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Summary

Background: Alterations in body composition (BC) during adolescence relates to

future metabolic risk, yet underlying mechanisms remain unclear.

Objectives: To assess the association between the metabolome with changes in adi-

posity (body mass index [BMI], waist circumference [WC], triceps skinfold [TS], fat

percentage [BF%]) and muscle mass (MM).

Methods: In Mexican adolescents (n = 352), untargeted serum metabolomics was

profiled at baseline. and data were reduced by pairing hierarchical clustering with

confirmatory factor analysis, yielding 30 clusters with 51 singleton metabolites. At

the baseline and follow-up visits (1.6–3.5 years apart), anthropometry was collected

to identify associations between baseline metabolite clusters and change in BC (Δ)

using seemingly unrelated and linear regression.

Results: Between visits, MM increased in boys and adiposity increased in girls. Sex

differences were observed between metabolite clusters and changes in BC. In boys,

aromatic amino acids (AAA), branched chain amino acids (BCAA) and fatty acid oxida-

tion metabolites were associated with increases in ΔBMI, and ΔBF%. Phospholipids

were associated with decreases in ΔTS and ΔMM. Negative associations were
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commercial products or services mentioned in

the publication. observed for ΔMM in boys with a cluster including AAA and BCAA, whereas positive

associations were found for a cluster containing tryptophan metabolites. Few associ-

ations were observed between metabolites and BC change in girls, with one cluster

comprising methionine, proline and lipids associated with decreases in ΔBMI, ΔWC

and ΔMM.

Conclusion: Sex-specific associations between the metabolome and change in BC

were observed, highlighting metabolic pathways underlying adolescent physical

growth.
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1 | INTRODUCTION

Adolescence is characterized by rapid changes in body composition

(BC) that are sex-specific and reflect physical growth and sexual matu-

ration. Boys tend to become leaner and gain muscle mass during

puberty, while girls increase levels of adiposity.1 Variations in BC

changes among adolescents may have implications for development

of obesity and cardiometabolic disease (CMD). Higher adiposity

changes, specifically during puberty, are associated with mortality and

cardiovascular disease, especially among men.2–5 Nevertheless, there

is limited understanding of metabolic pathways related to body com-

position change (ΔBC) during adolescence and their implications for

later CMD.

Cross-sectional studies have identified metabolic pathways asso-

ciated with body mass index (BMI) and CMD in adolescents.6–9 Corre-

lating metabolites with clinical and phenotypic outcomes can provide

biomarkers of development of CMD, potentially identifying future dis-

ease risk.10 Lipids, including diacylglycerols, have been related to BMI

z-score and a metabolic risk score, with a larger effect size among

girls.11,12 Branched chain amino acids (BCAA) and aromatic amino

acids (AAA) were associated with BMI z-score (BMIz) in boys,11

aligning with studies in adolescents with obesity.6,8 Consistent rela-

tionships between BCAA and AAA with insulin resistance (IR) have

not been demonstrated in adolescents.7,8,10,11 For example, Perng

et al.13 observed that BCAAs were inversely associated with change

in IR measured by C-peptide in adolescents; opposing findings in

adults.14

These findings suggest that cross-sectional studies may obscure

the direction of the relationships during adolescence, for example,

whether adiposity alters the metabolome leading to metabolic dys-

function or metabolic dysfunction alters the metabolome leading to

increased fat storage and weight gain. Nevertheless, few studies have

examined how the metabolome is related to prospective ΔBC. Wahl

et al.15 observed that lipids predicted change in BMI in children with

obesity undergoing weight loss. To our knowledge, no reports have

considered how the metabolome is associated with ΔBC including

changes in both lean and fat mass in the same adolescents. Further,

metabolite and lipid profiles are dependent on sex,16 emphasizing the

importance of examining sex differences during this developmental

period. Our aim was to examine baseline metabolomic profiles in rela-

tion to changes in BC within a cohort of adolescents. Our results may

generate biological hypotheses on the sexual dysmorphism involved

in BC changes.

2 | METHODS

2.1 | Setting and subjects

Subjects included adolescent offspring of women participating in the

Early Life Exposures in Mexico to ENvironmental Toxicants

(ELEMENT) project. ELEMENT comprises three birth cohorts origi-

nally recruited over a 10-year period (1994–2004).17 Subsequently,

622 children from cohorts 2 and 3 were re-recruited in 2008–2012

for a study of fetal lead exposure and long-term cognitive outcomes.

