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ABSTRACT 

Background: Alterations in body composition during adolescence relates to future metabolic 

risk, yet underlying mechanisms remain unclear.  

Objectives: To assess the association between the metabolome with changes in adiposity (BMI, 

waist circumference [WC], triceps skinfold [TS], and fat percentage [BF%]) and muscle mass 

(MM).  

Methods: In Mexican adolescents (n=352), untargeted serum metabolomics was profiled at 

baseline and data was reduced by pairing hierarchical clustering with confirmatory factor 

analysis, yielding 30 clusters with 51 singleton metabolites. At the baseline and follow-up visits 

(1.6-3.5 years apart), anthropometry was collected to identify associations between baseline 

metabolite clusters and change in body composition (∆) using seemingly unrelated and linear 

regression.  
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Results: Between visits, MM increased in boys and adiposity increased in girls. Sex differences 

were observed between metabolite clusters and changes in body composition. In boys, aromatic 

amino acids (AAA), branched chain amino acids (BCAA) and fatty acid oxidation metabolites 

were associated with increases in ∆BMI, and ∆BF%. Phospholipids were associated with 

decreases in ∆TS and ∆MM. Negative associations were observed for ∆MM in boys with a 

cluster including AAA and BCAA, whereas positive associations were found for a cluster 

containing tryptophan metabolites. Few associations were observed between metabolites and 

body composition change in girls, with one cluster comprising methionine, proline, and lipids 

associated with decreases in ∆BMI, ∆WC, and ∆MM.  

Conclusion: Sex-specific associations between the metabolome and change in body composition 

were observed, highlighting metabolic pathways underlying adolescent physical growth. 

Abbreviations: AA, amino acids; AAA, aromatic amino acids; AC, acylcarnitine; AICAR, 1,5-

phosphoribosyl-5-amino-4-imidazolecarboxamide; BC, body composition; BCAA, branched 

chain amino acids; BF%, body fat percentage; BMI, body mass index; BMIz, BMI z-score; CFA, 

confirmatory factor analysis; CMD, cardiometabolic disease; DiC-FA, dicarboxylic fatty acid; 

ELEMENT, Early Life Exposures in Mexico to ENvironmental Toxicants; FFM, fat free mass; 

FA, fatty acid; HCA, hierarchical cluster analysis; IOTF, International Obesity Task Force; IQR, 

interquartile range; IR, insulin resistance; LC-MS, liquid chromatography mass spectrometry; 

LOESS, locally estimated scatterplot smoothing regression; LPC, lysophosphatidylcholine; LV, 

latent variable; MLR, multiple linear regressions; MM, muscle mass; PA, physical activity; Phe, 

phenylalanine; SES, socioeconomic status; SUR, seemingly unrelated regression; TEI, total 

energy intake; Thr, threonine; TS, triceps skinfold; WC, waist circumference; WHO, World 

Health Organization  
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INTRODUCTION 

Adolescence is characterized by rapid changes in body composition (BC) that are sex-specific 

and reflect physical growth and sexual maturation. Boys tend to become leaner and gain muscle 

mass during puberty, while girls increase levels of adiposity.1 Variations in BC changes among 

adolescents may have implications for development of obesity and cardiometabolic disease 

(CMD). Higher adiposity changes, specifically during puberty, are associated with mortality and 

cardiovascular disease, especially among men2-5. Nevertheless, there is limited understanding of 

metabolic pathways related to body composition change (∆BC) during adolescence and their 

implications for later CMD.  

Cross-sectional studies have identified metabolic pathways associated with body mass index 

(BMI) and CMD in adolescents.6-9 Correlating metabolites with clinical and phenotypic 

outcomes can provide biomarkers of development of CMD, potentially identifying future disease 

risk.10 Lipids, including diacylglycerols, have been related to BMI z-score and a metabolic risk 

score, with a larger effect size among girls.11,12 Branched chain amino acids (BCAA) and 

aromatic amino acids (AAA) were associated with BMI z-score (BMIz) in boys,11 aligning with 

studies in adolescents with obesity.6,8 Consistent relationships between BCAA and AAA with 

insulin resistance (IR) have not been demonstrated in adolescents.7,8,10,11 For example, Perng et 

al13 observed that BCAAs were inversely associated with change in IR measured by C-peptide in 

adolescents; opposing findings in adults.14  

These findings suggest that cross-sectional studies may obscure the direction of the relationships 

during adolescence, e.g., whether adiposity alters the metabolome leading to metabolic 

dysfunction or metabolic dysfunction alters the metabolome leading to increased fat storage and 

weight gain. Nevertheless, few studies have examined how the metabolome is related to 



 
 

5 

prospective ∆BC. Wahl et al.15 observed that lipids predicted change in BMI in children with 

obesity undergoing weight loss. To our knowledge, no reports have considered how the 

metabolome is associated with ∆BC including changes in both lean and fat mass in the same 

adolescents. Further, metabolite and lipid profiles are dependent on sex,16 emphasizing the 

importance of examining sex differences during this developmental period. Our aim was to 

examine baseline metabolomic profiles in relation to changes in BC within a cohort of 

adolescents. Our results may generate biological hypotheses on the sexual dysmorphism 

involved in BC changes.   
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METHODS 

