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W e study a coordinated clinic and surgery appointment scheduling problem for in-advance scheduling of surgical
patients. Our models seek to provide timely access to care by coordinating clinic and surgery appointments to ensure

that patients can see a surgeon in the clinic and (if needed) schedule their surgery within a maximum wait time target
based on patient classes. There are different types of uncertainty including the number of appointment requests, whether a
patient requires surgery, and surgery durations. We develop an integrated multi-stage stochastic and distributionally robust
optimization (IMSDRO) approach to determine the optimal clinic and surgery dates for patients such that the access target
constraints are satisfied, and the clinical and surgical overtimes are minimized. The IMSDRO approach synergizes multi-
stage stochastic optimization with distributionally robust optimization to simultaneously incorporate multiple types of
uncertainties by including stochastic scenarios for appointment request arrivals and ambiguity sets for surgery durations.
Several new transformations are introduced to turn the nonlinear model derived from the IMSDRO approach to a tractable
one, and a constraint generation algorithm is developed to solve it efficiently. We propose a data-driven rolling horizon
procedure to facilitate implementation. We use case data to assess the performance of our policies. The results suggest that
our policy can significantly improve surgical access delay times compared to the current practice. Our methodology is not
limited to a particular setting and can be applied to other service industries where access delay matters.
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1. Introduction

In a typical service system, it is inevitable that waiting
times or delays will be experienced by customers due
to the inherent uncertainty in both arrival processes
and service times. In healthcare settings, a long wait-
ing time to receive care is not only an annoyance, but
it can also deteriorate health outcomes due to adverse
events and increase healthcare costs because of the
potential need for additional complicated procedures
(Deglise-Hawkinson et al. 2018, Liu et al. 2017, and

Oudhoff et al. 2007). Timely access to care is an essen-
tial feature of any high-quality and modern health-
care delivery system (Kaplan et al. 2015). We define
“access delay” (or access to care) as the number of
days between the day a patient’s appointment
request/referral is received by a medical center and
their appointment day with a provider. Access delay
can be mitigated by efficiently matching the available
resource capacity to patient demand. This is, how-
ever, challenging given the inherent and various
sources of uncertainty within any healthcare delivery
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system (Mays et al. 2009). Currently, the United States
is experiencing an increase in demand for medical
care due to an aging and growing population, which
is outpacing the growth of healthcare providers (Mar-
kit 2017). This limited capacity along with sharply
increasing demand leads to barriers to adequate
access to care, and also highlights the importance of
efficient utilization of resources, including providers
and operating rooms. In this context, coordination of
patient care throughout the course of treatment and
across various clinic and surgery visits helps ensure
that patients receive appropriate follow-up treatments
without enduring long waiting times that can under-
mine their health condition.
This research is motivated by our collaborations

with multiple healthcare institutions that desire to
achieve timely access to surgery in their specialized
surgical units. Patients with various acuity levels are
referred to these surgical units either by their primary
care physicians or by other hospital units. These
patients first require a clinic consultation appoint-
ment with a surgeon, which then may need to be fol-
lowed by a surgical procedure in the operating room.
The decision of whether a patient requires a surgery
is made during the patient’s clinic consultation visit
along with details of the surgery. In this study, we
develop a new optimization-based approach to coor-
dinate clinic and surgery appointments for these sur-
gical units such that all patients with various acuity
levels can be offered a clinic consultation visit and a
surgical time (if surgery is needed) within a pre-
defined target time window that is clinically safe for
them to wait using the minimum overtime possible.
We call this the coordinated clinic and surgery appoint-
ment scheduling (CAS) problem.
It is also worth noting that variability in appointment

request arrival numbers and surgery durations can cause
excessive patient waiting times and poor utilization of
healthcare resources or high overtime. Unlike prior
research that assumes the probability distribution of
surgery duration is known (e.g., Denton and Gupta
2003, Denton et al. 2007, Diamant et al. 2018, Erdogan
and Denton 2013), our contribution is to consider how
distributional robustness can be achieved using a
model where only marginal information including
mean, variance, and range on surgery duration is used.
Creating an accurate probability distribution for sur-
gery duration, which can depend on the surgery type
as well as the surgeon performing the surgery,
requires a large amount of historical data. In many
healthcare settings, however, a wide range of surger-
ies, limited numbers of cases of each type, and sur-
geons changing over time result in insufficient
historical data to accurately estimate surgery duration
distributions for each combination of surgery-surgeon
type. Furthermore, it might be impossible to fit

