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Abstract—Smartphone users are constantly facing the risks
of losing their private information to third-party mobile
applications. Studies have revealed that the vast majority
of users either do not pay attention to privacy or unable
to comprehend privacy messages. Developers though have
exploited this fact by asking users to grant their apps an
enormous number of permissions. In this paper, we propose
and evaluate a new security-centric ranking algorithm built
on top of the Elasticsearch engine to help users evade such
apps. The algorithm calculates an intrusiveness score for
an app based on its requested permissions, received system
actions and users privacy preferences. As such, we further
propose a new approach to capture these preferences. We
evaluate the ranking algorithm using a million Android
applications, contextual data and APK files, that we collect
from the Google Play store. The results show that the
scoring and reranking steps add minor overhead. Moreover,
participants of the user studies gave positive feedback for the
ranking algorithm and the privacy preferences solicitation
approach. These results suggest that our proposed system
would definitely protect the privacy of mobile users and
pushes developers into requesting least amount of privileges.
Still, there are many risks that endanger the users’ privacy.

Keywords-Android, Permissions, Apps, Elasticsearch, Pilot
study, Privacy, Intrusive, Users, Mobile, Applications, User
study

I. INTRODUCTION

Modern mobile ecosystems have been known to
support third-party applications essentially to improve
users’ experience. This is exemplified in the number
of apps in online markets such as Google Play and
iOS App stores. For instance, the number of available
apps in the Google Play store was placed at 2.6 million
apps in December 2018 compared to 1 million apps
in July 2013 [32]. Although a previous report by the
same source [31] stated that the number of apps in the
Google Play store was estimated to be 3.5 million apps
in December 2017. A drop that was caused by Google
removing a large number of apps that had violated its
privacy and security policies besides other factors [36].
Prior to this, numerous reports have shed light on the
large spread of malicious Android apps that are placed
in official and non-official online markets. For exam-
ple, in Q3 2017 report, Kaspersky lab mobile security

products had detected more than 1.5 million malicious
installation packages [26]. Consequently, there have been
several efforts to detect malicious apps [2], [6], [11], [13]–
[17], [19], [22], [24], [28], [29], [35], [37], [41], [42], [44]

These approaches have been successful in detecting
and removing malicious apps that were built inten-
tionally to harm users. However, detecting intrusive
applications is more challenging and requires distinct
techniques. Intrusive applications are not malicious but
instead intrude user’s privacy by asking for too many
permissions/privileges. These apps, referred to as in-
trusive apps, are most likely offered free-of-charge, and
hence, users might be tempted to give up privacy for
perceived benefits in using these apps. There are two
types of risks pertaining intrusive apps. First, they in-
vade users’ privacy by collecting sensitive data from
their devices. Second, apps with numerous privileges
are more prone to be attacked by malicious apps [25].
Countering intrusive applications have been the focus
of many research projects for almost a decade now [8],
[12], [23], [30] However, in the past recent years, there
has been a shift in countering intrusive mobile apps.
The new shift is geared towards helping users make
information decisions about the apps they install or keep
on their phones [14], [30], [35]. Yet, these works count
on the Google Play store to infer the similarity between
apps, use only the permissions information to calculate
privacy scores, require users to first install an app before
the solution offers any alternatives, and finally they
do not integrate users’ preferences into calculating the
privacy scores. In this work, the functionally similar
applications are recognized by our implementation in-
stead of relying on the Google Play store. As such,
we use the Elasticsearch engine [7] to index over a
million Android applications that we collect from the
Google Play store. Functionally-similar apps are then
retrieved by the engine based on criteria we define.
Thus, we are eliminating any kind of bias the Google
Play store might introduce upon the retrieval process.
Second, the intrusiveness score for the mobile apps is
calculated based not only on the permissions but also
on the system actions and more importantly on user’s

This is the author manuscript accepted for publication and has undergone full peer review but has not
been through the copyediting, typesetting, pagination and proofreading process, which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1002/cpe.6571

This article is protected by copyright. All rights reserved.

f.f.m.mohsen@rug.nl
hamed@najah.edu
bisgin@umich.edu
http://dx.doi.org/10.1002/cpe.6571
http://dx.doi.org/10.1002/cpe.6571


privacy preferences. Finally, the formula for calculating
the intrusiveness score does not use simple averaging,
which results in generating more accurate privacy scores.

Thus, in this work, we are proposing a new security-
centric ranking algorithm to mitigate intrusive mobile
apps. The ranking algorithm revolves around calculating
intrusiveness scores for Android mobile applications
based on the permissions they possess, the system ac-
tions they receive and the privacy preferences of the
user. Therefore, we propose a new approach to solicit
user’s permissions/privacy preferences. We evaluate this
approach by conducting an online user study. We also
conduct a performance benchmarking study and a pilot
user study to evaluate the accuracy and the efficiency of
the ranking algorithm and the Elasticsearch engine. Our
dataset is composed of 1,945,056 Android apps, 325,444
of them has the APK files, that we collect from the
Google Play store and then index using the Elasticsearch
engine. In the last stage, which is the extension of our
earlier work [18], we first investigate the intrusiveness
score distribution of a large dataset of apps including
their APK files, namely, 1,152,676 apps. In addition to the
previous 325,444 APKs, we further collect and process
about 827,232 APKs. The purpose of this work is to
study the degree of alternativity in all genres of the
Google Play store. The outcome of this study shall give
us an indication on whether our approach is going to
be feasible in regards to finding and recommending less
intrusive apps. Second, we conduct a new performance
benchmarking study to investigate the impact of adding
more apps to the corpus on the indexing and the retrieval
processes. Last, we compare our work with the work of
Taylor and Martinovic [35].

The rest of the paper is organized as follows. Starting
with the preliminaries in Section II, Section III discusses
the online user study for soliciting users preferences,
Section IV discusses the methodology we followed to
propose and build the security-centric algorithm on top
of Elasticsearch, Section V explains the evaluation stud-
ies, Section VI shows the effect of increasing the dataset
size and the results of the comparison study, Section VII
presents the related works, and finally we end with the
conclusion section, Section VIII.

II. PRELIMINARIES

A. Permissions
The Android OS uses a permission system [13] to

control the level of access each application can have
while running on a mobile device. For instance, an
application needs to have certain permissions to access
a resource or data that resides outside of its sandbox.
Application developers must include all the permission
requests in the configuration, AndroidManfiest.xml, files
of their applications. There are four permission types:
normal, dangerous, signature, signature or system. Unlike
dangerous permissions, Android approves the normal

(a) Initially the app has zero dangerous permissions

(b) The app has now access right over Storage.

(c) An app permission prompt to the end user.

