plaintext modulo 

and limits the plaintext to be either 2′𝑏𝑏00 or 2′𝑏𝑏01.  

Furthermore, the noise bound is set to |𝑒𝑒| < 𝑞𝑞
4𝑡𝑡

= 𝑞𝑞
16

, rather than |𝑒𝑒| < 𝑞𝑞
2𝑡𝑡

= 𝑞𝑞
8
, to leave 

some room for the addition operation. With that in mind, the above sum can be evaluated 

homomorphically to get an encrypted sum of the input, as in Equation 4.16. And this process is 

visualized in Figure 4.4. Each colored sector represents the possible range of a encode plaintext 

(𝑚𝑚1,𝑚𝑚2 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠). Apparently, after the summation, the noise in the output ciphertext is doubled 

+q/2 + 0q/2
q/16

15q/16
m=0

m=1
q/4

3q/4

0q/2
q/16

15q/16
m=0

m=1
q/4

3q/4

m1· q/4 + e1 m2· q/4 + e2 sum· q/4 + esum

0

q/8

7q/8

sum=0

q/4

sum=2q/2

sum=3

3q/4

 

Figure 4.4 Visualization of the Evaluation of the NAND Operation with LWE. 
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due to the sum of the input noise, as indicated by the increase of the sector area in Figure 4.4. Thus, 

the size of the noise has exceeded the designated bound in a clean ciphertext. And the plaintext 

encoding is also different from the original. 

𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔
𝑞𝑞
4(𝑠𝑠𝑠𝑠𝑠𝑠) = 𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔

𝑞𝑞
4(𝑚𝑚1) + 𝐿𝐿𝐿𝐿𝐸𝐸𝒔𝒔

𝑞𝑞
4(𝑚𝑚1) + �𝟎𝟎,

𝑞𝑞
2
� 

= �𝒂𝒂𝟏𝟏 + 𝒂𝒂𝟐𝟐, 𝑏𝑏1 + 𝑏𝑏2 +
𝑞𝑞
2
� 

= [𝒂𝒂𝟏𝟏 + 𝒂𝒂𝟐𝟐, (𝒂𝒂𝟏𝟏 + 𝒂𝒂𝟐𝟐) ∙ 𝒔𝒔 + 𝑒𝑒1 + 𝑒𝑒2 + (𝑚𝑚1 + 𝑚𝑚2 + 2) ×
𝑞𝑞
𝑡𝑡

] 

4.16 

So, further addition cannot be applied to the result LWE ciphertext, unless there is a way 

to “secretly” apply the decryption equation 𝑏𝑏 − 𝒂𝒂 ∙ 𝒔𝒔, and a function 𝑓𝑓(𝑥𝑥) that maps the encoded 

sum into the original plaintext space, as illustrated in Figure 4.5. This is applied homomorphically 

with the bootstrap process which will be detailed in the following sections. Other Boolean logics 

can be done in the same fashion with a different mapping function.  

4.3.2 Ring GSW Encryption 

To evaluate the decryption equation 𝑏𝑏 − 𝒂𝒂 ∙ 𝒔𝒔  without leaking the plaintext, another 

encryption 𝐸𝐸(𝑥𝑥) that is homomorphic to addition and multiplication should be utilized, since the 

LWE itself reaches its noise limit. To be specific, encrypt 𝒔𝒔  as a vector 𝐸𝐸(𝒔𝒔) =

[𝐸𝐸(𝒔𝒔[0]),𝐸𝐸(𝒔𝒔[1]), …𝐸𝐸(𝒔𝒔[𝑛𝑛 − 1])]. By the definition of homomorphism, it is obvious that the 
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Figure 4.5 “Secret” Function That Maps a Dirty Ciphertext to a Clean Ciphertext. 
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inner product is absorbed into the encryption, as shown in Equation 4.17. Thus, the decryption 

equation is secretly evaluated without leaking the encoded plaintext. Note that it is not necessary 

to encrypt 𝒂𝒂 and b, since they are both public as a ciphertext. Only the secret key of the LWE 

needs to be kept secret.  

And by applying a transform that converts the ciphertext 𝐸𝐸(𝑏𝑏 − 𝒂𝒂 ∙ 𝒔𝒔) to a LWE ciphertext 

that encrypts the same encoded plaintext, a bootstrapped LWE ciphertext is achieved and further 

Boolean operation on it can continue. Note that two encryptions are involved, one is the basic 

LWE, and the other is the encryption 𝐸𝐸(𝑥𝑥) that is used for bootstrapping.  

Obviously, the RLWE encryption is a candidate for the encryption 𝐸𝐸(𝑥𝑥) due to the additive 

and multiplicative homomorphism, for example a polynomial 𝒅𝒅 can be multiplied into a RLWE 

ciphertext homomorphically,  

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛
𝑄𝑄
𝑇𝑇(𝒎𝒎) ∙ 𝒅𝒅 = [𝒂𝒂 ∙ 𝒅𝒅,𝒃𝒃 = 𝒂𝒂 ∙ 𝒅𝒅 ∙ 𝒛𝒛 + 𝒆𝒆 ∙ 𝒅𝒅 + 𝒎𝒎 ∙ 𝒅𝒅] = 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛

𝑄𝑄
𝑇𝑇  (𝒎𝒎 ∙ 𝒅𝒅). 4.18 

However, multiplication expands the noise in an RLWE ciphertext rapidly, as the noise polynomial 

𝒆𝒆 is directly multiplied by 𝒅𝒅 whose coefficients modulo 𝑄𝑄. To reduce the noise growth, instead of 

encrypting the polynomial 𝒎𝒎, 𝐵𝐵𝐺𝐺
𝑗𝑗 × 𝒎𝒎,∀𝑗𝑗 ∈ [0, log𝐵𝐵𝐺𝐺(𝑄𝑄) − 1] is encrypted as a vector of RLWE 

ciphertext with a predefined decomposition base 𝐵𝐵𝐺𝐺,  

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛′(𝒎𝒎) = �𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛
𝑄𝑄
𝑇𝑇(𝒎𝒎), … ,𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛

𝑄𝑄
𝑇𝑇 �𝐵𝐵𝐺𝐺

𝑙𝑙𝑙𝑙𝑔𝑔𝐵𝐵𝐺𝐺(𝑄𝑄)−1
× 𝒎𝒎��. 4.19 

𝑏𝑏 −�𝒂𝒂[𝑖𝑖] × 𝐸𝐸(𝒔𝒔[𝑖𝑖])
𝑛𝑛−1

𝑖𝑖

= 𝑏𝑏 −�𝐸𝐸(𝒂𝒂[𝑖𝑖] × 𝒔𝒔[𝑖𝑖])
𝑛𝑛−1

𝑖𝑖

 

= 𝐸𝐸 �𝑏𝑏 −�𝒂𝒂[𝑖𝑖] × 𝒔𝒔[𝑖𝑖]
𝑛𝑛−1

𝑖𝑖

� 

= 𝐸𝐸(𝑏𝑏 − 𝒂𝒂 ∙ 𝒔𝒔). 

4.17 
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Therefore, the above RLWE multiplication turns into an inner product of two vectors, denoted by 

⊡,  

𝒅𝒅⊡ 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑧𝑧′(𝒎𝒎) = � 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛
𝑄𝑄
𝑇𝑇�𝐵𝐵𝐺𝐺

𝑗𝑗 × 𝒎𝒎� ∙ 𝒅𝒅′[𝑖𝑖]

log𝐵𝐵𝐺𝐺(𝑄𝑄)−1

𝑗𝑗=0

 

= 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛
𝑄𝑄
𝑇𝑇  � � 𝐵𝐵𝐺𝐺

𝑗𝑗 × 𝒅𝒅′[𝑖𝑖] ∙ 𝒎𝒎

log𝐵𝐵𝐺𝐺(𝑄𝑄)−1

𝑗𝑗=0

� 

= 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛
𝑄𝑄
𝑇𝑇(𝒎𝒎 ∙ 𝒅𝒅), 

4.20 

where the polynomials 𝒅𝒅′[𝑖𝑖] are decomposition of polynomial 𝒅𝒅 satisfying 𝒅𝒅 = ∑ 𝒅𝒅′[𝑖𝑖]
log𝐵𝐵𝐺𝐺(𝑄𝑄)
𝑖𝑖=0 . 

This breaks the noise multiplication into an accumulation of smaller products, which reduces the 

growth rate of the noise.  

However, this noise growth control is far from enough, since there is a long accumulation 

in Equation 4.17. A further reduction can be achieved with Ring-GSW (RGSW) encryption. 

RGSW [116] is adapted from GSW encryption [58], which is named after the initials of the authors. 

An RGSW ciphertext is composed of two RLWE’ ciphertexts as in Equation 4.21 (in some 

literatures, the two vectors are concatenated as a one-dimensional vector). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝒎𝒎) = [𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛′(−𝒛𝒛 ∙ 𝒎𝒎),𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛′(𝒎𝒎)]. 4.21 

Given an RLWE ciphertext 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒎𝒎𝟏𝟏) = [𝒂𝒂,𝒃𝒃]  and an RGSW ciphertext 𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝒎𝒎𝟐𝟐), an 

operation that output an RLWE encryption of 𝒎𝒎𝟏𝟏 ∙ 𝒎𝒎𝟐𝟐 is defined as  

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒎𝒎𝟏𝟏)⨂𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝒎𝒎𝟐𝟐) = 𝒂𝒂⊡ 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛′(−𝒛𝒛 ∙ 𝒎𝒎𝟐𝟐) + 𝒃𝒃⊡ 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛′(𝒎𝒎𝟐𝟐) 

= 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛�(𝒃𝒃 − 𝒂𝒂 ∙ 𝒛𝒛) ∙ 𝒎𝒎𝟐𝟐 � 

= 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛�(𝒎𝒎𝟏𝟏 + 𝒆𝒆𝟏𝟏) ∙ 𝒎𝒎𝟐𝟐� 

= 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒎𝒎𝟏𝟏 ∙ 𝒎𝒎𝟐𝟐 + 𝒆𝒆𝟏𝟏 ∙ 𝒎𝒎𝟐𝟐). 