Among these, 554 youth (ages 9–18 years) were re-recruited in

2015–2016 (baseline visit) and 519 adolescents (ages 11–20 years)

returned for the 2016–2019 follow-up visit. Trained research staff

administered interviews including sociodemographic and lifestyle

behaviours; fasting blood samples for metabolomics were collected at

baseline and anthropometry and BC were measured at both time

points. A total of 404 youth had untargeted metabolomics measured

at baseline. The final analytic sample included 352 participants

(182 girls and 171 boys) with complete information on metabolomics,

BC and covariates. Compared to all adolescents at the baseline visit

(n = 554), the final analytic sample was younger (13.8 ± 1.9 vs. 15.8

± 2.0 years; p < 0.0001) and had lower muscle mass (20.6 ± 4.9

vs. 23.4 ± 5.0 kg; p = 0.016); no other differences were found for

total energy intake (TEI), physical activity (PA), socioeconomic status

(SES) and BC.

Study protocols were reviewed and approved by the Research,

Research Ethics and Biosafety Committees of the National Institute of

Public Health of Mexico and the Institutional Review Board of the Uni-

versity of Michigan (HUM00034344). Subjects who were ≥ 18 years
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provided informed written consent. Subjects between 9 and 18 years

old provided maternal consent and child assent.

2.2 | Body composition

Multiple measures of BC allowed for comprehensive phenotyping

including BMI, waist circumference (WC); an indicator of abdominal

obesity, triceps skinfold (TS); a measure of peripheral fat reserves,

body fat percentage (BF%); a measure of overall adiposity, and skele-

tal muscle mass (MM).18,19 Participants wore a clinical examination

gown and were asked to remove hair ornaments, shoes and socks

according to the ELEMENT study protocol. Research assistants mea-

sured height to the nearest 0.5 cm with a BAME Model 420; Catálogo

Médico, Tokyo, Japan, with height rod (Model WB-3000 m), weight

to the nearest kg (InBody 270, Biospace, California, USA), WC to the

nearest 0.1 cm at the iliac crest using a non-stretchable measuring

tape (QM2000 QuickMedical; SECA model 201, Hamburg, Germany),

and TS in mm (Lange callipers; Beta Technology, California, USA) using

standard anthropometry procedures.20 BF% and MM were estimated

using bioelectrical impedance equipment (InBody 270, Biospace, Cali-

fornia, USA). Staff obtained duplicate measures for height, WC and

TS, and the average of two measures was used for analysis. Changes

in BC parameters were calculated by subtracting the follow-up value

from the baseline, denoted by Δ.

2.3 | Metabolomics

The untargeted metabolome was profiled in fasting serum samples

using liquid chromatography mass spectrometry (LC–MS) with an

1290 Infinity Binary LC with a Waters Acquity HSS T3 1.8 μm column

and a 6530 quadrupole Time-of-Flight MS (Agilent Technologies, Inc.,

Santa Clara, CA).21 Samples (100 μl) were isolated using an extraction

solvent (400 μl) containing methanol: acetonitrile: acetone (1:1:1).

Chromatography run time was 20 min, using a varying methanol:

water solvent gradient across the run. Mass spectrometry used an

electron ion source mass detector. Mass spectrometry was performed

by electrospray ionization with an Agilent Jetstream ion source, with

full-scan mass spectra acquired over the m/z range 50–1500 Da. Posi-

tive and negative electrospray ionization modes were run. Raw data

peak processing was performed using Agilent software (Agilent Mas-

sHunter Qualitative Analysis and Profinder, Santa Clara, CA), identify-

ing the MS ion counts for each feature. The application of Binner22

allowed for the visualization of feature relationships and the removal

of redundant features. Annotated metabolites were identified using

Post-Processor, a metabolomics naming library, via comparing their

MS/MS spectra to internal or external standards run on the same

instrument. Data normalization methods23 used ‘pooled’ reference

samples were run in each batch.24 Peak intensities were adjusted for

batch drift using locally estimated scatterplot smoothing regression

(LOESS) and between batches using a feature global median.25 Miss-

ing peak intensities were imputed using K-nearest neighbour (K = 5)

in features with ≥70% detection across samples (R package ‘impute’);
features with <70% detection were removed. Metabolites were natu-

ral log-transformed and normalized to normal distribution with mean

of 0 and variance of 1. The final metabolomics data set contained

336 annotated metabolites grouped in nine metabolite classes: amino

acids (AA; 12%), carbohydrates (2%), cofactors and vitamins (2%),

energy metabolites (1%), exogenous metabolites (3%), lipids (70%),

nucleotides (3%), peptides (5%) and xenobiotics (2%). Lipids are

reported with the nomenclature as X:Y, where X is the length of the

carbon chain and Y is the number of double bonds.