Setting and Subjects 

Subjects included adolescent offspring of women participating in the Early Life Exposures in 

Mexico to ENvironmental Toxicants (ELEMENT) project. ELEMENT comprises three birth 

cohorts originally recruited over a ten-year period (1994-2004).17 Subsequently, 622 children 

from cohorts 2 and 3 were re-recruited in 2008-2012 for a study of fetal lead exposure and long-

term cognitive outcomes. Among these, 554 youth (ages 9 to 18 years) were re-recruited in 

2015-2016 (baseline visit) and 519 adolescents (ages 11 to 20 years) returned for the 2016-2019 

follow-up visit. Trained research staff administered interviews including sociodemographic and 

lifestyle behaviors; fasting blood samples for metabolomics were collected at baseline and 

anthropometry and BC were measured at both time points. A total of 404 youth had untargeted 

metabolomics measured at baseline. The final analytic sample included 352 participants (182 

girls and 171 boys) with complete information on metabolomics, BC, and covariates. Compared 

to all adolescents at the baseline visit (n=554), the final analytic sample was younger (13.8±1.9 

vs 15.8±2.0 years; p<0.0001) and had lower muscle mass (20.6±4.9 vs 23.4±5.0 kg; p=0.016); no 

other differences were found for total energy intake (TEI), physical activity (PA), socioeconomic 

status (SES) and BC.  

Study protocols were reviewed and approved by the Research, Research Ethics and Biosafety 

Committees of the National Institute of Public Health of Mexico and the Institutional Review 

Board of the University of Michigan (HUM00034344). Subjects who were ≥ 18 years provided 

informed written consent. Subjects between 9 and 18 years old provided maternal consent and 

child assent. 

Body composition  
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Multiple measures of BC allowed for comprehensive phenotyping including BMI, waist 

circumference (WC); an indicator of abdominal obesity, triceps skinfold (TS); a measure of 

peripheral fat reserves, body fat percentage (BF%); a measure of overall adiposity, and skeletal 

muscle mass (MM).18,19 Participants wore a clinical examination gown and were asked to remove 

hair ornaments, shoes and socks according to the ELEMENT study protocol. Research assistants 

measured height to the nearest 0.5 cm with a BAME Model 420; Catálogo Médico, Tokyo, Japan 

with height rod (Model WB-3000m), weight to the nearest kg (InBody 270, Biospace, California, 

USA), WC to the nearest 0.1 cm at the iliac crest using a non-stretchable measuring tape 

(QM2000 QuickMedical; SECA model 201, Hamburg, Germany), and TS in mm (Lange 

calipers; Beta Technology, CA, USA) using standard anthropometry procedures.20 BF% and MM 

were estimated using bioelectrical impedance equipment (InBody 270, Biospace, CA, USA). 

Staff obtained duplicate measures for height, WC and TS and the average of two measures was 

used for analysis. Changes in BC parameters were calculated by subtracting the follow-up value 

from the baseline, denoted by ∆.  

Metabolomics 

The untargeted metabolome was profiled in fasting serum samples using liquid chromatography 

mass spectrometry (LC-MS) with an 1290 Infinity Binary LC with a Waters Acquity HSS T3 

1.8μm column and a 6530 quadrupole Time-of-Flight MS (Agilent Technologies, Inc., Santa 

Clara, CA).21 Samples (100µL) were isolated using an extraction solvent (400 µL) containing 

methanol : acetonitrile : acetone (1:1:1). Chromatography run time was 20 minutes, using a 

varying methanol : water solvent gradient across the run. Mass spectrometry used an electron ion 

source mass detector. Mass spectrometry was performed by electrospray ionization with an 

Agilent Jetstream ion source, with full-scan mass spectra acquired over the m/z range 50–1500 
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Da. Positive and negative electrospray ionization modes were run. Raw data peak processing was 

performed using Agilent software (Agilent MassHunter Qualitative Analysis and Profinder, 

Santa Clara, CA), identifying the MS ion counts for each feature. The application of Binner22 

allowed for the visualization of feature relationships and the removal of redundant features. 

Annotated metabolites were identified using Post-Processor, a metabolomics naming library, via 

comparing their MS/MS spectra to internal or external standards run on the same instrument. 

Data normalization methods23 used “pooled” reference samples were run in each batch.24 Peak 

intensities were adjusted for batch drift using locally estimated scatterplot smoothing regression 

(LOESS) and between batches using a feature global median25. Missing peak intensities were 

imputed using K-nearest neighbor (K = 5) in features with ≥70% detection across samples (R 

package “impute”); features with <70% detection were removed. Metabolites were natural log-

transformed and normalized to normal distribution with mean of 0 and variance of 1. The final 

metabolomics dataset contained 336 annotated metabolites grouped in nine metabolite classes: 

amino acids (AA; 12%), carbohydrates (2%), cofactors and vitamins (2%), energy metabolites 

(1%), exogenous metabolites (3%), lipids (70%), nucleotides (3%), peptides (5%), and 

xenobiotics (2%). Lipids are reported with the nomenclature as X:Y, where X is the length of the 

carbon chain and Y is the number of double bonds.  