Fig. 1. Users through Settings can control the level of access each app
can get or wait for the prompt.

permission requests without user’s consent. However, to
approve the dangerous permission requests, the system
either prompts the user upon installing an app or at run-
time. If the API level or the SDK of an app is 22 or lower,
the system would prompt the user to grant the app the
dangerous permissions during the installation. However,
if it is 23 or higher, the system would prompt the user to
grant the dangerous permissions at run-time. In Table I
we show the list of Android dangerous permissions
organized into 9 groups. In Listing 1 we are listing some
of the Android normal permissions. The signature and
signature or system permissions are used for certain



Fig. 2. Google Play store website displays the list of permissions the
FaceApp app requires to be installed.

situations in which multiple apps of the same vendor or
multiple vendors need to share specific features or data
between them. In addition to introducing the run-time
permission granting, beginning with Android 6 (API
level 23), the Android system started giving users the
ability to revoke permissions from any app at any time.
Regardless of these two recent changes in the Android
permission system, we believe that our work is going
to significantly improve the privacy of mobile users.
First, the recent changes has not significantly improved
the privacy of users. This is because it follows a ”click
once but permanent acceptance” model [1], and users in
reality infrequently use these features, as we will show in
Section ??. Second, our work will continue to be relevant
to a large spectrum of users due to fragmentation, the
biggest security issue of the Android OS, many versions
of the Android operating system and the update is quite
slow [34].

B. Android Manifest

Android operating systems use Android Package Kit
(APK) as the standard package file format for the dis-
tribution and installation of mobile and smart TV ap-
plications. The APK contains among other things, the
executable source code and a configuration file called
AndroidManifest. The manifest file contains numerous
information about the app such as permission requests,
activities, services, content providers and broadcast re-
ceivers. It also specifies the hardware and software fea-
tures the application usually requires in order to function
properly. In the previous versions of Android and upon
installing an Android app on a mobile device, the An-
droid operating system is used to read the app’s manifest
file and displays a prompt to the end user requesting her
approval of the dangerous permission requests. Nowa-

days, users may first explore the Google Play store on
their computers to locate some apps, read their descrip-
tions, check out the reviews, and for cautious users they
might have a look at the permission requests. Users can
also view the permissions of an app on the Google Play
store by clicking the View details link under the permission
section. They would normally be presented with a screen
like the one we shown in Figure 2. Then, if she decides
to install the app on her mobile device, the app gets
installed with zero dangerous permissions as we shown
in Figure 1(a). The user can later grant and revoke certain
permissions from/to certain applications. For example,
the app we show in Figure 1(b) has the permissions that
would allow it to read and write from/to the storage
of the device. Developers can also program their apps
to display runtime permission prompts like the one we
show in Figure 1(c). Navigating between these screens
is not a trivial task because most users are unable to
interpret the permission requests and unaware of their
security and privacy implications [10]. In addition, com-
paring between different apps requires even more work.
Thus, these screens are clearly inadequate to most users
and do not help them make informative decisions.

C. Broadcast Receivers

This component allows Android applications to listen
to events originating from the system or other appli-
cations. For example, an application can register to be
notified whenever there is a new SMS, voicemail, or
phone call. The Android system allows an unconditional
listening to the majority of these events and restricts
it for few. The restriction though entails requiring the
applications to have mostly normal permissions, which
do not need user’s approval. Broadcast receivers can
provide applications with a lot of information such as
the device state, connection state, and whether the user
is present or not. This information might be very useful
but it could also pose some privacy risks. The results of a
previous research showed that it is more likely for mali-
cious apps to contain a broadcast receiver component in
comparison to benign applications [20]. Consequently, in
this paper, the broadcast receivers of system events/sys-
tem actions are being considered when calculating an
intrusiveness score for Android applications.

1 ACCESS LOCATION EXTRA COMMANDS
2 ACCESS NETWORK STATE
3 ACCESS NOTIFICATION POLICY
4 ACCESS WIFI STATE
5 BLUETOOTH
6 BLUETOOTH ADMIN
7 BROADCAST STICKY

Listing 1. Example of Android normal permissions.

III. USER STUDY

As we mentioned earlier in Section II-A, the An-
droid system places permissions into various groups



TABLE I
THE DANGEROUS PERMISSIONS ARE PLACED INTO 9 CATEGORIES. THE

USAGE PERCENTAGE OF EACH PERMISSION IS PLACED BETWEEN
PARENTHESIS.

Group Permissions (Usage %)

CALENDAR READ CALENDAR (1.5)
WRITE CALENDAR (1.55)

CAMERA CAMERA (11.8)

CONTACTS
READ CONTACTS (3.9)
WRITE CONTACTS (1.95)
GET ACCOUNTS (13.55)

LOCATION ACCESS FINE LOCATION (18.54)
ACCESS COARSE LOCATION (18.51)

MICROPHONE RECORD AUDIO (6.44)

PHONE

READ PHONE STATE (20.72)
CALL PHONE (5.61)
READ CALL LOG (0.36)
WRITE CALL LOG (0.22)
ADD VOICEMAIL (0.01)
USE SIP (0.08)
PROCESS OUTGOING CALLS (0.63)

SENSORS BODY SENSORS (0.01)

SMS

SEND SMS (2.18)
RECEIVE SMS (1.63)
READ SMS (0.9)
RECEIVE WAP PUSH (0.05)
RECEIVE MMS (0.08)

STORAGE READ EXTERNAL STORAGE (14.21)
WRITE EXTERNAL STORAGE (45.94)

according to their sensitivity. Yet, users and developers
alike have no control over the content or the dynamic
of these groups. Previous research showed that there
are significant discrepancies among mobile users with
regard to their privacy perceptions, i.e., the value of
each smartphone asset (e.g., contacts, pictures, messages)
is perceived differently across users [21]. As such, we
decided to incorporate users’ input into calculating the
intrusiveness score of each mobile app. Thus, in this
work, we propose a new method for capturing users’
privacy perception about the different permission sets.
To evaluate this method, we conduct an online user
study in which we present the permission groups in a
simple format and then ask participants to rate them
over multiple rounds. The steps are depicted below:

• Round 1, display a graphical representation of the
ten permission groups (9 dangerous permission
groups and 1 normal permission group) such as:
SMS, STORAGE, and PHONE. Participants are then
asked to choose their top seven most sensitive per-
mission groups. The three permission groups that
are not picked are excluded and given an impor-
tance level of 1.

• Round 2, display the seven permission groups that
are picked in round 1 and ask participants to choose
five of them. The two remaining groups are ex-
cluded and given an importance level of 2.

• Round 3, display the five permission groups that
are picked in round 2 and ask participants to choose
three. The two remaining groups are given an im-
portance level of 3.

• Round 4, display the three permission groups that
are picked in round 3 and ask participants to choose
a group. The selected group is assigned the impor-
tance level of 5 and the other two are assigned the
importance level of 4.

• Round 5, display all the permissions of the most
important group and ask participants if they agree
to grant all these permissions the same level of
importance (level 5). This step is not required for
the MICROPHONE and SENSORS groups because
each one of them has only one permission.

We believe that taking users’ preferences into account
when scoring applications is crucial in generating cus-
tomized and precise scores. The work of [35] for ex-
ample treats all permissions with the same level of
importance, even if some of these permissions are not
important to a particular user or to all users. Conse-
quently, all users will get the same results regardless of
their attitude towards privacy and usage pattern [4].