2.4 | Covariates

Baseline covariates included age, TEI, sedentary time, moderate/

vigorous activity and household SES. Interviewers administered a

semi-quantitative food frequency questionnaire, validated in a Mexi-

can population,26 to obtain adolescents' habitual dietary intake over

the past 7 days. TEI was calculated using food composition tables.26

PA was estimated from accelerometers worn for 7 days27 using Chan-

dler's vector magnitude cutoffs,28 classified as average sedentary and

moderate/vigorous (min/day). Household SES was reported using the

Mexican Association of Marketing Research and Public Opinion Agen-

cies questionnaire, consisting of seven categories ranging from A/B

(highest SES) to E (lowest SES).29,30 Tanner stages for secondary sex-

ual characteristics (e.g., pubic hair and genital development in boys;

menarche and pubic hair and breast development in girls31,32) may be

associated with the metabolome and BC, thus be considered potential

confounders. Nevertheless, we did not include Tanner stages as

covariates since pubertal progression coincides with and influences

BC and likely mediates these associations.

2.5 | Statistical analysis

At baseline and follow-up, descriptive statistics were computed for

measures of BC, ΔBC and sociodemographic characteristics, stratified

by sex. Sex-differences were evaluated using Student's t or Wilcoxon

tests for normal and non-normally distributed continuous variables,

respectively, and Fisher exact tests were used for categorical vari-

ables. The relationship between ΔBC and covariates was evaluated

stratified by sex using ANOVA and Kruskal Wallis tests for normal

and non-normally distributed variables, respectively. Proportion tests

were performed to compare the change in the prevalence of obesity,

using BMI for age according to the World Health Organization (WHO)

(>3 Z-score)33 and the International Obesity Task Force (IOTF) (sex-

and age-specific centiles corresponding to ≥30 kg/m2 at 18 years)34

criteria between visits by sex. For descriptive statistics, non-normally

distributed variables were reported as medians (Q1, Q3), while nor-

mally distributed variables were reported as means±SD.

A confirmatory factor analysis (CFA) model was fit for all the

metabolites within each cluster, with the clusters generated by hierar-

chical cluster analysis (HCA) using Spearman's rank correlation
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coefficients. To determine the final clusters from the HCA, we consid-

ered the following criteria: (a) ≥5 metabolites per cluster and (b) an

average pairwise correlation of r ≥ 0.15, resulting in a dendrogram

height of 3.5. A total of 30 clusters were generated, leaving 51 single

metabolites (Figure 1; Table S1). Therefore, 30 CFA models were fit

separately. CFA models aim to study the degree to which vectors of

observed random variables can be used to assign values to one or

more unobserved variables, which we call latent variables (LV). The

investigation is largely accomplished by estimating and evaluating

the loading of each observed random variable used to mine aspects of

the unobserved LV. The CFA models were built up using the R

package ‘lavaan’ with the formulation as follows:

f¼�m1þm2þ…þmn,

where f is the unobserved LV we want to estimate and m1,…,mnf g
are the n number of metabolites within one cluster under

consideration. After model fitting, the predicted LV was extracted to

be included as a covariate into seemingly unrelated regression (SUR).

The main objective of CFA is to summarize the information contained

in the n number of metabolites within one cluster by one single vector

of predicted LV, thus, to reduce the number of covariates that need to

be included into the SUR model. Details on the 30 clusters can be

found in Table S1.

Prior to modeling this association, we determined if our ΔBC

measures were correlated, stratified by sex (Table S2). Using

Pearson's correlations, the four adiposity measures, ΔBMI, ΔWC,

ΔBF% and ΔTS, displayed positive correlations (r) ranging between

0.616–0.906 in boys and 0.515–0.803 in girls. In both boys and

girls, ΔMM was weakly correlated with ΔBMI, ΔWC, ΔBF% and

ΔTS. We chose SUR (R package ‘systemfit’) to jointly analyse ΔBMI,

ΔWC, ΔBF% and ΔTS. We ran multiple linear regressions (MLR) for

ΔMM separately, due to its weak correlation with adiposity

measures.

F IGURE 1 Hierarchical
clustering of metabolome.
Dendrogram depicts tightness of
metabolites (n = 336) with the
cut-off 3.5 for cluster designation
determined by the inclusion of ≥5
metabolites, and Spearman
correlation coefficient (r > 0.15).
These criteria resulted in the
creating of 30 metabolite clusters
and 51 singletons metabolites.
Colour depicts the strength and
direction of the Spearman
correlations
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SUR is a multi-dimensional linear regression model consisting of

several multiple regression models for correlated multiple outcomes,

each having its own dependent variable and potentially different sets

of exogenous explanatory variables.35 The choice of this model for

the present analysis is to utilize the correlation between adiposity

measures to increase statistical power and to examine if clusters are

simultaneously associated with a set of outcomes.