Covariates  

Baseline covariates included age, TEI, sedentary time, moderate/vigorous activity, and 

household SES. Interviewers administered a semi-quantitative food frequency questionnaire, 

validated in a Mexican population,26 to obtain adolescents’ habitual dietary intake over the past 

seven days. TEI was calculated using food composition tables.26 PA was estimated from 

accelerometers worn for 7 days27 using Chandler’s vector magnitude cutoffs,28 classified as 
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average sedentary and moderate/vigorous (min/day). Household SES was reported using the 

Mexican Association of Marketing Research and Public Opinion Agencies questionnaire, 

consisting of 7 categories ranging from A/B (highest SES) to E (lowest SES).29,30 Tanner stages 

for secondary sexual characteristics (e.g., pubic hair and genital development in boys; menarche 

and pubic hair and breast development in girls31,32) may be associated with the metabolome and 

BC, thus be considered potential confounders. Nevertheless, we did not include Tanner stages as 

covariates since pubertal progression coincides with and influences BC and likely mediates these 

associations.  

Statistical Analysis 

At baseline and follow-up, descriptive statistics were computed for measures of BC, ∆BC, and 

sociodemographic characteristics, stratified by sex. Sex-differences were evaluated using 

Student’s t or Wilcoxon tests for normal and non-normally distributed continuous variables, 

respectively, and Fisher exact tests were used for categorical variables. The relationship between 

∆BC and covariates were evaluated stratified by sex using ANOVA and Kruskal Wallis tests for 

normal and non-normally distributed variables, respectively. Proportion tests were performed to 

compare the change in the prevalence of obesity, using BMI for age according to the World 

Health Organization (WHO) (>3 Z-score)33 and the International Obesity Task Force (IOTF) 

(sex and age-specific centiles corresponding to ≥ 30 kg/m2 at 18 years)34 criteria between visits 

by sex. For descriptive statistics, non-normally distributed variables were reported as medians 

(Q1, Q3); while normally distributed variables were reported as means±SD.  

A confirmatory factor analysis (CFA) model was fit for all the metabolites within each cluster, 

with the clusters generated by hierarchical cluster analysis (HCA) using Spearman’s rank 

correlation coefficients. To determine the final clusters from the HCA, we considered the 
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following criteria: a) ≥5 metabolites per cluster and b) an average pairwise correlation of r ≥ 

0.15, resulting in a dendrogram height of 3.5. A total of 30 clusters were generated, leaving 51 

single metabolites (Figure 1; Table S1). Therefore, 30 CFA models were fit separately. CFA 

models aim to study the degree to which vectors of observed random variables can be used to 

assign values to one or more unobserved variables, which we call latent variables (LV). The 

investigation is largely accomplished by estimating and evaluating the loading of each observed 

random variable used to mine aspects of the unobserved LV. The CFA models were built up 

using the R package “lavaan” with the formulation as follows: 

𝑓𝑓 = ~ 𝑚𝑚1 + 𝑚𝑚2 + ⋯+ 𝑚𝑚𝑛𝑛, 

where 𝑓𝑓 is the unobserved LV we want to estimate and {𝑚𝑚1, … ,𝑚𝑚𝑛𝑛} are the 𝑛𝑛 number of 

metabolites within one cluster under consideration. After model fitting, the predicted LV was 

extracted to be included as a covariate into seemingly unrelated regression (SUR). The main 

objective of CFA is to summarize the information contained in the 𝑛𝑛 number of metabolites 

within one cluster by one single vector of predicted LV, thus, to reduce the number of covariates 

that need to be included into the SUR model. Details on the 30 clusters can be found in Table 

S1. 

Prior to modeling this association, we determined if our ∆BC measures were correlated, stratified 

by sex (Table S2). Using Pearson’s correlations, the four adiposity measures, ∆BMI, ∆WC, 

∆BF% and ∆TS, displayed positive correlations (r) ranging between 0.616-0.906 in boys and 

0.515-0.803 in girls. In both boys and girls, ∆MM was weakly correlated with ∆BMI, ∆WC, 

∆BF% and ∆TS. We chose SUR (R package ‘systemfit’) to jointly analyze ∆BMI, ∆WC, ∆BF% 

and ∆TS. We ran multiple linear regressions (MLR) for ∆MM separately, due to its weak 

correlation with adiposity measures.  
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SUR is a multi-dimensional linear regression model consisting of several multiple regression 

models for correlated multiple outcomes, each having its own dependent variable and potentially 

different sets of exogenous explanatory variables.35 The choice of this model for the present 

analysis is to utilize the correlation between adiposity measures to increase statistical power and 

to examine if clusters are simultaneously associated with a set of outcomes. 

