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Graphical/Visual Abstract and Caption 

 

Caption: Messenger RNA (mRNA) translation and decay are rapidly suppressed as RNA-protein 

granules form during the integrated stress response (ISR) to drive cell adaptation to stress 

conditions. Genetic diseases caused by mutant alleles of key ISR genes suggest an important role 

for the ISR in human development and health. 



 

Abstract 

 

The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells 

remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is 

initiated when stress-activated protein kinases phosphorylate the major translation initiation factor 

eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity 



and permits the selective translation of stress-induced genes including important transcription factors 

such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) 

and non-coding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are 

concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-

protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss 

fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of 

genetic disorders associated with mutant alleles of key translation factors in the ISR pathway.    

 

1. Introduction 

 

The integrated stress response (ISR) is activated when eukaryotic cells experience dramatic 

changes in intrinsic or extrinsic conditions. Such changes include temperature, osmolarity, ultraviolet (UV) 

radiation, oxidation, and endoplasmic reticulum (ER) stressors, the accumulation of aggregated proteins 

or in response to certain proinflammatory cytokines and pathogen-associated molecular patterns. These 

diverse stressors activate any of four protein kinases that phosphorylate eukaryotic translation initiation 

factor 2α (eIF2ɑ), suppressing its activity to globally repress translation initiation while enhancing the 

translation of stress-induced genes, including key transcription factors that launch a gene expression 

program to allow the cell to adapt to stress or drive it to undergo apoptosis (Costa-Mattioli & Walter, 

2020; Hershey et al., 2019; Pakos-Zebrucka et al., 2016). One key stress-induced gene is 

PPP1R15A which encodes GADD34 (growth arrest and DNA damage-inducible gene 34). GADD34 

promotes the dephosphorylation of phosphorylated eIF2α (p-eIF2ɑ) and reverses the ISR in a negative 

feedback loop (Novoa et al., 2001). Constitutively expressed RNAs are globally stabilized, and 

translationally repressed RNAs accumulate in cytoplasmic RNA-protein (RNP) granules termed stress 

granules and processing bodies (P-bodies) (P. Ivanov et al., 2019; Protter & Parker, 2016). The release 
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of p-eIF2ɑ-mediated translation repression coincides with the disassembly of stress-induced RNP 

granules and resolves the ISR. Thus, regulation of messenger RNA (mRNA) at the levels of translation 

and stability enables a rapid, global response to stress that results in the formation and accumulation of 

RNP granules and drives cell fate.  

 

Recent studies point to a key role in the initial stages of the ISR in human development and 

health, as a growing list of genetic diseases are associated with mutant alleles of eIF2ɑ kinases, a p-

eIF2ɑ phosphatase, a member of the eIF2 heterotrimer, and the heteropentameric eIF2 guanine 

nucleotide exchange factor (GEF) eIF2B. While the molecular mechanisms underlying the divergent 

pathogenesis and phenotypes of these disorders mostly remain undefined, key insights suggest defects 

in the kinetics and intensity of the ISR contribute to these disease states. We present a comprehensive 

overview of the mechanisms of translation regulation, RNA stability, and RNA localization to RNP 

granules during the ISR, as well as the current understanding of genetic diseases associated with mutant 

alleles of the ISR machinery including Vanishing White Matter disease, Wolcott-Rallison syndrome, 

and MEHMO syndrome. 

 

2. Translation and the Integrated Stress Response 

 

2.1 Translation Overview 

 

Translation is an energy-intensive process (Buttgereit & Brand, 1995; G.-W. Li et al., 2014) 

and is consequently highly regulated during cellular stress conditions. Translation takes place in 
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three main stages: (1) initiation, (2) elongation, and (3) termination and ribosome recycling. 

Translation initiation begins with formation of the ternary complex which is composed of eIF2 

bound to GTP and methionyl-initiator tRNA (Met-tRNAi). EIF2 is a heterotrimer of the subunits α, 

β, and γ. Once formed, the ternary complex binds the 40S small ribosomal subunit along with the 

initiation factors eIF1, eIF1A, eIF3, and eIF5 to form the 43S preinitiation complex (Hershey et al., 

2019; Merrick & Pavitt, 2018). In order for mRNA to be used as a template for protein synthesis, it 

must assemble into the eIF4F complex, a protein complex composed of the initiation factors 

eIF4E, eIF4G, and eIF4A, at the 5′ 7-methylguanosine cap and the poly(A)-binding protein (PABP) 

at the 3′ poly(A) tail (Jackson et al., 2010; Merrick & Pavitt, 2018). The eIF4F complex facilitates 

recruitment of the 43S preinitiation complex to the 5′ untranslated region (UTR) of the mRNA 

near the 7-methylguanosine cap. Next, the 43S preinitiation complex scans toward the 3′ end of 

the mRNA in search of an AUG codon and, once identified, the AUG codon base pairs with the 

Met-tRNAi anticodon in the peptidyl (P) site of the small ribosomal subunit. Subsequently, the 

eIF2-bound GTP is hydrolyzed to GDP promoting the release of the Met-tRNAi. This frees eIF2-

GDP to be acted on by the GEF eIF2B to generate eIF2-GTP to be available for another translation 

initiation cycle. Translation initiation ends with the arrival of the 60S large ribosomal subunit to 

produce the 80S ribosome (reviewed in (Hershey et al., 2019; Merrick & Pavitt, 2018)). 
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Initiation is the rate-limiting stage of translation and therefore is imperative to regulate. 

Phosphorylation regulates a major element of translation initiation, 7-methylguanosine cap-

recognition by the eIF4F complex (eIF4E, eIF4G, and eIF4A) (Hershey et al., 2019; Sonenberg & 

Hinnebusch, 2009). A class of proteins termed eIF4E-binding proteins (4E-BPs) binds eIF4E which 

prevents eIF4G binding, eIF4F assembly, 7-methylguanosine cap-recognition, and inhibits 

initiation. 4E-BPs are regulated by phosphorylation - dephosphorylated 4E-BPs bind strongly to 

eIF4E, and phosphorylated 4E-BPs bind weakly to eIF4E. In unstressed or nutrient replete 

conditions, the well-known kinase mammalian target of rapamycin (mTOR) phosphorylates 4E-

BPs. This promotes eIF4F assembly by allowing eIF4E and eIF4G binding which enables mRNA 

activation and initiation. In stressed or nutrient-limited conditions when active translation could 

be detrimental to cell health, 4E-BPs are not phosphorylated and inhibit eIF4E, thereby 

preventing 7-methylguanosine cap-recognition and inhibiting initiation (Sonenberg & 

Hinnebusch, 2009). 

 

 Translation continues with the production of a nascent peptide chain via elongation. At 

the onset of translation elongation, Met-tRNAi is positioned in the ribosomal P site, allowing the 

next tRNA to enter the aminoacyl (A) site of the ribosome. Like translation initiation, several 

factors are required for translation elongation. A ternary complex containing the elongation 

factor eukaryotic translation elongation factor 1A (eEF1A), GTP, and the tRNA complementary to 
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the codon following AUG binds the ribosomal A site. Upon base pairing of the mRNA codon and 

the aminoacyl-tRNA anticodon, GTP is hydrolyzed, and eEF1A-GDP is released from the 

ribosome. The GEF eEF1B swaps GDP for GTP, allowing eEF1A-GTP to bind another tRNA 

destined for the ribosomal A site. Next, eIF5A localizes to the ribosomal exit (E) site and promotes 

the formation of a peptide bond between the carboxyl group of the peptidyl-tRNA and the 

amino group of the aminoacyl-tRNA. The newly generated peptide is passed from the peptidyl-

tRNA to the aminoacyl-tRNA. eEF2 bound to GTP promotes translocation of the peptidyl-tRNA 

and aminoacyl-tRNA to the E and P sites, respectively, and the ribosome progresses down the 

mRNA by one codon. Lastly, the deacylated tRNA is released from the E site, and another cycle of 

elongation is poised to begin (reviewed in (Thomas E. Dever et al., 2018; Hershey et al., 2019)). 

 

 The final events of translation are termination and ribosome recycling. Translation is 

terminated when the ribosome encounters a stop codon (UAA, UGA, or UAG) in its A site as no 

tRNA anticodons match stop codons. Termination requires the action of a ternary complex made 

up of the eukaryotic translation release factors eRF1 and eRF3, and GTP (Thomas E. Dever & 

Green, 2012; Hellen, 2018; Jackson et al., 2012). First, eRF1 identifies the stop codon in the A site. 

Next, eRF3, a GTPase, hydrolyzes GTP and triggers the hydrolysis of the peptidyl-tRNA by eRF1. 

As a result, the nascent polypeptide is released. While the protein product has been freed, the 

80S ribosome, deacylated tRNA, and the mRNA, altogether termed the post-termination 
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complex, remains. The ATP-binding cassette protein ABCE1 aids in post-termination complex 

recycling by splitting the 80S ribosome to release the 60S ribosomal subunit. Next, the 

deacylated tRNA and mRNA are released from the 40S ribosomal subunit by the initiation factors 

eIF1, eIF1A, and eIF3, or by eIF2D, or MCTS1 (multiple copies in T-cell lymphoma-1) and DENR 

(density regulated protein). Finally, the released materials can be used for further rounds of 

translation (reviewed in (Hellen, 2018; Hershey et al., 2019)). 

 

2.2 Integrated Stress Response 

 

In addition to phosphorylation of 4E-BPs, another key way that translation initiation is 

regulated is by the phosphorylation of the α subunit of eIF2 at serine 51 during the ISR (Hershey 

et al., 2019; Sonenberg & Hinnebusch, 2009). The ISR is a pathway that modifies transcription and 

translation to promote cell survival in response to stress. Alternatively, if the stress is insurmountable, the 

ISR promotes cell death. Upon activation of the ISR, translation is globally suppressed, and stress-

induced genes are expressed. In tandem, RNP granules including stress granules are induced and 

regulated changes in mRNA stability occur. The ISR is activated upon eIF2ɑ phosphorylation by stress-

induced kinases. Phosphorylation of eIF2α by any of the kinases inhibits global translation by converting 

eIF2 into an inhibitor of eIF2B. Subsequently, eIF2B cannot exert its GEF activity on the eIF2 complex, 

eIF2 is unable to bind GTP, the ternary complex fails to assemble, and translation initiation is prevented 

(Figure 1). Phosphorylation of eIF2ɑ is thus an efficient mechanism for inhibiting global translation to 

prevent further compounding the cause of cellular stress, e.g., by preventing further amino acid 
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consumption during nutrient deprivation, generating more misfolded proteins during ER stress, or 

producing viral proteins when foreign double-stranded RNA (dsRNA) is detected. 

 

 

Figure 1. Schematic depicting the roles of the key factors that drive the ISR in translation initiation, 
stress-induced gene expression, and stress granule (SG) formation. In unstressed cells, low levels of p-
eIF2ɑ enable high eIF2B function to generate abundant ternary complex (TC) comprised of eIF2, GTP 
and Met-tRNAi. High TC facilitates high global translation activity, suppressing stress-induced gene 
expression and SG formation. Upon stress, stress-activated protein kinases (HRI, PKR, PERK, and 
GCN2) increase p-eIF2ɑ levels and suppress the guanine exchange activity of eIF2B. Resulting limited 
TC causes reduced global translation activity, SG formation, and stress-induced gene induction (e.g., 
ATF4 and PPP1R15A (GADD34)). The GADD34 protein interacts with PP1 to dephosphorylate p-eIF2ɑ 
and reverse the ISR. 
 

 
To promote the expression of genes needed to recover from stress, or conversely to activate 

apoptosis if recovery is not possible, translation of selective stress-resistant mRNAs is refractory to, or 



enhanced by, eIF2ɑ phosphorylation. Multiple strategies are used by these mRNAs to promote their 

translation during the ISR including the use of regulatory upstream open reading frames (uORFs) 

(reviewed in (Young & Wek, 2016)), non-AUG start codons (reviewed in (Kearse & Wilusz, 2017)), 

recruitment of initiator tRNAs through noncanonical initiation factors (Starck et al., 2016), and 

internal ribosome entry sites (IRESs). One of the best characterized stress-induced genes is the 

transcription factor ATF4 (activating transcription factor 4, GCN4 in yeast) (Heather P. Harding et 

al., 2003). ATF4 is a master regulator that promotes the expression of additional genes required 

for the stress response and its mRNA contains two uORFs. Under basal conditions when ternary 

complex levels are plentiful, the ribosome translates the first uORF and is able to recruit the 

ternary complex in time to reinitiate at the second uORF (Figure 2A). Because the second uORF 

overlaps with the primary open reading frame (ORF), ATF4 translation is suppressed (Vattem & 

Wek, 2004). When the ISR is active and ternary complex levels are limited, the ribosome requires 

more time to acquire a ternary complex after translating the first uORF, allowing it to bypass the 

inhibitory second uORF and translate the primary ORF (Silva et al., 2019)(Figure 2B). Because 

different ATF4 ORFs are translated depending on ISR activity, ATF4 uORF translation can be used 

to determine when the ISR is active (T. E. Dever, 1997; Helseth et al., 2021). A recent example of 

this is the development of an ATF4 reporter that produces a different color fluorophore 

depending on whether the primary ORF or the second uORF is translated. This reporter was used 

to uncover that the ISR is constitutively activated in a small population of neurons in mice, 
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specifically striatal cholinergic interneurons, and that this is important for skill learning (Helseth et 

al., 2021). Interestingly, a recent report found that depletion of the noncanonical initiation factors 

eIF2D and DENR prevented enhanced ATF4 expression in Drosophila melanogaster and human 

cells during stress (Vasudevan et al., 2020), suggesting that a combination of strategies can be 

used to promote ISR-resistant translation. Examples of other uORF-containing genes that are 

expressed at the transcriptional and translational levels upon ISR activation include DDIT3 (CHOP) 

and PPP1R15A (GADD34) (Y.-Y. Lee et al., 2009; Marciniak et al., 2004; Palam et al., 2011). 
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Figure 2. Schematic depicting ATF4 translation during the integrated stress response. Two 

upstream open reading frames (uORFs) in the 5’ leader of ATF4 regulate its translation. (A) 

Ternary complex levels are abundant in unstressed conditions enabling the ribosome to recruit 

another ternary complex in time to reinitiate at the start codon of uORF 2 after translating uORF 

1. Because uORF 2 overlaps with the primary ORF of ATF4, this inhibits synthesis of the ATF4 

protein. (B) In contrast, ternary complex levels are limited in stressed conditions (i.e., when eIF2α 

is phosphorylated). As a result, the ribosome is unable to recruit another ternary complex in time 

to reinitiate at uORF 2, releasing the primary ORF from repression by uORF 2 and allowing ATF4 

protein synthesis. 

 

A key feature of the ISR is that it is reversible, which is achieved by the dephosphorylation 

of p-eIF2α. The stress-induced protein GADD34 and CReP (constitutive repressor of eIF2α 

phosphorylation), which is constitutively expressed, are regulatory subunits that direct protein 

phosphatase 1 (PP1) to dephosphorylate p-eIF2α. Upon chronic stress or stress resolution, p-

eIF2α is dephosphorylated, allowing increased global translation initiation to take place once 

again. Genetic depletion of the CReP gene Ppp1r15b is invariably lethal following birth in mice, 

which exhibit increased p-eIF2α levels in the liver and defects in erythropoiesis that is partially 

rescued by expression of the phosphorylation-insensitive Eif2aS51A allele (Heather P. Harding et 

al., 2009). In contrast, genetic depletion of the GADD34 gene Ppp1r15a does not markedly affect 

organismic development in a mouse model (Marciniak et al., 2004). Importantly, p-eIF2α 

dephosphorylation is vital for mammalian development as mice lacking both Ppp1r15a and 

Ppp1r15b fail to develop and are embryonic lethal (Heather P. Harding et al., 2009). Thus, 
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regulation of eIF2α function in the ISR is important for the cellular response to diverse stresses 

and mammalian development. 