4.22 
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Therefore, if 𝒎𝒎𝟐𝟐 only has one nonzero coefficient, a linear noise growth can be achieved. The 

RGSW encryption is that target encryption scheme that is used to encrypt the secret key of LWE 

in Equation 4.17. In practice, a RGSW ciphertext is calculated as  

𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝒎𝒎) = [𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝟎𝟎), … ,𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝟎𝟎)] + 𝒎𝒎 ∙ 𝑮𝑮, 4.23 

where 𝑮𝑮 = 𝑰𝑰⨀[1,𝐵𝐵𝐺𝐺 ,𝐵𝐵𝐺𝐺2, … ,𝐵𝐵𝐺𝐺
log𝐵𝐵𝐺𝐺(𝑄𝑄)−1

] is called the “gadget matrix”.  

4.3.3 Bootstrap in FHEW 

The bootstrap process is composed of three steps, a homomorphic accumulator that 

calculates the inner product of Equation 4.17 and generates a RLWE ciphertext that is encrypted 

by the RLWE secret key 𝒛𝒛, an LWE key switch step that switches LWE ciphertext with secret key 

𝒛𝒛 into an LWE ciphertext that is encrypted by the LWE secret key 𝒔𝒔, and a modulus switch step 

that switches the ciphertext modulo from RLWE modulo 𝑄𝑄 to LWE modulo 𝑞𝑞 [116], 

With ⨂ operation of a RLWE and RGSW ciphertext, the homomorphic accumulator is 

defined on an RLWE ciphertext and a bootstrap key which is a LUT of RGSW that encrypts the 

secret key 𝒔𝒔 of the basic LWE. First, for each element 𝒔𝒔[𝑖𝑖] of the secret key vector 𝒔𝒔 of LWE, a 

vector of polynomial that contains powers of 𝑋𝑋 is used to encode the 𝒔𝒔[𝑖𝑖] into the exponent of 𝑋𝑋, 

as  

�1,𝑋𝑋𝒔𝒔[𝑖𝑖] ,𝑋𝑋2×𝒔𝒔[𝑖𝑖] , … ,𝑋𝑋(𝑞𝑞−1)×𝒔𝒔[𝑖𝑖] �. 4.24 

Then this vector is encrypted with RGSW encryption into a vector of RGSW ciphertexts,  

�𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(1),𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝑋𝑋𝒔𝒔[𝑖𝑖] ),𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝑋𝑋2×𝒔𝒔[𝑖𝑖] ), … ,𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝑋𝑋(𝑞𝑞−1)×𝒔𝒔[𝑖𝑖] )�. 4.25 

Thus, a two-dimensional LUT is built, containing 𝑛𝑛 × 𝑞𝑞 RGSW ciphertexts. 

To homomorphically evaluate 𝑏𝑏 − 𝒂𝒂 ∙ 𝒔𝒔 of the LWE decryption, 𝑏𝑏 is encoded into a clean 

RLWE ciphertext 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝑋𝑋𝑏𝑏) which is called a homomorphic accumulator. And for each 𝑖𝑖, the 
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RGSW ciphertexts from the LUT indexed by −𝒂𝒂[𝑖𝑖] = 𝑞𝑞 − 𝒂𝒂[𝑖𝑖] are multiplied to the accumulator 

by the ⨂ operation defined in Equation 4.22, which accumulates the inner product and encodes 

the result onto the exponent of a polynomial as in Equation 4.26. 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝑋𝑋𝑏𝑏)⨂𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛�𝑋𝑋(𝑞𝑞−𝒂𝒂[0])×𝒔𝒔[0]�…⨂𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛�𝑋𝑋(𝑞𝑞−𝒂𝒂[𝑛𝑛−1])×𝒔𝒔[𝑛𝑛−1]� = 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝑋𝑋𝑏𝑏−∑𝒂𝒂[𝑖𝑖]×𝒔𝒔[𝑖𝑖]). 4.26 

A similar time-space tradeoff also applies to the accumulator, as mentioned in section 4.2.2. 

Given a decomposition base 𝐵𝐵𝑟𝑟 to decompose each element of vector 𝒂𝒂, the LUT is increased by 

one dimension. For each element 𝒔𝒔[𝑖𝑖] of the secret key vector 𝒔𝒔 of LWE, a 2-D array of RGSW 

ciphertexts of the form 𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝑋𝑋𝑣𝑣×𝐵𝐵𝑟𝑟
𝑗𝑗×𝑠𝑠[𝑖𝑖] ) for 𝑣𝑣 ∈ [0,𝐵𝐵𝑟𝑟 − 1] and 𝑗𝑗 ∈ [0, log𝐵𝐵𝑟𝑟(𝑞𝑞)− 1 ]. To accumulate, 

each element 𝒂𝒂[𝑖𝑖]  of 𝒂𝒂  is decomposed by 𝐵𝐵𝑟𝑟  with 𝒂𝒂[𝑖𝑖] = ∑ 𝒂𝒂[𝑖𝑖][𝑗𝑗] × 𝐵𝐵𝑟𝑟
𝑗𝑗log𝐵𝐵𝑟𝑟(𝑞𝑞)−1

𝑗𝑗=0 , and the 

decomposition is used to index the LUT to facilitate the homomorphic accumulation, as in 

Equation 4.27. As a result, the size of the 3-D LUT is 𝐵𝐵𝑟𝑟 × 𝑙𝑙𝑙𝑙𝑔𝑔𝐵𝐵𝑟𝑟(𝑞𝑞) × 𝑛𝑛, and with a proper 𝐵𝐵𝑟𝑟, it 

can be much smaller than the size of a 2-D LUT, 𝑛𝑛 × 𝑞𝑞, at the cost of more accumulation steps, 

facilitating a time-space trade off.  

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝑋𝑋𝑏𝑏)⨂𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛 �𝑋𝑋(𝑞𝑞−𝒂𝒂[𝑖𝑖][𝑗𝑗])×𝐵𝐵𝑟𝑟
𝑗𝑗×𝒔𝒔[𝑖𝑖]�… = 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝑋𝑋𝑏𝑏−∑𝒂𝒂[𝑖𝑖][𝑗𝑗]×𝐵𝐵𝑟𝑟

𝑗𝑗×𝒔𝒔[𝑖𝑖]). 4.27 

So far, the inner product of the LWE decryption is secretly evaluated and encoded into the 

exponent of a polynomial. However, to facilitate the mapping function 𝑓𝑓(𝑥𝑥) in Figure 4.5, i.e., 

transformation from RLWE to LWE, the accumulator is initialized with a precomputation of the 

mapping based on which Boolean operation is performed. The accumulator of NAND, for 

example, is initialized as a clean RLWE ciphertext of a polynomial ∑ 𝑔𝑔(𝑏𝑏 − 𝑖𝑖)𝑋𝑋𝑖𝑖×𝑝𝑝𝑖𝑖<𝑞𝑞2
, where 𝑝𝑝 =

2𝑁𝑁/𝑞𝑞, and the function 𝑔𝑔(𝑥𝑥) is defined in Equation 4.28. A more general explanation of the 

initialization can be found in [116]. 
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𝑔𝑔(𝑥𝑥) = �

𝑄𝑄
8

, 𝑥𝑥 ∈ (−
𝑞𝑞
8

,
3𝑞𝑞
8

]

−
𝑄𝑄
8

, 𝑥𝑥 ∈ (
3𝑞𝑞
8

,
7𝑞𝑞
8

]
 4.28 

After the accumulation, the inner product in Equation 4.17 is secretly evaluated and 

encrypted as the coefficient of index 0 in a RLWE ciphertext with secret key 𝒛𝒛, which needs to be 

converted back to a LWE ciphertext with secret key 𝒔𝒔. Before that, the RLWE is converted into an 

LWE ciphertext under key 𝒛𝒛 to extract the coefficient at index 0 as described in Section 4.2.3.  

Finally, the LWE key switch process followed by the LWE modulus switch operation is 

applied to get the bootstrap output, an LWE ciphertext, complying the original basic LWE format, 

that encrypts the Boolean logic output of the two inputs. One caveat to be noted is that when 
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Figure 4.6 Data Flow of Bootstrap in FHEW (Last Two Steps not Included).  
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creating the LWE key switch key, the original LWE key 𝒔𝒔, which is with modulus 𝑞𝑞, should be 

mapped into modulus 𝑄𝑄 first.  

Figure 4.6 illustrates the bootstrap process, without the last two steps. The main 

computation takes place in the center loop that is composed of a INTT followed by 𝑑𝑑𝑑𝑑 NTT and 

𝑑𝑑𝑑𝑑  polynomial multiplication and accumulation (MAC), where 𝑑𝑑𝑑𝑑 = log𝐵𝐵𝐺𝐺(𝑄𝑄) . The loop in 

Figure 4.6 comprise 98% of the processing time in one bootstrap [116], so the proposed accelerator 

architecture in Section 4.6 focuses on this part. Other functions are offloaded to software.  

4.4 Enhanced Features for FHEW 

Proposed in another third-generation scheme, TFHE [60], some additional features are 

adopted into the FHEW scheme for flexible application. 

4.4.1 Homomorphic MUX Function 

The ⨂ operation between RLWE and RGSW ciphertext defined in Section 4.3.2 can be 

used to construct a homomorphic MUX function [60]. Let 𝒎𝒎 = [𝑠𝑠𝑠𝑠𝑠𝑠, 0,0, … ,0] be the selection 

signal of the MUX gate with 𝑠𝑠𝑠𝑠𝑠𝑠 equals to either 0 or 1, and 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒑𝒑𝟎𝟎) and 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒑𝒑𝟏𝟏) be two 

input RLWE ciphertexts for the MUX.  

The MUX function 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝒎𝒎),𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒑𝒑𝟎𝟎),𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒑𝒑𝟏𝟏)�  is defined as in 

Equation 4.29, and illustrated in Figure 4.7. Obviously, the output of the function is a RLWE 

ciphertext that follows the encrypted selection signal.  