In Table II, we show all the permission groups that we
used in the online user study, a total of ten groups. Nine
of them contain only dangerous permissions. In addition,
we created a new group, called STATE, to contain a
number of normal permissions, which we believe are
important and could have an impact on users’ privacy.
There have been some research efforts that demonstrated
the possibility of comprising users’ privacy using only
normal permissions [20]. For each permission group,
we provide a simple description and a representative
picture. The STATE category has 5 permissions as we
shown in Listing 2. Those permissions allow an app to
access and change the WIFI and NETWORK states.

1 ACCESS WIFI STATE
2 ACCESS NETWORK STATE
3 CHANGE NETWORK STATE
4 CHANGE WIFI MULTICAST STATE
5 CHANGE WIFI STATE

Listing 2. The permissions of the State category.

Once the user assigns a sensitivity level to a group,
all the permissions in that group would get the
same sensitivity level, which could be seen as a
stretch. However, there is a trade-off between fine-
grained permission ranking and keeping the process
simple and short for the users. In Table I we show
the usage percentages for the dangerous permissions
among all the APKs in our dataset, more than a
million. Some of these permissions are rarely used,
such as the ADD VOICEMAIL and USE SIP. On the
other hand, there are permissions that are used ex-
tensively such as WRITE EXTERNAL STORAGE and
READ PHONE STATE.

A. Participants

We used Amazon Turk [3] to recruit participants with
a level of confidence of about 90%, a qualification that



TABLE II
FOR EACH PERMISSION CATEGORY/GROUP, WE PROVIDE A SINGLE DESCRIPTION THAT SHOWS THE AGGREGATED PRIVILEGES OF ALL

PERMISSIONS OF THAT CATEGORY.

Permission Group Description
CALENDAR Allows an application to read and write your calendar data.
CAMERA Allows an application access your phone’s camera.

CONTACTS Allows an application to read and write your contacts data. Moreover, it allows access to the list
of your accounts .

LOCATION Allows an app to access your approximate and precise location.
MICROPHONE Allows an application to record audio.

PHONE Allows an application to have full control over the calling service on your device such as placing
and redirecting a call and reading and writing call logs.

SENSORS Allows an application to access data from sensors that you may using to measure what is happening
inside your body, such as heart rate.

SMS Allows an application to receive SMS, MMS, and WAP Push messages. It also allows to send and
read SMS messages.

STORAGE Allows an application to write and read to/from external storage.
STATE Allows an application to access and change the states of WIFI and NETWORK connections.

states that over 90% of the assignments a worker has
completed have been accepted by the requesters. We
paid each participant $0.35. We had a total of 116 partic-
ipants correctly completed the study. Participation in the
study took an average of 6 minutes and 49 seconds. Con-
ducting an effective user study necessitates recruiting
participants who represent the target group/end users as
close as possible. Participant demographics of this study
can be found in Table V. As it appears, the set of study
participants is not quite balanced in gender, age, and
Android knowledge due to the nature of recruiting par-
ticipants from Amazon Turk. In addition, our focus was
primarily set on obtaining workers with high confidence.
This imbalance might have an impact on the precision
of the final results for the underrepresented groups.

B. Study Description
The aim of this study is twofold: first, to test the

effectiveness of our proposed permissions preferences
solicitation approach; second, to get an idea about user’s
perceptions and habits with regard to Android permis-
sions before and after installing apps into their mobile
phones. In this study, participants are asked to navigate
to a website that we developed mainly for this study.
The website lets participants setup their permission
preferences. At the end of the first part, participants
are given a code and a URL to the second part of the
study. The second part is a survey, namely a Google
web form, which is composed of three sections: the first
section gives participants the opportunity to reflect on
and evaluate the first stage of the study. The second part
is focused on studying participants’ understanding and
usage of two features pertaining Android permissions:
Android run-time permission requests and the revoke
features. Finally, a section that is meant to understand
participants usage habits of Android mobile devices.

C. Analysis
We use the time taken by each participant to complete

the first part of the questionnaire as a basis to measure

the effectiveness of our approach. Additionally, we ex-
amine participants’ responses to the open ended and
closed ended questions.

1) Effectiveness: Participants were asked to rate the
difficulty level of using the website as well as the time
it took them to finish the task. The rating goes from 1
to 7 where 1 means the system was extremely difficult
to use and 7 was extremely easy. Participants gave the
website an average rating of 5.8 for its simplicity, and
5.7 for time efficiency. This result suggests that our
approach is easy to use and does not consume too much
time. Participants were also asked if they believe that
Google Play store and other online stores should take
users’ permissions preferences into consideration when
recommending apps to them. The average answer to that
suggestion was 5.9 out of 7, which suggests a potential
for our approach. We further measured the effectiveness
of our approach by analysing participants’ responses to
two open ended questions concerning the things that
they liked and disliked the most. We could identify four
main topics from these responses: look, feel, innovation
and other. Twenty-six participants have indicated that the
design of the website was the thing they liked the most.
Thirty-four participants have indicated that they liked
mostly how simple and easy to use the website is. Fifteen
participants have indicated that what they liked mostly
was the idea of how they were made to state their pref-
erences by narrowing down the selections. Forty-three
participants either mentioned irrelevant information or
just written “Other”. As per the dislikes, we came up
with four categories as well: nothing, approach, design,
and other. Sixty-three participants have indicated that
there is nothing to dislike about the approach and/or the
website. Twenty participants have submitted critiques
and suggestions to improve our approach. For instance,
they did not like its repetition aspect, namely, having
the same question being asked over and over many
times. A participant suggested instead to put all the
permission groups in one page and then ask participants



TABLE III
THE AVERAGE, MEDIAN AND STANDARD DEVIATION VALUES FOR THE

PERMISSION RATINGS.

AVG STDEV
Location 3.45 1.28
Contacts 3.31 1.20
Camera 3.27 1.16
Phone 3.00 1.27
SMS 2.73 1.15
Microphone 2.65 1.34
Storage 2.47 1.30
Sensors 1.81 1.10
State 1.69 1.00
Calendar 1.51 0.85

to rank them all at once. Eight participants disliked
the website design. Twenty-five participants provided
unclear and/or irrelevant feedback.

2) Time Consumption: We also looked at the amount
of time each participant has spent on the website to
setup her permissions’ preferences. We calculated the
average, median, minimum, maximum and standard
deviation for all participants. The average time taken
to use the website for this population was 127 seconds,
median = 101.5, min = 16 seconds, max = 1300 seconds,
and standard deviation was 130 seconds. The average
and median values suggest that the time needed by an
Android user to setup her permission preferences using
our approach should be between a minute and a half and
two minutes, which sounds a very short time, especially
if you combine it with the fact that users shall do this
once in a while.