 

Suppression of ribosome biogenesis is a second mechanism by which the translation 

machinery may be regulated during the ISR. Ribosome biogenesis occurs in the nucleolus, a 

biomolecular condensate in the nucleus where ribosomal RNAs (rRNAs) are transcribed, 

processed, and assembled with ribosomal proteins into pre-ribosomal particles (K. Yang et al., 

2018). Chemical or genetic inhibitors of rRNA transcription, processing, ribosomal assembly, or 

export from the nucleus, in addition to numerous insults that also activate the ISR (e.g., heat, 

nutrient deprivation, UV light, and hypoxia) trigger nucleolar stress (K. Yang et al., 2018). 

Ribosome biosynthesis is rapidly suppressed upon amino acid deprivation stress when mTOR is 

inhibited and GCN2, an eIF2α kinase that induces the ISR in response to amino acid starvation, is 

activated. Inhibition of mTOR by rapamycin suppresses ribosomal protein mRNA and rRNA 

transcription (Mahajan, 1994; T. Powers & Walter, 1999; Zaragoza et al., 1998). MTOR-regulated 

changes in the phosphorylation state of the RNA polymerase I transcription factor TIF-IA 

downregulates rRNA synthesis in this context (Mayer et al., 2004). Ribosomal protein mRNAs are 

also translationally suppressed upon amino acid deprivation and mTOR inhibition (Thoreen et al., 

2012). Many ribosomal protein mRNAs, in addition to transcripts encoding translation elongation 

factors (e.g., eEF1A and eEF2) and PABP, harbor 5′ terminal oligopyrimidine (TOP) motifs that 
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cause translation suppression upon mTOR inhibition or amino acid starvation (Meyuhas, 2000; 

Thoreen et al., 2012). Intriguingly, the RNA binding proteins TIA-1 (T-cell-restricted intracellular 

antigen-1) and TIAR (TIA-1-related) associate with mRNAs harboring 5′ TOP motifs during amino 

acid starvation and suppress their translation in a process that requires both GCN2 and mTOR 

pathways (Damgaard & Lykke-Andersen, 2011)). These findings suggest that translation 

suppression upon amino acid deprivation stress first occurs via GCN2 and mTOR pathways and 

consequently downregulates the translation machinery to further limit global protein 

biosynthesis in the cell under conditions where resources are limited. 

 

2.3.1 Activation of the Integrated Stress Response 

 

The ISR is triggered by the phosphorylation of eIF2α in response to several distinct 

sources of stress. Depending on the stress, any of four protein kinases - heme regulated inhibitor 

(HRI), protein kinase R (PKR), PKR-like ER kinase (PERK), and general control nonderepressible 2 

(GCN2) - are activated and phosphorylate eIF2α. Activation of each kinase requires dimerization 

and autophosphorylation (Lavoie et al., 2014; Pakos-Zebrucka et al., 2016). Interestingly, the 

localization of the kinases could confer subcellular specificity to the ISR, as HRI, PKR, and GCN2 

are localized to the cytosol, while PERK is localized to the ER membrane (Costa-Mattioli & Walter, 

2020). GCN2 is highly conserved as it is present from yeast to mammals and therefore has been 
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extensively investigated (Pakos-Zebrucka et al., 2016). In contrast, HRI, PKR, and PERK are 

generally present in metazoans (Taniuchi et al., 2016). Therefore, the four kinases serve as critical 

regulators of ISR activation upon stress. 

 

 HRI is encoded by EIF2AK1 and is primarily expressed in erythroid cells (Han et al., 2001). 

In addition to two kinase domains, HRI contains two heme-binding sites (Bhavnani et al., 2017; 

Donnelly et al., 2013) (Figure 3) that respond to cellular heme levels - the presence of heme 

inhibits HRI activation, while the absence of heme stimulates HRI activation - to pair hemoglobin 

synthesis with heme availability (Bruns & London, 1965; Chefalo et al., 1998; Han et al., 2001; 

Pakos-Zebrucka et al., 2016; Suragani et al., 2012). Heat and osmotic shock (Lu et al., 2001), 

hydrogen peroxide (Zhan et al., 2004), nitric oxide (Ill-Raga et al., 2015), arsenite treatment (Lu et 

al., 2001; McEwen et al., 2005), and 26S proteasome inhibition (Yerlikaya et al., 2008) have also 

been demonstrated to activate HRI (Pakos-Zebrucka et al., 2016)(Table 1). In unstressed 

conditions, mice lacking HRI are normal, however, upon iron deprivation, their erythroid 

precursors undergo increased cell death causing the mice to be anemic (Han et al., 2001). 

Interestingly, upon proteasome inhibition, HRI protein levels are elevated and HRI is activated in 

neurons with low baseline heme levels resulting in reduced protein synthesis (Alvarez-Castelao et 

al., 2020). Thus, HRI functions in a cell-type specific manner via the ISR to promote proteostasis in 

heme-deficient environments. 
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The primary function of PKR, encoded by EIF2AK2, is to inhibit protein synthesis in 

response to viral infection to prevent viral gene expression and aid the cellular response to 

infection (Eiermann et al., 2020). The expression of EIF2AK2 is induced by interferon and, in 

addition to its kinase domain, PKR contains two N-terminal double-stranded RNA-binding motifs 

(Donnelly et al., 2013; Mao et al., 2020; E. Meurs et al., 1990) (Figure 3). PKR is activated by 

dsRNA (Lemaire et al., 2008) that is often of viral origin, however, it can also be activated by 

endogenous dsRNA in the absence of viral infection by stimuli such as mitochondrial dsRNA (Y. 

Kim et al., 2018), dsRNA created by Alu repeats (W. M. Chu et al., 1998; Y. Kim et al., 2014), or the 

viral dsRNA mimic poly(I:C). In addition to dsRNA, the protein activator of PKR termed PACT 

binds to and directly activates PKR independently of dsRNA in response to a range of stressors 

including cytokines, arsenite, and ceramide (Marques et al., 2008). Heparin and osmotic shock are 

also reported activators of PKR (Anderson et al., 2011; George et al., 1996; Hovanessian & 

Galabru, 1987; Taniuchi et al., 2016) (Table 1). PKR is particularly important in the brain as 

Eif2ak2-deficient mice exhibit neurological abnormalities such as increased cognition and 

memory, and hyperactive brain activity causing seizures (P. J. Zhu et al., 2011). Therefore, PKR 

preserves cell health by reducing translation upon viral infection and promotes proper brain 

function. 
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Encoded by EIF2AK3, PERK is an ER transmembrane protein that functions in the unfolded 

protein response (UPR) (Pakos-Zebrucka et al., 2016). The C terminus of PERK faces the cytosol 

and includes its kinase domain, and the N terminus lies within the ER lumen (Donnelly et al., 

2013; Shi et al., 1998) (Figure 3). PERK is highly expressed in the pancreas (Shi et al., 1998) and is 

activated by ER stress as well as UV light (S. Wu et al., 2002), heat shock (Taniuchi et al., 2016), 

and osmotic shock (Taniuchi et al., 2016) (Table 1). Activation of PERK upon the accumulation of 

unfolded or misfolded proteins is thought to occur by the direct binding of dysfunctional 

proteins to its luminal domain (P. Wang et al., 2018) or by the dissociation of BiP, an ER 

chaperone that is associated with PERK in the absence of stress (Bertolotti et al., 2000; Carrara et 

al., 2015). PERK is required for cell survival in response to ER stress, highlighting its importance as 

an effector of the ISR. 

 

 GCN2 is encoded by EIF2AK4 and contains a pseudokinase domain, protein kinase 

domain, histidyl-tRNA synthetase-like domain, and ribosome-binding region (Donnelly et al., 

2013; Ramirez et al., 1991; S. A. Wek et al., 1995; S. Zhu et al., 1996; S. Zhu & Wek, 1998) (Figure 

3). While GCN2 is expressed broadly among tissues, its expression is particularly high in the brain 

and liver (Berlanga et al., 1999; Sood et al., 2000). Amino acid deprivation activates GCN2 

(Hinnebusch & Fink, 1983; R. C. Wek et al., 1989) via a mechanism that may occur by its sensing 

accumulated uncharged tRNAs (Dong et al., 2000; Lageix et al., 2015; H. Qiu et al., 2001; 
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Hongfang Qiu et al., 2002; Ramirez et al., 1992) or ribosome stalling and collisions (Heather P. 

Harding et al., 2019; Inglis et al., 2019; C. C.-C. Wu et al., 2020; Yan & Zaher, 2021). Thus, GCN2 is 

an important sensor of translation defects that serves as a link between translation elongation 

and initiation. In addition to limited amino acids, GCN2 can also be activated by UV irradiation 

(Deng et al., 2002; Taniuchi et al., 2016), hydrogen peroxide (Shenton et al., 2006; Taniuchi et al., 

2016), heat shock (Grousl et al., 2009; Taniuchi et al., 2016), and osmotic shock (Goossens et al., 

2001; Hans et al., 2020; Taniuchi et al., 2016) (Table 1). Gcn2-/- mice are hypersensitive to the 

depletion of essential amino acids, exhibiting impaired fetal development with reduced neonatal 

viability compared to wild-type mice (P. Zhang, McGrath, Reinert, et al., 2002). Thus, the function 

of GCN2 is important to restrict protein synthesis in conditions of limited nutrients. 

 

Figure 3. Diagrams depicting the protein domains of the integrated stress response protein 

kinases. HRI contains two heme-binding (HB) sites and two kinase domains (KD). PKR contains 

two N-terminal double-stranded RNA-binding domains (DSRBDs) and one KD. PERK contains a 

signal peptide (SP), a transmembrane domain (TM), and a cytoplasmically-located KD. GCN2 

contains a pseudokinase domain (PKD), a KD, a histidyl-tRNA synthetase-like domain (HisRS), and 

a ribosome-binding (RB) region. 
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Table 1. Characteristics of the integrated stress response kinases. 

Gene Kinase Activators/Stressors References 

EIF2AK1 HRI Heme deprivation, heat, osmotic shock, 

hydrogen peroxide, nitric oxide, arsenite 

treatment, 26S proteasome inhibition 

(Bruns & London, 

1965; Chefalo et al., 

1998; Han et al., 2001; 

Ill-Raga et al., 2015; 

Lu et al., 2001; 

McEwen et al., 2005; 

Pakos-Zebrucka et al., 

2016; Suragani et al., 

2012; Yerlikaya et al., 

2008; Zhan et al., 

2004) 

EIF2AK2 PKR Double-stranded RNA, PACT, heparin, 

osmotic shock 

(Anderson et al., 2011; 

W. M. Chu et al., 1998; 

Eiermann et al., 2020; 

George et al., 1996; 

Hovanessian & 

Galabru, 1987; Y. Kim 

et al., 2014, 2018; 

Lemaire et al., 2008; 

Marques et al., 2008; 

Taniuchi et al., 2016) 

EIF2AK3 PERK ER stress, UV light, heat shock, osmotic shock (Taniuchi et al., 2016; 

S. Wu et al., 2002) 

EIF2AK4 GCN2 Amino acid deprivation, UV light, hydrogen 

peroxide, heat shock, osmotic shock 

(Deng et al., 2002; 

Goossens et al., 2001; 

Grousl et al., 2009; 

Hans et al., 2020; 

Hinnebusch & Fink, 

1983; Shenton et al., 

2006; Taniuchi et al., 
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2016; R. C. Wek et al., 

1989) 

 

3. Ribonucleoprotein Granules and the Integrated Stress Response 

 

3.1 Stress Granules 

 

A microscopically visible hallmark of the ISR is an increase in the formation and/or size 

and abundance of cytoplasmic biomolecular condensates termed stress granules (Figure 4) and 

P-bodies that form through liquid-liquid phase separation. Stress granules consist primarily of 

translationally arrested mRNAs, RNA binding proteins, and translation factors (reviewed in (P. 

Ivanov et al., 2019; Protter & Parker, 2016)). They rapidly form following the inhibition of translation 

initiation by eIF2ɑ phosphorylation (N. Kedersha et al., 2000). Current models suggest that runoff of 

elongating ribosomes leaves mRNAs exposed to RNA binding proteins such as G3BP1/2 (Ras 

GTPase-activating protein-binding protein 1/2) and TIA-1. Multivalent RNA-RNA, RNA-protein 

and protein-protein interactions between low-complexity or intrinsically disordered protein 

domains then promote mRNP phase separation into stress granules (reviewed in (Hofmann et al., 

2021)).  
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Transcriptome analysis of purified stress granules cores has revealed that mRNAs from 

nearly all genes localize to stress granules, but that increased mRNA length and translation 

efficiency correlates with enrichment (Khong et al., 2017). Likewise, longer isoforms of the same 

gene are more likely to be recruited to granules during ER stress (Namkoong et al., 2018). 

Interestingly, mRNAs containing AU-rich elements (AREs) are also enriched in cytoplasmic 

granules during ER stress, heat-shock, and arsenite stress, as are proto-oncogenes in which AREs 

are often found (Namkoong et al., 2018). MRNAs localized to stress granules are largely non-

translating, and 60S ribosomal proteins are depleted from stress granules (Nancy Kedersha et al., 

2002; Moon et al., 2019). However, live-cell and single mRNA molecule imaging experiments 

indicate that polysome-associated mRNAs can dynamically interact with stress granules, but 

these events are relatively rare and the interactions are generally short-lived compared to non-

translating mRNAs (Mateju et al., 2020; Moon et al., 2019). Following the resolution of stress, 

mRNAs sequestered within stress granules are thought to resume translation, but interestingly, 

single-molecule experiments showed that translation from fluorescently labeled mRNA reporters 

occurred only once stress granules were fully disassembled (Moon et al., 2019). Thus, stress 

granules are primarily composed of translationally repressed RNAs thought to be assembled into 

pre-initiation complexes. 

 

https://paperpile.com/c/linHav/jqQZN
https://paperpile.com/c/linHav/gUD7E
https://paperpile.com/c/linHav/gUD7E
https://paperpile.com/c/linHav/COk8D+rkodD
https://paperpile.com/c/linHav/COk8D+rkodD
https://paperpile.com/c/linHav/rkodD+FjWwK
https://paperpile.com/c/linHav/rkodD


Despite the fact that the vast majority of translation is arrested during the ISR, only 

approximately 10-13% of cellular mRNA is targeted to stress granules (Khong et al., 2017; 

Namkoong et al., 2018). Furthermore, while virtually all mRNA transcripts expressed in the cell 

could be detected in stress granules at some level, only a small subset of genes have greater than 

50% of their mRNA molecules sequestered within stress granules (Khong et al., 2017). This is 

consistent with evidence that stress granules are not necessary for mRNA translational 

suppression, as this still occurs through ISR activation in genetically manipulated cells that cannot 

form stress granules (Nancy Kedersha et al., 2016). However, there is a large degree of 

heterogeneity with the extent to which mRNAs are recruited to stress granules (Khong et al., 

2017), and some mRNAs that are needed for promoting recovery from stress are mostly excluded 

from stress granules, as has been observed for HSP70 and HSP90 mRNAs following heat stress or 

arsenite stress (Moon et al., 2020; Stöhr et al., 2006)). Further, quantitative proteomics and 

genome-wide RNA-seq analysis demonstrated the transcripts encoding newly translated proteins 

during arsenite stress are depleted from stress granules (Baron et al., 2019). As such, by 

sequestering a portion of translationally repressed mRNAs, stress granules may facilitate the 

continued translation of selective mRNAs during the ISR. 