Using SUR, we evaluated the relationship between the baseline metabolome (30 clusters and 51 

singletons) and change in adiposity measures (∆BMI, ∆WC, ∆BF% and ∆TS) in sex-stratified 

models, while adjusting for baseline age, baseline outcome, TEI, SES, moderate and vigorous 

PA, and sedentary time. The nested models are used to evaluate the relative importance of each 

cluster sequentially in terms of goodness-of-fit via the residual sum of squares (Table S4).  

The relationship between the metabolome (30 clusters and 51 singletons) and ∆MM was 

evaluated using MLR, while adjusting for the same variables. All clusters and singletons were 

included in the sex-stratified models. Like the SUR analysis, we examined the relative 

importance of each cluster and singleton metabolite to the model (Table S5). A sensitivity 

analysis was performed adjusting for ∆age from baseline to follow-up. We found no statistically 

significant differences in the length of the follow up interval between boys and girls (p=0.147). 

In models with and without ∆age, the same LVs were selected, and coefficients were minimally 

different, thus we reported the results from models without ∆age (data available upon request). 

Statistical analyses were performed using the R statistical software.  
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RESULTS 

Subject characteristics  

Baseline and follow-up characteristics were collected over an interval of 1.6 to 3.5 years for 352 

adolescents (Table 1). At baseline, adolescents were on average 13.8 years and approximately 

half had low to medium SES (45%), with no significant differences in distribution of household 

SES by sex (p=0.103). The median TEI was higher in boys (2399 kcal/d [interquartile range, 

IQR=1235 kcal/d] vs 1928 kcal/d [IQR=895 kcal/d], p<0.0001) and boys were more sedentary 

than girls (593.9±74.4 min/day vs 573.2±74.1 min/day, p=0.009). Girls had higher TS and BF% 

and boys had more MM (p<0.0001). At follow-up, adolescents were at average 15.8 years and 

similar sex differences were observed in BC measures, with higher WC, TS, and BF% in girls 

and higher MM in boys (Table S6). 

Between baseline and follow-up, the prevalence of overweight decreased (WHO: 5.7%, p=0.007; 

IOTF: 2.3%, p=0.616), while the prevalence of obesity increased (WHO: 6.5%, p=0.002; IOTF: 

2.3%, p=0.471). The prevalence of obesity increased more in girls than in boys (WHO: 8.8% vs 

4.2, p=0.082; IOTF: 2.8% vs 1.7%, p=0.489, respectively) (Table 1 and Table S6).  

 Increases in adiposity were observed in both sexes, with larger increases in girls compared to 

boys in ∆BMI (1.6±1.5 vs 1.0±1.8 kg/m2, p<0.001), ∆WC (8.0±4.8 vs 4.8±5.5 cm, p<0.0001), 

and ∆TS (3.0±4.3 vs 1.1±5.7 mm, p<0.001). Girls increased ∆BF% while boys decreased 

(2.8±3.6 vs -1.6±5.4%, p=0.0001). Boys had a larger increase in ∆MM than girls (4.0±2.8 vs 

1.6±1.4 kg, p<0.0001). Associations between the ∆BC and covariates are presented in Table S7, 

stratified by sex.  

Association between metabolome and change in adiposity 
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Using sex-stratified SUR, the relationship between the baseline metabolome and change in 

adiposity measures (∆BMI, ∆WC, ∆BF% and ∆TS) was evaluated. Metabolite cluster ID names 

are found in Table 2. 

Metabolome and change in adiposity in boys  

In boys, clusters 12 (ID: dicarboxylic fatty acids [DiC-FA]), 20 (ID: phospholipids), and 29 (ID: 

BCAA, AAA, and glucose) and singleton metabolites mannitol, dipeptide (Phe, Thr) and 

lysophosphatidylcholine (LPC) 16:0 were selected in the SUR model (Figure 2a). The 

dicarboxylic fatty acid cluster (cluster 12) was positively associated with ∆BMI (β= 3.1, 

p=0.038). The BCAA, AAA, and glucose cluster (cluster 29) was positively associated with 

∆BF% (β=5.3, p=0.003). The phospholipid cluster (cluster 20) was inversely associated with 

∆TS (β= -7.5, p=0.010). Several singleton metabolites were associated with ∆BF% measures. 

Lenticin was inversely associated with ∆BF% (β= -1.1, p=0.026) and LPC 16:0 was inversely 

associated with ∆BMI (β= -0.5, p=0.042), and ∆WC (β= -1.5, p=0.050). Dipeptide (Phe-Thr) 

was positively associated with all adiposity measures (∆BMI: β= 0.6, p=0.048; ∆WC: β= 2.4, 

p=0.008; ∆TS: β= 2.3, p=0.008, and ∆BF: β= 1.6, p=0.038), and mannitol was positively 

associated with ∆TS (β= 1.8, p=0.017) and ∆BF% (β= 1.4, p=0.026), with a trending positive 

association with ∆BMI (β= 0.5, p=0.053).  