distributions tailored to the surgeon and the surgery
type for some of the less common procedures. For
example, as reported by Macario (2010), for approxi-
mately half of scheduled cases in the United States on
any weekday, only five or fewer cases of the same sur-
gery type (narrowly defined) and by the same surgeon
have been performed. This motivates our interest in a
robust scheduling policy that could perform relatively
well against a class of surgery duration distributions
satisfying only the above described moment (mar-
ginal) information in the CAS problem. This study also
incorporates the more traditional Poisson arrival pro-
cess model. We assume there is usually enough histor-
ical data on appointment requests from which
stochastic scenarios for the number of patient appoint-
ment requests can be made (Erdogan and Denton
2013).
Methodologically, we advance the literature by

synergizing multi-stage stochastic optimization and
distributionally robust optimization (DRO) approaches
such that the uncertainty in the number of patient
appointment requests and surgery durations are mod-
eled by a scenario tree and a moment-based ambiguity
set, respectively. We call this new approach the inte-
grated multi-stage stochastic and distributionally robust
optimization (IMSDRO). The IMSDRO approach (i)
specifies the optimal clinic date, (ii) determines the
optimal surgery date with the same surgeon who per-
formed the clinic visit (given surgery is needed), and
(iii) minimizes and balances the clinic and surgery
overtimes of surgeons. The IMSDRO approach guaran-
tees that the pre-defined priority-based clinical and sur-
gical access delay targets are met for all patients.
Clinical and surgical overtimes are used, as needed, to
achieve these predefined priority-based access delay
targets.
In light of all the above discussions, we address the

following two questions in this study. (i) How can
one develop an optimization-based model that seeks
to establish timely access to specialized surgery by
coordinating clinic and surgery appointments such
that a patient is guaranteed to see a surgeon in the
clinic and (if needed) receive surgery within a maxi-
mum wait time target that is clinically safe for them to
wait? (ii) How can one synergize multi-stage stochas-
tic optimization with DRO to concurrently deal with
different types of uncertainty to generate a model that
is efficiently solvable and implementable in everyday
clinical practice?

1.1. Related Literature
Our work is related to multiple research areas,
namely, appointment scheduling, healthcare coordi-
nation, DRO, and stochastic programming.
Appointment scheduling and healthcare coordi-

nation. There is a growing literature on appointment
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scheduling in healthcare. Recent papers include Liu
et al. (2017), Lemay et al. (2017), Wang et al. (2018),
Morrice et al. (2018), Liu et al. (2019a, 2019b), , Jung et
al. (2019), He et al. (2019), Yu et al. (2020), Mandel-
baum et al. (2020), Bandi and Gupta (2020), Zacharias
and Yunes (2020), Grant et al. (2021), Zhou et al.
(2021), and Keyvanshokooh et al. (2021).
Gupta and Wang (2008) defined two access delay

types. Direct access delay is the time between the
patient’s arrival to the clinic on the day of their
appointment and the time the doctor sees them; indi-
rect access delay is the time between the patient’s
appointment referral and the time of their scheduled
appointment. Most works have concentrated on direct
waiting times and far fewer considered indirect wait-
ing times. Patrick et al. (2008) proposed a Markov
decision process (MDP) to develop policies that mini-
mize the number of patients that do not get a single
appointment by a clinically determined maximum
wait time target. Gupta and Wang (2008) studied an
MDP under patients’ preference for a clinic to decide
how to manage access to its slots when patients can
choose between a single same-day or future appoint-
ment. Liu et al. (2010) presented an MDP under no-
show and cancelation to allocate each patient a single
appointment date within a specific horizon. Saure
et al. (2012) extended the work of Patrick et al. (2008)
to require a sequence of appointment visits for each
patient while reducing access delays. They assume
multiple identical therapy machines and are thus able
to model total capacity by aggregating individual
capacities of machines, unlike our paper. Turkcan
et al. (2012) considered a deterministic number of che-
motherapy patients with multiple visits over time and
formulate an optimization model to minimize access
delay from their earliest start dates. Gocgun and
Puterman (2014) studied a similar model to that of
Patrick et al. (2008) and considered different patient
types that require different levels of access to a single
appointment. Diamant et al. (2018) developed an
MDP under no-shows where patients undergo a
series of assessments before being eligible for a
surgery.
Our paper belongs to the stream of research on