 

Although their cellular function is not fully established, disruption of stress granule 

biology is implicated in human disease. Mutations in stress granule resident RNA binding 
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proteins with low-complexity or intrinsically disordered domains such as TIA-1 (Mackenzie et al., 

2017), TDP-43 (TAR DNA-binding protein) (Van Deerlin et al., 2008), FUS (fused in sarcoma) 

(Vance et al., 2009), and hnRNPA2/B1 (heterogeneous nuclear ribonucleoprotein A2/B1) (H. J. Kim 

et al., 2013) cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Current 

models propose that these mutations alter stress granule dynamics and may help seed 

pathological protein inclusions that are a hallmark of these diseases (Wolozin & Ivanov, 2019).  

 

 

Figure 4. Polyadenylated RNA is localized to stress granules during arsenite stress. Human U-2 

OS cells stably expressing the stress granule protein GFP-G3BP1 (green) were stressed with 

sodium arsenite (0.5 mM) for 45 minutes. Fluorescence in situ hybridization was performed with 

oligo(dT)-Cy3 probes (red) to detect polyadenylated mRNAs, and nuclei were visualized with 

DAPI (scale bar 10 μM). Previously published in Moon et al., 2020 JCB. 

 

3.2 Processing Bodies  

 

Like stress granules, P-bodies are cytoplasmic RNP granules that form through liquid-

liquid phase separation. They are present in steady-state conditions in unstressed cells but, also 
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like stress granules, increase in size and abundance during cellular stress caused by nutrient 

deprivation, hypo- or hyper-osmolarity, and UV radiation (Teixeira et al., 2005). While there is 

considerable overlap in the protein components of both cytoplasmic granule types, P-bodies 

contain the machinery for both 5′-3′ and 3′-5′ exonucleolytic mRNA degradation, which is absent 

from stress granules (reviewed in (P. Ivanov et al., 2019; Luo et al., 2018)).  

 

Like stress granules, mRNA reporters interact with P-bodies in mammalian cells in either a 

highly transient or highly stable manner (Moon et al., 2019; Pitchiaya et al., 2019). Recent 

sequencing analysis of the mRNA content from fluorescence-activated particle sorted P-bodies 

indicate that about one-fifth of total cellular mRNAs localize to P-bodies and that P-body-

enriched transcripts are more poorly translated and have more variable poly(A) tail lengths, 

compared to total cellular mRNAs (Hubstenberger et al., 2017). Additionally, mRNA reporters that 

are translationally repressed via microRNA (miRNA) targeting are more likely to be sequestered 

within P-bodies than those that are not translationally repressed (Pitchiaya et al., 2019). These 

observations are consistent with data indicating that translation factors (with the exception of 

eIF4E, which is bound to its inhibitor 4E-T within P-bodies) and 40S ribosomal proteins, which are 

enriched in stress granules, are depleted from P-bodies (Hubstenberger et al., 2017; Matheny et 

al., 2019; Teixeira et al., 2005). Furthermore, although not necessary for their recruitment 

(Brengues & Parker, 2007), mRNAs localized to P-bodies are often deadenylated and PABP is 
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depleted within these structures in mammalian cells (Nancy Kedersha et al., 2005; Zheng et al., 

2008). While P-bodies are present in unstressed conditions when stress granules are absent, 

during the ISR the mRNA transcriptome of P-bodies shifts and becomes very similar to the 

transcriptome of stress granules (Matheny et al., 2019). Together, these findings strongly suggest 

that translation is a key determinant of mRNA localization to both stress granules and P-bodies. 

Thus, the ISR increases the pool of cellular mRNAs that can be recruited into P-bodies via the 

global suppression of translation.  

 

Three pieces of evidence suggest that mRNAs may be degraded within P-bodies. First, P-

bodies are enriched in components of the exonucleolytic degradation machinery. Second, decay 

intermediates of Xrn1-resistant mRNAs accumulate within P-bodies in yeast (Sheth & Parker, 

2003), and XRN1-resistant viral RNAs colocalize with P-bodies in human cells (Pijlman et al., 

2008). Third, yeast mutants lacking Xrn1 have enlarged P-bodies (Sheth & Parker, 2003). 

However, recent single molecule imaging studies have found that the signal from fluorescent-

protein-labeled PP7 and/or MS2-tagged mRNAs decay in the cytoplasm, and their decay 

intermediates do not colocalize with P-body markers (Horvathova et al., 2017; Tutucci et al., 

2018). This is consistent with RNA-seq experiments that failed to identify truncated, mRNA decay 

intermediates within P-bodies in human cells (Hubstenberger et al., 2017), although it is possible 

that such decay intermediates are degraded too rapidly in wild-type cells for their capture and 
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identification. Additionally, mRNAs localized to P-bodies can return to being actively translated 

(Brengues et al., 2005), and mRNA degradation still occurs in cells lacking P-bodies (Arribas-

Layton et al., 2016; Eulalio et al., 2007). Therefore, like stress granules, P-bodies appear to serve as 

reservoirs for poorly translated mRNAs, but the exact role they play in mRNA decay is still 

unclear. 

 

4. mRNA Degradation and the Integrated Stress Response 

 

4.1 Mechanisms of mRNA Degradation 

 

Cellular mRNA turnover is another important mechanism by which gene expression is 

regulated. The median mammalian mRNA has a half-life of 3.4 hours, but this ranges widely from 

less than an hour to more than a day (Tani et al., 2012). Many factors influence the rate at which 

an mRNA is degraded, including its cellular function (i.e., housekeeping genes are generally 

longer lived (Tani et al., 2012)), its degree of secondary structure (Mauger et al., 2019), the length 

of its 3′ UTR as well as the number of miRNA and protein binding sites (Spies et al., 2013), its rate 

of translation (as reduced translation is associated with more rapid decay (Presnyak et al., 2015)), 
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RNA modifications (reviewed in (Boo & Kim, 2020)), specific RNA motifs, and cellular conditions 

such as cellular stress, as will be discussed below.  

 

The bulk of mammalian mRNA decay occurs through either 5′-3′ or 3′-5′ exonucleolytic 

degradation (reviewed in (Mugridge et al., 2018)), with endonucleases contributing in specialized 

circumstances such as surveillance pathways occurring with ribosome-associated quality control 

(see Ribosome-Associated Quality Control and the Integrated Stress Response section). In both 

exonucleolytic pathways, deadenylation is the initial rate-limiting step and is carried out by either 

the PAN2-PAN3 or CCR4-NOT complexes (reviewed in (C.-Y. A. Chen & Shyu, 2011; Mugridge et 

al., 2018)). Degradation of an mRNA’s poly(A) tail excludes PABP, which both destabilizes the 

mRNA and suppresses its translation. In the 5′-3′ exonucleolytic decay pathway, once 

deadenylation is complete, the Dcp1-Dcp2 decapping complex is recruited to the mRNA through 

interactions either between its cofactor DD6X and the deadenylation complex or with its other 

cofactors that bind the shortened poly(A) tail (Y. Chen et al., 2014; Chowdhury et al., 2007; 

Mugridge et al., 2018). Decapped mRNAs become vulnerable to processive degradation by the 

5′-3′ exonuclease Xrn1 (Hsu & Stevens, 1993). 

 

3′-5′ exonucleolytic decay is mediated by the large, multi-protein RNA exosome complex 

(reviewed in (Łabno et al., 2016)). The RNA exosome has widespread roles in the processing and 
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degradation of both nuclear and cytoplasmic RNAs, with many target-specific cofactors (reviewed 

in (Kilchert, 2020)). For human cytoplasmic mRNA degradation, the core RNA exosome with the 

DIS3L catalytic subunit is recruited to the 3′ end of deadenylated or cleaved transcripts (Kilchert, 

2020; Łabno et al., 2016). For degradation of defective mRNAs first cleaved by endonucleases, the 

SKI complex is important for RNA exosome recruitment (van Hoof et al., 2002). For deadenylated 

ARE-containing mRNAs, ARE binding proteins play a role in exosome recruitment (C. Y. Chen et 

al., 2001). After near complete degradation, the scavenging decapping enzyme DCPS removes 

the 5′ cap from the remaining 5′ mRNA fragment (reviewed in (Milac et al., 2014)). 

 

4.2 RNA Stability During the Integrated Stress Response 

 

 Global RNA stability is highly regulated during acute stresses including those that activate 

the ISR. Changes in the localization and/or availability of specific RNA binding proteins that 

mediate mRNA stability and decay occur during stress and mediate regulated changes in mRNA 

stability. For example, short-lived transcripts containing ARE in their 3’ UTRs are stabilized upon 

heat stress (Laroia et al., 1999), proteasome inhibition stress (Laroia et al., 1999), and UV-C stress 

(W. Wang et al., 2000).  Reorganization of RNA-protein complexes may underlie ARE-containing 

mRNA stability during stress. For example, the RNA binding protein AUF1 (ARE/ poly(U)-

binding/degradation factor 1) destabilizes ARE-containing mRNAs (Gratacós & Brewer, 2010), 
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and AUF1 relocalization from the cytoplasm to the nucleus during heat stress or proteasome 

inhibition by MG-132 was associated with ARE-containing transcript stabilization in these 

contexts (Laroia et al., 1999). Additionally, the nuclear protein human antigen R (HuR) interacts 

with ARE-containing transcripts such as the mRNA encoding the cyclin-dependent kinase 

inhibitor p21 in the cytoplasm during UV-C stress, and genetic depletion experiments 

demonstrated HuR was required for p21 mRNA stabilization upon UV-C stress in mammalian 

cells (W. Wang et al., 2000). Relocalization of HuR from the nucleus to the cytoplasm was also 

observed when cells were exposed to other stressors including hydrogen peroxide (W. Wang et 

al., 2000). Further, zipcode binding protein 1 (ZBP1) localizes to stress granules and was required 

for the stabilization of specific mRNAs such as c-myc, and not others, during the ISR in response 

to heat and arsenate stress (Stöhr et al., 2006). In response to arsenite stress, changes in 

alternative mRNA polyadenylation are also associated with changes in mRNA stability. For 

example, binding of the cytotoxic granule-associated RNA binding protein TIA-1 to mRNAs with 

longer alternative 3’ UTRs is associated with their destabilization (Zheng et al., 2018). Therefore, 

regulated changes in the localization and binding targets of stabilizing and destabilizing mRNA 

binding proteins can alter the stability of specific classes of mRNAs during acute stress and 

remodel the transcriptome. 
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A second mechanism by which mRNA turnover is regulated during the ISR is via down-

regulation of the general RNA decay machinery. Short-lived mRNA reporters, and the transcripts 

of induced or constitutively expressed endogenous genes are stabilized upon UV-B and UV-C 

stresses (Blattner et al., 2000; Bollig et al., 2002; Gowrishankar et al., 2005; W. Wang et al., 2000; 

White et al., 1997), ER stress (Kawai et al., 2004), and arsenite stress (Horvathova et al., 2017) in 

mammalian cells. Global mRNA stabilization is also observed in baker’s yeast upon severe 

osmotic stress (Romero-Santacreu et al., 2009), glucose deprivation (Jona et al., 2000), and 

hyperosmotic glucose stress (Greatrix & van Vuuren, 2006). Intriguing evidence supports the idea 

that reduced deadenylation activity underlies global RNA stabilization in response to many acute 

stressors that activate the ISR. First, polyadenylated RNAs accumulate upon hyperosmotic 

glucose stress (Greatrix & van Vuuren, 2006) and deadenylation rates are reduced upon glucose 

starvation (Hilgers et al., 2006; Jona et al., 2000), potassium chloride stress, and heat stress 

(Hilgers et al., 2006) in yeast. Second, the rate of deadenylation of reporter mRNAs in mammalian 

cells is slowed during the response to arsenite stress (Yamagishi et al., 2014), hydrogen peroxide 

stress, sorbitol, and heat (Gowrishankar et al., 2006). These reports support the idea that this 

phenomenon is conserved and generalizable across the response to many acute stressors. Stress-

induced deadenylation suppression is not necessarily limited to those stress conditions that activate the 

ISR. Deadenylation is dramatically slowed during heat stress, which causes eIF2ɑ phosphorylation. 

However, deadenylation is also suppressed upon potassium chloride or glucose deprivation stresses, 

which do not cause eIF2ɑ phosphorylation (Ashe et al., 2000; Goossens et al., 2001) in baker’s yeast 
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(Hilgers et al., 2006). Thus, downregulation of the rate-limiting step of the major mRNA decay 

pathway is an evolutionarily conserved response to acute stress. 

 

Three pieces of evidence suggest the mechanism by which deadenylation and decay rates 

are slowed during acute stress is through down-regulation of the major RNA degradation 

machinery in the cell. First, genetic depletion of either the major deadenylase ccr4 to impair the 

activity of the Ccr4p/Pop2p/Notp complex, or the deadenylase pan2 to inhibit the Pan2p/Pan3p 

complex did not result in increased deadenylation rates of reporter mRNAs during osmotic stress 

in baker’s yeast (Hilgers et al., 2006). This observation suggests that the activities of both 

Ccr4p/Pop2p/Notp and Pan2p/Pan3p complexes are inhibited during acute stress. Second, the 

deadenylase Pan3 and the Caf1 deadenylase-interacting protein Tob (Hosoda et al., 2011) are 

degraded rapidly upon arsenite stress when the deadenylation of mRNA reporters is significantly 

delayed in human cells (Yamagishi et al., 2014). Thus, the selective degradation of key mRNA 

decay factors is likely an important mechanism by which deadenylation is downregulated during 

acute stress. Third, the 5’-3’ decay machinery may also be compromised during acute stress. 

Reporter mRNAs sensitive to 5’-3’ mediated degradation by Xrn1 are stabilized in yeast 

spheroplasts upon amino acid deprivation caused by 3-AT (3-Amino-1,2,4-triazole) (Benard, 

2004). Further, reporter mRNAs in yeast strains lacking the deadenylation factors pan2 and ccr4 

still display a 40% increase in half-life upon potassium chloride hyperosmotic stress (Hilgers et al., 
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2006). Of note, global mRNA stabilization by suppression of deadenylation is unlikely due to 

global suppression of translation. The suppression of deadenylation occurs prior to translation 

shutoff in UV-B stress (Gowrishankar et al., 2006). Additionally, hyperosmotic stress causes 

suppressed deadenylation in yeast in the presence or absence of cycloheximide, which traps 

mRNAs in polysomes (Hilgers et al., 2006). Finally, arsenite stress suppresses the degradation of 

reporter mRNAs in the presence or absence of HRI and phosphorylated eIF2ɑ (Yamagishi et al., 2014). 

Therefore, specific changes in the abundance and/or activities of major mRNA decay factors may 

drive global stabilization of polyadenylated mRNAs during acute stress. Such a regulatory 

mechanism could enable the cell to preserve the constitutively expressed transcriptome to re-

enter translation upon the resolution of stress. 