Metabolome and change in adiposity in girls.  

In girls, cluster 24 (ID: amino acid [methionine and proline] and lipids) and singleton 

metabolites hydroxy-fatty acid 10:0, 24:2 DiC-FA, mannitol, ursodiol and 2-piperidinone were 

selected in the SUR model (Figure 2b), observing an overlap with mannitol in boys’ SUR 

model. The methionine, proline, and lipid cluster (cluster 24) was negatively associated with 

∆BMI (β= -2.7, p=0.049), and ∆WC (β= -9.0, p=0.048). Singleton metabolites ursodiol (β= -0.9, 
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p=0.016), and hydroxy-FA 10:0 and β= -0.984, p=0.024) displayed significant inverse 

associations with ∆BF%. DiC-FA 24:2 was negatively associated with ∆BMI (β= -0.4, p=0.035), 

and mannitol was negatively associated with ∆TS (β= -1.2, p=0.014). 2-piperidinone was 

positively associated with ∆TS in girls (β= 0.9, p=0.029). 

In boys and girls, all associations between metabolite clusters and change in adiposity are 

reported in Table S8.  

Association between metabolome and change in muscle mass 

Metabolome and change in muscle mass in boys.  

In boys, clusters 21 (ID: phospholipids), 24 (ID: amino acid [methionine and proline] and lipids), 

27 (ID: AAA and bile acids), and 29 (ID: BCAA, AAA, and glucose), and singleton metabolite 

1,5-phosphoribosyl-5-amino-4-imidazolecarboxamide (AICAR) were significantly related to 

∆MM (Figure 3a). The phospholipid cluster (cluster 21) was negatively associated with ∆MM 

(β= -0.7, p=0.047). The methionine, proline, and lipid cluster (cluster 24) and the BCAA, AAA, 

and glucose cluster (cluster 29) inversely associated with ∆MM (β= -3.3, p=0.026; β= -2.2, 

p=0.001, respectively). The AAA and bile acid cluster (cluster 27) was positively associated with 

∆MM (β= 0.6, p=0.047). A positive association was observed between ∆MM and AICAR (β= -

0.6, p=0.036).  

Metabolome and change in muscle mass in girls. 

In girls, clusters 13 (ID: long chain acylcarnitines and nucleotides) and 24 (ID: amino acid 

[methionine and proline] and lipids) were significantly associated with ∆MM (Figure 3b). The 

methionine, proline, and lipids cluster (cluster 24) was inversely associated with ∆MM (β= -2.4, 

p=0.031), in alignment with results in boys. The long-chain acylcarnitine (AC) and nucleotide 
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cluster (cluster 13) was positively associated with ∆MM (β= 140.8, p=0.041). In boys and girls, 

all associations between metabolite clusters and ∆MM are reported in Table S9.   
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DISCUSSION 

In this longitudinal study, we quantified and assessed the baseline untargeted metabolome to 

predict ∆adiposity and ∆MM in adolescents. Our analysis distinguished between fat tissue, using 

BF%, WC, TS, and BMI, and lean tissue, using MM. Furthermore, boys and girls diverge in type 

of ∆BC during adolescence; boys demonstrate marked decreases in TS with concomitant 

increases in MM, whereas girls show greater increases in total central and peripheral adiposity36. 

Our results demonstrate sex-specific associations between the metabolome and changes in body 

composition, highlighting metabolic pathways involved in adolescent development.  

Branched chain and aromatic amino acids associated with body composition change  

BCAA and AAA cluster displayed statistically significant associations with ∆adiposity measures 

in boys only (cluster 29; Figure 2a), with higher baseline levels of these metabolites being 

associated with increases in BMI, WC, and TS between baseline and follow-up. These results 

align with previous cross-sectional studies6,8 and elicit strong evidence for sex-differences in 

these essential AA’s associations with adiposity.11 Interestingly, two clusters containing BCAA 

and AAA exhibited opposite associations with ∆MM in boys, with significant positive 

associations with cluster 27 and inverse associations with cluster 29 (Figure 3). The amino acids 

in cluster 29 are leucine and phenylalanine and the amino acids in cluster 27 are tryptophan 

metabolites.  

Overall, these results may suggest two different biological pathways driving the 

associations with essential AA, as ∆MM is not correlated with ∆adiposity measurements in boys 

(Table S2). The first proposed pathway suggests that higher baseline essential AA are predictive 

of increasing adipose tissue in boys. Beginning over half a century ago,37 strong evidence has 

been found for the association between BCAA and the AAAs phenylalanine and tyrosine with 
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obesity. The biological implications of these associations have been suggested by hypotheses of 

alterations in BCAA catabolism in white adipocytes and hepatocytes in individuals with obesity, 

(reviewed by Adams et al38), and the signaling role of BCAA, in particular leucine, in controlling 

metabolism (e.g. activation of mTOR signaling pathway) (reviewed by Zhang et al39). Our 

results may provide a biomarker of AA metabolism dysregulation (e.g., leucine in cluster 29), 

potentially associated with future metabolic health risks in boys. Although we did not measure 

insulin levels at the follow-up visit, elevations in BCAAs, tyrosine, and phenylalanine are 

predictive of type 2 diabetes incidence,40 further illustrating the importance of these metabolites.  