Using SUR, we evaluated the relationship between the baseline

metabolome (30 clusters and 51 singletons) and change in adiposity

measures (ΔBMI, ΔWC, ΔBF% and ΔTS) in sex-stratified models,

while adjusting for baseline age, baseline outcome, TEI, SES, mod-

erate and vigorous PA, and sedentary time. The nested models are

used to evaluate the relative importance of each cluster sequen-

tially in terms of goodness-of-fit via the residual sum of squares

(Table S4).

The relationship between the metabolome (30 clusters and

51 singletons), and ΔMM was evaluated using MLR, while adjusting

for the same variables. All clusters and singletons were included in

TABLE 1 Subject characteristics and change in body composition, stratified by sex

Total (n = 352) Girls (n = 182) Boys (n = 170) p-value

Baseline

Age (years)a 13.8 ± 1.9 13.7 ± 2.0 13.9 ± 1.9 0.300

Lifestyle

Energy intake (kcal/day)b 2155 (1682, 2754) 1928 (1496, 2391) 2399 (1909, 3144) <0.0001

Moderate and vigorous PA (min/day)b 77.8 (61.0, 97.8) 78.9 (66.0, 97.9) 75.9 (57.6, 95.0) 0.165

Sedentary time (min/day)a 583.2 ± 74.8 573.2 ± 74.1 593.9 ± 74.4 0.009

Body composition

BMI (kg/m2)b 21.0 (18.2, 23.8) 21.3 (18.3, 24.3) 20.7 (17.9, 23.6) 0.259

Waist circumference (cm)b 77.1 (69.9, 86.5) 78.0 (71.1, 87.4) 76.5 (69.0, 85.1) 0.221

Triceps skinfold (mm)b 18.5 (14.0, 23.0) 20.0 (16.0, 24.5) 16.0 (10.0, 21.0) <0.0001

Body fat (%)b 27.1 (19.7, 34.0) 30.5 (25.5, 36.1) 21.1 (14.8, 28.6) <0.0001

Muscle mass (kg)b 19.8 (17.2, 24.0) 18.9 (16.7, 20.8) 23.0 (18.6, 26.6) <0.0001

SESc

A/B 24 (6.8) 11 (6.0) 13 (7.7) 0.103

C+ 63 (17.9) 35 (19.2) 28 (16.5)

C 106 (30.1) 46 (25.3) 60 (35.3)

D+ 108 (30.7) 57 (31.3) 51 (30.0)

D 15 (4.3) 12 (6.6) 3 (1.8)

E 36 (10.2) 21 (11.5) 15 (8.8)

BMI for age WHO classificationc

Underweight/normal 216 (61.3) 114 (62.7) 102 (60) 0.953

Overweight 89 (25.3) 43 (23.6) 46 (27.1)

Obesity 47 (13.4) 25 (13.7) 22 (12.9)

BMI for age IOTF classificationc

Underweight/normal 231 (65.6) 120 (66.0) 111 (65.3) 0.424

Overweight 90 (25.6) 43 (23.6) 47 (27.6)

Obesity 31 (8.8) 19 (10.4) 12 (7.1)

Body composition change

Δ BMI (kg/m2)a 1.3 ± 1.7 1.6 ± 1.5 1.0 ± 1.8 0.0003

Δ waist circumference (cm)a 6.4 ± 5.4 8.0 ± 4.8 4.8 ± 5.5 <0.0001

Δ triceps skinfold (mm)a 2.1 ± 5.1 3.0 ± 4.3 1.1 ± 5.7 0.0006

Δ body fat (%)a 0.7 ± 5.1 2.8 ± 3.6 �1.6 ± 5.4 <0.0001

Δ muscle mass (kg)a 2.8 ± 2.5 1.6 ± 1.4 4.0 ± 2.8 <0.0001

Abbreviations: BMI, body mass index; IOTF, International Obesity Task Force; PA, physical activity; Q1, first quartile (25th percentile); Q3, third quartile

(75th percentile); SD, standard deviation; SES, socioeconomic status; WHO, World Health Organization.
aNormal distribution. Presented as mean ± SD. Statistical significance between sex assessed using Student's t-test.
bNon-normal distribution. Presented as median (Q1, Q3). Statistical significance between sex assessed using Wilcoxon tests.
cCategorical variables presented as n (%). Statistical significance between sex assessed using Fisher's Exact test.
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the sex-stratified models. Like the SUR analysis, we examined the

relative importance of each cluster and singleton metabolite to the

model (Table S5). A sensitivity analysis was performed adjusting for

Δage from baseline to follow-up. We found no statistically signifi-

cant differences in the length of the follow up interval between

boys and girls (p = 0.147). In models with and without Δage, the

same LVs were selected, and coefficients were minimally different,

thus we reported the results from models without Δage (data

available upon request). Statistical analyses were performed using

the R statistical software.