 

5. Ribosome-Associated Quality Control and the Integrated Stress Response 

 

 In addition to general turnover, cells have evolved specialized mRNA surveillance 

mechanisms to rapidly detect and degrade defective mRNAs through processes linked with the 

ribosome-associated quality control (RQC) pathway. By operating co-translationally, RQC helps 

guard against the production of miscoded or misfolded proteins in real time, before the faulty 

peptide is fully synthesized and released into the cell (reviewed in (Brandman & Hegde, 2016; 
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Simms et al., 2017)). Three mRNA surveillance pathways synergize with the RQC machinery to 

promote rapid degradation of faulty mRNA. MRNA defects detected by RQC include (1) 

premature termination codons (PTCs), often a result of mis-splicing, undergo nonsense-mediated 

decay (NMD) (Losson & Lacroute, 1979), (2) lack of a proper stop codon causes non-stop decay 

(NSD) (Frischmeyer et al., 2002; van Hoof et al., 2002), and (3) unresolvable RNA secondary 

structure (Doma & Parker, 2006), mRNA nucleotide damage (Simms et al., 2014; Yan et al., 2019), 

or mRNA truncation products (Meaux & Van Hoof, 2006) undergo no-go decay (NGD). The 

unifying consequence of each of these defects is ribosome stalling. In addition to mRNA defects, 

ribosome stalling can also be caused by insufficiencies in amino acid or tRNA availability.  

 

Despite being triggered by different types of defective mRNA or translation elongation 

defects, each RQC pathway accomplishes the same overall outcome - degradation of both the 

instigating mRNA and the nascent peptide - through the same general steps. First, the stalled 

ribosome is detected by the cell. In NGD, and potentially NSD, stalling results in ribosome 

collisions, which are sensed by the RQC-trigger complex (Matsuo et al., 2017). In NMD, ribosomes 

stalled at PTCs are recognized by up-frameshift proteins associated with downstream exon-

junction complexes (P. V. Ivanov et al., 2008; Kashima et al., 2006; Neu-Yilik et al., 2017; K. T. 

Powers et al., 2020).  
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Next, RQC specific factors mediate the release of the stalled ribosome and initiate 

degradation of the mRNA through its endonucleolytic cleavage (Doma & Parker, 2006). In NMD, 

SMG6 is the endonuclease responsible for mRNA cleavage (Eberle et al., 2009), whereas recent 

reports identified Cue2 as the endonuclease involved in NGD in yeast (D’Orazio et al., 2019) and 

its homolog NONU-1 as the endonuclease required for both NGD and NSD in Caenorhabditis 

elegans (Glover et al., 2020). MRNA degradation is completed by subsequent 5′-3′ and 3′-5′ 

exonucleolytic degradation of the resulting mRNA fragments by Xrn1 and the exosome, 

respectively (Doma & Parker, 2006). As for the nascent peptide, foundational genetics and 

structural studies in Saccharomyces cerevisiae revealed that it is typically targeted for 

degradation following ribosome release. Nuclear export mediator factor (NEMF) recruits its 

cofactor and E3 ligase Listerin (LTN1) to split the 60S ribosomal subunits and ubiquitinate the 

nascent chain (Bengtson & Joazeiro, 2010; Lyumkis et al., 2014). Lastly, the AAA+ ATPase VCP 

(valosin-containing protein, also known as p97) promotes the extraction of the nascent protein 

from the 60S ribosome and targets it to the proteasome or lysosome for degradation 

(Defenouillère et al., 2013; Verma et al., 2013).  

 

However, recent studies from our group and others applying single mRNA imaging 

approaches suggest that mRNA degradation may not always follow ribosome stalling in human 

cells. During acute cellular stress by arsenite or heat, inhibition of VCP prevents nascent peptide 
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and ribosome dissociation from a subset of constitutively expressed mRNAs through a pathway 

that also involves LTN1, NEMF, and the proteasome (Moon et al., 2020). This may suggest either 

the existence of feedback mechanisms that restricts ribosome-nascent protein-mRNA 

dissociation when downstream RQC factors are inhibited, or a fourth RQC pathway that 

specifically acts in response to ribosome stalling under certain stress conditions, in which LTN1, 

NEMF, VCP and the proteasome play a role prior to ribosome splitting.  Furthermore, nascent 

proteins accumulate on mRNA reporters encoding poly-lysine tracts, suggesting ribosome 

pileups, without causing a substantial reduction in mRNA abundance (Goldman et al., 2021). As 

such, mRNAs in human cells that are targeted by the RQC pathway may not necessarily be 

degraded (Goldman et al., 2021; Moon et al., 2020). These results suggest that during cellular 

stress the mRNA surveillance pathways may be uncoupled from the RQC pathway.  

 

The interplay between the ISR and RQC was further established in recent studies showing 

that widespread ribosome collisions can overwhelm the RQC system (C. C.-C. Wu et al., 2020). 

Such collisions are sensed by the kinase ZAKɑ, which triggers GCN2-mediated eIF2ɑ phosphorylation 

in human cells (C. C.-C. Wu et al., 2020). Multiple distinct cellular stressors are capable of causing 

global ribosome collisions, including amino acid starvation and treatment with intermediate 

concentrations of translation elongation inhibitors, which permits a subset of ribosomes to 

continue translating until colliding with paused ribosomes that are effectively targeted by the 
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inhibitors (C. C.-C. Wu et al., 2020). Additionally, environmental or chemical stressors that cause 

widespread mRNA damage can also induce widespread ribosome collisions. This is the case with 

UV irradiation, which results in the disproportionate stalling of ribosomes at codons containing 

adjacent pyrimidines (C. C.-C. Wu et al., 2020), presumably due to the formation of pyrimidine 

dimers (Jackle & Kalthoff, 1978). Furthermore, in yeast, chemical agents that cause mRNA alkylation 

or oxidation also cause eIF2ɑ phosphorylation via GCN2 (Yan & Zaher, 2021). As a downstream 

consequence of ISR activation, failure to resolve ribosome collisions triggers apoptosis, which 

emphasizes the importance of RQC to cellular fitness (C. C.-C. Wu et al., 2020).  

 

The nervous system appears to be particularly vulnerable to failures in RQC. Mutations or 

isoforms of genes encoding multiple RQC proteins, including LTN1 (J. Chu et al., 2009), NEMF 

(Martin et al., 2020), and VCP (Johnson et al., 2010; Watts et al., 2004), cause neurodegeneration. 

Moreover, mice with a mutation in a single tRNA gene develop severe neurodegeneration when 

GTPBP1 or GTPBP2 are also mutated (R. Ishimura et al., 2014; Ryuta Ishimura et al., 2016; Terrey 

et al., 2020). GTPBP1 and GTPBP2 are GTPases that share homology with HBS1L, a ribosome 

release factor required for NGD and NSD, and promote the resolution of stalled ribosomes 

caused by the tRNA insufficiency in these mice (R. Ishimura et al., 2014; Ryuta Ishimura et al., 

2016; Terrey et al., 2020). Prior to degeneration, the ISR is activated in the neurons of these mice 

through GCN2 (R. Ishimura et al., 2014; Ryuta Ishimura et al., 2016; Terrey et al., 2020). Thus, an 
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important area of future work will examine the role of the ISR in the increased vulnerability of 

neurons to disturbances in RQC. 

 

6. Genetic Diseases of the Integrated Stress Response 

 

Numerous rare genetic diseases are caused by mutations in the genes encoding at least 

seven of the ISR components described to date that drive the ISR (Tables 2, 3, 4 & 5). Alleles of 

the eIF2ɑ kinases HRI (EIF2AK1), PKR (EIF2AK2), PERK (EIF2AK3), and GCN2 (EIF2AK4) are 

associated with developmental syndromes and diseases that affect a variety of organ systems including 

the nervous, endocrine, circulatory, and skeletal system. Mutations in the constitutively expressed eIF2ɑ 

phosphatase regulatory subunit CReP (PPP1R15B) are associated with intellectual disability and 

diabetes, variants in the gamma subunit of the eIF2 complex cause an X-linked 

neurodevelopmental syndrome, and alleles of any of the five eIF2B genes are associated with the 

leukodystrophy Vanishing White Matter disease. This growing class of genetic disorders reveals 

the importance of the ISR in human development and health. 

 

 

 

6.1 Genetic Diseases of EIF2S3 (eIF2γ) 

 



 Mutations in EIF2S3, the gene that codes for eIF2γ of the eIF2 complex, cause the rare, X-

linked intellectual disability (XLID) MEHMO syndrome (OMIM #300148) (Skopkova et al., 2017) 

(Table 2). The acronym MEHMO represents the primary clinical symptoms of the syndrome - 

mental retardation, epileptic seizures, hypogonadism, hypogenitalism, microcephaly, and obesity. 

Individuals with MEHMO syndrome typically exhibit large ears and talipes and, in severe cases, 

are diagnosed with diabetes. As an X-linked recessive disorder, all reported cases of MEHMO 

syndrome have been males (Delozier-Blanchet et al., 1989; Leshinsky-Silver et al., 2002; Skopkova 

et al., 2017; Steinmüller et al., 1998). The symptoms of MEHMO syndrome were first described in 

two brothers in 1989 (Delozier-Blanchet et al., 1989). In 1998 following the investigation of a 

large three-generation family with five affected males, the syndrome was termed MEHMO, and 

the disease locus was determined to be Xp21.1-p22.13 (Steinmüller et al., 1998). It was recently 

determined by massively parallel sequencing of four families affected by MEHMO syndrome that 

causative mutations lie in EIF2S3 (Skopkova et al., 2017). The most prevalent mutation uncovered 

was a four base pair deletion that created a frameshift and premature stop codon 

(c.1394_1397delTCAA p.Ile465Serfs*4), and individuals with the mutation displayed the full range 

of severe MEHMO syndrome symptoms, often with diabetes. Several missense mutations in 

EIF2S3 (c.324T>A p.Ser108Arg, c.665T>C p.Ile222Thr, c.777T>G p.Ile259Met, and c.451G>C 

p.Val151Leu) have also been identified and linked to XLIDs with a subset of MEHMO syndrome 

symptoms and a range of severity (Borck et al., 2012; Stéphanie Moortgat et al., 2016; Skopkova 
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et al., 2017; Tarpey et al., 2009), including the recent report of three related males with mild 

intellectual disability, hypoglycemia, and hypopituitarism, specifically with deficient growth 

hormone and thyroid-stimulating hormone, caused by the substitution of a conserved proline to 

a serine (c.1294C>T p.Pro432Ser)  (Gregory et al., 2019). Interestingly, exome sequencing did not 

reveal mutations in the EIF2S3 coding regions or adjacent introns in three males from two 

families affected by MEHMO syndrome (Skopkova et al., 2017), indicating that MEHMO 

syndrome in these patients may be due to variants in a gene other than EIF2S3 (Delozier-

Blanchet et al., 1989; Leshinsky-Silver et al., 2002; Skopkova et al., 2017).  

 

Table 2. Disease-associated alleles of EIF2S3. 

Gene Alleles Disease/Syndrome Reference 

EIF2S3 
c.1394_1397delTCAA 
(p.Ile465SerfsTer4) 

MEHMO syndrome & X-linked 
intellectual disability 

(Stéphanie 

Moortgat et al., 

2016) 

EIF2S3 c.433A>G (p.Met145Val) MEHMO syndrome 

(Stephanie 

Moortgat et al., 

2021) 

EIF2S3 

c.665T>C (p.Ile222Thr); 
c.777T>G ( p.Ile259Met); 
c.451G>C (p.Val151Leu) X-linked intellectual disability 

(Borck et al., 2012; 

Stéphanie Moortgat 

et al., 2016; Tarpey 

et al., 2009) 

EIF2S3 c.1294C>T (p.Pro432Ser) 
X-linked hypopituitarism with glucose 
dysregulation 

(Gregory et al., 

2019) 
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 Studies have been conducted to determine how disease-associated variants of EIF2S3 

impact cell health and lead to the extreme symptoms of MEHMO syndrome. The frameshift 

mutation that generates a truncated protein (c.1394_1397delTCAA p.Ile465Serfs*4) is perhaps the 

most studied EIF2S3 variant to date (Skopkova et al., 2017; Young-Baird et al., 2020). The eIF2 

complex unites with GTP and Met-tRNAi to form the ternary complex and initiates translation at 

an AUG start codon. Work in yeast showed that cells expressing the frameshift mutation 

(c.1394_1397delTCAA p.Ile465Serfs*4) exhibited decreased translation start codon fidelity and 

increased expression of the ISR target gene GCN4 (ATF4 in mammals) (Skopkova et al., 2017). 

This work was expanded upon in patient-derived cells as it was demonstrated that frameshift 

mutants displayed increased protein levels of ATF4 and its target CHOP, as well as GADD34 

(Skopkova et al., 2017; Young-Baird et al., 2020). In addition, global translation and cell viability 

are reduced in patient-derived induced pluripotent stem cells (iPSCs) expressing the frameshift 

mutation (c.1394_1397delTCAA p.Ile465Serfs*4) (Young-Baird et al., 2020). Global translation 

suppression and expression of ATF4, DDIT3 (CHOP), and PPP1R15A (GADD34) are exacerbated in 

frameshift mutants treated with the ISR activator thapsigargin (Young-Baird et al., 2020) (Figure 

5A & B). Thus, the ISR is active in frameshift mutants in the absence of stress and is hyperactive 

in the presence of stress. Altogether, these findings are likely explained by the discovery that 

eIF2α and Met-tRNAi binding to the ternary complex is disrupted in frameshift mutants (Young-

Baird et al., 2020).  

https://paperpile.com/c/linHav/0DmXu+eY0Qr
https://paperpile.com/c/linHav/0DmXu
https://paperpile.com/c/linHav/0DmXu+eY0Qr
https://paperpile.com/c/linHav/eY0Qr
https://paperpile.com/c/linHav/eY0Qr
https://paperpile.com/c/linHav/eY0Qr
https://paperpile.com/c/linHav/eY0Qr


 

 

 

Figure 5. Diagram depicting the possible impacts of alleles of EIF2S3 and EIF2B1-5 associated 

with MEHMO syndrome and Vanishing White Matter (VWM) disease, respectively, on translation 

initiation and the ISR. (A) In wild-type cells, the guanine exchange activity of eIF2B ensures 

abundant ternary complex (TC) to enable translation initiation and suppress stress granule (SG) 

formation and stress-induced gene expression. Cells harboring EIF2S3 (eIF2γ) (B) and EIF2B1-5 
(eIF2Bɑ, β, γ, δ, ε) (C) mutations are predicted to impair TC formation and perturb translation initiation 
activity.  
 

The MEHMO syndrome-associated EIF2S3 missense mutation c.665T>C p.Ile222Thr is 

located in the GTP-binding domain of eIF2γ and has also been examined. Like the frameshift 

variant, the missense variant caused increased GCN4 expression and impaired translation start 

codon fidelity (Borck et al., 2012; Skopkova et al., 2017). In contrast to the frameshift variant, 

binding of eIF2β to eIF2γ is disrupted in the missense mutant (Borck et al., 2012). Consistent with 

disease severity, yeast expressing the missense variant associated with mild symptoms 

https://paperpile.com/c/linHav/rpk7w+0DmXu
https://paperpile.com/c/linHav/rpk7w


(c.1294C>T p.Pro432Ser) displayed only slightly elevated GCN4 expression and minimally 

defective translation start codon fidelity (Gregory et al., 2019). 

 

 Despite a significant amount of work, many questions remain surrounding how EIF2S3 

mutations lead to MEHMO syndrome. First, how do all of the reported EIF2S3 variants affect the 

function of eIF2γ and cell health? The frameshift variant c.1394_1397delTCAA p.Ile465Serfs*4 

disrupts the binding of eIF2α to eIF2γ (Young-Baird et al., 2020), while the missense variant 

c.665T>C p.Ile222Thr disrupts the binding of eIF2β to eIF2γ (Borck et al., 2012). Thus, it will be 

important to determine if the additional EIF2S3 missense variants affect interactions within the 

eIF2 complex and/or with other initiation factors. Second, what cell types are targeted by EIF2S3 

mutations? It is evident that MEHMO syndrome targets the central nervous system (Delozier-

Blanchet et al., 1989; Leshinsky-Silver et al., 2002; Skopkova et al., 2017; Steinmüller et al., 1998). 