The second proposed pathway suggests higher baseline essential AA are predictive of increasing 

MM in boys. The concept that dietary essential AA levels stimulate muscle protein synthesis is 

inconclusive,41 potentially indicating that their elevation may reflect, rather than cause, changes 

in MM. Pubertal development is associated with increases in insulin-like growth factor 1 (IGF-

1),11 responsible for stimulating muscle growth and, in turn, increasing circulating AA. These 

associations may be more apparent in boys due to their larger gain of MM and earlier stages of 

puberty compared to girls (Table 1).  

Fatty acid (FA) oxidation intermediates and phospholipids associated with body composition 

change  

A long-chain DiC-FA cluster (cluster 12) was positively associated with ∆BMI in boys (Table 

2). DiC-FA are lipids derived from FAs or fatty acyl-CoA esters during omega-oxidation42 and 

are suggested to be a compensatory measure to maintain the tricarboxylic acid cycle due to 

inadequate glycolysis.43 Although we did not quantify insulin resistance, boys within this age 

range are typically going through puberty, and therefore, are more insulin resistant. There is an 

association with increased extra-mitochondrial FA oxidation and insulin resistance, as evidenced 
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in girls with polycystic ovary syndrome44. These results may highlight alterations in fatty acids 

metabolism during puberty in boys with increasing BMI, evidenced by increased production of 

DiC-FA from omega-oxidation. In boys, Cluster 20 was inversely associated with ∆TS and 

Cluster 21 was inversely associated with ∆MM. Interestingly, these clusters both contain 

phospholipids and lysophospholipids of similar FA chain length and saturation. The main 

difference in their composition was the presence of alpha-tocopherol in Cluster 21. In a 

sensitivity analysis, alpha-tocopherol was removed from cluster 21, and the significance between 

Cluster 21 and ∆MM was lost, potentially suggesting the importance of this metabolite in the 

association.    

Limited associations with metabolites and body composition change in girls  

Few associations were observed between the metabolome and ∆BC in girls. The methionine, 

proline, and lipid cluster (cluster 24) was negatively associated with ∆BMI, ∆WC, and ∆MM in 

girls. Positive Pearson’s correlations exist between ∆BMI and ∆MM (r=0.496) and ∆WC and 

∆MM (r=0.395) in girls (Supplemental Table 2). BMI and WC measurements capture 

subcutaneous fat, visceral fat, bone, and muscle mass, suggesting that these measures may not 

reflect solely fat-mass45. Higher levels of metabolites within cluster 24 at baseline may be reflect 

of decreases in mass (MM) in girls, although the relationship between methionine and proline 

with muscle mass in girls is uncertain. Furthermore, the long chain AC and nucleotides cluster 

(cluster 13) was positively associated with ∆MM in girls (Figure 3b). The coefficient values 

from the CFA analysis of Cluster 13 varied greatly (Supplemental Table 3), potentially due to 

collinearity of metabolites, and duplicate metabolites (e.g. FA 18:1) within the cluster.   

Sex differences in body composition changes during adolescence  
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Analyses were sex-stratified to account for the sexual dysmorphisms known to drive ∆BC during 

adolescence. Given the mean age of 13.5 years at baseline and 15.8 years at follow-up, boys 

were undergoing the pubertal transition during the study period, whereas most girls would had 

completed puberty (evidenced by 79.3% of girls having experienced menarche, a later milestone 

of puberty, before the baseline visit). Pubertal development in both boys and girls is associated 

with transient IR,46 which could affect circulating metabolites,47 especially around menarche and 

peak height velocity; a milestone that girls reach around 12 years and boys reach around 14 

years. Thus, the higher number of associations between metabolites with ∆adiposity and ∆MM 

observed among boys may represent being in the midst of the dynamic changes that are 

characteristic of puberty. The Fels Longitudinal Study provides evidence of a sexual dimorphism 

in the timing of ∆BC including that fat free mass (FFM) increased until age 15, then stabilized in 

girls while it continued to increase until 18 years in boys.48 It could be argued that the differences 

in findings between boys and girls reflect pubertal tempo rather than sex differences per se. 

Confounding factors including pubertal changes in sex steroids could precede changes in 

metabolites and adiposity and lean mass. Future research on these participants after they reach 

full sexual maturity may elucidate these relationships.  

Findings must be interpreted in light of strengths and limitations of this study. This study utilized 

comprehensive measurements of body composition during adolescence, enhancing our ability to 

consider associations of metabolites with changes in both adiposity and lean mass.  The well 

characterized ELEMENT cohorts offer rich data on covariates that could confound associations, 

including sociodemographic characteristics, dietary intake, and physical activity. Utilizing a 

data-driven approach, such as HCA, allowed for a reduction of comparisons, paired with a 

sophisticated analytic approach using SUR to account for correlations between measures of 
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adiposity and lean mass. The complexity and diversity in the metabolites within clusters 

underscores the interconnectivity between metabolic pathways from AA, lipid, carbohydrate, and 

nucleotides; but it is challenging to interpret the biological implications for these groups of 

metabolites.  