indirect access time. There are a number of key differ-
ences between the above papers and ours. First, we
consider multiple non-identical surgeons as scarce
resources as opposed to Saure et al. (2012), which
modeled either one single resource or multiple identi-
cal resources. Second, it is mostly assumed that each
patient needs either one (e.g., Gocgun and Puterman
2014, Gupta and Wang 2008, Liu et al. 2010, Patrick
et al. 2008) or multiple visits (e.g., Diamant et al. 2018,
Saure et al. 2012, Turkcan et al. 2012), and these are
all assumed to be known at the time of receiving the
request. But, in our problem, each patient requires a

clinic visit, which may or may not be followed by a
surgery, and the surgery need is realized at the clinic
visit. Third, we do not consider no-shows and cancel-
ations because they rarely occur in the settings of
highly specialized clinics. Fourth, an important goal
of our study is to achieve timely access to care using
access delay targets and model uncertainty in surgery
duration, which are not considered in Diamant et al.
(2018) and Saure et al. (2012).
We address healthcare coordination in the sense of

setting appointments for pairs of sequential visits that
together achieve timely access to care. We found only
two articles in this regard. Wang et al. (2018)
proposed a coordinated pre-operative scheduling
approach to evaluate patients’ conditions prior to sur-
gery. They model a two-station stochastic network,
where each clinic may be staffed by multiple parallel
providers and patients see the first available one.
They give a myopic scheduling policy due to their
complex setting. Kazemian et al. (2017) used a simula-
tion approach to evaluate their heuristic policies for
coordinating clinic and surgery visits. Our work
develops optimization models rather than heuristics
for determining the clinic and surgery visit decisions,
and models uncertainty in both surgery duration and
arrival process. This provides a general approach to a
broader range of systems because heuristics do not
readily extend to new settings.
Stochastic optimization and distributionally robust

optimization. As an alternative to MDP approaches
and simulation to address uncertainty, two-stage sto-
chastic optimization is usually employed to formulate
appointment scheduling problems that incorporate
uncertainty (see e.g., Denton and Gupta 2003, Mancilla
and Storer 2012, Parvin et al. 2018). However, the
uncertainty in stochastic parameters such as demand is
often realized progressively, and the decision at each
stage should be a function of the observed feedback
outcomes up to that stage. Multi-stage stochastic pro-
gramming (MSSP) is a more suitable approach for
modeling such a setting (see e.g., Erdogan and Denton
2013), which is the case in our paper.
Surgery durations across different patient classes

and surgeons are not usually homogeneous; thus, it is
challenging to characterize their exact probability dis-
tributions. To overcome this issue, DRO approaches
optimize the worst-case performance over an ambigu-
ity set, which represents a class of probability distribu-
tions with specified moment information. Kong et al.
(2013) formulated a DRO model in which an ambiguity
set is used to include all distributions of service times
with common mean and covariance and derived a
semidefinite program. Mak et al. (2014) considered a
similar problem except that service durations are inde-
pendently distributed, and reformulated their DRO
model as a conic program. However, their formulation
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requires the assumption that service durations could
take on negative values. Jiang et al. (2017) considered a
single-server DRO scheduling problem given a fixed
sequence of appointments with ambiguous no-shows
and service durations and derive mixed-integer non-
linear models.
There are key differences between the above papers

and ours. First, the focus of their DRO models is not
on real-world settings; however, we develop a DRO
formulation for an appointment scheduling problem
with realistic features. Second, we develop a new
approach which integrates a DRO model with an
MSSP model to incorporate different types of uncer-
tainty as well. Third, we leverage a set of transforma-
tions to turn our nonlinear model into a tractable one,
which can be efficiently solved by a new constraint
generation algorithm.
The decisions made by most decision making under

uncertainty approaches are often not implementable
in practice. Rolling horizon type algorithms are usu-
ally developed to deal with this issue. For example,
the rollout method for approximate dynamic pro-
gramming (Bertsekas 2005, Bertsekas and Castanon
1999, Bertsekas et al. 1997), Monte Carlo search tree
method for reinforcement learning (Browne et al.
2012, Gelly et al. 2012, Munos 2014) and rolling hori-
zon policies for MDPs (Alden and Smith 1992,
Hernández-Lerma and Lasserre 1990) are three main
applications of this idea. However, we extend the idea
of rolling horizon into our IMSDRO approach as a
way of adapting to the effect of uncertainty in the
novel case of MSSP integrated with DRO.