Interestingly, iPSCs harboring the frameshift mutation demonstrate impaired neuronal 

differentiation (Young-Baird et al., 2020). However, various cell types support the proper function 

of the central nervous system. It will be interesting to determine if specific cell types besides 

neurons are impacted by alleles of EIF2S3 associated with MEHMO syndrome. Ultimately, it will 

be critical to establish animal models of MEHMO syndrome to examine the effects of disease-

associated variants and potential therapies in multicellular organisms. Intriguingly, knockdown of 

zebrafish eif2s3 mimicked some clinical symptoms of MEHMO syndrome including microcephaly 

https://paperpile.com/c/linHav/rQ8Jq
https://paperpile.com/c/linHav/eY0Qr
https://paperpile.com/c/linHav/rpk7w
https://paperpile.com/c/linHav/oCtfk+0DmXu+NotuP+xuGB8
https://paperpile.com/c/linHav/oCtfk+0DmXu+NotuP+xuGB8
https://paperpile.com/c/linHav/eY0Qr


suggesting that zebrafish may be an informative model organism (Stéphanie Moortgat et al., 

2016). 

 

6.2 Genetic Diseases of EIF2B1-5 (eIF2B) 

 

Vanishing White Matter disease (VWM) or childhood ataxia with central nervous system 

hypomyelination (OMIM #603896) is a chronic progressive leukodystrophy that is caused by 

autosomal recessive mutations in any of the genes that encode the five eIF2B subunits (EIF2B1, 

EIF2B2, EIF2B3, EIF2B4, EIF2B5) (Bugiani et al., 2018; Leegwater et al., 2001; Marjo S. van der 

Knaap et al., 2002). Over 180 different mutations associated with VWM and the systemic eIF2B-

related disorders have been reported to date (Table 3). Missense alleles of EIF2B5 are the most 

frequently observed (Pavitt & Proud, 2009). The symptoms of VWM include progressive and 

episodic hypomyelination, white matter loss, cerebellar ataxia, spasticity, cataracts, and optic 

atrophy, and is invariably fatal (Hanefeld et al., 1993; Schiffmann et al., 1994; M. S. van der Knaap 

et al., 1997). Importantly, neurologic deterioration is often triggered by febrile infection, physical 

trauma to the head, or severe fright responses (Hanefeld et al., 1993; Schiffmann et al., 1994; M. 

S. van der Knaap et al., 1997). Because phosphorylated eIF2ɑ is elevated in models of traumatic brain 

injury (Chou et al., 2017) and in response to pro-inflammatory cytokines such as J2 prostaglandins 

(Tauber & Parker, 2019; Weber et al., 2004), one possibility is that defects in the ISR underlie such 

https://paperpile.com/c/linHav/bARby
https://paperpile.com/c/linHav/bARby
https://paperpile.com/c/linHav/NNf9w+6ISCs+jkDwr
https://paperpile.com/c/linHav/NNf9w+6ISCs+jkDwr
https://paperpile.com/c/linHav/3gnLu
https://paperpile.com/c/linHav/Q7pvs+Igr33+wPR8F
https://paperpile.com/c/linHav/Q7pvs+Igr33+wPR8F
https://paperpile.com/c/linHav/Q7pvs+Igr33+wPR8F
https://paperpile.com/c/linHav/Q7pvs+Igr33+wPR8F
https://paperpile.com/c/linHav/G2hvV
https://paperpile.com/c/linHav/ivIFV+ZlS6W


episodes of neurologic deterioration. Additionally, females with VWM may also exhibit ovarian 

failure (Bugiani et al., 2018; Fogli et al., 2003; Mathis et al., 2008). VWM affects infants, children, 

adolescents, and adults, however, patients with late onset VWM experience milder symptoms 

than patients with early onset VWM (Bugiani et al., 2018; M. S. van der Knaap et al., 1998). In the 

first study that related variants in the EIF2B genes with VWM, 16 distinct mutations in EIF2B5 and 

six distinct mutations in EIF2B2 were identified, and the majority were missense mutations 

(Leegwater et al., 2001). Since the initial report, a plethora of mutations, largely missense, 

associated with VWM in all five EIF2B genes have been described (Marjo S. van der Knaap et al., 

2002). Mutations in EIF2B affect eIF2B in a number of ways and have been demonstrated to alter 

its GEF activity, modify binding to its substrate eIF2, and impair its assembly and stability (Leng et 

al., 2011; R. Liu et al., 2011; W. Li et al., 2004; Matsukawa et al., 2011; X. Wang et al., 2012; 

Wortham & Proud, 2015) (Figure 5A & C). 

 

Table 3. Disease-associated alleles of EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5.  

Gene Alleles Disease/Syndrome Reference 

EIF2B1 

c.131G>A (p.Gly44Asp); c.230G>A 
(p.Ser77Asn); c.101T>G (p.Leu34Trp); 
c.915_916del (p.*306Thrext*12);  

Neonatal/early-onset 
diabetes and episodic 
hepatic dysfunction 

(De Franco et al., 

2020) 

EIF2B1 c.131G>T (p.Gly44Val) 
Neonatal/early-onset 
diabetes 

(De Franco et al., 

2020) 

https://paperpile.com/c/linHav/jkDwr+zCndw+cJe1S
https://paperpile.com/c/linHav/jkDwr+66PSP
https://paperpile.com/c/linHav/NNf9w
https://paperpile.com/c/linHav/6ISCs
https://paperpile.com/c/linHav/6ISCs
https://paperpile.com/c/linHav/QcAqy+xlvsf+2ETst+pBKWg+TUXr0+QMLRW
https://paperpile.com/c/linHav/QcAqy+xlvsf+2ETst+pBKWg+TUXr0+QMLRW
https://paperpile.com/c/linHav/QcAqy+xlvsf+2ETst+pBKWg+TUXr0+QMLRW
https://paperpile.com/c/linHav/VaLNt
https://paperpile.com/c/linHav/VaLNt
https://paperpile.com/c/linHav/VaLNt
https://paperpile.com/c/linHav/VaLNt


EIF2B1 

c.328A>G (p.Lys110Glu); c.323_325delGAA 
(p.108delArg); c.715T>G (Phe239Val); 
c.ivs2+20G>A (p.S84ins22aa*); c.610_612del 
(p.G204del); c.547G>T (p.Val183Phe ); 
c.622A>T (p.Asn208Tyr ); c.824A>G 
(p.Tyr275Cys ); c.833C>G (p.Pro278Arg)  

Vanishing White 
Matter disease 

(Güngör et al., 

2020; Pavitt & 

Proud, 2009; 

Shimada et al., 

2015; H. Zhang et 

al., 2015) 

EIF2B1 c.146T>G (p.Leu49Arg) 

Vanishing White 
Matter disease and 
diabetic ketoacidosis 

(Alamri et al., 

2016) 

EIF2B2 

c.375T>A (p.Val85Glu); c.682A>G 
(p.Arg228Gly); c.995C>T (p.Ala332Val); 
c.529_543del (p.177_181del ); c.547C>T 
(p.Arg183Ter); c.548del (p.Arg183fsTer); 
c.607_612delinsTG (p.Met203fsTer); c.910G>T 
(p.Glu304Ter); c.512C>T (p.Ser171Phe); 
c.586C>T (p.Pro196Ser); c.599G>C 
(p.Gly200Ala); c.599G>T (p.Gly200Val); 
c.638A>G (p.Glu213Gly); c.653C>T 
(p.Thr218Ile); c.818A>G (p.Lys273Arg); 
c.871C>T (p.Pro291Ser); c.947T>A 
(p.Val316Asp); c.986G>T (p.Gly329Val) 

Vanishing White 
Matter disease 

(Matsukawa et al., 

2011; Pavitt & 

Proud, 2009; 

Shimada et al., 

2015; H. Zhang et 

al., 2015) 

EIF2B2 
c.817A>C (p.Lys273Gln); c.939_948del 
(p.Asp314ProfsTer23) 

Vanishing White 
Matter disease with 
hepatomegaly and 
hypertriglyceridemia (Unal et al., 2013) 

EIF2B2 c.496A>G (p.Met166Val) Ovarioleukodystrophy 

(C. Wei et al., 

2019) 

EIF2B2 c.677T>A (p.Met226Lys) 

Vanishing White 
Matter disease & 
eIF2B-related 
multisystem disorder 

(J. S. Lee et al., 

2017) 

EIF2B3 

c.272G>A (p.Arg91His); c.1270T>G 
(pCys424Gly); c.80T>A (p.Leu27Gln); c.C590T 
(p.Thr197Met); c.706C>G (p.Gln236Glu); 
c.503T>C (p.Leu168Pro); c.935G>A 
(p.Arg312Gln); c.1106_1113del 
(p.Ser369Serfs*13); c.965C>G (p.Ala322Gly); 
c.1193_1194del (p.Val398fs); c.32G>T 
(p.Gly11Val); c.136G>A (p.Val46Ile); c.140G>A 
(p.Gly47Glu); c.260C>T (p.Ala87Val); c.407A>C 
(p.Gln136Pro); c.674G>A (p.Arg225Gln); 
c.687T>T (p.Ile229Met); c.1023T>G 
(p.His341Gln); c.1037T>C (p.Ile346Thr); 
c.1118C>T (p.Ser373Leu); c.1124T>G 
(p.Ile375Ser) 

Vanishing White 
Matter disease 

(Gowda et al., 

2017; Hyun et al., 

2019; Khorrami et 

al., 2021; La Piana 

et al., 2012; Y.-R. 

Lee et al., 2021; 

Matsukawa et al., 

2011; Pavitt & 

Proud, 2009; H. 

Zhang et al., 

2015) 

https://paperpile.com/c/linHav/DEvj+9Ue0+ww1v+3gnLu
https://paperpile.com/c/linHav/DEvj+9Ue0+ww1v+3gnLu
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https://paperpile.com/c/linHav/DEvj+9Ue0+ww1v+3gnLu
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https://paperpile.com/c/linHav/pBKWg+ww1v+DEvj+3gnLu
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https://paperpile.com/c/linHav/pBKWg+ww1v+DEvj+3gnLu
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https://paperpile.com/c/linHav/7tch
https://paperpile.com/c/linHav/7tch
https://paperpile.com/c/linHav/Upc0
https://paperpile.com/c/linHav/Upc0
https://paperpile.com/c/linHav/cJQv+sZv2+pBKWg+3Bv4+xCCn+evgs+DEvj+3gnLu
https://paperpile.com/c/linHav/cJQv+sZv2+pBKWg+3Bv4+xCCn+evgs+DEvj+3gnLu
https://paperpile.com/c/linHav/cJQv+sZv2+pBKWg+3Bv4+xCCn+evgs+DEvj+3gnLu
https://paperpile.com/c/linHav/cJQv+sZv2+pBKWg+3Bv4+xCCn+evgs+DEvj+3gnLu
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https://paperpile.com/c/linHav/cJQv+sZv2+pBKWg+3Bv4+xCCn+evgs+DEvj+3gnLu
https://paperpile.com/c/linHav/cJQv+sZv2+pBKWg+3Bv4+xCCn+evgs+DEvj+3gnLu
https://paperpile.com/c/linHav/cJQv+sZv2+pBKWg+3Bv4+xCCn+evgs+DEvj+3gnLu
https://paperpile.com/c/linHav/cJQv+sZv2+pBKWg+3Bv4+xCCn+evgs+DEvj+3gnLu
https://paperpile.com/c/linHav/cJQv+sZv2+pBKWg+3Bv4+xCCn+evgs+DEvj+3gnLu
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EIF2B4 

c.1090C>T (p.Arg364Trp); c.691G>A 
(p.Gly231Ser); c.1382A>G (p.Tyr461Cys); 
c.1565C>T (p.Thr522Met); c.1306T>A 
(p.Ser416Thr); c.1397G>A (p.Arg446His); 
c.407A>G (p.Gln136Arg); c.556T>A 
(p.Tyr186Asn); c.617T>C (p.Met206Thr); 
c.614C>T (p.Pro205Leu); c.952A>G 
(p.Ile318Val); c.625C>T (p.Arg209Ter); 
c.ivs11G>A (p.Glu397_ins_11aa ); c.877_879del 
(p.Glu293del); c.ivs12+1insT (splice mutation); 
c.626G>A (p.Arg209Gln); c.702C>T 
(p.Alal228Val); c.728C>T (p.Pro243Leu); 
c.806T>G (p.Leu269Arg); c.1070G>A 
(p.Arg357Gln); c.1069C>T (p.Arg357Trp); 
c.1091G>A (p.Arg364Gln); c.1120C>T 
(p.Arg374Cys); c.1172C>A (p.Arg391Asp); 
c.1393T>C (p.Cys465Arg); c.1399C>T 
(p.Arg467Trp); c.1447C>T (p.Arg483Trp); 
c.1465T>C (p.Tyr489His) 

Vanishing White 
Matter disease 

(Hettiaracchchi et 

al., 2018; 

Kanbayashi et al., 

2015; Pavitt & 

Proud, 2009; 

Shimada et al., 

2015; Turón-

Viñas et al., 2014; 

H. Zhang et al., 

2015) 

EIF2B4 
c.1301T>C (p.Leu434Pro); c.628G>T 
(p.Gly210Cys) 

Vanishing White 
Matter disease and 
hyperinsulinemic 
hypoglycemia 

(Bursle et al., 

2020) 