0

1

RGSW(sel)

CMUX

RLWE(p0)
RLWE(p1) RLWE(psel)

 

Figure 4.7 CMUX Function.  
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𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝒎𝒎)⨂�𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒑𝒑𝟏𝟏) − 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒑𝒑𝟎𝟎)� + 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒑𝒑𝟎𝟎) = 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒎𝒎 ∙ (𝒑𝒑𝟏𝟏 − 𝒑𝒑𝟎𝟎) + 𝒑𝒑𝟎𝟎) 

= 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒑𝒑𝑠𝑠𝑠𝑠𝑠𝑠) 
4.29 

4.4.2 Blind Rotate 

Following the definition of the CMUX function, another function that can 

homomorphically rotate the plaintext polynomial is formulated, which multiplies polynomial with 

a power of 𝑋𝑋. A simplified version is show in Equation 4.30 and illustrated in Figure 4.8. Let 𝒎𝒎 =

[𝑠𝑠𝑠𝑠𝑠𝑠, 0,0, … ,0] be the selection signal of the MUX gate with 𝑠𝑠𝑠𝑠𝑠𝑠  equals to either 0 or 1, and 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒑𝒑) be the RLWE ciphertexts for the 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. 𝑗𝑗 denotes the number of steps for the 

rotation.  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝒎𝒎),𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒑𝒑),𝑋𝑋−𝑗𝑗 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒑𝒑)� 

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝒎𝒎),𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒑𝒑),𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛�𝑋𝑋−𝑗𝑗 ∙ 𝒑𝒑�� 

= 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛�𝒎𝒎 ∙ �𝑋𝑋−𝑗𝑗 ∙ 𝒑𝒑 − 𝒑𝒑� + 𝒑𝒑�. 

4.30 

Thus, the output RLWE contains a plaintext that is either rotated or not based on the 

selection. A comprehensive definition can be found in [60]. 

4.4.3 Homomorphic LUT and Plaintext Packing 

Intuitively, the CMUX gate can be concatenated into a CMUX tree to evaluate an arbitrary 

binary function homomorphically as shown in Figure 4.10. The function is precomputed and 
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pj+1pjp0 pN-1

pj+1pj

RLWE(p)
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Figure 4.8 Blind Rotate Function  
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encrypted into an LUT of RLWE ciphertexts, and after traversing the CMUX tree indexed by 

RGSW encryptions of each bit of an input 𝑥𝑥, an RLWE ciphertext that encrypts the corresponding 

𝑓𝑓(𝑥𝑥) is output. 

However, the size of the LUT is large if only one function value is encrypted in each RLWE 

ciphertext, resulting in 2𝑘𝑘 RLWE ciphertexts. Also, the amount of CMUX is 2𝑘𝑘 − 1. The size can 

be reduced by a factor of the length of the polynomial in a RLWE ciphertext if several function 

values are packed into a RLWE ciphertext. For example, if each coefficient of a plaintext 

polynomial 𝒎𝒎 is taken as a plaintext slots, then a contiguous block of function values can be 

packed into one polynomial, such as 𝒎𝒎 = [𝑓𝑓(0),𝑓𝑓(1), … ,𝑓𝑓(𝑁𝑁 − 1)], where 𝑁𝑁 is the length of the 

polynomial. Thus, an RLWE ciphertext can encrypt at most 𝑁𝑁 function values, which reduces the 

size of the LUT and the amount of CMUX by a factor of 𝑁𝑁. Figure 4.9 details this packing scheme, 

where each RLWE encrypts two function values. In the example, the MSBs of the input 𝑥𝑥 are first 

used to find the desired RLWE ciphertext, and then the target slot is rotated to the position 0 by 

the LSB of 𝑥𝑥 with 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. At last, the desired slot is extracted from the RLWE into a LWE 

ciphertext with a process the same as described in Section 4.2.3. 
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There are other types of packing schemes, the reader is referred to [60] for further 

information. 

4.5 Private Set Intersection Protocol Based on Adapted FHEW 

PSI allows two parties to exchange the intersection of their private sets without leaking any 

excessive information other than the intersection set. The problem has been explored extensively 

before [105]-[107], and in recent years, PSI protocols based on second generation FHE [110][117] 

have been proposed. In this section, a PSI protocol based on the adapted FHEW scheme is 

proposed, with a framework adopted from [110].  

4.5.1 High Level Construction  

For two parties, Receiver and Sender, to find the intersection of their private sets {𝑥𝑥𝑖𝑖} and 

{𝑦𝑦𝑗𝑗} containing some 32-bit integers, as show in Figure 4.11, each element of the Receiver set is 

compared with the elements of the Sender set, looking for a match.  

However, in an unencrypted scenario, one of the parties needs to reveal all its content to 

the other party, which is undesirable. So, in [110], the comparison is fulfilled by a homomorphic 
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Figure 4.10 LUT and CMUX Tree for an Arbitrary Binary Function 𝒇𝒇(𝒙𝒙). 
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product of the difference between elements in the two sets. For example, Receiver encrypts all 

elements in {𝑥𝑥𝑖𝑖} with RLWE encryption and send to Sender. While Sender evaluates the product 

of difference homomorphically for each element in {𝑦𝑦𝑗𝑗}, as in Equation 4.31, and send back the 

result to Receiver. 

���𝟎𝟎,𝑦𝑦𝑗𝑗� − 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝑥𝑥𝑖𝑖)� = 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛 ���𝑦𝑦𝑗𝑗 − 𝑥𝑥𝑖𝑖�
𝑗𝑗

�
𝑗𝑗

 4.31 

Obviously, after Receiver decrypts the result, the product evaluates to 0 if 𝑥𝑥𝑖𝑖 finds a match 

in Sender’s set {𝑦𝑦𝑗𝑗}. Extra caution needs to be taken to prevent the product from leaking 𝑦𝑦𝑗𝑗 if the 

product evaluates to a non-zero number. But it is beyond the scope of this work, [110] is referred 

to for a more comprehensive description. 

In this work, the comparison is facilitated with the homomorphic LUT described in Section 

4.4.3. As shown in Figure 4.12, on the Sender side, an LUT is precomputed based on the content 

of the Sender set {𝑦𝑦𝑗𝑗}, with 𝐿𝐿𝐿𝐿𝐿𝐿�𝑦𝑦𝑗𝑗� = 1 otherwise it is set to 0. While on the receiver side, each 

element 𝑥𝑥𝑖𝑖  is decomposed into its bit representation and encrypted with a vector of RGSW 

ciphertext, [𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝑥𝑥𝑖𝑖[0]),𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝑥𝑥𝑖𝑖[1]), … ,𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(𝑥𝑥𝑖𝑖[31]) ], and send to the Sender. Then, 

the RGSW encrypted 𝑥𝑥𝑖𝑖 are pass into the CMUX tree to index the LUT on the Sender side, and 
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Figure 4.11 General Concept to Find the Intersection of Two Parties. 
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the result is sent back to Receiver. Obviously, after decryption, 1 indicates that the 𝑥𝑥𝑖𝑖 is in the 

intersection, otherwise, it is not.  

However, this naïve construction is very inefficient in both computation and 

communication traffic. First, 232 − 1 CMUXs are evaluated for each element in the Receiver set. 

Second, 32 RGSW ciphertexts have to be transferred for each element in the Receiver set, resulting 

in a low ciphertext utilization. Several optimizations can be adopted to mitigate these problems 

and render practical application of the protocol.  

4.5.2 RLWE Substitution and RLWE Expansion 

Before tackling the problems, some additional preliminaries are discussed. First is RLWE 

substitution[111], which transforms a RLWE ciphertext 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛�∑𝒎𝒎[𝑖𝑖]𝑋𝑋𝑖𝑖�  into 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛 �∑𝒎𝒎[𝑖𝑖]�𝑋𝑋𝑖𝑖�
𝑘𝑘
�, for an odd integer 𝑘𝑘. A substituted secret key 𝒛𝒛(𝑋𝑋𝑘𝑘) = 𝒛𝒛[𝑖𝑖]�𝑋𝑋𝑖𝑖�

𝑘𝑘
and an 

RLWE key switch key from 𝒛𝒛(𝑋𝑋𝑘𝑘) to 𝒛𝒛 are precomputed. An RLWE ciphertext is first substituted 

to get 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛�𝑋𝑋𝑘𝑘��𝒎𝒎(𝑋𝑋𝑘𝑘)� = [𝒂𝒂(𝑋𝑋𝑘𝑘),𝒃𝒃(𝑋𝑋𝑘𝑘)], and then key-switched to 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒎𝒎(𝑋𝑋𝑘𝑘)). A 

formal definition can be found in [111]. 
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The RLWE substitution is used extensively in the RLWE expansion [111] operation which 

expands a RLWE ciphertext from 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(∑𝒎𝒎[𝑖𝑖]𝑋𝑋𝑖𝑖)  into a vector 

[𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑧𝑧(𝒎𝒎[0]),𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒎𝒎[1]), … ,𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝒎𝒎[𝑁𝑁 − 1])] . To find how RLWE substitution 

fulfills the expansion, 𝑘𝑘 = 𝑁𝑁 + 1 is shown as an example. For 𝑘𝑘 = 𝑁𝑁 + 1, �𝑋𝑋𝑖𝑖�
𝑘𝑘

= (−1)𝑖𝑖𝑋𝑋𝑖𝑖 . 

Thus, the addition of the substituted ciphertext to the original one extracts the even index 

coefficients of the message 𝒎𝒎, as in Equation 4.32. And the subtraction extracts the odd index 

coefficients, as in Equation 4.33. 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛�∑𝒎𝒎[𝑖𝑖]𝑋𝑋𝑖𝑖� + 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛 �∑𝒎𝒎[𝑖𝑖]�𝑋𝑋𝑖𝑖�𝑘𝑘� = 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛�∑𝒎𝒎[𝑖𝑖]𝑋𝑋𝑖𝑖 + ∑𝒎𝒎[𝑖𝑖](−1)𝑖𝑖𝑋𝑋𝑖𝑖� 

= 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(∑2 × 𝒎𝒎[2𝑖𝑖]𝑋𝑋2𝑖𝑖), 
4.32 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛�∑𝒎𝒎[𝑖𝑖]𝑋𝑋𝑖𝑖� − 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛 �∑𝒎𝒎[𝑖𝑖]�𝑋𝑋𝑖𝑖�𝑘𝑘� = 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛�∑𝒎𝒎[𝑖𝑖]𝑋𝑋𝑖𝑖 − ∑𝒎𝒎[𝑖𝑖](−1)𝑖𝑖𝑋𝑋𝑖𝑖� 

= 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(∑2 × 𝒎𝒎[2𝑖𝑖 + 1]𝑋𝑋2𝑖𝑖+1). 
4.33 

Therefore, by recursively substituting with 𝑘𝑘 = 𝑛𝑛
2𝑠𝑠

+ 1 , for 𝑠𝑠 ∈ [0, log2 𝑁𝑁 − 1] , each 

coefficient 𝒎𝒎[𝑖𝑖] of the message is extracted into a separate RLWE ciphertext 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝑁𝑁 × 𝒎𝒎[𝑖𝑖]). 