3 | RESULTS

3.1 | Subject characteristics

Baseline and follow-up characteristics were collected over an interval

of 1.6–3.5 years for 352 adolescents (Table 1). At baseline, adoles-

cents were on average 13.8 years and approximately half had low to

medium SES (45%), with no significant differences in distribution of

household SES by sex (p = 0.103). The median TEI was higher in boys

(2399 kcal/d [interquartile range, IQR = 1235 kcal/d] vs. 1928 kcal/d

[IQR = 895 kcal/d], p < 0.0001) and boys were more sedentary than

girls (593.9 ± 74.4 min/day vs. 573.2 ± 74.1 min/day, p = 0.009). Girls

had higher TS and BF% and boys had more MM (p < 0.0001). At

follow-up, adolescents were at average 15.8 years and similar sex dif-

ferences were observed in BC measures, with higher WC, TS and

BF% in girls and higher MM in boys (Table S6).

Between baseline and follow-up, the prevalence of overweight

decreased (WHO: 5.7%, p = 0.007; IOTF: 2.3%, p = 0.616), while the

prevalence of obesity increased (WHO: 6.5%, p = 0.002; IOTF: 2.3%,

p = 0.471). The prevalence of obesity increased more in girls than in

boys (WHO: 8.8% vs. 4.2, p = 0.082; IOTF: 2.8% vs. 1.7%, p = 0.489,

respectively) (Table 1 and Table S6).

Increases in adiposity were observed in both sexes, with larger

increases in girls compared to boys in ΔBMI (1.6 ± 1.5 vs. 1.0

± 1.8 kg/m2, p < 0.001), ΔWC (8.0 ± 4.8 vs. 4.8 ± 5.5 cm, p < 0.0001),

and ΔTS (3.0 ± 4.3 vs. 1.1 ± 5.7 mm, p < 0.001). Girls increased ΔBF%

while boys decreased (2.8 ± 3.6 vs. �1.6 ± 5.4%, p = 0.0001). Boys

had a larger increase in ΔMM than girls (4.0 ± 2.8 vs. 1.6 ± 1.4 kg,

p < 0.0001). Associations between the ΔBC and covariates are pres-

ented in Table S7, stratified by sex.

3.2 | Association between metabolome and
change in adiposity

Using sex-stratified SUR, the relationship between the baseline

metabolome and change in adiposity measures (ΔBMI, ΔWC, ΔBF%

and ΔTS) was evaluated. Metabolite cluster ID names are found in

Table 2.

3.2.1 | Metabolome and change in adiposity in boys

In boys, clusters 12 (ID: dicarboxylic fatty acids [DiC-FA]), 20 (ID: phos-

pholipids) and 29 (ID: BCAA, AAA, and glucose) and singleton metabo-

lites mannitol, dipeptide (Phe, Thr) and lysophosphatidylcholine (LPC)

16:0 were selected in the SUR model (Figure 2A). The dicarboxylic fatty

acid cluster (cluster 12) was positively associated with ΔBMI (β = 3.1,

p = 0.038). The BCAA, AAA and glucose cluster (cluster 29) was

TABLE 2 Metabolite classes within clusters

Cluster
ID Cluster name

1 Lysophospholipids

2 Lipids, sterols

3 Fatty acid intermediates, long chain

4 Phospholipids, nucleotides

5 Lipids, nucleotides

6 Acylcarnitines

7 Amino acids (isoleucine), urate

8 Xanthine Metabolism

9 Fatty acids, hydroxyl fatty acids

10 Long-chain and very-long chain fatty acids, hydroxyl fatty

acids

11 Polyunsaturated very-long chain fatty acids, fatty acid

intermediates

12 Dicarboxylic fatty acids

13 Long chain acylcarnitines, nucleotides

14 Lipids, fatty acid oxidation intermediates, glycerol

backbones

15 Dicarboxylic and amine fatty acids

16 Amino acids (serine and histidine)

17 Amino acids (BCAA metabolites and aromatic amino

acids)

18 Amino acids (aromatic amino acids), amine fatty acids

19 Phospholipids

20 Phospholipids

21 Phospholipids

22 Lysophospholipids, fatty acid intermediates

23 Amino acid (lysine), diacylglycerols

24 Amino acid (methionine and proline), lipids

25 Polyunsaturated phospholipids, long-chain acylcarnitines

26 Carbohydrate (lactose), dipeptides

27 Amino acid (aromatic amino acid), bile acid

28 Monoacylglycerol

29 Amino acid (BCAA, aromatic amino acid), glucose

30 Very-long chain fatty acids

Note: Pairing hierarchical clustering with a dendrogram height of 3.5, 30

metabolite clusters were identified. Clusters were named based on the

primary metabolites within.