EIF2B4 c.1117C>T (p.Arg373Cys) Ovarioleukodystrophy 

(Herrera-García et 

al., 2018) 
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EIF2B5 

c.915G>A (p.Met305Ile); c.1518delA 
(p.Glu506fsTer52); c.947A>G (p.Arg316Gln); 
c.1352T>C (p.Leu451Ser); 784G>A 
(p.Asp262Asn); c.1223T>C (p.Ile408Thr); c.1827-
1838del (p.Ser610–D613del); c.1154T>C 
(p.Ile385Thr); c.915G>A (p.Met305Ile); c.808 
G>C (p.Asp270His); c.314A>G (p.His105Arg); 
c.877C>T (p.Ala293Ser); c.1688G>A 
(p.Arg563Gln); c.1694delAins45 
(p.Lys565IlefsTer38); c.395G>C (p.Gly132Ala); 
c.449T>G (p.Leu150Arg); c.1355A>G 
(p.His452Arg); 
c.453_454del (p.Tyr152fsTer); c.766G>A 
(p.256_281del); c.892T>delinsACA (p.Phe264fs); 
c.805C>T (p.Arg269Ter); c.1264C>T 
(p.Arg422Ter); c.1444G>ins17 (p.Gly481fsTer); 
c.1827_1838del (p.610_613del); c.1884G>A 
(p.Trp628Ter); c.1997_2017del (p.665_671del); 
c.C47A (p.Ala16Asp); c.G161C (p.Arg54Pro); 
c.T166G (p.Phe56Val); c.T167G (p.Phe56Cys); 
c.A185T (p.Asp62Val); c.T203C (p.Leu68Ser); 
c.T218G (p.Val73Gly); c.G220A (p.Ala74Thr); 
c.A233C (p.Tyr78Ser); c.C236T (p.Thr79Ile); 
c.G241A (p.Glu81Lys); c.A271G (p.Thr91Ala); 
c.A318T (p.Leu106Phe); c.T331C (p.Trp111Arg); 
c.C337T (p.Arg113Cys); c.G338A (p.Arg113His); 
c.T380C (p.Leu127Pro); c.C406T (p.Arg136Cys); 
c.G407A (p.Arg136His); c.C468G (p.Ile156Met); 
c.C545T (p.Thr182Met); c.C583T (p.Arg195Cys); 
c.G584A (p.Arg195His); c.G592A (p.Glu198Lys); 
c.C758A (p.Ser253Tyr); c.C805G (p.Arg269Gly); 
c.G806A (p.Arg269Gln); c.G806T (p.Arg269Leu); 
c.G895A (p.Arg299His); c.A911C (p.His304Pro); 
c.G925C (p.Val309Leu); c.G929T 
(p.Cys310Phe); c.A935G (p.Asp312Gly); 
c.C943G (p.Arg315Gly); c.G944A (p.Arg315His); 
c.G952A (p.Val318Ile); c.C967T (p.Pro323Ser); 
c.T1003C (p.Cys335Arg); c.G1004C 
(p.Cys335Ser); c.C1015T (p.Arg339Trp); 
c.G1016C (p.Arg339Pro); c.G1016A 
(p.Arg339Gln); c.A1028G (p.Tyr343Cys); 
c.A1126G (p.Asn376Asp); c.A1153G 
(p.Ile385Val); c.G1157T (p.Gly386Val); 
c.A1160G (p.Asp387Gly); c.C1208T 
(p.Ala403Val); c.A1244G (p.Asp415Gly); 
c.T1274G (p.Leu425Arg); c.C1280T 
(p.Pro427Leu); c.T1289C (p.Val430Ala); 
c.C1340T (p.Ser447Leu); c.C1360T 
(p.Pro454Ser); c.G1459A (p.Glu487Lys); 
cA1484G (p.Tyr495Cys); c.C1810T 
(p.Pro604Ser); c.T1882C (p.Trp828Arg); 
c.T1946C (p.Ile649Thr); c.G1948A (p.Glu650Lys) 

Vanishing White 
Matter disease 

(Alías Hernández 

et al., 2013; 

Bektaş et al., 

2018; Matsukawa 

et al., 2011; Pavitt 

& Proud, 2009; 

Pena et al., 2018; 

Sharma et al., 

2011; Shimada et 

al., 2015; Takano 

et al., 2015; 

Turón-Viñas et 

al., 2014; Woody 

et al., 2015; Y. Wu 

et al., 2009; H. 

Zhang et al., 

2015) 

EIF2B5 

c.896G>A (p.Arg299His); c.638A>G 
(p.Glu213Gly); c.818A>G (p.Lys273His); 
c.1448A>G (p.Tyr483Cys); c.641A>G 
(p.His214Arg); c.805C>T (p.Arg269Ter); 

Adult-onset eIF2B-
related disorder 

(Labauge et al., 

2009) 
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c.743A>T (p.His248Leu) 

EIF2B5 
c.725A>G (p.Tyr242Cys); c.1156+13G>A (Splice 
mutation) Ovarioleukodystrophy 

(Rodríguez-

Palmero et al., 

2020) 

 

 As the GEF for eIF2, eIF2B promotes the exchange of GDP for GTP to permit translation 

initiation. Thus, mutations that reduce the function of eIF2B would be expected to decrease 

global translation. Unexpectedly, cells with EIF2B mutations display baseline protein synthesis 

levels similar to wild-type cells (Kantor et al., 2005; Moon & Parker, 2018a; Sekine et al., 2016; van 

Kollenburg et al., 2006; Wong et al., 2018). However, upon activation of the ISR, global 

translation, which is normally suppressed during the ISR, is hyper-suppressed in EIF2B mutants 

(Moon & Parker, 2018a; Sekine et al., 2016; Wong et al., 2018). Moreover, VWM patient-derived 

EIF2B2 mutant lymphoblasts exhibit prolonged eIF2α phosphorylation and global translation 

repression, as well as delayed GADD34 expression, which is consistent with delayed global 

translation restoration due to extended eIF2α phosphorylation ((Moon & Parker, 2018a)). As a 

result, EIF2B2 mutants are vulnerable to ER stress (Moon & Parker, 2018a). One consequence of 

such a delay in the dephosphorylation of p-eIF2α may be that cells experiencing acute stress may 

enter into a prolonged, chronically stressed state. In support of this idea, VWM mouse models 

and VWM patient-derived brain tissue also exhibit defects in the ISR. Specifically, in the absence 

of stress, the expression of ATF4 and its targets are increased and the levels of p-eIF2α are 
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decreased in these systems (Abbink et al., 2019). It is interesting to note that VWM-associated 

mutations do not consistently impact stress-induced RNP granules in the absence of gcn2 (the 

only eIF2 kinase in yeast) in yeast models, but P-bodies were elevated in EIF2B2 mutant 

lymphoblasts derived from patients with VWM and in several yeast strains expressing analogous 

EIF2B2 and EIF2B5 mutations to those associated with VWM in unstressed conditions (Moon & 

Parker, 2018b). A low level of translationally repressed mRNAs could contribute to elevated P-

body formation in these contexts. Thus, partial loss of eIF2B function may specifically impact the 

ability of the cell to respond to acute stress rapidly and reversibly. 

 

 An important outstanding question is how specific mutations confer the wide range of 

phenotypes in terms of disease severity and tissue specificity of eIF2B-related multisystem 

disorders that can often be categorized as VWM.  While it may be predicted that disease severity 

correlates with the degree to which the causative EIF2B mutation alters the function of eIF2B, this 

does not always seem to be the case. For instance, some EIF2B mutations that are linked to 

severe VWM do not affect the GEF activity or assembly of eIF2B (R. Liu et al., 2011). Further, a 

recent study demonstrated that, while severe phenotype-associated mutations generally 

localized to regions of eIF2B predicted to significantly impact its function, and mild phenotype-

associated mutations generally localized to regions of eIF2B predicted to minimally impact its 

function, this was not true for all cases (Slynko et al., 2021). Lastly, phenotypic variability has been 
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observed among family members carrying the same VWM-associated EIF2B variant (Bugiani et 

al., 2018). Consistent with the neurological symptoms associated with VWM, astrocytes and 

oligodendrocytes are the dominant cell type targeted by the disease (Bugiani et al., 2011, 2013; 

Dietrich et al., 2005; Dooves et al., 2016). Yet, females affected by VWM frequently experience 

ovarian failure. Additionally, mutations in EIF2B1 have been linked to permanent neonatal 

diabetes and diabetic ketoacidosis (Alamri et al., 2016; De Franco et al., 2020). Insulin translation 

is highly regulated to allow rapid up-regulation of insulin protein production in response to 

glucose (Vasiljević et al., 2020), suggesting the possibility that reduced eIF2B function contributes 

to diabetes by altering the dynamic biosynthesis of insulin. Thus, an important avenue of future 

research should investigate the molecular mechanisms by which mutations in essential 

translation factors such as the EIF2B genes confer tissue-specific defects. Going forward, it will be 

informative to investigate the ISR in the context of additional EIF2B mutations. It may reveal a 

possible relationship between the degree to which the ISR is impacted and the phenotypic 

severity of a VWM-associated EIF2B mutation.  

 

6.3 Genetic Diseases of PPP1R15B (CReP) 

 

 Mutations in PPP1R15B, the gene that encodes CReP, lead to microcephaly, short stature, 

and impaired glucose metabolism 2 (MSSGM2, OMIM #616817) (Table 4). In 2015, two separate 
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groups identified a homozygous missense variant in PPP1R15B (c.1972G>A p.Arg658Cys)  that 

affects the arginine at position 658 of CReP (Abdulkarim et al., 2015; Kernohan et al., 2015) which 

is well conserved and resides in the C-terminal region of the protein where it interacts with the 

phosphatase PP1 (Jousse et al., 2003). Individuals with the arginine to cysteine substitution 

exhibited microcephaly, short stature, and intellectual disability (Abdulkarim et al., 2015; 

Kernohan et al., 2015). Some patients were also diagnosed with early-onset diabetes (Abdulkarim 

et al., 2015) or presented decreased brainstem and cord volume and delayed myelination 

(Kernohan et al., 2015). The missense mutation caused reduced association of CReP with PP1 and 

impaired dephosphorylation of p-eIF2α (Abdulkarim et al., 2015; Kernohan et al., 2015). Rat beta 

cells with PPP1R15B knockdown displayed decreased total insulin levels and elevated baseline 

insulin secretion, suggesting that glucose metabolism is dysregulated in the absence of 

PPP1R15B (Abdulkarim et al., 2015). In addition to the missense variant, heterozygous compound 

mutations in PPP1R15B (c.63G>A p.Trp21* and c.674delC p.Pro225LeufsX10) were described in 

two female siblings and are predicted to generate extremely truncated CReP proteins that lack 

the PP1-interacting domain. The patients harboring the variants primarily suffered from infantile 

cirrhosis and, like those expressing the missense variants, also displayed microcephaly, short 

stature, and intellectual disability. Patient-derived liver cells exhibited increased eIF2α and p-

eIF2α protein levels (Mohammad et al., 2016). Thus, elevated p-eIF2α suggests one consequence 
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of PPP1R15B alleles associated with these syndromes is either hyper-activation of the ISR and/or 

chronic activation of the ISR without resolution (Figure 6A & B).  

 

Table 4. Disease-associated alleles of PPP1R15B. 

Gene Alleles Disease/Syndrome Reference 

PPP1R15B c.1972G>A (p.Arg658Cys) 

Microcephaly, short stature, 

and intellectual disability 

(Abdulkarim et al., 

2015; Kernohan et 

al., 2015) 

PPP1R15B 

c.63G>A (p.Trp21Ter); 

c.674delC (p.Pro225LeufsX10)  

Infantile cirrhosis, growth 

impairment, and 

neurodevelopmental 

anomalies  

(Mohammad et al., 

2016) 

 

 Further studies are required to understand the consequences of the reported PPP1R15B 

mutations on the ISR and the diverse phenotypes associated with these syndromes. It is 

interesting that the same amino acid substitution in two sets of siblings is associated with 

diabetes in one set of siblings, but not the other. While this could be due to differences in genetic 

backgrounds or environments between the families, it will be important to examine the cell-type 

specific impacts of PPP1R15B alleles to understand how defects in CReP perturb human health 

and development. 
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Figure 6. Diagram representing the predicted impacts of disease-associated alleles of the CReP 

gene PPP1R15B and the eIF2ɑ kinase genes on the ISR. (A) Wild-type cells undergo a normal ISR upon 

stress that is resolved with GADD34 induction. (B) Cells harboring mutations in PPP1R15B encoding 
CReP are predicted to reduce p-eIF2ɑ dephosphorylation in unstressed cells. (C) Loss of eIF2ɑ kinase 
activity due to disease-associated alleles of the genes encoding HRI (EIF2AK1), PKR (EIF2AK2), PERK 

(EIF2AK3) or GCN2 (EIF2AK4) are predicted to reduce eIF2ɑ phosphorylation upon stress.  

 

 

6.4 Genetic Diseases of EIF2AK1 (HRI) 

 

 A heterozygous de novo missense variant in EIF2AK1, the gene that encodes HRI, is 

associated with Leukoencephalopathy, Motor Delay, Spasticity, and Dysarthria (LEMSPAD) 

syndrome (OMIM #618878) (Table 5). The variant (c.1342A>G p.Ile448Val) was identified by trio 

exome sequencing and is located in the second kinase domain of HRI. The patient, a six-year-old 

female, presented numerous symptoms including motor developmental delay, white matter 

abnormalities, speech disorder, and attention deficit hyperactivity disorder. 293T cells expressing 



the missense variant displayed reduced baseline levels of p-eIF2α indicating that the mutation is 

loss of function and compromises the kinase activity of HRI (Mao et al., 2020) (Figure 6A & C).  

 

Beyond reduced eIF2α phosphorylation in unstressed conditions, it is unclear how the 

c.1342A>G p.Ile448Val mutation impacts the ISR. Because the mutation appears to diminish the 

function of HRI, it is expected that the ISR will fail to be activated in the presence of HRI-

responsive stressors such as mitochondrial stress (Guo et al., 2020). It is also likely that mutant 

cells will be more sensitive to activators of HRI and may exhibit increased cell death. As with 

other genetic diseases of the translation and ISR machinery, it will be critical to examine the 

impact of this missense variant on the cell types primarily affected by LEMSPAD syndrome, 

including central nervous system cells. Additional cases of LEMSPAD syndrome will need to be 

reported to fully understand the spectrum of symptoms and systems targeted by EIF2AK1 

mutations. 

 

6.5 Genetic Diseases of EIF2AK2 (PKR) 

 

 Heterozygous de novo missense variants in EIF2AK2, the gene that encodes PKR, are 

associated with the neurodevelopmental disorder Leukoencephalopathy, Developmental Delay, 

and Episodic Neurologic Regression (LEUDEN) syndrome (OMIM #618877) (Calame et al., 2021; 
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Mao et al., 2020) (Table 5). The primary symptoms of LEUDEN syndrome include developmental 

delay, white matter alterations, hypomyelination, seizures, and neurologic regression following 

febrile illness (Calame et al., 2021; Mao et al., 2020). LEUDEN syndrome is rare - there are only 10 

reported cases to date corresponding to eight different missense variants that largely localize to 

the double-stranded RNA binding motifs and kinase domain of PKR (Mao et al., 2020). Three 

additional homozygous, heterozygous, or heterozygous de novo EIF2AK2 missense mutations are 

also linked to early-onset generalized dystonia (Kuipers et al., 2021), a neurological disorder 

characterized by abnormal movements due to involuntary muscle contractions (Balint et al., 

2018). In addition to dystonia, a subset of patients displayed neurological symptoms reminiscent 

of LEUDEN syndrome such as developmental delay, seizures, and dystonia onset or neurologic 

regression with febrile illness (Kuipers et al., 2021).  

  

The molecular mechanisms behind a subset of the EIF2AK2 variants linked to LEUDEN 

syndrome and early-onset generalized dystonia were examined. LEUDEN syndrome patient-

derived fibroblasts, specifically those bearing the c.31A>C p.Met11Leu, c.398A>T p.Tyr133Phe, or 

c.1382C>G p.Ser461Cys mutation, presented decreased baseline protein levels of p-eIF2α and 

ATF4. In response to long-term poly(I:C) treatment, the c.31A>C p.Met11Leu and c.398A>T 

p.Tyr133Phe mutants failed to exhibit the expected increase in eIF2α phosphorylation (Mao et al., 

2020). These results indicate that the mutations associated with LEUDEN syndrome are loss of 
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function. In intriguing contrast with LEUDEN syndrome, the early-onset generalized dystonia 

variants appear to be gain of function. Patient-derived fibroblasts expressing the c.95A>C 

p.Asn32Thr or c.388G>A p.Gly130Arg variant displayed increased PKR and eIF2α phosphorylation 

upon extended poly(I:C) treatment compared to control wild-type controls (Kuipers et al., 2021). 

It is interesting to note that p.Met11Leu (LEUDEN syndrome) and p.Asn32Thr (dystonia) both 

localize to the first double-stranded RNA binding motif of PKR, yet show opposite phenotypes, 

and p.Tyr133Phe (LEUDEN syndrome) and p.Gly130Arg (dystonia) both localize to the second 

double-stranded RNA binding motif of PKR, yet show opposite phenotypes. 