The scale can be offset by pre-scaling the message with the multiplicative inverse of the 𝑁𝑁 in ℤ𝑄𝑄. 

The data flow of RLWE substitution is shown in Figure 4.13, with the key switch 

highlighted in the dotted red box. An RLWE ciphertext in the NTT domain is first transformed 
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into INTT form and substituted. Then it is decomposed with base 𝐵𝐵𝐾𝐾𝐾𝐾 and key-switched to the 

original secret key to get a substituted RLWE ciphertext. After that, the output ciphertext is 

postprocessed for RLWE expansion. Based on our experiment, 97% of the processing time of 

RLWE expansion is dedicated to substitution and key switch functions, so in our implementation, 

these two functions are offloaded to a FPGA. Note that the key switch data flow is very similar to 

the bootstrap data flow. Therefore, the proposed architecture merges both data flows, which will 

be detailed in Section 4.6. 

4.5.3 Optimizations for the Proposed PSI 

It is obvious that, in the proposed PSI in Section 4.5.1, both the computation and 

communication cost depend directly on the bit width of the elements in the set. So, the first 

optimization is to reduce the size of the element with permutation-based hashing [118]. In 

permutation-based hashing, to insert a 32-bit element 𝑥𝑥𝑖𝑖 from the Receiver set into 2𝑘𝑘 bins, the 

number is divided into 𝑥𝑥𝑖𝑖𝑖𝑖||𝑥𝑥𝑖𝑖𝑖𝑖 , with 𝑥𝑥𝑖𝑖𝑖𝑖  consisting of k bits. The position of the element is 

calculated as in Equation 4.34, where 𝐻𝐻(𝑥𝑥) is the hash function. In other words, the position of an 

element also stores some information about the element. And instead of inserting 𝑥𝑥𝑖𝑖 into the hash 

table, only 𝑥𝑥𝑖𝑖𝑖𝑖 is inserted, which reduces the bit width to 32 − 𝑘𝑘. 

The comparison in the homomorphic LUT still holds with permutation-based hashing. 

Assuming that 𝑥𝑥𝑖𝑖𝑖𝑖 from Receiver and 𝑦𝑦𝑗𝑗𝑗𝑗 from Sender are in the same bin after hashing and 𝑥𝑥𝑖𝑖𝑖𝑖 =

𝑦𝑦𝑗𝑗𝑗𝑗, from Equation 4.34, it is apparent that 

𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥𝑖𝑖) = 𝐻𝐻(𝑥𝑥𝑖𝑖𝑖𝑖) 𝑋𝑋𝑋𝑋𝑋𝑋 𝑥𝑥𝑖𝑖𝑖𝑖 , 4.34 

𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥𝑖𝑖) = 𝐻𝐻(𝑥𝑥𝑖𝑖𝑖𝑖) 𝑋𝑋𝑋𝑋𝑋𝑋 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝐻𝐻�𝑦𝑦𝑗𝑗𝑗𝑗� 𝑋𝑋𝑋𝑋𝑋𝑋 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑝𝑝�𝑦𝑦𝑗𝑗� = 𝐻𝐻�𝑦𝑦𝑗𝑗𝑗𝑗� 𝑋𝑋𝑋𝑋𝑋𝑋 𝑦𝑦𝑗𝑗𝑗𝑗. 4.35 



 84 

Therefore, 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑗𝑗𝑗𝑗, resulting in 𝑥𝑥 = 𝑦𝑦. Thus, the correctness of the LUT based PSI holds with 

permutation-based hashing, reducing the transferred RGSW by 𝑘𝑘 and amount of CMUX by a 

factor of 2𝑘𝑘. 

The second optimization achieves a further reduction of computation by exploiting the 

vertical packing described in Section 4.4.3. With vertical packing, at most 𝑁𝑁 LUT elements can 

be packed into one RLWE ciphertext, which shrinks the amount of CMUXs by roughly a factor of 

𝑁𝑁. So, with 𝑘𝑘 = 14, 𝑁𝑁 =  2048, for example, the amount of CMUXs to compare each element in 

the Receiver set is reduced from 232 − 1 to 27 − 1 + 11, by a factor of 225. 

The last optimization aims at decreasing the communication payload. Instead of 

transferring an RGSW ciphertext, containing log𝐵𝐵𝐺𝐺(𝑄𝑄) × 2 RLWE ciphertexts, for each bit of an 

element in the Receiver set, it is observed that the first column of an RGSW ciphertext, as in 

Equation 4.21, can be calculated from the second column, which is detailed in Equation 4.36.  

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛 �𝐵𝐵𝐺𝐺
𝑗𝑗 × (−𝒛𝒛 ∙ 𝒎𝒎)� = 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛�𝐵𝐵𝐺𝐺

𝑗𝑗 × 𝒎𝒎�⨂𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝒛𝒛(−𝒛𝒛) 4.36 

Thus, only the second column of it needs to be transferred, together with a RGSW encryption of 

the secret key −𝒛𝒛, which is shared for all the transfers [111].  

However, the ciphertext utilization is still very low, because each RLWE only works for 

one element in the Receiver set. So, 𝑁𝑁 elements, for example, [𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁−1], from the Receiver 

set are packed into a 2-D array of RLWE ciphertexts. Each element of the array is formed as 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(∑ 𝑥𝑥𝑖𝑖[𝑘𝑘] × 𝐵𝐵𝐺𝐺
𝑗𝑗 × 𝑋𝑋𝑖𝑖𝑖𝑖 ) , and is index by 𝑗𝑗 ∈ �0, logBG(𝑄𝑄) − 1� , 𝑘𝑘 ∈ [0,17]  (assuming 

applying permutation-based hashing, the bit width is 18). Upon receiving the array, the Sender 

unpacks it, with the RLWE expansion described in Section 4.5.2, into arrays of RLWEs for each 

element 𝑥𝑥𝑖𝑖, of the form 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝒛𝒛(𝑥𝑥𝑖𝑖[𝑘𝑘] × 𝐵𝐵𝐺𝐺
𝑗𝑗). At last, the RLWEs are converted into RGSWs with 

Equation 4.36, and passed into the LUT to complete the PSI.  
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Together, compared to transferring complete RGSWs, the communication overhead is 

reduced from 18 RGSWs (216 RLWEs) per element to 18 × log𝐵𝐵𝐺𝐺(𝑄𝑄) RLWEs per 𝑁𝑁 elements, 

amounting to 4096x reduction if log𝐵𝐵𝐺𝐺(𝑄𝑄) = 6, 𝑁𝑁 = 2048, at the cost of increased computation 

on the Sender side for unpacking and reconstructing the RGSW.  

Figure 4.14 gives an example of the data flow for the proposed homomorphic LUT based 

PSI. It assumes that after the permutation-based hashing, the data bit width is 18 bits, and the 

polynomial length 𝑁𝑁 = 2048. The hashing process is not shown in the figure.  

4.6 Accelerator Architecture for the Adapted FHEW 

In this section, an accelerator architecture for the core functions of the adapted FHEW 

scheme that is detailed in the above chapters is proposed. It features an asymmetric architecture 

for INTT/NTT module, which exploits the characteristic of the fundamental algorithms. 

4.6.1 Overall Architecture 

Figure 4.15 shows the overall architecture of the proposed accelerator with a zoom-in view 

of the compute pipeline in Figure 4.16. Implemented with AWS F1 instance, the accelerator is 

controlled and monitored by the host software running on an x86 processor through various AXI 
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interfaces. The configure parameters and instructions are programed with the AXI-Lite interface, 

and the FIFO states are also read from it. The DMA module communicates with the FPGA through 

the AXI bus to program the FPGA DDR and read/write the RLWE FIFOs. The RLWEs streamed 

in and out of the FPGA are in the NTT domain. Further, the modulo multiplication in the 

accelerator is facilitated by the standard Barrett Reduction [137]. 

The architecture works in a pipelined fashion, with necessary inter-stage double buffering. 

Upon an input instruction, the key load module reads the corresponding key from the 

preprogramed FPGA DRAM into its own key load FIFO. In parallel, the INTT/NTT modules 

inside the compute pipeline manipulate the input RLWEs, hiding the DDR access delay of the key 

load module since the keys are only needed at the poly MAC stage, which facilitates the 
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polynomial and RLWE vector inner product introduced in Section 4.3.3 and Section 4.5.2. Once 

the computation finishes, the output RLWEs are written back to the RLWE FIFO dictated by the 

mode of the accelerator, which will be detailed later, and then streamed out to the host.  

As mentioned in Section 4.5.2, the accelerator merges the two data flows, the RLWE 

substitution and the bootstrap process. Note that the data flow of evaluating the homomorphic LUT 

introduced in Section 4.4.3 is mostly the same as the bootstrap flow since they both incorporate 

the ⊗ operation, so they will not be differentiated in the remaining text. There are three primary 

differences between the two data flows. The first is the RLWE key switch versus the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ⊗

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 operation as highlighted in Figure 4.13 and Figure 4.6, respectively. Second, in RLWE 

substitution, after INTT, the subroutine that transforms the 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑧𝑧(𝒎𝒎)  into 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑧𝑧�𝑋𝑋𝑘𝑘�(𝒎𝒎(𝑋𝑋𝑘𝑘)), as stated in Section 4.5.2, is needed; this subroutine is unnecessary in the 

bootstrap process. Lastly, an RLWE ciphertext, streamed into the in/out FIFO, only passes through 

the compute pipeline once for RLWE substitution and is then streamed out from the output FIFO 

after the computation. In contrast, in the bootstrap process, after initialization, the same RLWE 

(homomorphic accumulator) must be looped 𝑛𝑛 × log𝐵𝐵𝑟𝑟 𝑞𝑞  times through the compute pipeline 

before being streamed out, meaning that the output RLWE from the compute pipeline should go 

to the same FIFO as the input RLWE. 