1.2. Main Contributions and Focus
Below, we summarize the major contributions of this
study to the existing literature.
(1) Integrated multi-stage stochastic and distribu-

tionally robust optimization. We believe that meth-
odologically this study is the first to develop an
integrated multi-stage stochastic and DRO approach
to simultaneously model two different types of uncer-
tainties, namely the uncertainty in arrival process and
the uncertainty in service time. While arrivals are
often approximated by a Poisson process in opera-
tions models, in many services such as healthcare, the
service time can depend greatly on what type of ser-
vice is provided and by whom (Gupta and Denton
2008). In the context of a specialized surgical unit, sev-
eral types of surgeries may be offered by a number of
surgeons, making it challenging to elicit a complete
probability distribution of surgery duration for all
surgery type-surgeon combinations. Hence, a DRO
approach that only relies on limited distributional
information (e.g., mean, standard deviation, and
range) combined with an MSSP model to model the
arrival process is extremely valuable. In this study,

we first develop an MSSP model that defines the deci-
sions to be made at each stage as a function of the
observed outcomes up to that stage and models the
uncertainty around appointment request arrivals by a
Poisson process from which we can take enough ran-
dom samples to make a scenario tree. We synergize
this MSSP model with a DRO approach, which makes
no assumption on the exact probability distribution of
surgery duration. Instead, it describes a moment-based
ambiguity set, which captures a class of distributions
with specified moment information. The exact formu-
lation derived by the IMSDRO approach is not tracta-
ble. We leverage a set of transformations to turn this
nonlinear model into an approximate one that con-
tains an embedded mixed-integer linear program
(MILP)in its constraints. We develop a new constraint
generation algorithm that generates effective scenario
cuts through this embedded optimization problem, to
efficiently solve the model. Our IMSDRO methodol-
ogy is flexible and can be applied to other service
operations in which different types of uncertainty are
to be modeled simultaneously. Our transformations
can also be used for many other DRO models to turn
them into tractable ones.
(2) Data-driven rolling horizon procedure. Since

the decisions obtained by the IMSDRO approach are
scenario dependent, they are not readily implementa-
ble in practice. We propose a data-driven rolling horizon
procedure (RHP), which provides a framework to (i)
make the decisions of the IMSDRO approach imple-
mentable in real practices, and (ii) empirically evaluate
the performance of the scheduling policies obtained
by the IMSDRO approach. The main advantage of the
RHP is that it allows practitioners to make use of the
latest information that is revealed as time unfolds and
adjust their decisions by dynamically utilizing the
realization of uncertain parameters. This RHP
resolves the critical limitation of traditional stochastic
optimization policies, which are only valid for a lim-
ited number of scenarios. While the rolling horizon
idea is, in general, similar to that of a rollout policy
for constrained dynamic programs, a Monte Carlo
search tree in reinforcement learning, and rolling
horizon MDPs, implementation of a data-driven roll-
ing horizon procedure in the context of IMSDRO is
novel.
(3) Healthcare coordination for timely access

delay. This study presents a class of scheduling poli-
cies that aim to coordinate clinic consultation and sur-
gical appointments in a specialized surgical setting to
accommodate patients of different acuity/priority
levels within a predefined priority-based time win-
dow. The need to consider care coordination has been
raised by May et al. (2011) and emphasized by the
recent survey of Ahmadi-Javid et al. (2017). To the
best of our knowledge, this study is the first work to
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date that uses optimization approaches to study and
model the impact of clinic and surgery appointment
coordination to accommodate priority-based access
delay targets. In section 6, we demonstrate that
coordinating clinic and surgery appointments in a
specialized surgical unit using our new IMSDRO
methodology can significantly improve surgical
access delay for patients with acute conditions. We
show that there is a trade-off between meeting access
delay targets and incurring overtime. This allows
decision makers to define a set of access delay targets
that results in acceptable surgeon overtime. Although
our work is motivated by healthcare, our models,
methodology, and insights can also be extended to
the general appointment-based service systems. We
discuss several important practical implications and
insights from our work in section 7.