Abbreviation: BCAA, branched-chain amino acids.
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positively associated with ΔBF% (β = 5.3, p = 0.003). The phospholipid

cluster (cluster 20) was inversely associated with ΔTS (β = �7.5,

p = 0.010). Several singleton metabolites were associated with ΔBF%

measures. Lenticin was inversely associated with ΔBF% (β = �1.1,

p = 0.026), and LPC 16:0 was inversely associated with ΔBMI (β = �0.5,

p = 0.042) and ΔWC (β = �1.5, p = 0.050). Dipeptide (Phe-Thr) was

positively associated with all adiposity measures (ΔBMI: β = 0.6,

p = 0.048; ΔWC: β = 2.4, p = 0.008; ΔTS: β = 2.3, p = 0.008 and ΔBF:

β = 1.6, p = 0.038), and mannitol was positively associated with ΔTS

(β = 1.8, p = 0.017) and ΔBF% (β = 1.4, p = 0.026), with a trending posi-

tive association with ΔBMI (β = 0.5, p = 0.053).

3.2.2 | Metabolome and change in adiposity in girls

In girls, cluster 24 (ID: amino acid [methionine and proline] and lipids)

and singleton metabolites hydroxy-fatty acid 10:0, 24:2 DiC-FA, man-

nitol, ursodiol and 2-piperidinone were selected in the SUR model

(Figure 2B), observing an overlap with mannitol in boys' SUR model.

The methionine, proline and lipid cluster (cluster 24) was negatively

associated with ΔBMI (β = �2.7, p = 0.049), and ΔWC (β = �9.0,

p = 0.048). Singleton metabolites ursodiol (β = �0.9, p = 0.016) and

hydroxy-FA 10:0 and (β = �0.984, p = 0.024) displayed significant

inverse associations with ΔBF%. DiC-FA 24:2 was negatively associ-

ated with ΔBMI (β = �0.4, p = 0.035), and mannitol was negatively

associated with ΔTS (β = �1.2, p = 0.014). 2-piperidinone was posi-

tively associated with ΔTS in girls (β = 0.9, p = 0.029).

In boys and girls, all associations between metabolite clusters and

change in adiposity are reported in Table S8.

3.3 | Association between metabolome and
change in muscle mass

3.3.1 | Metabolome and change in muscle mass
in boys

In boys, clusters 21 (ID: phospholipids), 24 (ID: amino acid [methionine

and proline] and lipids), 27 (ID: AAA and bile acids) and 29 (ID: BCAA,

AAA, and glucose) and singleton metabolite 1,5-phosphoribosyl-

5-amino-4-imidazolecarboxamide (AICAR) were significantly related

to ΔMM (Figure 3A). The phospholipid cluster (cluster 21) was nega-

tively associated with ΔMM (β = �0.7, p = 0.047). The methionine,

proline and lipid cluster (cluster 24) and the BCAA, AAA and glucose

cluster (cluster 29) inversely associated with ΔMM (β = �3.3,

p = 0.026; β = �2.2, p = 0.001, respectively). The AAA and bile acid

cluster (cluster 27) was positively associated with ΔMM (β = 0.6,

p = 0.047). A positive association was observed between ΔMM and

AICAR (β = �0.6, p = 0.036).

3.3.2 | Metabolome and change in muscle mass in
girls

In girls, clusters 13 (ID: long chain acylcarnitines and nucleotides)

and 24 (ID: amino acid [methionine and proline] and lipids) were

significantly associated with ΔMM (Figure 3B). The methionine,

proline and lipids cluster (cluster 24) was inversely associated

with ΔMM (β = �2.4, p = 0.031), in alignment with results in

boys. The long-chain acylcarnitine (AC) and nucleotide cluster

F IGURE 2 Sex differences in the relationship between the metabolome and change in adiposity measures. In seemingly unrelated regression
models, the association between all 30 metabolite clusters and 51 singletons, the predictor, and change in adiposity measures (ΔBMI, ΔWC, ΔTS,
and ΔBF%) was evaluated in (A) boys and (B) girls, including the covariates age, energy intake, socioeconomic status, moderate and vigorous
physical activity, and sedentary time. Colours depict direction of association with numbers within the heatmap describing the estimated beta
coefficients of the selected clusters. Significance of association denoted by asterisks (*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001).
AAA, aromatic amino acids; BCAA, branched chain amino acids; BF%, body fat percentage; BMI, body mass index; DiC, dicarboxylate; FA, fatty
acid; LPC, lysophosphotidylcholine; Met, Methionine; MM, muscle mass; OH, hydroxyl; Phe, phenylalanine; Pro, proline; Thr, Threonine;
TS, triceps skinfold; WC, waist circumference
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(cluster 13) was positively associated with ΔMM (β = 140.8,

p = 0.041).