The first two differences regarding the computation are automatically taken care of by the 

different instructions passed into the compute pipeline. For the third one, a mode configuration is 

added to the FIFOs to differentiate the situations, as shown by the dotted lines in Figure 4.15. In 

RLWE mode, the in/out FIFO acts only as an input FIFO that receives the input RLWEs, whereas 

the output FIFO holds the processed RLWEs. While in the bootstrap mode, the output FIFO is 

turned off and the in/out FIFO holds the intermediate RLWEs. The compute pipeline continuously 
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reads and writes the in/out FIFO until the loop finishes. Then the RLWEs in the FIFO are streamed 

out to the host. 

4.6.2 INTT module  

 The pseudo-code of the INTT algorithm adopted from [138] with the Gentleman-Sande 

(GS) butterfly is shown in Algorithm 1, which is mapped onto the INTT module. Figure 4.17 (a) 

details the structure of the INTT module. The dataflow follows Algorithm 1 except that in the first 

outer loop, the input RLWE is read from the global in/out RLWE FIFO, and the intermediate result 

is written to its own two polynomial buffers since each RLWE contains two polynomials. Starting 

from the second outer loop, the input is read from the polynomial buffers and written back after 

being processed by the butterflies. Each INTT module stores its own copy of the twiddle factors 

(TFs) in its local memory. 

Two parallel butterfly units are included in each INTT module to achieve better 

performance while maintaining a reasonable FPGA resource usage. Thus, to feed enough data, 

each address of the polynomial buffer contains two consecutive coefficients of a polynomial. The 

Algorithm 1 Inverse NTT | 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝒂𝒂𝑵𝑵𝑵𝑵𝑵𝑵) 
Input: 𝒂𝒂𝑵𝑵𝑵𝑵𝑵𝑵 ∈ ℤ𝑄𝑄𝑁𝑁 in bit reverse order, 𝑄𝑄 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2𝑁𝑁, a vector of twiddle factors 𝑇𝑇𝑇𝑇 ∈ ℤ𝑄𝑄𝑁𝑁 storing the powers of 
𝜓𝜓𝑁𝑁−1 in bit reverse order. 
Output: 𝒂𝒂 ← 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝒂𝒂𝑵𝑵𝑵𝑵𝑵𝑵) in INTT domain with normal order 

1: 𝑡𝑡 = 1; 
2: 𝑓𝑓𝑓𝑓𝑓𝑓(𝑚𝑚 = 𝑁𝑁;𝑚𝑚 > 1;𝑚𝑚 = 𝑚𝑚/2) 
3:     𝑗𝑗1 = 0;ℎ = 𝑚𝑚/2; 
4:     𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖 = 0; 𝑖𝑖 < ℎ; 𝑖𝑖 + +) 
5:         𝑗𝑗2 = 𝑗𝑗1 + 𝑡𝑡 − 1; 𝑆𝑆 = 𝑇𝑇𝑇𝑇[ℎ + 𝑖𝑖]; 
6:         𝑓𝑓𝑓𝑓𝑓𝑓(𝑗𝑗 = 𝑗𝑗1; 𝑗𝑗 ≤ 𝑗𝑗2; 𝑗𝑗 + +) 
7:             𝑈𝑈 = 𝒂𝒂𝑵𝑵𝑵𝑵𝑵𝑵[𝑗𝑗];                                                                                                 GS Butterfly 
8:             𝑉𝑉 = 𝒂𝒂𝑵𝑵𝑵𝑵𝑵𝑵[𝑗𝑗 + 𝑡𝑡]; 
9:             𝒂𝒂𝑵𝑵𝑵𝑵𝑵𝑵[𝑗𝑗] = 𝑈𝑈 + 𝑉𝑉 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄; 

10:             𝒂𝒂𝑵𝑵𝑵𝑵𝑵𝑵[𝑗𝑗 + 𝑡𝑡] = (𝑈𝑈 − 𝑉𝑉) × 𝑆𝑆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄; 
11:         𝑗𝑗1 = 𝑗𝑗1 + 2𝑡𝑡; 
12:     𝑡𝑡 = 2𝑡𝑡; 
13: 𝑓𝑓𝑓𝑓𝑓𝑓(𝑗𝑗 = 0; 𝑗𝑗 < 𝑛𝑛; 𝑗𝑗 + +) 
14:     𝒂𝒂𝑵𝑵𝑵𝑵𝑵𝑵[𝑗𝑗] = 𝒂𝒂𝑵𝑵𝑵𝑵𝑵𝑵[𝑗𝑗] × 𝑁𝑁−1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄; 
15: Return 𝒂𝒂 = 𝒂𝒂𝑵𝑵𝑵𝑵𝑵𝑵 
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BRAMs of the FPGA that are used to build the polynomial buffers are inherently composed of two 

read/write ports, fitting the butterfly data access pattern and allowing it to read/write two different 

addresses at the same time. However, the read and write can only be done in separate clock cycles, 

resulting in 50% butterfly utilization and halving the throughput. Therefore, we time interleave the 

two polynomial buffers, as shown in Figure 4.17 (b), to achieve full utilization of the butterflies. 

Due to the variation of the data access pattern of the butterfly units in each outer loop of 

the INTT algorithm, there is a mismatch between the data access pattern and data storage pattern, 

resulting in two different data flows from the buffers to the butterflies. As shown in Figure 4.18, 

in pattern 1, the data passes into a butterfly are from different addresses, while in pattern 2, they 

are from the same address. Therefore, necessary data MUXs are appended to the butterfly units to 

reorder the input/output data as needed. All the necessary loop counters and step counters are 

implemented inside the control block, together with the control of the MUXs.  
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Besides the INTT functionality, the INTT module also incorporates an init block for the 

homomorphic accumulator initialization function introduced in Section 4.3.3. 

4.6.3 Pipelined NTT module 

The NTT algorithm with a Cooley-Tukey (CT) butterfly, shown in Algorithm 2, is very 

similar to the INTT algorithm, except for the last scaling loop [138]. But a different construction 

from the INTT module is proposed for the NTT module. The structure of the module is shown in 

Figure 4.19, and a discussion of this construction is included in a later section.  

To achieve higher throughput for the NTT module, the outer loop of Algorithm 2 is 

unrolled into 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁)  pipeline stages, with each stage only processing one fixed data access 

pattern, which greatly reduces the control complexity of each stage. Compared to the structure of 

the INTT module, this implementation offers the same processing latency for an input polynomial 

but 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁) times higher throughput. 

Algorithm 2 NTT | 𝑁𝑁𝑁𝑁𝑁𝑁(𝒂𝒂) 
Input: 𝒂𝒂 ∈ ℤ𝑄𝑄𝑁𝑁, 𝑄𝑄 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 2𝑁𝑁, a vector of twiddle factors 𝑇𝑇𝑇𝑇 ∈ ℤ𝑄𝑄𝑁𝑁 storing the powers of 𝜓𝜓𝑁𝑁 in bit reverse order. 
Output: 𝒂𝒂𝑵𝑵𝑵𝑵𝑵𝑵 ← 𝑁𝑁𝑁𝑁𝑁𝑁(𝒂𝒂) in NTT domain with bit reverse order 

1: 𝑡𝑡 = 𝑛𝑛; 
2: 𝑓𝑓𝑓𝑓𝑓𝑓(𝑚𝑚 = 1;𝑚𝑚 < 𝑁𝑁;𝑚𝑚 = 2𝑚𝑚) 
3:     𝑡𝑡 = 𝑡𝑡/2; 
4:     𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖 = 0; 𝑖𝑖 < 𝑚𝑚; 𝑖𝑖 + +) 
5:         𝑗𝑗1 = 2 ∙ 𝑖𝑖 ∙ 𝑡𝑡; 𝑗𝑗2 = 𝑗𝑗1 + 𝑡𝑡 − 1; 𝑆𝑆 = 𝑇𝑇𝑇𝑇[𝑚𝑚 + 𝑖𝑖]; 
6:         𝑓𝑓𝑓𝑓𝑓𝑓(𝑗𝑗 = 𝑗𝑗1; 𝑗𝑗 ≤ 𝑗𝑗2; 𝑗𝑗 + +) 
7:             𝑈𝑈 = 𝒂𝒂[𝑗𝑗];                                                                                                                                        CT Butterfly 
8:             𝑉𝑉 = 𝒂𝒂[𝑗𝑗 + 𝑡𝑡] × 𝑆𝑆; 
9:             𝒂𝒂[𝑗𝑗] = 𝑈𝑈 + 𝑉𝑉 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄; 

10:             𝒂𝒂[𝑗𝑗 + 𝑡𝑡] = 𝑈𝑈 − 𝑉𝑉 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄; 
11: Return 𝒂𝒂𝑵𝑵𝑵𝑵𝑵𝑵 = 𝒂𝒂 
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Figure 4.18 Types of Data Access Pattern of The INTT Module. 
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Each stage reads the input from the polynomial buffer of the previous stage and processes 

it with a predetermined data access pattern that is specific to that stage at design time. So, there is 

no on-the-fly control/MUXs for the data flow, which not only reduces resource usage but also 

allows a better timing requirement. Note that there is no read/write from/to the same buffer 

memory; therefore, it is not necessary to employ the time-interleave trick as in the INTT module.  

Although the internal structures of the stages are mostly the same, except for the loop 

counter and step counter inside the control block, extra care should be taken in actual 

implementation. First, to adapt to different polynomial lengths, MUXs are needed to skip the 

leading stages for short polynomials (Figure 4.19). Second, the leading stages also incorporate the 

decomposition functionality as stated in Sections 4.3.3 and 4.5.2, which is just a bitwise AND with 

a binary decomposition basis and is not detailed in the figure. 

4.6.4 Compute Pipeline Analysis: Asymmetric INTT and NTT 

Before further discussion of the proposed compute pipeline architecture, some notations 

are defined. In the following section, we refer to the overall latency of the INTT/NTT algorithms 

as one NTT latency (ONL) and the latency of one outer loop of the algorithm as one stage latency 
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(OSL). Therefore, it is obvious that 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁) × 𝑂𝑂𝑂𝑂𝑂𝑂 . And our compute pipeline 

architecture utilizing the pipelined NTT module, detailed in the above section, with non-pipelined 

INTT modules is referred to as an asymmetric structure due to the throughput difference of the 

two types of the modules. The conventional implementation of similar structures and latencies for 

the NTT and INTT modules as introduced in Section 4.6.2 is defined as a symmetric structure. 