3) Permission Groups Ratings: Once a participant is
finished from setting up her permission preferences,
each permission group must get a rating value from the
set {1, 2, . . . , 5}, where 1 means least sensitive. To test
whether there was any significant difference between the
permission groups with regard to their sensitivity level
among all participants, a comparison of the repeated
measures using Friedman’s test was applied [39]. Look-
ing at the test’s results, there was a statistically signif-
icant difference in participants’ assumptions regarding
the sensitivity level of each permission group

χ2(9, N = 116) = 273.254, p<0.001

. Then, a post hoc analysis with Wilcoxon signed-rank
tests [40] (a non-parametric statistical hypothesis test
used when comparing two repeated measurements) was
conducted with a Bonferroni correction [38] applied,
a method used to counteract the problem of multiple
comparisons, resulting in a significance level set at p
<0.0001 (the above p value divided by 10, because we
have 10 different permissions groups). Median (IQR)
sensitivity levels for the Calendar 1 (1 to 2), Camera 4
(2.25 to 4), Contacts 3 (2 to 4), Location 4 (2 to 4.75),
Microphone 3 (1 to 4), Phone 3 (2 to 4), SMS 3 (2 to
4), Sensors 1 (1 to 2), State 1 (1 to 2), and Storage 2

(1 to 3.75). Table IV shows the results of running post
hoc analysis with Wilcoxon signed-rank tests on the ten
permission groups. The word ”Sig” in the table means
that there is a significant difference between the two
permissions groups, e.g., Calendar and Camera, Camera
and Microphone, and Location and SMS. However, if
there is no significant difference, the p value is displayed,
for instance, the p value for Calendar and Sensors is 0.28.
Finally, the “NA” means that the test is inapplicable.
Table III shows the average and standard deviation
values for the ratings of each permissions group given
by all participants. Based on the average, the permission
groups can be put into three clusters: the first cluster
contains permission groups with an average rating of 3
and more, the second cluster has the permission groups
with an average rating greater than 2 but less than 3,
and the last cluster contains permission groups with
average rating less than 2. From Table III and Table IV,
we conclude that the Location, Contacts and Camera
are the most sensitive permission groups among all par-
ticipants because they have the highest average values
besides there is a significant difference between them
and the permission groups in clusters 2 and 3. Another
interesting thing to notice from these tables is the State
permission group, the average rating is not the lowest as
it supposed to be. In addition, there was no significant
difference between it and the Calendar and the Sensor
groups.

4) Android Related Features: We also included a part
in the survey, which tends to acquire participants feed-
back about similar features that were added recently to
Android phones. There were two features, the run time
permissions and the revoke permission features. Both
of these features are supported on any device that runs
Android 6.0 (Marshmallow) or higher. About twenty two
percent of participants (22/116) were using mobile de-
vices that run Android 5.1 (Lollipop) or lower, and 76%
(88/116) were using mobile devices that run Android
6.0 (Marshmallow) or higher. We asked participants the
following question: “If you are currently using or have
used a mobile device that is running Android 6.0 (Marsh-
mallow) or higher, have you ever noticed or interacted
with the run time permission requests (e.g., the one
shown in the below picture)?” Seventy eight percent of
participants (90/116) answered “Yes”, almost ten percent
(11/116) answered ”No”, and thirteen percent (15/116)
indicated that they never used a device that is running
Android 6.0 (Marshmallow) or higher. A similar question
was asked about the revoke permission feature, forty
eight percent of participants indicated that they have
heard and used the feature (56/116), and almost twenty
percent (23/116) said that they heard about it but never
used it, and 26 percent (30/116) answered “no” but that
they would love to try it, and finally six percent (7/116)
indicated that they never heard of it and they are not
interested in using the feature.



TABLE IV
THE RESULTS OF THE POST HOC ANALYSIS WITH WILCOXON SIGNED-RANK TESTS ON THE DIFFERENT PERMISSION GROUPS.

Calendar Camera Contacts Location Microphone Phone SMS Sensors Sate Storage
Calendar NA Sig Sig Sig Sig Sig Sig .28 .272 Sig
Camera Sig NA .789 .567 Sig .05 Sig Sig Sig Sig
Contacts Sig .789 NA .446 Sig .052 Sig Sig Sig Sig
Location Sig .567 .446 NA Sig .023 Sig Sig Sig Sig
Microphone Sig Sig Sig Sig NA .076 .552 Sig Sig .332
Phone Sig .05 .052 .023 .076 NA .075 Sig Sig .003
SMS Sig Sig Sig Sig .552 .075 NA Sig Sig .076
Sensors .28 Sig Sig Sig Sig Sig Sig NA .343 Sig
State .272 Sig Sig Sig Sig Sig Sig .343 NA Sig
Storage Sig Sig Sig Sig .332 .003 .076 Sig Sig NA

Fig. 3. Summary of participants answers to the question: When choosing between two or more features-identical apps i take in consideration.

5) Android Related Features (User Satisfaction): Out of
the 116 participants, 90 participants indicated that they
have noticed and interacted with the Android runtime
permission feature, the average satisfaction rate among
them was 5.5. Yet, some participants indicated that they
did not like the feature for different reasons. For instance,
they did not like the pop ups that show up all the time,
which would be irritating. They also criticized the pop
ups for not providing any details to help the user make
informative decisions. For example, according to the
participants, the pop up must explain the consequence of
clicking either of the two displayed options. Out of the
116 participants, 56 participants have known and used
the revoke permission feature with an average satisfac-
tion rate of 5.8. Very few participants have mentioned
reasons for not liking this feature. For instance, one par-
ticipant did not like the feature because the apps would
stop functioning correctly if some of their permissions
are revoked, as demonstrated in this work [5]. Another
mentioned that the process of revoking a permission
requires going through multiple layers of settings and
it always takes her a while to get back.

6) Installation Decision: Part of the survey aimed at un-
derstating the factors that normally influence the users’
decisions when choosing between two or more apps
with identical features. Four factors were considered:
ratings, price, requested permissions, and reviews. In
Figure 3 we display a summary of participants’ re-
sponses to this part of the study. Noticeably, all factors
seemed to be important to the majority of participants.

TABLE V
PARTICIPANTS DEMOGRAPHY

Variable n(%)
Gender
Male 70(60)
Female 46(40)
Age
18-24 15(13)
25-34 71(61)
35-44 22(19)
45 or older 8(7)
Ethnicity
Asian/Pacific Islander 67 (58)
Black/African-American 8 (7)
White/Caucasian 33(28)
Other 8(7)
Education
Some college 17(15)
Associate‘s degree 5(4)
Bachelor‘s degree 60(52)
Master‘s degree 28(24)
Other 6(5)
Proficiency in Android
Basic 17 (15)
Intermediate 66 (57)
Advanced 33(28)

The numbers were very close, the average values were
as follows: 5.92 for ratings, 5.66 for prices, 5.52 for
permissions, and 5.80 for reviews. We further conducted
a comparison of the repeated measures using Friedman’s
test, there was no statistically significant difference in
participants’ assumptions about those factors,

χ2(3, N = 116) = 6.910, p = .075



Fig. 4. The overall methodology of our work.

. The result suggests that participants give actually each
one of these factors the same importance level. It could
also be linked to the way we asked the question. Would
the results be different if we had used a different ap-
proach like the one we used with the permissions for
instance?