2. Problem Statement

In this section, we present the description and specifi-
cations of the CAS problem. This new problem is
motivated by a real-world healthcare scheduling
application in our collaborating hospitals.
Surgeons offer both clinic consultation and surgi-

cal procedures. There are a number of surgeons who
work in two clinic and surgery teams. The set of sur-
geons is denoted by K where each surgeon is pre-
sented by k∈K. Each period is typically a day. We use
the terms day and period interchangeably. On any
given day, one team sees patients in the clinic while
the other team performs surgery in the operating
rooms (ORs). Each surgeon switches between clinic
and surgery teams on the following day and main-
tains his/her own clinical and surgical calendars. This
is called an every-other-day operating calendar for sur-
geons. The system allows both clinical and surgical
overtimes along with the regular clinical and surgical
capacities for surgeons. Each surgeon k∈K has a regu-

lar clinical capacity of Uk
m on clinic day m, and a regu-

lar surgical capacity of Vk
n on surgery day n. These

details can be easily modified to accommodate other
healthcare settings.
Patients from different classes/types. There are

different classes of patients whose requests are
received by the surgical clinic. The set of patient classes
is denoted by Γ where each patient class is presented
by a tuple γ = (ϕ, ν) ∈ Γ, where ϕ is the referral type
(i.e., local or remote) and ν is the indications of disease
(e.g., colon cancer, rectal prolapse, diverticulitis, etc).
Patients are referred either by other hospital units or
by their primary care physicians to the surgical clinic
to consult with a surgeon and evaluate the need for a
surgery. When the surgical clinic receives an appoint-
ment request, the patient’s electronic health records

reveal the indication of disease as well as whether the
patient is locally or remotely referred. The referral
type and the indication of diseases together determine
a patient’s class. We use the terms request and referral
interchangeably.

Each appointment request first requires a clinic con-
sultation appointment with a surgeon, which then
may need to be followed by a surgery. The decision of
whether a patient requires a surgery is made during
the patient’s clinic visit. If a surgery is required, we
assume that it has to be performed by the same sur-
geon who visited the patient at the clinic visit. This
feature captures the continuity of care between
patient–surgeon and is often preferred by patients
since the patient has already established some trust
and a relationship with the surgeon.
Various types of uncertainty. In light of the avail-

ability of historical data and the inherent uncertainty
of the system, there are three types of uncertainty.
The first is the total number of appointment requests
received from each patient class in each period, which
is realized at the end of the period. The second is
whether a given patient requires a surgery or not,
which is revealed at the clinic visit. If a surgery is
needed, the third type of uncertainty concerns the
surgery duration.
We know the probability distribution for the num-

ber of appointment requests made by each class in
each period from which a set S of stochastic scenarios
(indeed a scenario tree) is generated to model the
existing uncertainty in appointment request arrivals.
We represent this by Ds

γ;t, which is the set of class γ∈Γ
patients whose request is received on any day t under
scenario s∈S (see section 3.1). Nonetheless, we have
limited distributional information on the distribution
of surgery duration dγ;k for each class γ∈Γ and sur-
geon k∈K pair. There is usually a wide range of
patient classes served by several different surgeons,
which leads to having only a limited number of cases/
examples for each patient class–surgeon combination.
This makes it hard to fit distributions tailored to each
surgeon and patient class pair, because individual
surgeons may perform many surgery types with
small annual volumes (see discussion in section 1).
A moment-based ambiguity set is employed to incorpo-
rate all such distributions with a common mean, stan-
dard deviation and support (see section 3.2).
Moreover, the patient class determines the proba-

bility rγ that the patient will need a surgery. Indeed,
whether a class γ patient needs a surgery follows a
Bernoulli distribution with success probability rγ . The
surgery probability helps approximate the required
surgery workload in the future. Accordingly, our
approach in section 3 considers the expected number
of required surgeries (with respect to the future
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clinical visits) when making new clinical and surgical
appointment decisions in each period.
We adopt a multi-stage decision-making setting as

well because the uncertainty in parameters is progres-
sively realized in each period. We then develop an inte-
grated optimization-based approach, denoted above as
the IMSDRO approach, synergizing an MSSP model
with a DRO approach to simultaneously model all
types of uncertainty. The goal is to find an optimal
clinic and (if needed) surgery visit date for each patient
with minimum overtimes for surgeons such that class-
specific access delay targets are met for patients. We
denote the clinical and surgical overtimes of surgeon
k∈K on clinic day m and surgery day n under scenario

s∈S by qkm;s and okn;s, respectively.