The design of our compute pipeline concentrates on balancing high throughput with 

optimized resource usage and parameter flexibility. With this in mind, the main compute pipeline 

is built around an asymmetric structure, as shown in Figure 4.16. A comparison of the symmetric 

and asymmetric structures is given in Fig. 18, with the poly subs block omitted as it is not a 

throughput bottleneck. The dataflows of the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅⨂𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and RLWE substitution introduced 

in Figure 4.6 and Figure 4.13, respectively, can be mapped to both architectures with the same 

throughput. However, the asymmetric structure consumes less resources than its symmetric 

counterpart.  

In the symmetric pipeline (Figure 4.20 (a)), to have balanced throughput, one INTT module 

is accompanied with dc-many NTT modules since each input polynomial is decomposed into dc 

polynomials after the INTT operation. The throughput of both modules is one polynomial per ONL 

due to the non-pipelined construction. The NTTs are also followed by dc-many polynomial/RLWE 

multiplication blocks to facilitate the inner product of the two dataflows. Although the trailing 

stages can operate with higher throughput, the overall throughput of the whole pipeline is capped 

by the first two stages, resulting in a throughput of one polynomial per ONL. Higher throughput 

can be achieved by operating multiple pipeline instances in parallel. 

Most of the prior arts implemented an architecture that is similar to the symmetric structure 

with the INTT and NTT modules separated without considering the data flow connecting the 
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modules. We take it one level up and make use of the asymmetric structure to cope with the 

different throughput requirements of the INTT and NTT modules, as shown in Figure 4.20 (b). 

Since the throughput of the pipelined NTT is 𝑂𝑂𝑂𝑂𝑂𝑂, the overall throughput of the whole pipeline is 

one input polynomial per 𝑑𝑑𝑑𝑑 × 𝑂𝑂𝑂𝑂𝑂𝑂 because of the polynomial decomposition, with one caveat 

that to balance the throughput between the INTT and NTT, log(𝑁𝑁) /𝑑𝑑𝑑𝑑 INTT modules should 

operate in parallel. Note that in the asymmetric scenario, the trailing stages are also changed to the 

pipelined form (1 vs. 𝑑𝑑𝑑𝑑 poly mult RLWE and an accumulation vs. a wide addition). In practice, 

log(𝑁𝑁) is always greater than 𝑑𝑑𝑑𝑑; therefore, the asymmetric pipeline enables higher throughput 

than a single instance of the symmetric pipeline. 

Though the symmetric structure can achieve the same throughput as the asymmetric one, 

with 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁)/𝑑𝑑𝑑𝑑-many instances operating in parallel, as seen in Figure 4.20 (a), the asymmetric 

pipeline uses less FPGA resources. The reduced resources stem from three sources. First, it is clear 

that in both cases, the number of INTT modules is the same, amounting to 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁)/𝑑𝑑𝑑𝑑. The 

number of NTT modules seems to be the same as well since there are 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁)/𝑑𝑑𝑑𝑑 × 𝑑𝑑𝑑𝑑 =

𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁) NTT modules for the symmetric pipeline and the asymmetric one also incorporates 
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𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁) NTT stages. However, in the symmetric case, the NTT module has a similar structure as 

the INTT module shown in Figure 4.17, which is much more complex than the NTT stage used in 

the pipelined NTT. Synthesis shows that with pipelined NTT, 23% less LUT usage is achieved. 

Furthermore, the pipelined NTT module has not only smaller control logic but also lower 

memory requirements. Part of the savings comes from less TF memory in pipelined NTT. Each of 

the NTT modules used in the symmetric pipeline stores a complete copy of the polynomial of the 

TF in its own local memory, similar to what is shown in Figure 4.17, so that they can operate 

independently. Therefore, in total, log(N) copies of the TF are stored. In contrast, in the asymmetric 

version, there is only one complete copy of the TF. Because each stage of the pipelined NTT is 

only responsible for one outer loop of the NTT algorithm, it only needs to store the portion of the 

TF that is used in that outer loop. For example, in the first stage of the pipelined NTT, instead of 

a complete polynomial of TF with N coefficients, only one TF needs to be stored. Thus, overall, a 

𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁) times reduction of the TF memory usage is achieved with pipelined NTT, equivalent to 

over 10x reduction in practice. It is possible to reduce the memory usage in the symmetric version 

by sharing one TF memory within one pipeline and force all the NTT modules to act at the same 

pace, but that implies stricter timing requirements since the capacitive load of the memory output 

is dc times higher, exacerbating performance. Also forcing all NTTs to synchronize degrades the 

flexibility of the architecture. 

The memory size of the pipelined NTT module is also reduced due to fewer polynomial 

buffers. In the non-pipelined NTT module, similar to the INTT module in Section IV.B, two 

polynomial buffers are instantiated for time-interleaved buffer access to maintain 100% butterfly 

utilization. In contrast, each stage of the pipelined NTT module reads and writes different buffers; 
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therefore, time-interleaving is unnecessary. So, the pipelined NTT poses a 50% saving on the 

polynomial buffer compared to the non-pipelined version. 

Lastly, the trailing stages of the asymmetric pipeline are also less complex than that of its 

symmetric counterpart. As shown in Figure 4.20, since the pipelined NTT outputs one polynomial 

at a time, only one poly mult RLWE module is needed in the asymmetric structure, compared to 

𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁) parallel mult modules in the symmetric one. In practice, it reduces the amount of mult 

modules by 11 times, with 𝑁𝑁 = 2048. Although the amount of poly mult RLWE modules can be 

reduced in the symmetric pipeline by reusing one mult module across different NTTs in a time-

interleaved manner due to the higher throughput compared to the INTT/NTT, a very wide MUX, 

log(N) to one, must be inserted between the stages, which would greatly impact timing and 

performance and introduce more control complexity. In the asymmetric structure, there is a similar 

MUX between the INTT and NTT modules; however, it is only 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁)/𝑑𝑑𝑑𝑑 to one, which is much 

smaller. In addition, the dc-wide RLWE addition in the symmetric pipeline is also replaced with 

an RLWE accumulation with ordinary word-size modulo addition. 

Besides the resource savings, the asymmetric construction also automatically adjusts to 

different parameter settings. In the symmetric pipeline, the number of NTTs should be set as the 

largest possible number of 𝑑𝑑𝑑𝑑 of the application at design time. If at design time, the parallelism 

is 3 for NTT, when 𝑑𝑑𝑑𝑑 =  2 at run time, the utilization of the NTTs is only 66.7%. Extra effort 

can be applied to remap the connection between INTT and NTT to reach 100% utilization, but that 

comes with more control overhead, negatively impacting performance. However, with the 

pipelined NTT module, as long as the INTT continuously feeds input to it, 100% utilization is 

always maintained with no extra control overhead involved since the design space of the pipelined 

NTT itself is independent of the parameter 𝑑𝑑𝑑𝑑. In fact, even when the 𝑑𝑑𝑑𝑑 of run time is higher than 
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the designated 𝑑𝑑𝑑𝑑  of design time, the pipelined NTT requires no extra control to handle it. 

However, it should be noted that in the above case, the INTT of the asymmetric pipeline can be 

underutilized. But since the number of INTT stages is less than the number of NTT stages in 

general, it is not optimized in this work.  

4.7 Measurement 

4.7.1 Experiment Setup  

The proposed architecture is implemented at 125MHz system frequency on an AWS F1 

instance with the system construction specified in Figure 4.15. The implementation supports up to 

54-bit input data word size. But to reduce the complexity of the modulo multiplication block in 

the butterfly, only a subset of the bit widths is implemented, as detailed in the following sections. 

Two polynomial lengths, 1024 and 2048, which are typical for third-generation FHE and fit our 

experiment for the PSI protocol, are implemented. Therefore, the INTT and NTT modules can be 

configured to process both lengths. The polynomial buffers in the FIFOs, implemented with 

BRAM, are configured to the size of the longer length, 2048. In addition, since 2 butterfly units 

operate at the same time in the INTT and NTT, each buffer line contains two consecutive 

polynomial coefficients. Thus, the size of each polynomial buffer is predefined as 1024×108 bit. 

However, in this prototype, no optimization on the BRAM utilization is devised, so when the input 

polynomial length is 1024, only the first half of the buffer is used. Following the analysis of Section 

4.6.4, the number of INTT is set to 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁)/𝑑𝑑𝑑𝑑  to keep a balanced throughput. In our 

implementation, it is set to the largest possible value derived from the parameter sets, which is 4. 
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4.7.2 Measurement of Bootstrap of The Third Generation FHE 

The parameter sets used to benchmark our implementation of the third-generation FHE are 

listed in Table 4-1 and adopted from [116]. The MEDIUM parameter set corresponds to ~100 bits 

of security level. Since our work only implements the homomorphic accumulation of the bootstrap 

process (including evaluation, accumulation, and key switch) on the hardware, we only report the 

measurement of this operation to emphasize our advancement. It is composed of two parts, the 

processing time and the time required to stream out the result for post processing. Table 4-2 

summarizes the measurement of the homomorphic accumulation function. Due to the pipelined 

nature of the proposed accelerator, the maximum parallelism that can be achieved is 12 

accumulations at the same time. So. the reported time is the amortized time of 12 inputs. Because 

the homomorphic accumulation function is independent of the input binary gate, we do not 

differentiate it during the measurement. The reported time is averaged over all measured input 

gates.  

The software implementation [116] of the FHEW scheme from the PALISADE library [55] 

operates on the same host machine and is used for comparison. Table 4-3 gives the comparison 

result of the proposed accelerator over software implementation. As stated above, only the 

homomorphic accumulation part is compared. On average, a 21× speed-up for the homomorphic 

accumulation function is achieved compared with the software implementation.  