In boys and girls, all associations between metabolite clusters and

ΔMM are reported in Table S9.

4 | DISCUSSION

In this longitudinal study, we quantified and assessed the baseline

untargeted metabolome to predict Δadiposity and ΔMM in adoles-

cents. Our analysis distinguished between fat tissue, using BF%, WC,

TS, and BMI, and lean tissue, using MM. Furthermore, boys and girls

diverge in type of ΔBC during adolescence; boys demonstrate marked

decreases in TS with concomitant increases in MM, whereas girls

show greater increases in total central and peripheral adiposity.36 Our

results demonstrate sex-specific associations between the

metabolome and changes in BC, highlighting metabolic pathways

involved in adolescent development.

4.1 | Branched chain and aromatic amino acids
associated with body composition change

BCAA and AAA cluster displayed statistically significant associations

with Δadiposity measures in boys only (cluster 29; Figure 2A), with

higher baseline levels of these metabolites being associated with

increases in BMI, WC, and TS between baseline and follow-up. These

results align with previous cross-sectional studies6,8 and elicit strong

evidence for sex-differences in these essential AA's associations with

adiposity.11 Interestingly, two clusters containing BCAA and AAA

exhibited opposite associations with ΔMM in boys, with significant

positive associations with cluster 27 and inverse associations with

cluster 29 (Figure 3). The amino acids in cluster 29 are leucine and

phenylalanine and the amino acids in cluster 27 are tryptophan

metabolites.

Overall, these results may suggest two different biological path-

ways driving the associations with essential AA, as ΔMM is not corre-

lated with Δadiposity measurements in boys (Table S2). The first

proposed pathway suggests that higher baseline essential AA are pre-

dictive of increasing adipose tissue in boys. Beginning over half a cen-

tury ago,37 strong evidence has been found for the association

between BCAA and the AAAs phenylalanine and tyrosine with obe-

sity. The biological implications of these associations have been

suggested by hypotheses of alterations in BCAA catabolism in white

adipocytes and hepatocytes in individuals with obesity, (reviewed by

Adams et al38), and the signalling role of BCAA, in particular leucine, in

controlling metabolism (e.g., activation of mTOR signalling pathway)

(reviewed by Zhang et al39). Our results may provide a biomarker of

AA metabolism dysregulation (e.g., leucine in cluster 29), potentially

associated with future metabolic health risks in boys. Although we did

F IGURE 3 Sex differences in
the association between the
metabolome and change in
muscle mass. Sex-specific
multiple linear regressions
classified how the 30 metabolite
clusters and 51 singletons were
associated with change in muscle
mass (ΔMM) in (A) boys and

(B) girls, adjusting for age, energy
intake, socioeconomic status,
moderate and vigorous physical
activity, and sedentary time.
Significant clusters are
represented. Estimated beta
coefficients plotted with
significance of association
denoted by asterisks (*p-value
< 0.05; **p-value < 0.01). AAA,
aromatic amino acids; AC,
acylcarnitine; AICAR,
1,5-phosphoribosyl-5-amino-
4-imidazolecarboxamide; BCAA,
branched-chain amino acids; Met,
Methionine; Pro, proline
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not measure insulin levels at the follow-up visit, elevations in BCAAs,

tyrosine and phenylalanine are predictive of type 2 diabetes

incidence,40 further illustrating the importance of these metabolites.

The second proposed pathway suggests higher baseline essential

AA are predictive of increasing MM in boys. The concept that dietary

essential AA levels stimulate muscle protein synthesis is

inconclusive,41 potentially indicating that their elevation may reflect,

rather than cause, changes in MM. Pubertal development is associated

with increases in insulin-like growth factor 1 (IGF-1),11 responsible for

stimulating muscle growth and, in turn, increasing circulating

AA. These associations may be more apparent in boys due to their

larger gain of MM and earlier stages of puberty compared to girls

(Table 1).

4.2 | Fatty acid (FA) oxidation intermediates and
phospholipids associated with body composition
change

A long-chain DiC-FA cluster (cluster 12) was positively associated

with ΔBMI in boys (Table 2). DiC-FA are lipids derived from FAs or

fatty acyl-CoA esters during omega-oxidation42 and are suggested to

be a compensatory measure to maintain the tricarboxylic acid cycle

due to inadequate glycolysis.43 Although we did not quantify insulin

resistance, boys within this age range are typically going through

puberty, and therefore, are more insulin resistant. There is an associa-

tion with increased extra-mitochondrial FA oxidation and insulin resis-

tance, as evidenced in girls with polycystic ovary syndrome.44 These

results may highlight alterations in fatty acids metabolism during

puberty in boys with increasing BMI, evidenced by increased produc-

tion of DiC-FA from omega-oxidation. In boys, Cluster 20 was

inversely associated with ΔTS and Cluster 21 was inversely associated

with ΔMM. Interestingly, these clusters both contain phospholipids

and lysophospholipids of similar FA chain length and saturation. The

main difference in their composition was the presence of alpha-

tocopherol in Cluster 21. In a sensitivity analysis, alpha-tocopherol

was removed from cluster 21, and the significance between Cluster

21 and ΔMM was lost, potentially suggesting the importance of this

metabolite in the association.