 While accounting for fat and lean mass is a strength, our BC measures used BIA, which could 

have underestimated the fat mass in both sexes, introducing non-differential measurement error 

of BF%49. All participants live in Mexico City, potentially limiting generalizability of results, 

including to populations with different racial/ethnic composition.  

Overall, our results demonstrated sex-specific associations between the metabolome and change 

in body composition measures, highlighting important metabolic pathways involved in 

adolescent development, in particular BCAAs, AAAs, and phospholipids with ∆adiposity and 

∆MM measurements in boys. Through profiling the untargeted metabolome, our results may 

provide impetus for future studies to assess if baseline levels of essential AA, FA oxidation 

intermediates, and phospholipids are causing or reflecting changes in body composition.  The 

results of this study warrant future work in the ELEMENT cohort assessing the sex-specific 

relationship between IR during puberty and the metabolome to further elucidate the relationship 

between metabolites and cardiometabolic health during adolescent development.  
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Figure Legends  

Figure 1. Hierarchical clustering of metabolome. Dendrogram depicts tightness of metabolites 

(n=336) with the cut-off 3.5 for cluster designation determined by the inclusion of ≥ 5 

metabolites, and Spearman correlation coefficient (r> 0.15). These criteria resulted in the 

creating of 30 metabolite clusters and 51 singletons metabolites. Color depicts the strength and 

direction of the Spearman correlations. 

Figure 2. Sex differences in the relationship between the metabolome and change in 

adiposity measures. In seemingly unrelated regression models, the association between all 30 

metabolite clusters and 51 singletons, the predictor, and change in adiposity measures (∆BMI, 

∆WC, ∆TS, and ∆BF%) was evaluated in (a) boys and (b) girls, including the covariates age, 

energy intake, socioeconomic status, moderate and vigorous physical activity, and sedentary 

time. Colors depict direction of association with numbers within the heatmap describing the 

estimated beta coefficients of the selected clusters. Significance of association denoted by 

asterisks (“*”, p-value<0.05; “**”, p-value <0.01; “***”, p-value <0.001). Abbreviations: AAA, 

aromatic amino acids; BCAA, branched chain amino acids; BF%, body fat percentage; BMI, 

body mass index; DiC, dicarboxylate; FA, fatty acid; LPC, lysophosphotidylcholine; Met, 

Methionine; MM, muscle mass; OH, hydroxyl; Phe, phenylalanine; Pro, proline; Thr, Threonine; 

TS, triceps skinfold; WC, waist circumference. 

 
 
Figure 3. Sex differences in the association between the metabolome and change in muscle 

mass. Sex-specific multiple linear regressions classified how the 30 metabolite clusters and 51 

singletons were associated with change in muscle mass (∆MM) in (a) boys and (b) girls, 

adjusting for age, energy intake, socioeconomic status, moderate and vigorous physical activity, 
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and sedentary time. Significant clusters are represented. Estimated beta coefficients plotted with 

significance of association denoted by asterisks (“*”, p-value<0.05; “**”, p-value <0.01). 

Abbreviations: AAA, aromatic amino acids; AC, acylcarnitine; AICAR, 1,5-phosphoribosyl-5-

amino-4-imidazolecarboxamide; BCAA, branched-chain amino acids; Met, Methionine; Pro, 

proline. 

Table 1. Subject characteristics and change in body composition, stratified by sex.  

aNormal distribution. Presented as mean ± SD. Statistical significance between sex assessed 

using Student's t-test. b Non-normal distribution. Presented as median (Q1, Q3). Statistical 

significance between sex assessed using Wilcoxon tests. c Categorical variables presented as n 

(%). Statistical significance between sex assessed using Fisher’s Exact test. 

Abbreviations: BMI, body mass index; IOTF, International Obesity Task Force; PA, physical 

activity; SD, standard deviation; SES, socioeconomic status; WHO, World Health Organization. 

 

Table 2. Description of metabolites within the 30 clusters.  

Abbreviations: BCAA, branched-chain amino acid. 
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Table 1. Subject characteristics and change in body composition, stratified by sex.  
a Normal distribution. Presented as mean ± SD. Statistical significance between sex assessed using Student's t-test.  
b Non-normal distribution. Presented as median (Q1, Q3). Statistical significance between sex assessed using Wilcoxon tests.   
c Categorical variables presented as n (%). Statistical significance between sex assessed using Fisher’s Exact test. 
Abbreviations: BMI, body mass index; IOTF, International Obesity Task Force; PA, physical activity; Q1, first quartile (25th percentile); Q3, third 
quartile (75th percentile); SD, standard deviation; SES, socioeconomic status; WHO, World Health Organization. 
 