Table 4-1 Parameter Sets of The Third Generation FHE 

Parameter set 𝒏𝒏 𝒒𝒒 𝑵𝑵 𝑳𝑳𝑳𝑳𝒈𝒈𝟐𝟐(𝑸𝑸) 𝑩𝑩𝒌𝒌𝒌𝒌 𝑩𝑩𝑮𝑮 𝑩𝑩𝒓𝒓 
MEDIUM 256 512 1024 27 25 29 23 

STD128_AP 512 512 1024 27 25 29 23 
STD192 512 512 2048 37 25 213 23 
STD256 1024 1024 2048 29 25 210 32 

STD192Q 1024 1024 2048 35 25 212 32 
STD256Q 1024 1024 2048 27 25 27 32 
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4.7.3 Measurement of The Proposed PSI 

In our implementation of the proposed PSI protocol, we set the encryption-related 

parameters to be 𝑁𝑁 = 2048 , log2(𝑄𝑄) = 54 , with 𝜎𝜎 = 3.19 , which achieves around 128-bit 

security level according to the LWE estimator [139]. The 𝐵𝐵𝐺𝐺 of the RGSW and 𝐵𝐵𝐾𝐾𝐾𝐾 of the RLWE 

key-switch key are both set to 29. Since the proposed PSI is not directly available in open-source 

libraries, we developed the necessary components of the scheme ourselves for baseline 

comparison.  

The average processing time of the two basic operations of the proposed PSI, RLWE 

substitution and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅⨂𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 , as deployed on the hardware are shown in Table 4-5. A 

comparison to our own software implementation is also included in the table. The raw 

measurement shows a speed-up factor of over 140, which is much higher compared to the 

improvement of the bootstrap process. A discussion of this discrepancy is incorporated in a later 

Table 4-2 Processing Time of Homomorphic Accumulation 

Parameter set Amortized Processing Time (us) Amortized Stream Out Time (us) 
MEDIUM 6615 49 

STD128_AP 13238 48 
STD192 26253 54 
STD256 52523 54 

STD192Q 52524 59 
STD256Q 70031 58 

 

Table 4-3 Comparison of Processing Time of The Proposed Accelerator Over Software 

Parameter set Proposed Accelerator (ms) Software [116] 
(ms) Improvement  

MEDIUM 6.7 141.1 21.1× 
STD128_AP 13.3 283.8 21.3× 

STD192 26.3 578.4 22.0× 
STD256 52.6 1180.8 22.4× 

STD192Q 52.6 1270.5 24.2× 
STD256Q 70.1 1571.5 22.4× 
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section. The last column, ‘Scaled Improvement,’ is added for this purpose and is discussed later, 

as well. 

Based on the time consumption of the basic operations from Table 4-4, the processing 

times on the Sender’s side with the proposed accelerator and the communication size of the 

proposed PSI are listed in Table 4-5. Since the complexity of our scheme is only directly dependent 

on the bit width 𝑏𝑏 and the hash table size 2𝑘𝑘 , assuming only one element in each bin on the 

Receiver’s side, we only list these two factors as design parameters in the table, with the security 

parameters set as above. In the Receiver-to-Sender communication size, the key-switch keys and 

the RGSW-encrypted −𝒛𝒛 are not included, which are of size 2.1 MB and 384 KB, respectively. 

Note that a modulus switch process can be applied to the returning LWE ciphertexts from the 

Sender to the Receiver, which can further reduce the message size by 15~20% [110]. Figure 4.21 

shows a time breakdown of the proposed PSI operating with the proposed accelerator. Four parts 

are included: (a) RLWE substitution; (b) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅⨂𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅; (c) RGSW transfer, which transfers the 

reconstructed RGSWs to the FPGA DDR; and (d) software post process. The first three are 

Table 4-4 Comparison of The Processing Time of The Two Operations For The Proposed PSI 

Operation  Proposed Accelerator (𝝁𝝁𝝁𝝁) Software (𝝁𝝁𝝁𝝁) Improvement  Scaled Improvement 
RLWE Substitution 105 17616 167.8× 27.9× 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅⨂𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 105 14739 140.4× 23.4× 

 

Table 4-5 Sender’s Processing Time and Communication Size Of The Proposed PSI 

Parameters 
Sender’s Processing time (s) 

 Communication Size (MB) 
𝒃𝒃 𝒌𝒌  𝑹𝑹 → 𝑺𝑺 𝑺𝑺 → 𝑹𝑹 

32 

14 1642  27.0 256 
12 814  7.5 64 
10 585  2.1 16 

30 
14 1148  24.0 256 
12 410  6.8 64 
10 203  1.9 16 

28 

14 935  21.0 256 
12 287  6.0 64 
10 102  1.7 16 
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attributed to hardware. The measured time consumption of each part is also included in the 

diagram. The software post processing times are raw measurement data and not scaled, which will 

be discussed in next section. 

4.7.4 Analysis Of The Measurement Results 

1) Software Inefficiency Encountered in the Measurement 

As mentioned in the above section, compared to the improvement of the bootstrap process 

listed in Table 4-3, we see a higher speed-up in the basic PSI operations, as shown in Table 4-4. 

The discrepancy mainly results from the different software implementations that are being used in 

the comparison. Since the proposed PSI and its basic operations are not directly available in open-

source libraries, we developed the software implementation ourselves from scratch for both 

verifying the hardware design and baseline comparison. We also built our own software for the 

bootstrap process for the purpose of hardware verification and comparison.  

However, due to our relatively limited effort, our own software code may not perform as 

efficiently as the highly optimized open-source libraries. In order to estimate the potential software 
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performance discrepancy, a comparison between our own software and an open-source library [55] 

is conducted with the same host machine using commonly available operations such as NTT/INTT, 

polynomial operations, and bootstrap process. Based on the comparison, our own software code is 

around 6× slower compared to open-source library. Hence, the measured improvement in the third 

column of Table 4-4 is scaled by 6 to factor in potential software optimization for a more realistic 

speed-up number for the basic operations of the proposed PSI. This scaled number is shown in the 

last column of Table 4-4.  

The inefficiency in our software code includes unoptimized post processing, which takes 

about 50% of the total processing time of the proposed PSI operating on the accelerator (Figure 

4.21). Thus, by factoring out this inefficiency, the total time consumption of the proposed PSI 

could be reduced by around 42% (which is not accounted for in the reported performance in Table 

V).  

2) I/O Bandwidth Bottleneck of the Implemented Accelerator 

During the measurement, we find that the latency of processing just one input on the 

proposed acceleration hardware is ~350 𝜇𝜇𝜇𝜇  for RLWE substitution and 309 𝜇𝜇𝜇𝜇  for 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅⨂𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, which includes 120 𝜇𝜇𝜇𝜇 streaming in and out. Due to the pipelined nature of the 

proposed accelerator, a maximum parallelism of 13 can be achieved in the RLWE mode. 

Therefore, ideally, the average time consumption of processing one input on the hardware should 

be ~17 𝜇𝜇𝜇𝜇, which is 6× faster compared to the numbers listed in the first column of Table 4-4. This 

shows that, in the RLWE mode, the accelerator is bottlenecked by the I/O bandwidth. In the case 

that an optimized I/O is achieved, 6× better performance can be extracted from the proposed 

accelerator.  

Table 4-6 summarizes the (estimated) attainable bound of processing time of the proposed 

PSI, which both factors out software inefficiency and operates on an optimized I/O. 
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4.8 Discussion  

4.8.1 Future Improvements to The Proposed FHE Accelerator 

Since the depths of the buffers in the accelerator are designed to hold the longest possible 

polynomial, which is 2048, when running with shorter polynomials, such as 1024, the BRAM 

utilization of the accelerator is limited. The same problem also applies to the word width of the 

buffers. Static or dynamic remapping of the BRAM can potentially improve the utilization.  

In the current implementation, interrupt functionality is not included. Therefore, the host 

is busy waiting by continuously reading the status register during the operation of the accelerator, 

which not only occupies the software resource but also introduces unnecessary communication 

traffic to the operation. As analyzed above, the I/O operation also bottlenecks the accelerator. Thus, 

an optimized interface between the host and the accelerator should be included in future 

implementations. 

In bootstrap mode, only the in/out RLWE FIFO is in full utilization, while the output 

RLWE FIFO is always idle. Therefore, after each bootstrap process, while streaming out from the 

in/out FIFO, the compute pipeline has to wait until the FIFO is empty. However, if the output FIFO 

Table 4-6 Attainable Bound of Sender’s Processing Time of The Proposed PSI 

Parameters Sender’s Processing time (s) 
𝒃𝒃 𝒌𝒌 Measured  Attainable Bound 

32 
14 1642 273 
12 814 135 
10 585 97 

30 
14 1148 191 
12 410 68 
10 203 33 

28 
14 935 155 
12 287 47 
10 102 17 
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acts as a second in/out FIFO, the compute pipeline will have better utilization due to the overlap 

of the data streaming out and data processing.  

In RLWE mode, although both RLWE FIFOs can work independently of each other, our 

current software stack does not include multithreading capability that can stream into and out of 

the FPGA at the same time in a producer/consumer fashion. Also, since both input and output 

transactions pass through the AXI crossbar, in some extreme cases, it can bottleneck the whole 

system. Therefore, the input and output FIFO should be designated to separate interfaces between 

the host machine and the FPGA to avoid transaction congestion while operating at the same time. 

Finally, as mentioned in the above sections, we built the software stack that controls the 

proposed accelerator ourselves from scratch. Therefore, APIs that are compatible with the open-

source libraries are not available. We would like to support that for better performance. 

4.8.2 Future Improvements to The Proposed PSI Protocol 

It is clear that the security proof of our protocol is derived directly from [110], which is 

secure in a semi-honest setting. The authors of [110] improved the security proof to malicious 

adversary in [117]. Therefore, it is worth exploring an adaptation of our proposed protocol to a 

malicious setting. 

In addition, even with all the optimizations proposed in Section 4.5.3, the proposed 

protocol still imposes a communication complexity linear to the bit-width of the elements of the 

sets and a computation complexity exponential to the bit-width. It is manageable when the data 

sets are 32-bit or less, but with wider numbers, the computation explodes. One possible solution 

is to first divide the wide number into several small segments (one 64 bits to two 32 bits for 

instance) and perform the proposed PSI on each segment. Then, the outputs of the PSI for all the 

segments of the same wide number are ANDed to get the final result. Note that to prevent 
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information leaks of the Sender’s set, this AND is also performed by the Sender together with the 

homomorphic LUT. 

4.9 Related Work 

4.9.1 Hardware Acceleration of Fully Homomorphic Encryption 

Ever since the discovery of Gentry’s fully homomorphic blueprint [48][113] in 2009, 

which featured the bootstrap concept and followed an exploration that spanned over 30 years since 

the proposal of RSA encryption, much advancement has been made to improve the initial 

construction, propelling practical applications of this idea. Among them, BGV [50], BFV [51][52], 

CKKS [53], FHEW [59], and THFE [60] are the most well accepted and are built upon RLWE 

[115] and LWE [47] problems, different from Gentry’s initial formula.  