4.3 | Limited associations with metabolites and
body composition change in girls

Few associations were observed between the metabolome and

ΔBC in girls. The methionine, proline, and lipid cluster (cluster 24)

was negatively associated with ΔBMI, ΔWC, and ΔMM in girls.

Positive Pearson's correlations exist between ΔBMI and ΔMM

(r = 0.496) and ΔWC and ΔMM (r = 0.395) in girls (Table S2). BMI

and WC measurements capture subcutaneous fat, visceral fat,

bone, and muscle mass, suggesting that these measures may not

reflect solely fat-mass.45 Higher levels of metabolites within cluster

24 at baseline may be reflect of decreases in mass (MM) in girls,

although the relationship between methionine and proline with

muscle mass in girls is uncertain. Furthermore, the long chain AC

and nucleotides cluster (cluster 13) was positively associated with

ΔMM in girls (Figure 3B). The coefficient values from the CFA anal-

ysis of Cluster 13 varied greatly (Table S3), potentially due to collin-

earity of metabolites, and duplicate metabolites (e.g., FA 18:1)

within the cluster.

4.4 | Sex differences in body composition changes
during adolescence

Analyses were sex-stratified to account for the sexual dysmorphisms

known to drive ΔBC during adolescence. Given the mean age of

13.5 years at baseline and 15.8 years at follow-up, boys were under-

going the pubertal transition during the study period, whereas most

girls would had completed puberty (evidenced by 79.3% of girls hav-

ing experienced menarche, a later milestone of puberty, before the

baseline visit). Pubertal development in both boys and girls is associ-

ated with transient IR,46 which could affect circulating metabolites,47

especially around menarche and peak height velocity; a milestone that

girls reach around 12 years and boys reach around 14 years. Thus, the

higher number of associations between metabolites with Δadiposity

and ΔMM observed among boys may represent being in the midst of

the dynamic changes that are characteristic of puberty. The Fels Lon-

gitudinal Study provides evidence of a sexual dimorphism in the

timing of ΔBC including that fat free mass (FFM) increased until age

15, then stabilized in girls while it continued to increase until 18 years

in boys.48 It could be argued that the differences in findings between

boys and girls reflect pubertal tempo rather than sex differences per

se. Confounding factors including pubertal changes in sex steroids

could precede changes in metabolites and adiposity and lean mass.

Future research on these participants after they reach full sexual

maturity may elucidate these relationships.

Findings must be interpreted in light of strengths and limitations

of this study. This study utilized comprehensive measurements of BC

during adolescence, enhancing our ability to consider associations of

metabolites with changes in both adiposity and lean mass. The well

characterized ELEMENT cohorts offer rich data on covariates that

could confound associations, including sociodemographic characteris-

tics, dietary intake, and physical activity. Utilizing a data-driven

approach, such as HCA, allowed for a reduction of comparisons,

paired with a sophisticated analytic approach using SUR to account

for correlations between measures of adiposity and lean mass. The

complexity and diversity in the metabolites within clusters under-

scores the interconnectivity between metabolic pathways from AA,

lipid, carbohydrate, and nucleotides; but it is challenging to interpret

the biological implications for these groups of metabolites.

While accounting for fat and lean mass is a strength, our BC mea-

sures used BIA, which could have underestimated the fat mass in both

sexes, introducing non-differential measurement error of BF%.49 All par-

ticipants live inMexico City, potentially limiting generalizability of results,

including to populations with different racial/ethnic composition.
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Overall, our results demonstrated sex-specific associations

between the metabolome and change in BC measures, highlighting

important metabolic pathways involved in adolescent development, in

particular BCAAs, AAAs, and phospholipids with Δadiposity and

ΔMM measurements in boys. Through profiling the untargeted

metabolome, our results may provide impetus for future studies to

assess if baseline levels of essential AA, FA oxidation intermediates,

and phospholipids are causing or reflecting changes in BC. The results

of this study warrant future work in the ELEMENT cohort assessing

the sex-specific relationship between IR during puberty and the

metabolome to further elucidate the relationship between metabolites

and cardiometabolic health during adolescent development.
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