7) Demography: The distribution of participants’ de-
mography was as follows (see Table V): of the 116
participants who used the website and completed the
questionnaire, 60% (70 participants) were Male and 40%
(46 participants) were Female. When it comes to age,
the majority (61%) were ages 25-34, (19%) were between
35-44, (13%) were between 18-24. The remaining (7%)
fell between the ages of 45-74. With regard to education,
(52%) of them had completed an undergraduate degree,
whereas, (24%) had completed a graduate degree, (19%)
had completed some college or an associate degree,
and the remaining (5%) had either some high school
or a high school/GED. Lastly, (28%) of the participants
were proficient in using Android phones, (57%) had
intermediate proficiency, and the remaining (15%) had
basic proficiency.

IV. METHODOLOGY

The overall methodology of our work is depicted in
Figure 4. In this section we will go over all the steps in
detail. Our security-centric ranking algorithm is based
on assigning intrusiveness scores to the apps based on
the permissions they possess, the system actions they

register to receive, and user’s privacy preferences. The
intrusiveness score of an app as a function of its system
actions is solely calculated in relative to the collection of
apps in the result set. On the other hand, the intrusive-
ness score of an app as a function of its permissions
is calculated in relative to the returned apps besides
the preferences of the user. Our algorithm is based on
an existing method proposed by Taylor and Martinovic
[35] with a few major modifications. First, our algorithm
incorporates not only the permissions but also the sys-
tem actions. Second, our algorithm uses a new formula
to calculate the final scores instead of simply using the
average, which resulted in producing more useful scores
as we show in Section VI-E and Section VI-F. Third, our
algorithm considers the privacy preferences of users.

A. Secure Search Engine

Ranking Android applications before displaying the
final results to the user might be a computationally-
expensive task, in particular when having a huge set
of applications. Therefore, an inevitable step to such
system is to index the content of these applications. Once
indexed, the large space of applications will be pruned,
and thus, only those applications relevant to a user’s
query will be efficiently retrieved and passed on to the
ranking task. Thus, we utilized Elasticsearch engine [7],
a popular text indexing framework, to index the set of
all applications. Since the title and the description of an
app is a good indicator of its purpose, we decided to
give these two fields more attention. We used the tri-
gram indexing scheme to index the content of both fields.
By doing so, a user would still be able to obtain the
right apps even in case s/he poses a query containing a
substring of the app title or description.

B. Query Processing

When a user submits a query string to search for a
certain app, an Elasticsearch query is generated and sent
to the index. The most relevant applications will then be
efficiently retrieved based on the title and the description
fields. An example of an Elasticsearch query is depicted
in Figure 5. Our current implementation takes only less
than 80 ms to search the 1,945,056 records and retrieve
relevant applications, have the query’s tokens in either
their title or description fields. We then re-rank all the
relevant applications based on their intrusiveness scores
and returns only the top 20 privacy-preserving apps.

C. Intrusiveness Score as a Function of Receivers

An Android receiver lets application listen to system
actions. The Individual Receiver Prevalence (IRP) of each
receiver is defined as the fraction of apps in a search
result set using that receiver. The App Overall Receiver
Prevalence (AORP) is a function IRPs of those receivers



1 "query": {
2 "bool": {
3 "should": [ {
4 "match": {
5 "Title": {
6 "query": titleQuery
7 }
8 }
9 },

10 {
11 "fuzzy": {
12 "Title": {
13 "value": titleQuery,
14 "boost": 3.0,
15 "fuzziness": 2,
16 "prefix_length": 4,
17 "max_expansions": 30
18 }
19 }
20 },
21 {
22 "match": {
23 "Description": {
24 "query": descQuery
25 }
26 }
27 },
28 {
29 "fuzzy": {
30 "Description": {
31 "value": descQuery,
32 "boost": 12.0,
33 "fuzziness": 1,
34 "prefix_length": 10,
35 "max_expansions": 30
36 }
37 }
38 }],
39 "minimum_should_match": 1,
40 "boost": 1.0
41 }
42 }

Fig. 5. A sample Elasticsearch query. Both the title and description
fields are used to search for relevant apps.

used by an app and formulated as follows:

AORPi =
−1

[c×∑IRP∈Appi
log(IRP)]− 1

(1)

Each app has none, one or more receiver. For each
receiver the IRP is calculated as the fraction of occur-
rences of a receiver to the number of apps. For instance,
if we have a set of 4 apps, and two of them are using
receiver 1 then, the IRP of this receiver is 50% which is

high. This implies that this is a popular one, and thus
a safe receiver. However, if there are 100 apps and only
four of them are using receiver 1, then its IRP is 5%, and
that implies it is rarely requested and thus a dangerous
receiver. In both cases, the IRP value of receiver 1 is used
to calculate the value of AORP for the app that has
the receiver in its manifest file. The main motivation
behind using a new formula other than the simple
average is to prevent receivers with high IRP values from
dominating the overall AORP score, since at least one
intrusive receiver should eliminate the positive impact
of non-intrusive receiver. The parameter c is a declining
coefficient that controls the amount of AORP drop when
having an app with some low IRPs, i.e., dangerous
receivers. The larger the value of c, the more sensitive
the AORP we get towards IRPs with lower values. For
example, assume having an app i that has three receivers
with the following IRP values: IRP1 = 1, IRP2 = 1, and
IRP3 = 0.2. By applying our equation, Eq. 1, we will get
an AORPi of 0.42. This makes more sense than simply
averaging all values, literature’s equation, which would
result in an AORP of 0.73. Noticeably, the simple average
approach is more easily affected by extremely large or
small values, which leads into punishing good apps for
having only one dangerous receiver, and favoring bad
apps for having only one safe receiver. Empirically, we
chose a value of c = 2 by experimenting with a number
of apps and calculating their IORPs using a number of
c values.

We chose 5% to be the threshold value for the IRP. We
then calculated the IRP value for each receiver and the
AORP value for each application. Remember that neither
the IRP (5% threshold value) nor the AORP values are
used to exclude any app from the list. These values are
merely used to re-rank the apps before returning them
back to the user. Thus, if an app, e.g., MyApp, contains
one or more rare receivers with IRP value of 5% then its
AORP value will be lower than those apps containing
non-rare receivers. Thus, MyApp would then go to the
bottom of the list. In addition to lowering their rank
in the list, the information of rare receivers could also
be displayed in red font to alert users. We leave this to
future work.