  Total (n= 352)  Girls (n=182)  Boys (n=170)  p-value 

Baseline 
  Age (years) a  13.8 ± 1.9  13.7 ± 2.0   13.9 ± 1.9  0.300 
Lifestyle        
  Energy intake (kcal/day) b  2155 (1682, 2754)  1928 (1496, 2391)  2399 (1909, 3144)  <0.0001 
  Moderate and vigorous PA (min/day) b  77.8 (61.0, 97.8)  78.9 (66.0, 97.9)  75.9 (57.6, 95.0)  0.165 
  Sedentary time (min/day) a 583.2 ± 74.8  573.2 ± 74.1  593.9 ± 74.4  0.009 
Body composition         
  BMI (kg/m2) b 21.0 (18.2, 23.8)  21.3 (18.3, 24.3)  20.7 (17.9, 23.6)  0.259 
  Waist circumference (cm) b 77.1 (69.9, 86.5)  78.0 (71.1, 87.4)  76.5 (69.0, 85.1)  0.221 
  Triceps skinfold (mm) b 18.5 (14.0, 23.0)  20.0 (16.0, 24.5)  16.0 (10.0, 21.0)  <0.0001 
  Body fat (%) b 27.1 (19.7, 34.0)  30.5 (25.5, 36.1)  21.1 (14.8, 28.6)  <0.0001 
  Muscle mass (kg) b 19.8 (17.2, 24.0)  18.9 (16.7, 20.8)  23.0 (18.6, 26.6)  <0.0001 
SES c        
  A/B 24 (6.8)  11 (6.0)  13 (7.7)  0.103 
  C+ 63 (17.9)  35 (19.2)  28 (16.5)   
  C 106 (30.1)  46 (25.3)  60 (35.3)   
  D+ 108 (30.7)  57 (31.3)  51 (30.0)   
  D 15 (4.3)  12 (6.6)  3 (1.8)   
  E 36 (10.2)  21 (11.5)  15 (8.8)   
BMI for age WHO classification c        
  Underweight/Normal 216 (61.3)  114 (62.7)  102 (60)  0.953 
  Overweight 89 (25.3)  43 (23.6)  46 (27.1)   
  Obesity 47 (13.4)  25 (13.7)  22 (12.9)   
 BMI for age IOTF classification c        
  Underweight/Normal 231 (65.6)  120 (66.0)   111 (65.3)  0.424 
  Overweight 90 (25.6)  43 (23.6)   47 (27.6)   
  Obesity  31 (8.8)  19 (10.4)   12 (7.1)   

Body composition change 
   ∆ BMI (kg/m2) a 1.3 ± 1.7  1.6 ± 1.5  1.0 ± 1.8  0.0003 
   ∆ Waist circumference (cm) a 6.4 ± 5.4  8.0 ± 4.8  4.8 ± 5.5  <0.0001 
   ∆ Triceps skinfold (mm) a 2.1 ± 5.1  3.0 ± 4.3  1.1 ± 5.7  0.0006 
   ∆ Body fat (%) a 0.7 ± 5.1  2.8 ± 3.6  -1.6 ± 5.4  <0.0001 
   ∆ Muscle mass (kg) a 2.8 ± 2.5  1.6 ± 1.4  4.0 ± 2.8  <0.0001 



Table 2. Metabolite classes within Clusters. Pairing hierarchical clustering with a dendrogram height of 3.5, 30 
metabolite clusters were identified. Clusters were named based on the primary metabolites within. Abbreviations: 
BCAA, branched-chain amino acids.  
Cluster ID Cluster Name 

1 Lysophospholipids  

2 Lipids, sterols  

3 Fatty acid intermediates, long chain  

4 Phospholipids, nucleotides 

5 Lipids, nucleotides 

6 Acylcarnitines  

7 Amino acids (isoleucine), urate 

8 Xanthine Metabolism 

9 Fatty acids, hydroxyl fatty acids 

10 Long-chain and very-long chain fatty acids, hydroxyl fatty acids 

11 Polyunsaturated very-long chain fatty acids, fatty acid intermediates  

12 Dicarboxylic fatty acids 

13 Long chain acylcarnitines, nucleotides  

14 Lipids, fatty acid oxidation intermediates, glycerol backbones  

15 Dicarboxylic and amine fatty acids 

16 Amino acids (serine and histidine) 

17 Amino acids (BCAA metabolites and aromatic amino acids)  

18 Amino acids (aromatic amino acids), amine fatty acids  

19 Phospholipids 

20 Phospholipids 

21 Phospholipids 

22 Lysophospholipids, fatty acid intermediates 

23 Amino acid (lysine), diacylglycerols  

24 Amino acid (methionine and proline), lipids 

25 Polyunsaturated phospholipids, long-chain acylcarnitines 

26 Carbohydrate (lactose), dipeptides 

27 Amino acid (aromatic amino acid), bile acid 

28 Monoacylglycerol 

29 Amino acid (BCAA, aromatic amino acid), glucose 

30 Very-long chain fatty acids  

 