 

 As a recently described disease with a limited number of reported cases, there are several 

questions to address regarding LEUDEN syndrome. It will be important to determine how all of 

the identified EIF2AK2 variants impact the function of PKR as this will provide the necessary 

information to determine effective treatment strategies (Figure 6A & C); it could be detrimental 

to treat a loss-of-function EIF2AK2 mutation as a gain-of-function mutation, and vice versa. It will 

also be important to determine how disease-associated EIF2AK2 variants affect cells of the 

central nervous system. While the ISR is activated in all cell types, cells of the central nervous 

system appear to be specifically affected in LEUDEN syndrome and dystonia.  

 

6.6 Genetic Diseases of EIF2AK3 (PERK) 

https://paperpile.com/c/linHav/UBMR0


 

 Wolcott-Rallison syndrome (WRS) (OMIM #226980) is a rare autosomal recessive disease 

that is characterized by neonatal diabetes, multiple epiphyseal dysplasia, and liver disease (Julier 

& Nicolino, 2010; Wolcott & Rallison, 1972). Patients with WRS may also present with renal 

dysfunction, intellectual disability, neutropenia, or hypothyroidism. WRS often leads to death at a 

young age (Julier & Nicolino, 2010). 28 years after its first description, homozygous mutations in 

EIF2AK3, the gene that encodes PERK, were identified as the cause of WRS (Delépine et al., 2000). 

Since then, numerous EIF2AK3 mutations have been reported to be associated with WRS (Table 

5). The reported mutations span the entire gene, and several are nonsense or frameshift 

mutations that produce premature stop codons and truncated protein products (Julier & 

Nicolino, 2010). As the kinase domain of PERK is located in the C-terminal region of the protein, it 

is often disrupted and is expected to result in loss of function (Figure 6A & C). In support of this, 

yeast expressing EIF2AK3 missense variants localized to the kinase domain of PERK exhibit 

reduced or abolished eIF2 phosphorylation (Senée et al., 2004). Additionally, Perk-/- mice 

recapitulate the characteristic symptoms of WRS including diabetes, skeletal dysplasia, and 

growth retardation (H. P. Harding et al., 2001; Iida et al., 2007; Y. Li et al., 2003; J. Wei et al., 2008; 

P. Zhang, McGrath, Li, et al., 2002; W. Zhang et al., 2006). Thus, PERK is particularly important for 

proper pancreatic function and development. 
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EIF2AK3 variants are also associated with tauopathies, neurodegenerative diseases 

characterized by tau protein aggregates. Tau associates with microtubules to promote their 

stability and assembly and is expressed in neuronal axons (Binder et al., 1985). Genome-wide 

association studies revealed that the EIF2AK3 single-nucleotide polymorphism rs7571971 is 

associated with the tauopathies progressive supranuclear palsy and APOE ε4-positive 

Alzheimer’s disease (Höglinger et al., 2011; Q.-Y. Liu et al., 2013). Further, a patient diagnosed 

with WRS expressing homozygous EIF2AK3 R902stop alleles exhibited hallmarks of 

neurodegeneration including FUS-positive inclusion bodies and tau-containing neurofibrillary 

tangles in the frontal cortex, and ubiquitin-positive foci in cells of the cerebellum (Bruch et al., 

2015). Tauopathy-associated EIF2AK3 alleles lead to dysfunctional ISR activity as neurons derived 

from patients with progressive supranuclear palsy display reduced p-eIF2α and CHOP mRNA 

levels, and elevated cell death in response to ER stress (Yuan et al., 2018). Thus, PERK alleles are 

also associated with neurodegenerative tauopathies. 

 

6.6 Genetic Diseases of EIF2AK4 (GCN2) 

 

Mutations in EIF2AK4, the gene that encodes GCN2, are associated with different forms of 

pulmonary hypertension including pulmonary veno-occlusive disease, pulmonary capillary 

hemangiomatosis, and pulmonary arterial hypertension (Abou Hassan et al., 2019; Best et al., 
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2014, 2017; Eichstaedt et al., 2016; Eyries et al., 2014; Hadinnapola et al., 2017) (Table 5). The 

primary symptoms of pulmonary hypertension are progressive exercise dyspnea, dyspnea on 

bending down, exercise-induced syncope, fatigue, and edema (Hoeper et al., 2017). GCN2 acts 

through the ISR and ATF4 to promote angiogenesis in response to amino acid restriction 

(Longchamp et al., 2018). EIF2AK4 mutations were first linked to pulmonary veno-occlusive 

disease. In a study of 13 families and 20 patients affected by pulmonary veno-occlusive disease, 

22 separate mutations in EIF2AK4 were identified, largely premature stop codons or indels. The 

recessive, loss-of-function mutations localized to all regions of the GCN2 protein and were either 

homozygous or heterozygous compound mutations (Eyries et al., 2014). Next, a genomic analysis 

of two brothers affected by pulmonary capillary hemangiomatosis and two unrelated individuals 

with sporadic pulmonary capillary hemangiomatosis uncovered multiple loss-of-function EIF2AK4 

mutations. The homozygous or heterozygous compound mutations identified were autosomal 

recessive (Best et al., 2014). More recently, mutations in EIF2AK4 have been linked to pulmonary 

arterial hypertension, albeit less commonly (Abou Hassan et al., 2019; Best et al., 2017; Eichstaedt 

et al., 2016; Hadinnapola et al., 2017). Pulmonary hypertension-associated EIF2AK4 mutations are 

thought to be loss of function and likely prevent sufficient ISR activation (Figure 6A & C). Thus, 

treatments aimed at stimulating the ISR may be promising for individuals suffering from various 

forms of pulmonary hypertension.  
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Table 5. Disease-associated alleles of EIF2AK1, EIF2AK2, EIF2AK3, and EIF2AK4. 

 

Gene Allele Disease/Syndrome Reference 

EIF2AK1 c.1342A>G (p.Ile448Val) LEMSPAD 
syndrome (Mao et al., 2020) 

EIF2AK2 

c.31A>C (p.Met11Leu); c.398A>T 
(p.Tyr133Phe); c.973G>A (p.Gly325Ser); 
c.1382C>G (p.Ser461Cys); c.326C>T 
(p.Ala109Val); c.326C>T (p.Ala109Val); 
c.325G>T (p.Ala109Ser); c.95A>G 
(p.Asn32Ser); c.290C>T (p.Ser97Phe) 

LEUDEN syndrome (Mao et al., 2020) 

EIF2AK2 c.388G>A (p.Gly130Arg); c.413G>C 
(p.Gly138Ala); c.95A>C (p.Asn32Thr) 

Early-onset 
generalized dystonia (Kuipers et al., 2021) 

EIF2AK3 

c.1745_1746del (p.Ser582fs); c.733dup 
(p.Arg245fs); c.1149_1150del (p.Asn383fs); 
c.869_870del (p.Glu290fs); c.536C>A 
(p.Ser179Ter); c.205G>T (p.Glu69Ter); 
c.1080T>A (p.Tyr360Ter); c.2731_2732delAG 
(p.Lys911Glu); c.2980G>A (p.Glu944Lys); 
c.1474 C>T (p.Arg492Ter); c.2081 C>G 
(p.Ser694Ter); c.1A>G (p.Met?); 
c.568_575dupGATGATGT 
(p.Val193Metfs10Ter); c.1570_1573 del 
(Glu524fs); chr2g.88857412G>A (Not 
provided); c.3193C>T (Not provided); 
c.997C>T (p.Gln333Ter); c.1471C>T 
(p.Arg491Ter); c.679G>T (p.Glu227Ter); 
c.2589_2593delAAGTT (p.Leu863fs); 
c.3112_3113insA (p.Phe1038fs); c.2476C>T 
(p.Arg826Ter); c.2866G>C (p.Gly956Arg); 
g.53051_53062delinsTG 
(p.Pro627AspfsTer7); c.2972G>A 
(p.Ser991Asn); c.3029G>A (p.Gly1010Asp); 
c.1427-?_2490+?del (p.?); c.802_803dup 
(p.Pro269fs); c.2967T>A (p.Tyr989Ter); 
c.1647+2T>A (p.?); c.1764‐2A>G 
(p.Tyr589IlefsTer4); c.1764T>G (p.Tyr588Ter); 
c.1764T>G (p.Tyr588Ter); c.1973G>C 
(p.Trp658Ser); c.3150+1G>T (IVS16+1G>T); 
c.1408_14; 09insT (p.Ser470PhefsTer7); 
c.1596T>A (p.Cys532Ter); c.2776C>T 
(p.Arg902Ter); c.3038A>G (p.Tyr989Cys); 
c.1798; T>A (Cys532Ter); c.1192C>T 
(p.Gln398Ter); c.851dupA 
(p.Pro285AlafsTer3); c.604A>G 
(p.Glu166Arg); c.137_del 
GCCTCGGGGCGGCCGCTGCTCCCACCTC
AGCGACG (p.Gly46AlafsTer19); c.1978G > A 
(p.Glu660Lys); c.2812C > T (p.Leu938Phe); 
c.402delC (p.Gly135fs); Not provided 
(p.Leu742Ter); c.2758C>T (p.Gln920Ter); 
c.2758C>T (p.Gln920Ter); Not provided 
(p.Gly1010Val); Not provided (p.Lys151fs); 
Not provided (p.Ala160fs); Not provided 

Wolcott-Rallison 
syndrome 

(Abali et al., 2020; 

Abbasi et al., 2018; Al-

Aama et al., 2018; 

Alkorta-Aranburu et al., 

2014; Al-Sinani et al., 

2015; Anne et al., 2021; 

Asl et al., 2019; Behnam 

et al., 2013; Davoodi et 

al., 2018; Fatani, 2019; 

Feng et al., 2011; 

Furdela et al., 2016; 

Gürbüz et al., 2016; 

Habeb et al., 2015; 

Huang & Wei, 2019; 

Jahnavi et al., 2014; 

Julier & Nicolino, 2010; 

Mihci et al., 2012; Nayak 

et al., 2021; Reis et al., 

2011; Sang et al., 2011; 

Sümegi et al., 2020; 

Triantafyllou et al., 2014; 

Valamparampil et al., 

2019; Welters et al., 

2020; Zhang H.-J. et al., 

2019) 

https://paperpile.com/c/linHav/JHv15
https://paperpile.com/c/linHav/JHv15
https://paperpile.com/c/linHav/UBMR0
https://paperpile.com/c/linHav/62Z7+1KPL+iuAZ+uXHR+6kqM+O0DJ+sqXR+Rgf0+gQY3+ZZYZ+bouA+PKD5+9I6E+IsBW+joJP+za3g+OP27+rBbC+2HtL+AC86+JkHD+3ofR+cBaU+Ifkg+Nf4X+7sQ96
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(p.Trp164Ter); Not provided (p.Ser170fs); Not 
provided (p.Ser313Ter); Not provided 
(p.Glu330fs); Not provided (p.Glu332Ter); Not 
provided (p.Lys346Ter); Not provided 
(p.Val350fs); Not provided (p.Asn421fs); Not 
provided (p.Leu426Ter); Not provided 
(p.Trp431Ter); Not provided (p.Ser470Ter); 
Not provided (p.Val516fs); Not provided 
(p.Trp522Ter); Not provided (p.Glu524Ter); 
Not provided (p.Tyr565Ter); Not provided 
(p.Arg588Ter); Not provided (p.Ser719fs); Not 
provided (p.Cys769Ter); Not provided 
(p.Leu863fs); Not provided (p.Arg903Ter); Not 
provided (p.Glu910fs); Not provided 
(p.Met1025fs); Not provided (p.Arg1065Ter); 
Not provided (p.Arg588Gln); Not provided 
(p.Phe593Leu); Not provided (p.Arg633Trp); 
Not provided (p.Leu646Pro); Not provided 
(p.Ile651Thr); Not provided (p.Asn656Lys); 
Not provided (p.Ser878Pro); Not provided 
(p.Trp899Cys); Not provided (p.Gly957Glu); 
Not provided (p.Gly986Arg); Not provided 
(p.Phe1015Ser); Not provided (p.Leu1058Pro) 

EIF2AK4 

c.2609C>T (p.Ala870Val); c.4910C>T 
(p.Leu1637Pro); c.3633dup 
(p.His1212ThrfsTer8); c.361G>A 
(p.Val121Met); c.4318C>T (p.Gln1440Ter); 
c.4833_4836dup (p.Gln1613LysfsTer10); 
c.951G>A (p.Trp317Ter); c.2475_2476del 
(p.Trp826GlufsTer15); c.2968C>T 
(p.Pro990Ser); c.4593del 
(p.Ile1533LeufsTer2); c.2403 + 1G > A (Not 
provided); c.2632-1G>A (Not provided); 
c.2965C>T (p.Arg989Trp); c.4724 T>C 
(p.Leu1575Pro); c.4414_4417del 
(p.1472_1473del); c.168delT (p.Asn56fs); 
c.4660-1G>A (Not provided); c.594+1G>A 
(Splice mutation); c.986_987del 
(p.329_329del); c.1739dupA 
(p.Arg581GlufsTer9); c.2968C>T 
(p.Pro990Ser); c.354_355del 
(p.Cys188Tfpfs*7); c.1554-4C>A 
(p.Cys519AspfsTer17); c.2319+1G>A (splice 

Pulmonary veno-
occlusive disease 

(Eyries et al., 2014, 2019; 

Haarman et al., 2020; 

Montani et al., 2017; H. 

Yang et al., 2018; X. 

Zeng et al., 2020) 

https://paperpile.com/c/linHav/Xfvj+AnPt+4MpL+ubB3+KYan+cPPEG
https://paperpile.com/c/linHav/Xfvj+AnPt+4MpL+ubB3+KYan+cPPEG
https://paperpile.com/c/linHav/Xfvj+AnPt+4MpL+ubB3+KYan+cPPEG
https://paperpile.com/c/linHav/Xfvj+AnPt+4MpL+ubB3+KYan+cPPEG
https://paperpile.com/c/linHav/Xfvj+AnPt+4MpL+ubB3+KYan+cPPEG


mutation); c.745C>T (p.Arg249Ter); 
c.2136_2139dup (p.Ser714HisfsTer21); 
c.1329del (p.Arg465ValfsTer38); c.3802C>T 
(p.Gln1268Ter); c.567dup 
(p.Leu190GlufsTer8); c.3159G>A 
(p.Lys975_Lys1053del); c.3406C>T 
(p.Arg1136Ter); c.1754G>A (p.Arg585Gln); 
c.4065+1G>C (splice mutation); c.1387C>T 
(p.Arg463Ter); c.3448C>T (p.Arg1150Ter); 
c.4728+1_4728+13delinsTTCT (splice 
mutation); c.3244C>T (p.Gln1082Ter); 
c.1928T>G (p.Leu643Arg); c.560_564del 
(p.Lys187ArgfsTer9); c.3159G>A 
(p.Lys975_Lys1053del); c.2857C>T 
(p.Gln953Ter); c.3576+1G>T (p.?); c.4205dup 
(p.Ser1403LysfsTer45); c.2458C>T 
(p.Arg820Ter) 

EIF2AK4 

c.2403+1G＞A (Not provided); c.3344C>T 
(p.Pro1115Leu); c.4724T＞C (p.Leu1575Pro); 
c.170del (p.Asn57fs); c.4460-1G＞A (Not 
provided); c.597+1G＞A (Not provided); 
c.2965C＞T (p.Arg989Trp); c.989_990del 
(p.Lys330fs); c.1753C＞T (p.Arg585Ter); 
c.1628C＞T (p.Pro543Leu); c.4833_4836dup 
(p.Gln1613fs); c.1804G＞A (p.Gly602Arg); 
c.3460A＞T (p.Lys1154Ter); c.4736T＞C 
(p.Leu1579Pro); c.1942A>T (p.Ile648Phe); 
c.3964C＞T (p.Gln1322Ter); c.3884T>G 
(p.Leu1295Arg); 
c.3055_3064delCTGACCAACG 
(p.Leu1019TrpfxTer9); c.4400dupT 
(p.Glu1468ArgfsTer14); c.1739dupA 
(p.Arg581GlufsTer9); c.2827A>G 
(p.Thr943Ala); c.4418_4421delCAGA 
(p.Thr1473ArgfsTer17); c.145-2A>G (Splice 
acceptor variant); c.145-2A>G (splice acceptor 
variant); c.257+4A>C (Splice region variant & 
intron variant); c.3605A>T (p.His1202Leu); 
c.1795G>C (p.Gly599Arg); c.3097C>T 
(p.Gln1033Ter); c.1159_1160delCT 
(p.Leu387CysfsTer27); c.1795G>C 

Pulmonary arterial 
hypertension 

(Abou Hassan et al., 

2019; Best et al., 2017; 

Eichstaedt et al., 2016; 

Hadinnapola et al., 2017; 

Song et al., 2016; 

Tenorio et al., 2015; Q. 