D. Intrusiveness Score as a Function of Permissions

The concepts and the formula from the previous sec-
tion are also being applied to the permission with one
distinction. The permission formula incorporates and
use the privacy preferences of users to calculate the
final intrusiveness score of an app. Integrating users’
preferences in calculation the AORP requires replacing
the IRP parameter in the formula with a new version that
is updated by the input received from the users’ ratings.
Our premise is that the rating a permission receives
from user is more informative than the statistically-
calculated IRP value. Hence, we can view the IRP value



Fig. 6. Secure search engine in action: the first two items have same
scores on the permission side but different scores on the receivers side.

just as a weight regularizing the rating on a particular
permission. After soliciting users’ preferences, we end
up having the permission groups divided into 5 levels,
where level-5 holds permissions with highest sensitivity.
Thus, we map each permission pi to the inverse of the
level of the group that pi is a member in. For example,
if pi is a member in group g5 (having a level of 5), then

g(pi) =
1
5

Therefore, our AORP formula can be redefined as:

AORPi =
−1

[c×∑IRP∈Appi
log(IRP× g(p))]− 1

E. Overall Score

The overall score will be calculated based on the
receiver and the permission scores. Both scores might be
averaged to get the final score. Another way to use the
two scores would be to first rank the apps based on one
of them and then use the other one to break any potential
tie. The current prototype implements this approach.
Figure 6 shows the first two items of the search results
of searching for “coins collector” terms. The two apps
have identical score based on the requested permissions,
yet, the second score, which is based on the registered
receivers, was used to break the tie between them. A
comparative study of the two approaches might be done
in the future.

#apps Type Collection Date
1,945,056 Contextual 2017
325,444 APKs 2017-2018
827,232 APKs 2018-2019

TABLE VI
SUMMARY OF THE CRAWLED DATASET.

V. EVALUATION

The purpose of the evaluation study was twofold:
first, to measure the overhead of our ranking algorithm
via a benchmarking study. Second, to test the accuracy
of the Elasticsearh engine in returning relevant results,
using a pilot study. From several fields composing
each app record, we utilize only the app id, the app
title, and the app description. In addition, for 325,444
applications, we used their requested permissions and
received system actions extracted from their APK files.
Since the process of crawling APKs is time consuming,
in the first phase of the study we only used 325,444
applications, corresponding to a random sample from
the entire set of crawled apps. In Section VI, the
second part of the study, we used 827,232 further
applications. Table VI shows the summary of the
dataset we crawled and used in our evaluations. For
each app, we maintained two lists of configurations; one
containing the set of permissions (137 permissions) and
another list for the broadcast receivers (175 receivers).
Figure 7(a) shows a histogram depicting the usage
distribution of permissions and Figure 7(b) shows the
histogram of broadcast receivers. As can be seen, the
majority of apps ask for a few number of permissions.
For example, about 17.5% of the apps require user to
give exactly 2, 3, or 4 permissions, while only 3.8% of
the apps ask for more than 10 permissions. In addition,
there are some permissions that are requested by a large
number of apps. For instance, nearly 38.6% of the apps
had requested the INTERNET permission and 35.5% of
them ask for ACCESS NETWORK STATE permission.
One can easily notice that these two permissions are
safe, while the permission BIND CARRIER

MESSAGING SERVICE that is not requested
at all in our dataset is considered dangerous.
Therefore, the rank of any app requesting
BIND CARRIER MESSAGING SERVICE should be
downgraded as described in Section IV-D. These
findings suggest that our proposed solution is going
to be effective in recommending less intrusive apps
given that a large number of the apps in the dataset are
configured towards requesting fewer permissions.

A. Renarking Overhead

Real-time retrieval of relevant apps is key in app
recommendation systems. To this end, we evaluated the
runtime performance of our app reranking system. For
this purpose, we posed 7 queries to the system and



(a) Permissions Distributions Among 99.4% of all apps. (b) Receivers Distributions among 99.8% of all apps.

Fig. 7. The distribution of the two security related features of the Apps that were collected in the first phase .

TABLE VII
TIME (IN MILLISECONDS) REQUIRED TO RETRIEVE RELEVANT RESULTS

FOR UNI-, BI-, AND TRI-GRAM TOKENS.

ES query + reranking App reranking
Top-10 Top-30 Top-10 Top-30

Unigram 332.29 264.28 3.33 4.66
Bi-gram 452.15 765.8 3.02 3.56
Tri-gram 1038.57 1208.5 3.04 3.371

took the average runtime. This experiment is repeated
on different parameter settings, namely, (1) uni-, bi-,
and tri-grams query tokens, and (2) top-10 and top-30
retrieved results. The experimental platform is based on
an Intel(R) Xeon(R) CPU E5-2680 v3 (2.4 GHz) with 16GB
memory, running on Windows-7 Professional. The same
experiment is repeated after tripling the number of APKs
to show if there will be any change, see Section VI.

Table VII shows the collected runtime statistics for the
entire retrieval process (ES query and app reranking),
and the runtime for the reranking step only. The num-
bers suggest that reranking the top-k results retrieved
from ES is very efficient and is accomplished within less
than 5ms.

B. Pilot Study
Recruitment of participants was done by announcing

in classrooms and Blackboard 1, the learning manage-
ment system used at our campus. We had 28 participants
complete the pilot study, consisting of 20 questions.
Participants were asked to use the search engine by
submitting three different queries and look closely at
the top five results. Following that, participants had to
answer questions pertaining to their backgrounds, de-
mography, and experience with using the search engine
in particular, how relevant the returned results were.
Participants were given the choice to make two types
of queries, type 1: simple query (e.g., Activity tracker),
type 2: query using ”with” (e.g., Activity tracker with
heart monitor, cloud support). We conducted three types
of analysis: overall, between types, and between result
items. Overall, the search engine returns relevant results

1https://en.wikipedia.org/wiki/Blackboard Learn

according to all participants. There was a significant dif-
ference between type 1 and type 2, type 2 produces less
relevant results. No difference in relevance between the
5 items. To test whether there is a significant difference
between the result items with regard to their relevance
among all participants. We conducted a comparison of
the repeated measures using Friedman’s test. Looking
at the test’s results, there is no statistically significant
difference.

χ2(4, N = 84) = 4.959, p > 0.001

To test whether there is a significant difference between
the two query types with regard to their relevance
among all participants. We conducted a comparison of
the repeated measures using Friedman’s test. Looking
at the test’s results, there is a statistically significant
difference between the two:

χ2(1, N = 150) = 17.017, p <= 0.001

The mean is 5.68 for type 1 and 4.82 for type 2, which
shows that type 1 returned more relevant results com-
pared to type 2. However, the number of submitted
queries of type 1 are way more than those of type 2,
besides, it could be the case that students did not fully
understand type 2. As per the overall all 420 submission,
28 participants, 3 queries and 5 research items, the
average is 5.32 (N = 420) , which shows that the search
engine returns relevant results.

VI. INCREASING THE DATASET SIZE

For the purpose of studying the effect of the dataset
size on the performance of our apps search engine we
downloaded a new batch of APK files from the Google
Play store, extracted the technical information from their
AndroidManifest files, and updated the Elastsearch in-
dex. We then re-evaluated the indexing and the search
processes to note if there was any discrepancy from the
previous evaluation.

A. More APK files

In this work, two crawlers were built and utilzed to
collect the dataset shown in Table VI. Using the first

https://en.wikipedia.org/wiki/Blackboard_Learn


TABLE VIII
TIME (IN MILLISECONDS) REQUIRED TO RETRIEVE RELEVANT RESULTS

FOR UNI-, BI-, AND TRI-GRAM TOKENS AFTER ADDING MORE APPS.