These schemes are categorized based on their application emphasis. The second-generation 

schemes, BGV, BFV and CKKS, focus on faster polynomial evaluation on encrypted data using 

arithmetic multiplication and addition, with the difference being that BGV and BFV schemes 

operate on integer numbers, whereas CKKS works with approximate complex numbers as 

plaintext space. SIMD-styled operation [54] is widely adopted in these schemes to pack multiple 

input data into one ciphertext, thus increasing parallelism. Several open-source libraries that 

implement these schemes are publicly available, including PALISADE [55], HElib [56] and SEAL 

[57]. With the maturity of the algorithm and implementation, applications of these schemes to 

homomorphic evaluation of Neural Networks have also been published in recent years [140]-[144]. 

Other applications like PSI based on second-generations schemes are also proposed [110][117].  

Compared to the second-generation counterparts, FHEW and THFE excel in efficient and 

flexible homomorphic binary logic gate evaluation. Although, the performance of the third-



 105 

generation schemes is estimated to be on the same order as that of the second-generation 

approaches equipped with SIMD-like construction, they well accepted for their simplicity and 

flexibility in terms of both concept and implementation. The binary logic nature of the third-

generation FHEs makes them suitable for applications that are logic intensive, such as ORAM as 

proposed in [111]. 

Various hardware solutions have been proposed in recent years [119]-[129] that aim at 

mitigating the performance gap between direct evaluation of plaintext and homomorphic 

evaluation. [119][121] proposed acceleration for encryption/decryption of RLWE in post-quantum 

scenarios; however, due to the smaller size of the applicable polynomial, it is not suitable for 

homomorphic operation. A crypto-engine for the encryption/decryption of RLWE for 

homomorphic encryption is presented in [120], which involves less heavy lifting compared to the 

homomorphic evaluation (bootstrap). Accelerating large number multiplication is also a direction 

pursued in [128]; however, it is not necessary for third-generation schemes. [126][127] explored 

different approaches to accelerate long polynomials in homomorphic encryption. [123]-[125][129]  

proposed accelerators for BFV-based LHE schemes, but this approach suffered from limited 

computation depth and security level. An architecture for a leveled CKKS scheme is proposed in 

[122]. 

4.9.2 Private Set Intersection 

Early PSI protocols [105][133] were built upon the multiplicative homomorphism of the 

Diffie-Hellman public-key encryption, featuring good communication cost but prohibitive 

computation toll as the set size grows.  

By far, the most efficient schemes are Oblivious Transfer (OT)-based [106][134][135], in 

which the Receiver obliviously encodes each element in its set by initiating multiple OTs with the 
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Sender and then cross compares it with the encoded Sender’s set that it receives to find the 

intersection. Because of the randomized encoding of the protocol, neither of the two parties learns 

about the other’s data set except that the intersection is revealed to the Receiver. It is clear that 

such an approach involves sending both parties’ sets through the network, resulting in 

communication cost that is linear in both sets’ sizes, an undesirable consequence in an unbalanced 

scenario where one party’s set is significantly smaller.  

In recent years, unbalanced PSI protocols based on second-generation FHE [110][117] 

have been proposed. These provide communication overhead linear in the size of the smaller set, 

a substantial reduction compared to previous approaches in such scenarios, while maintaining a 

comparable performance. 

4.10 Conclusion  

In conclusion, the first hardware acceleration architecture for third-generation FHE is 

proposed in this paper. Featuring an asymmetric INTT/NTT configuration, the proposed compute 

pipeline achieves less resource usage while maintaining a high throughput. An extensive analysis 

of the architecture is presented. An unbalanced PSI protocol based on third-generation FHE is also 

proposed to better demonstrate the architecture. Supplemented by several optimizations for 

reducing the communication and computation costs, the proposed PSI achieves a computation cost 

independent of the Sender’s set size. Implemented with AWS cloud FPGA, the proposed 

accelerator achieves over 21× performance improvement compared with a software 

implementation on various subroutines of the FHE and the proposed PSI at 125 MHz. 
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Chapter 5. Conclusion 
 

5.1 Contributions of This Thesis 

This work focuses on domain-specific accelerators. Three emerging applications, namely, 

DNA sequencing, ML, and post quantum/homomorphic encryption are explored.  

In Chapter 2, an accelerator for seed extension, a critical and computationally intensive 

step in genome sequencing, is proposed. The accelerator, implementing a string-independent 

automata, consists of a triangular array of 25 × 25  custom-designed processing elements. It 

performs 2.46M reads/s, achieving a 1581x improvement in power efficiency and 165.5x smaller 

silicon footprint compared to a system with dual-socket Xeon E5-2697 v3 server processors. 

Chapter 3 presents an energy-efficient deep neural network (DNN) accelerator with non-

volatile embedded resistive random-access memory (RRAM) for mobile ML applications. This 

DNN accelerator implements weight pruning, non-linear quantization, and Huffman encoding to 

store all weights on RRAM, enabling single-chip processing for large neural network models 

without external memory. A 4-core parallel and programmable architecture adapts to various 

neural network configurations with high utilization. We introduce a customized RRAM macro 

with a dynamic clamping offset-canceling sense amplifier (DCOCSA) that achieves sub-μA input 

offset. The on-chip decompression and memory error-resilient scheme enables 16 million (M) 8-

bit (decompressed) weights on a single chip using 24 Mb RRAM. The proposed RRAM-DNN is 

the first digital DNN accelerator featuring 24 Mb RRAM as all-on-chip weight storage to eliminate 

energy-consuming off-chip memory accesses. The fabricated design performs the complete 
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inference process of the ResNet-18 model while consuming 127.9 mW power in TSMC-22nm 

ULL CMOS. The RRAM-DNN accelerator achieves peak performance of 123 GOPs with 8-bit 

precision, exhibiting measured energy efficiency of 0.96 TOPs/W. 

Chapter 4 presents the first accelerator architecture for third-generation FHE, targeting at 

the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ⊗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 operation, which is a fundamental function of both second-generation and 

third-generation FHE. By exploiting the asymmetric nature of the encryption, the architecture 

incorporates an asymmetric Inverse Number Theory Transform (INTT) module and Number 

Theory Transform (NTT) module, which are capable of maintaining high throughput with less 

resource usage while addressing different parameter sets. An extensive analysis of the architecture 

is included. A novel unbalanced PSI protocol that is based on third-generation FHE and is 

optimized for the proposed hardware architecture is proposed. The proposed PSI protocol makes 

the computation cost independent of the Sender’s set size. We introduce several additional 

algorithm-architecture co-optimizations to reduce the computation and communication costs, 

rendering a practical application of the proposed PSI protocol. A prototype of the proposed 

architecture is implemented with AWS cloud FPGA service. We develop all necessary high-level 

functions in C++ and benchmark the implemented architecture with different parameter sets. We 

make the SystemVerilog HDL code of the proposed accelerator and supporting software code 

publicly available at [136]. At last, we quantify and analyze the performance of the proposed 

hardware accelerator and PSI protocol. The measurements show over 21× performance 

improvement compared to a software implementation for various subroutines of the third-

generation FHE and the proposed PSI. 
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5.2 Future Directions 

The DNA sequencing accelerator demonstrated in Chapter 2 targets only at the seed-

extension step of the post processing pipeline. It would be interesting to see how much overall 

improvements can be extracted for the complete pipeline if all the sub-steps are optimized on 

hardware. In that case, the communication bandwidth between the subroutines and the total 

memory bandwidth are a potential bottleneck of the system. So, a system level perspective must 

be honored when integrating the whole pipeline, rather than just optimizing the subroutines 

separately. In addition, during the backend implementation, we found that some global signal 

limits the dimension of the accelerator. The large loading of the global signal limits the frequency 

of the design when dimension is large. Therefore, it would be good to deal with the problem from 

algorithm and architecture level. 

The RRAM blocks designed for the DNN accelerator introduced in Chapter 3 have SAR 

ADC based test structure for up to 3 bit per cell multilevel capability. Due to the large peripheral 

of the RRAM, the density of RRAM does not pose significant advantage compared to SRAM. So 

multilevel bit cells are expected to provide higher memory density. However, in the measurement 

we were not able to verify that capability due to the malfunctioned level converters inside the 

RRAM bank. It would be helpful to get the data point of how a high density on-chip nonvolatile 

memory system would impact the power/area/performance of the system compared to SRAMs. 

Furthermore, to perform more comprehensive measurement, DFT structure should be included to 

provide better observability of the chip during measurement.  

In Chapter 4, a concept proving accelerator for third-generation FHE is demonstrated with 

FPGA. We focused on the architecture and hardware implementation, but limited effort was 

applied to the corresponding software running on the host CPU that talks to the FPGA. As a result, 
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the software pre/post processing and APIs impose a bottleneck to the overall performance. In 

addition, we found that the interface bandwidth to the FPGA also limited the overall throughput 

of the accelerator especially in RLWE mode. We performed simple hand calculation to extract 

attainable upper bound of the performance, it would be ideal to improve the efficiency of the 

software and interface to better study the accelerator.  

Currently, the third-generation FHE is a very emerging encryption scheme that has not 

been fully explored regarding application of it. In Chapter 4, we introduced a PSI protocol based 

on third-generation FHE, which sheds light on how the homomorphic binary operation can be 

utilized in the future. Therefore, expanding the use case of the encryption is an open question that 

is full of possibilities.  

The accelerators demonstrated in this work shows great benefits of domain specific 

solutions in terms of performance and energy efficiency. And we have seen various directions of 

domain-specific design. In Chapter 2, a novel algorithm that is suitable for hardware 

implementation is shown. Chapter 3 exemplifies the impact of technology advancements on the 

domain specific architecture. At last, Chapter 4 manifests how hardware-software co-design 

potentially benefits the application. Together, we have shown that domain specific architecture 

brings technology, circuit, and software even closer to achieve an efficient system. And we 

envision that this close interaction of technology, circuit, architecture, and software can potentially 

counteract the declining of technology scaling. Therefore, the key to future application-specific 

hardware is to build an application centric thought-process that unifies all abstraction levels, 

including technology, circuit, architecture and software.  
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