Zeng et al., 2020; H.-S. 

Zhang et al., 2019) 

https://paperpile.com/c/linHav/N6DQ+AS1I+yy3W0+B5K9r+yvbAz+c5Is+Zvl6+j1wJP
https://paperpile.com/c/linHav/N6DQ+AS1I+yy3W0+B5K9r+yvbAz+c5Is+Zvl6+j1wJP
https://paperpile.com/c/linHav/N6DQ+AS1I+yy3W0+B5K9r+yvbAz+c5Is+Zvl6+j1wJP
https://paperpile.com/c/linHav/N6DQ+AS1I+yy3W0+B5K9r+yvbAz+c5Is+Zvl6+j1wJP
https://paperpile.com/c/linHav/N6DQ+AS1I+yy3W0+B5K9r+yvbAz+c5Is+Zvl6+j1wJP
https://paperpile.com/c/linHav/N6DQ+AS1I+yy3W0+B5K9r+yvbAz+c5Is+Zvl6+j1wJP
https://paperpile.com/c/linHav/N6DQ+AS1I+yy3W0+B5K9r+yvbAz+c5Is+Zvl6+j1wJP
https://paperpile.com/c/linHav/N6DQ+AS1I+yy3W0+B5K9r+yvbAz+c5Is+Zvl6+j1wJP


(p.Gly599Arg); c.2446C>T (p.Gln816Ter); 
c.3218G>T (p.Arg1073Leu); 
c.1072_1073dupGT (p.Val359Ter); c.44C>T 
(p.Pro15Leu); c.2516T>C (p.Ile839Thr); 
c.3722A>G (p.Glu1241Gly); c.4646G>A 
(p.Arg1549His); c.1660G>T (p.Asp554Tyr); 
c.3711_3713delGAG (p.Arg1238del); 
c.3604C>T (p.His1202Tyr); c.220G>A 
(p.Asp74Asn); c.257+4A>C (Splice mutation); 
c.1672C>T (p.Gln558Ter); c.2320-4T＞G 
(Splice mutation); c.933T>A (p.Tyr311Ter); 
c.4892+1G>T (Splice mutation) 

EIF2AK4 c.1466T>C (p.Leu489Pro); c.3344C>T 
(p.Pro1115Leu) 

Pulmonary 
hypertension (Gómez et al., 2015) 

EIF2AK4 
c.1153dupG (p.Val385fs); c.860-1G>A (Splice 
mutation); c.3766C>T (p.Arg1256Ter); 
c.3438C>T (p.Arg1150Ter) 

Pulmonary capillary 
hemangiomatosis (Best et al., 2014) 

 

 

6.7 Potential Therapies for Diseases of the Integrated Stress Response 

 

 Mutations in genes that encode key translation or ISR factors lead to an array of 

afflictions. With the exception of diseases caused by mutations in EIF2AK4, several manifest as 

neurodevelopmental disorders with endocrine system defects. Collectively, many systems are 

affected including the reproductive, skeletal, and circulatory systems, in addition to the nervous 

and endocrine systems. Because of the severity and pleiotropy of the phenotypes associated with 

such diseases, it is critical to identify effective therapies. One potential treatment is the small 

molecule called ISRIB (integrated stress response inhibitor), an ISR inhibitor that binds to and 

https://paperpile.com/c/linHav/7PKf
https://paperpile.com/c/linHav/ddWSl


activates the eIF2 GEF eIF2B by promoting its assembly (Sekine et al., 2015; Sidrauski et al., 2013, 

2015; Tsai et al., 2018; Zyryanova et al., 2018). ISRIB has been shown to rescue cognitive deficits in 

the Ts65Dn mouse model of Down syndrome which displays elevated p-eIF2ɑ levels in the brain due to 

PKR activation (P. J. Zhu et al., 2019). In the context of MEHMO syndrome, ISRIB treatment 

improved many of the deficiencies exhibited by patient-derived iPSCs expressing an EIF2S3 

frameshift mutation. Consistent with ISR inhibition, ISRIB increased global translation and 

decreased the expression of ATF4, CHOP, and GADD34 in frameshift mutants. ISRIB also rescued 

ternary complex levels and enhanced the differentiation of MEHMO patient-derived iPSCs into 

neurons (Young-Baird et al., 2020).  

 

Though creating therapies to combat VWM will be particularly challenging due to the 

abundance of causative mutations and the vast spectrum of symptom severity, ISRIB and a similar 

eIF2B activator have shown tremendous promise. ISRIB has been demonstrated to recover 

mutant eIF2B complex stability and GEF activity (Wong et al., 2018), normalize translation 

suppression and the expression of ISR targets (Abbink et al., 2019; Moon & Parker, 2018a), and 

enhance VWM mouse motor skills (Abbink et al., 2019). Similar results have also been obtained 

with 2BAct, a recently described eIF2B activator, also in a mouse model of VWM (Wong et al., 

2019). Alternatively, inhibitors of specific eIF2ɑ kinases may hold therapeutic promise for genetic 

diseases of the ISR. For example, PERK inhibitor I also rescues translation suppression defects in VWM 

patient cell lines upon ER stress (Axten et al., 2012; Moon & Parker, 2018a). However, these 

https://paperpile.com/c/linHav/45Lix+XokAk+mjY8l+UHeJ9+MWIWh
https://paperpile.com/c/linHav/45Lix+XokAk+mjY8l+UHeJ9+MWIWh
https://paperpile.com/c/linHav/B16gZ
https://paperpile.com/c/linHav/eY0Qr
https://paperpile.com/c/linHav/DGgx4
https://paperpile.com/c/linHav/gjFz2+3LXLu
https://paperpile.com/c/linHav/3LXLu
https://paperpile.com/c/linHav/7tORz
https://paperpile.com/c/linHav/7tORz
https://paperpile.com/c/linHav/gjFz2+HVDWX


compounds can exhibit toxicity precluding their therapeutic use (Halliday et al., 2015). ISRIB may 

also prove to be an effective treatment for the diseases caused by mutations in the CReP-

encoding gene PPP1R15B as it is predicted that p-eIF2α levels would be elevated, leading to 

chronic ISR activity. 

 

 Diseases caused by mutations in the genes that encode the ISR kinases are generally 

predicted to be loss of function. For instance, the EIF2AK1 (HRI) mutation associated with 

LEMSPAD syndrome and EIF2AK2 (PKR) mutations associated with LEUDEN syndrome causes 

decreased p-eIF2α levels, likely impairing ISR activity. Thus, LEMSPAD and LEUDEN syndrome 

patients may benefit from treatments that increase ISR activity like guanabenz (Pakos-Zebrucka 

et al., 2016; Tsaytler et al., 2011) or its derivative Sephin1 (Das et al., 2015; Pakos-Zebrucka et al., 

2016), GADD34 inhibitors that were demonstrated to extend eIF2α phosphorylation and ATF4 

expression as well as delay translation recovery upon stress in HeLa cells (Das et al., 2015; Tsaytler 

et al., 2011). Alternatively, the CReP inhibitor nelfinavir, originally a treatment for HIV, effectively 

induced the ISR in HeLa cells as determined by increased p-eIF2α and ATF4 levels in the absence 

of stress (De Gassart et al., 2016; Pakos-Zebrucka et al., 2016). The p-eIF2α dephosphorylation 

inhibitor salubrinal similarly activates the ISR - rat pheochromocytoma cells exhibited eIF2α 

phosphorylation and expression of GADD34 and CHOP upon treatment with salubrinal (Boyce et 

al., 2005; Pakos-Zebrucka et al., 2016). Similarly, loss-of-function mutations in EIF2AK3 (PERK) and 

https://paperpile.com/c/linHav/vqsRK
https://paperpile.com/c/linHav/ViQos+Lw9EV
https://paperpile.com/c/linHav/ViQos+Lw9EV
https://paperpile.com/c/linHav/tUAbT+ViQos
https://paperpile.com/c/linHav/tUAbT+ViQos
https://paperpile.com/c/linHav/tUAbT+Lw9EV
https://paperpile.com/c/linHav/tUAbT+Lw9EV
https://paperpile.com/c/linHav/kg0xd+ViQos
https://paperpile.com/c/linHav/2cbQI+ViQos
https://paperpile.com/c/linHav/2cbQI+ViQos


EIF2AK4 (GCN2) associated with WRS and pulmonary hypertension, respectively, are also 

predicted to diminish ISR activity. Chemicals such as Sephin1, guanabenz, nelfinavir, or salubrinal 

may represent viable therapies. In contrast, EIF2AK2 mutations associated with early-onset 

generalized dystonia are gain of function and likely hyperactivate the ISR. Thus, it is imperative to 

choose a treatment that will decrease ISR activity, such as the PKR inhibitor C16 which blocks PKR 

autophosphorylation (Jammi et al., 2003; Pakos-Zebrucka et al., 2016) and reduced p-eIF2α levels 

in mouse macrophages (Fritzlar et al. 2019).  

 

Conclusion 

 

The continuous discovery of genetic disorders associated with mutant alleles of ISR 

factors suggests an important role for the dynamic regulation of translation in human health and 

development. We highlight three research areas of particular importance for future work. First, 

the role of the ISR in promoting the development, regeneration, and function of the nervous 

system must be elucidated. Human genetic diseases including VWM, LEUDEN syndrome, and 

WRS are associated with neuropsychological, neurodegenerative, and neurodevelopmental 

phenotypes, emphasizing the importance of precise regulation of the ISR in neuronal biology and 

health, as does recent works suggesting that targeting the ISR with small molecules such as ISRIB 

https://paperpile.com/c/linHav/myejn+ViQos


rescues deficits in cognitive function, myelination, and prion-mediated neurodegeneration 

(reviewed in (Kapur et al., 2017; Moon et al., 2018)). Evaluating the precise mechanisms by which 

ISR factors regulate neuronal health and genetic disease holds promise for uncovering novel 

therapeutic strategies for a wide range of neurodevelopmental and neurodegenerative 

conditions. 

 

Second, in addition to its important role in human development, the impact of ISR 

dysregulation in aging must be determined. Altered RNP granule dynamics may contribute to 

aging, as stress granule- and P-body-like aggregates accumulate with age in C. elegans (Lechler 

et al., 2017; Rieckher et al., 2018). Cognitive defects associated with aging can be ameliorated by 

targeting the ISR with ISRIB in a mouse model (Krukowski et al., 2020). Additionally, suppressing 

the ISR can extend lifespan and improve memory and learning in model organisms. Furthermore, 

alleles of the EIF2AK3, EIF2AK4, EIF2S2 and EIF2B2 homologs increased longevity in C. elegans, 

implicating the ISR in lifespan (Derisbourg et al., 2021). Thus, an important outstanding research 

area is determining the molecular mechanisms the ISR contributes to organismic longevity.  

  

A third important area of research will be to determine how defects in essential ISR genes cause 

cell- and tissue-type specific effects. The majority of the genes that encode components of the ISR are 

essential, suggesting that these factors are vital for all cell types. Yet, the diverse array of phenotypes 

ranging from pulmonary arterial hypertension to progressive white matter loss associated with mutations 

https://paperpile.com/c/linHav/sWeau+jLnJD
https://paperpile.com/c/linHav/lwiYi+JhGgf
https://paperpile.com/c/linHav/lwiYi+JhGgf
https://paperpile.com/c/linHav/xRyMD
https://paperpile.com/c/linHav/188Ii


in eIF2ɑ kinases implies there may be (1) cell type-specific genes that are induced by the ISR, (2) 

differential stoichiometry of ISR factors among cell types, or (3) certain cell types that rely on the precise 

regulation of translation in unstressed or stressed conditions due to their morphological or functional 

roles. A large body of work has uncovered the major players in the ISR pathway that mediate rapid 

changes in mRNA regulation at the transcriptional and translational levels to facilitate cell survival during 

stress. Uncovering the molecular mechanisms by which the ISR is activated and dysregulated in specific 

tissues will unlock future therapeutic strategies for a wide range of human diseases.  

 

Dysregulation of the ISR is implicated in many other disease states including 

neurodegeneration and cancer and intersects with innate immune pathways. The ISR is 

constitutively activated in several neurodegenerative disorders including Alzheimer’s, 

Parkinson’s, and Huntington’s disease and amyotrophic lateral sclerosis (reviewed in (Costa-

Mattioli & Walter, 2020; Moon et al., 2018; Pakos-Zebrucka et al., 2016)), and inhibition of the ISR 

by genetic or chemical means such as PPP1R15A (GADD34) overexpression or the PERK inhibitor 

GSK2606414 have been demonstrated to counteract neurodegeneration in fly and mouse models 

(Celardo et al., 2016; Moreno et al., 2012; Radford et al., 2015). Abnormal ISR activity has also 

been linked to cancer (Costa-Mattioli & Walter, 2020). For example, both oncogene-induced 

PERK activation as well as loss of PKR function promote tumorigenesis (Barber et al., 1995; 

Bobrovnikova-Marjon et al., 2010; Donzé et al., 1995; Hart et al., 2012; Koromilas et al., 1992; E. F. 

Meurs et al., 1993; Nagy et al., 2013). Finally, the ISR plays an important role in immunity (Costa-

Mattioli & Walter, 2020). PKR activates the ISR to shut down global translation upon viral 

https://paperpile.com/c/linHav/jLnJD+ViQos+s7R4V
https://paperpile.com/c/linHav/jLnJD+ViQos+s7R4V
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https://paperpile.com/c/linHav/E1j6a+12ZAm+k9QPR+5KgGc+VLTHN+Ie9Tu+vDBY3
https://paperpile.com/c/linHav/E1j6a+12ZAm+k9QPR+5KgGc+VLTHN+Ie9Tu+vDBY3
https://paperpile.com/c/linHav/s7R4V
https://paperpile.com/c/linHav/s7R4V


infection to prevent viral protein translation (Eiermann et al., 2020), and ISR induction is required 

for the activation of nuclear factor kappa B (NF-kB), a family of transcription factors that drive the 

expression of pro-inflammatory genes (Deng et al., 2004). Further, HRI is required to produce 

pro-inflammatory cytokines upon bacterial infection via phosphorylation of eIF2α and activation 

of the ISR (Abdel-Nour et al., 2019). Therefore, understanding the mechanisms and outcomes of 

ISR activation holds promise for developing new therapeutic intervention strategies for a wide 

spectrum of human diseases. 
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