ES query + reranking App reranking
Top-10 Top-30 Top-10 Top-30

Unigram 321.14 340.22 4.79 5.83
Bi-gram 461.24 463.64 4.94 5.31
Tri-gram 937 935.3633 4.47 7.253

crawler, a total of 1,945,056 apps were collected from
the Google Play store (e.g., id, description, ratings, etc.).
The second crawler was used to download the respective
APK files, a total of 325,444 APKs were collected and
reverse engineered for the technical information (e.g.,
permissions and Broadcast receivers). In this extension,
we ran the second crawler for over a year to get ad-
ditional apps, more than 827,232 respective APKs were
actually collected and processed.

B. Evaluation

In this section we show the evaluation results of the
search engine after updating its index. It is a replica of
the evaluation that was discussed in Section V. The focus
of this evaluation is on the indexing step as well as on the
retrieving and reranking steps, which entails retrieving
and reranking the apps before displaying them to the
end user. Our results suggest that the retrieving and
reranking time has not noticeably changed despite the
drastic change in the number of applications/technical
information in the index. In Table VIII we show the
results of our performance analysis after boosting the
size of our corpus. Overall, the overhead caused by
tripling the dataset size is not significant and almost
negligible. In fact, some numbers have even dropped
like in case of the tri-gram top-10 and top-30, the ES
query and reranking times dropped down, from 1038.57
to 937, and from 1208.5 to 935.36, respectively. Moreover,
for those numbers that have risen, the increase was not
actually significant. These results suggest that the dataset
size and the speed with which the data is being retrieved
and ranked are not correlated. The new update though
has somehow altered the time needed to index the entire
records. For instance, indexing the 1,945,056 apps where
1,152,676 of them have technical information, under
Elasticsearch (ES) took about three hours in comparison
to 2.2 hours, previously obtained with less applications,
Section V. It is noteworthy to mention that the indexing
process is not done frequently. In addition, it is usually
done offline, thus, the user experience would not be
affected.

C. Calculating Intrusiveness Scores

In addition to expanding the corpus size, the intru-
siveness score values are calculated for 1,152,676 appli-
cations. The scores are primarily based on the equation
mentioned in Section IV-C with two distinctions. First,

TABLE IX
A SAMPLE OF TEN APPLICATIONS AND THEIR GENRE, DEVELOPER AND

INTRUSIVENESS SCORE INFORMATION.

ID Genre Developer Score
app1 Productivity zafer ertas 0.148
app2 Sports DropSwitch 0.645
app3 Card ZZZ Solitaire 0.059
app4 Card ZZZ Solitaire 0.059
app5 Strategy zy emb 0.243
app6 Board ZZZ Solitaire 0.139
app7 Books & Reference ZviSoft 1.000
app8 Health & Fitness Nordavind 0.064
app9 Tools zsoltz 0.111
app10 Tools Nologi (Zakariya ZMK) 0.055

the score of an app is calculated in relative to all ap-
plications in its genre instead of all applications in the
result set as per the definition. The rationale behind this
score is that the apps of the same genre most likely
requests similar permissions. Therefore, if an app is
requesting permissions that are not common to its genre,
its AORP score would certainly be lower. Secondly, the
user preference value for each permission is hard coded
and calculated as the average rating of all participants
for that particular permission, Section III.

D. Measuring The degree of Alternativity
In this section we show the results of the analysis that

we have conducted on the intrusiveness scores of over a
million Android applications. The core of our approach
relie on the fact that for every query a user submits there
shall be a number of functionally-similar applications
that would satisfy the query. These applications would
most likely differ in their permission needs and expecta-
tions. Thus, our solution can be effective in aiding users
avoid intrusive apps if there are apps in every genre
with a wide range of permission needs. For the purpose
of calculating the new scores, applications of the same
genre are considered functionally-similar in the context
of the equation discussed in Section IV-C

In Table IX we show a sample of ten mobile apps along
with their genres, developers, and the newly calculated
scores. For example, app7 has a score of 1, indicating
that the app either requests no permissions at all or
requests only common permissions among its peers in
the ”Books & Reference” genre. On the contrary, app3,
app4, and app10 have lower intrusiveness scores because
of the number and/or type of permissions they request
in comparison to their peers in the ”Card” and ”Tools”
genres, respectively. Figure 10(a) gives an overall view
of the scores distribution for all applications. There is
a decent number of apps, between 20-25%, with scores
1, which in fact means they do respect users’ privacy.
In Figure 8 we show the distribution of scores for the
genres that are not listed in Table X based on a five-
number summary.

Overall, the vast majority of genres have no outliers,
the red squares. The height of the box plots is an indica-



TABLE X
THE FIRST ROW CONTAINS THE TOP 10 GENRES WITH THE HIGHEST AVERAGE INTRUSIVENESS SCORES AND THE THIRD ROW IS FOR THE LOWEST
10. THE SECOND, FORTH, AND FIFTH ROWS SHOW THE NUMBER OF APPS IN EACH GENRE, MEDIAN, AND STANDARD DEVIATION, RESPECTIVELY.

Genre Libraries&Demo Board Arcade Art&Design Puzzle Word Casual Music Educational Trivia
#Apps 3289 5334 43473 3022 47335 4285 43735 1562 97276 8039
Mean 0.491 0.406 0.397 0.394 0.397 0.369 0.368 0.368 0.366 0.364
Median 0.298 0.228 0.232 0.428 0.208 0.218 0.191 0.205 0.205 0.204
SD 0.429 0.365 0.359 0.324 0.361 0.351 0.356 0.348 0.354 0.358
Genre Travel&Local Communication Auto Events Food Beauty Dating Maps Music Photography
#Apps 38916 24009 1903 1277 6863 1788 703 12909 54433 25499
Mean 0.2959 0.298 0.298 0.298 0.297 0.296 0.295 0.92 0.279 0.25
Median 0.101 0.228 0.232 0.428 0.109 0.125 0.087 0.103 0.205 0.097
SD 0.369 0.388 0.362 0.371 0.347 0.340 0.359 0.363 0.348 0.338

*Some of the genres’ names were truncated in the table: Food & Drink → Food, Maps&Navigation → Maps, Music&Audio →
Music, Auto&Vehicles→ Auto.

Fig. 8. The intrusiveness score values for the remaining genres
excluding the one displayed in Table IX.

tive of the level of agreement among the different apps
of the same genre. When the box plot is comparatively
short it means that most apps have similar scores, e.g.,
Personalization. On the other hand, when the box plot is
comparatively tall it means that most apps have quite
different scores, e.g., Tools. As the figure clearly shows
almost all the genres have apps that are variable in their
scores, which serves our goal in providing the user with
privacy-preserving alternatives.

Additionally, the average intrusiveness score of all
apps in each genre are calculated and sorted in a de-
scending order, we show the top 10 genres and the
lowest 10 genres in Table X. In that table, we also show
the number of apps in each genre, the median and stan-
dard deviation of the intrusiveness scores. The average
scores of these genres are slightly different, the same also
applies on the standard deviation values, which suggests

that the alternativity is quite high.

E. Score as a Dependent Factor

In this section, we study the factors that determines
the score of an app. The factors that we considered
are obtained from the contextual data that we crawled
off the Google Play store app’s page. After conducting
a thorough experimentation that included considering
all factors, sampling and analyzing the variance, the
followings are the factors that were selected and further
studied; genre, reviews average, number of downloads,
content rating, price, android version, and ratings. We
then applied the analysis of variance (ANOVA) on these
factors to explain the variance in the intrusiveness scores.

In Figure 9 we show the results of conducting the
ANOVA test on the entire dataset. While the majority
of the variance in the intrusiveness scores cannot be
explained by the observed variables, we found that
genre, downloads, content rating, and android version
contributed significantly higher than other factors such
as the reviews, price, and ratings. Those poorly con-
tributing factors such as the level of rating, i.e., number
of stars, were excluded from the chart to better illustrate
our findings and emphasize their relative effect on the
variance. In summary, ANOVA showed that content
rating has the greatest impact on the variance and it is
followed by genre that accounts for 7% of the variance,
which indicates the fluctuation in intrusiveness across
different genres, i.e., gaming vs. education. Android ver-
sion and downloads have the same effect (6%) while the
aggregated impact of reviews average, price, and ratings
is only 2%. The genre, downloads, content rating, and
android version contributed significantly higher than
other factors such as the reviews, price, and ratings.
Other factors as we mentioned earlier scored very poorly
during the initial experimentation that we decided to
remove them from the final results. For example, the
five-star ratings, four-start ratings, three-start ratings,
two-star ratings, and the one-star ratings had almost no
influence on the intrusiveness score.



Fig. 9. The results of applying the ANOVA test on the entire dataset.

F. Comparative Analysis

In the previous sections, we explained how our ap-
proach is fundamentally more accurate than Taylor and
Martinovic [35] approach. In this section, we aim to
conduct a comparative analysis between the two ap-
proaches. In doing so, we first calculate new scores for
the 1,152,676 applications based on Taylor and Marti-
novic approach. Then, we use the Pearson and Kendall
correlations to measure the strength of association be-
tween the two scores and the number of users who had
given an app low rating (one-star and two-star). The as-
sociation between the number of users giving an app low
rating and any of the two scores must ideally be strong
and negative. The Person results indicate that both scores
have negative associations with both ratings; however,
our score has stronger correlations. The Kendall results
though shows that our score still maintains a negative
association with the two ratings, however, Taylor’s score
shows a positive correlation. We show the summary
of the results in Table XI. The results provides some
evidence into the usefulness of both scores; however, our
score is more robust.

Another thing we used to compare between the two
scoring approaches is by comparing their distributions.
In Figure 10(b) we show the distribution of Taylor and
Martinovic scores, and in Figure 10(a) we show the dis-
tribution of our scores. While our scoring system pushes
several apps below 0.2, Taylor and Martinovic scoring
has relatively very few number of apps in that range,
which may result in high number of false negatives.
In other words, their scoring may let high intrusive
apps into the returned result set whereas our approach
may act more selectively with the expense of some false
positives. Also, the low variation in their scores does not
offer alternative apps to users for the same genre as apps
that have very similar scores are not well differentiated
based on their scores. We make the dataset that contains
over a million apps, their contextual features, and the
two privacy scores available for researchers to conduct
further studies on here [9].

Test Score One-Star Rating Two-Star Rating

Pearson Our Score -0.0084 -0.0091
Taylor Score -0.0015 -0.0016

Kendall Our Score -0.0004 -0.0089
Taylor Score 0.0092 0.0099

TABLE XI
THE CORRELATION VALUES BETWEEN THE TWO SCORES AND THE ONE

AND TWO STAR RATINGS BASED ON PEARSON AND KENDALL.

VII. RELATED WORKS

Felt et al. examined whether the Android permissions
system is effective at warning users by conducting online
and laboratory studies [10]. The results showed that An-
droid permission warnings do not help most users make
correct security decisions. As such, many researchers
have been trying to propose various kinds of solutions to
batch, replace, and/or support the existing permissions
system. The work of [14] is considered the first attempt
for building the privacy into the App marketplace. The
privacy information used in this work is composed of
permission ratings that are gathered from human and
using automated sources, the privacy information is then
presented to the user to aid them make informative
decisions. Taylor and Martinovic [35] presented a so-
lution to counter what they call starving permission-
hungry apps. The solution offers users alternatives apps
to replace currently installed ones. The alternatives apps
are determined based on the market search engine. It
is worth mentioning that the formal two works are
only considering the permissions to calculate the privacy
score. Sarma et. al [30] on the other hand used both
the permissions an app requests, the category of the
app, and the permissions that are requested by other
apps in the same category to infer the privacy score that
would be used to help users decide on what to install.
Wang et. al proposed a framework for quantitative secu-
rity risk assessment for both Android permissions and
apps based on permission request patterns from benign
apps and malware. Jing et. al [16] presented a contin-
uous and automated risk assessment framework called
RISKMON that uses machine-learned ranking to assess
risks incurred by users’ mobile applications. RISKMON
combines users’ expectations and runtime behaviors to
generate the risks assessment.
There have been numerous researches to bring users to
pay more attention to the Android permissions upon
installing the apps. For example, the work of [33] devel-
oped an Android application, PermissionWatcher, which
provides users with awareness information about other
apps based on the permissions they possess. They con-
ducted a user study to evaluate their approach and
the results show that users are actually willing to use
secure applications if they are given the privacy infor-
mation in an easy and understandable way. Rosen et.
al [27] proposed a new approach to providing users the



(a) Our privacy score. (b) Taylor privacy score [35].

Fig. 10. Density plots visualising the distribution of apps over the two privacy scores.

knowledge needed to make informed decisions about
the applications they install. Their knowledge base is
composed of mappings between API calls and fine-
grained privacy-related behaviors. The knowledge base
is then used to produce high-level behavior profiles for
application behavior. Hengshu et. al [43] proposed to
develop a mobile App recommender system that takes
on consideration the app’s security risks and popularity
and users’ security preferences. Their design goal was
to equip the recommender system with the ability to
evaluate the security risk of mobile Apps based on
requested permissions.

VIII. CONCLUSION

In this work we have proposed and evaluated a new
security-centric ranking algorithm built on top of the
Elasticsearch engine. The aim of this algorithm is to force
least privilege among developers and help users avoid
installing intrusive third-party mobile applications. The
algorithm calculates an intrusiveness score for each mo-
bile app based on the permissions it possesses, the
system actions it has registered to listen to and user’s
privacy preferences. For the purpose of collecting user’s
privacy preferences a new approach was proposed and
evaluated through an online user study. The majority of
participants indicated that the approach is effective and
brief.
In evaluating our search engine, we conducted two
studies; a pilot study and a benchmarking study. The
benchmarking study was conducted twice to measure
the effect of increasing the APK dataset size. The results
of these studies show that our approach is efficient,
scales well with the number of apps, and returns relevant
applications.
The new ranking algorithm is considered a great op-
portunity for mobile users to shop for mobile apps that
protect their privacy. If more and more users utilize it,
developers will be forced to adjust their behavior to
satisfy privacy demands of the users.
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