Clinical and surgical decisions. Figure 1 illustrates
the sequence of events and decisions, surgical and
clinical access delays and timing of uncertainty reali-
zations. At the end of each period, the uncertainty
about the number of appointment referrals received
on that period is realized and the clinic appointments
for those patients are scheduled at the end of that
period. The clinic visit day is promised at the end of

the arrival day and is denoted by xk;mp;γ;t;s, which is

whether a class γ patient p∈Ds
γ;t whose request was

received on any day t under scenario s, has clinic visit
on day m with surgeon k. The next decision, the day
of surgery, is made on the clinic appointment day.
After completing the clinic visit, it becomes known
whether the patient requires a surgery. If the patient
needs a surgery, we schedule a surgery appointment,
which must be with the same surgeon with whom
she/he had the clinic visit. The surgery decision is

denoted by yk;nγ;t;m;s, which is the number of class γ

patients whose requests were received on any day t
under scenario s and had clinic visit on m, and we
choose surgery day n with surgeon k. After the reali-
zation of surgery need and duration, we calculate the

clinical and the surgical overtimes qkm;s and okn;s,

respectively.

Timely access to care. To ensure that patients are
granted timely access to care, we place hard con-
straints on the allowable time intervals during which
a patient may have clinic and surgery visits safely.
For each patient class γ, we define a parameter called
WTCγ or “minimum wait time target for the clinic visit of
a patient class γ patient.” For example, in our case study
(see section 6), the value of this parameter only
depends on ϕ as it was appropriate to assume the
wait time to clinic is determined based on whether
the patient is referred locally or remotely to the hospi-
tal. In particular, for the local referral, WTCγ is zero
because the patient is physically at or around the sur-
gical clinic. But, for the remote referral, we allow a
minimum of WTCγ days (5 days in the case study)
from when a patient referral is received until her/his
clinic visit so as to give the patient time to make travel
arrangement to the surgical clinic. We also define
another important parameter called WTSγ or “maxi-
mum wait time target to surgery visit.” This can be
thought of as the maximum wait time that the
patient’s surgery, if needed, can be safely postponed
from the time of patient referral. Our methodology
ensures that all patients are offered at least one sur-
gery visit within their WTSγ . We define a parameter
CSGγ or “minimum gap between clinic and surgery visits
of a class γ patient.” This corresponds to the minimum
required number of days between the patient’s clinic
and surgery visits. While this can be zero, some sur-
geries require a period of preparation prior to the sur-
gery. WTCγ , WTSγ and CSGγ are set by the surgical
clinic in our case study, but can be easily modified in
other settings.
According to the above-defined parameters, if we

receive a referral on any period t from patient class γ,
we define (i) the earliest time ECγ;t ¼ tþWTCγ , and
the latest time LCγ;t ¼ tþWTSγ �CSGγ for setting the
clinic appointment, and (ii) the earliest time
ESγ;t ¼ tþWTCγ þCSGγ and the latest time
LSγ;t ¼ tþWTSγ for choosing the surgery appointment
(if needed) for this patient. In our approach, both

Figure 1 The Illustration of Sequence of Events, Timing of Different Uncertainty Realizations and Proactive Clinic and Surgery Scheduling Decisions
Made for Each Patient Request in the Surgical Clinic [Color figure can be viewed at wileyonlinelibrary.com]
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clinic and surgery appointments are scheduled within
these clinical and surgical target time windows that
depend on the appointment request period. This
requirement on each patient’s flow pathway adds sig-
nificant complexity to the CAS problem. Figure 2
depicts the allowable target time windows for having
the clinic and surgery (if needed) appointments for a
typical patient from class γ whose appointment
request is received on any period t.

3. Integrated Multi-stage Stochastic
and Distributionally Robust
Optimization Methodology

Analytics overview. In this section, the IMSDRO
methodology for the CAS problem is presented. In
section 3.1, we first assume that the surgery duration
is deterministic and develop a multi-stage stochastic
mixed-integer program (MS-MIP) model in which a
scenario tree is employed to model the uncertainty in
the number of appointment requests on each period.
In section 3.2, we then extend this MS-MIP model to
account for uncertainty in the surgery duration by
developing a DRO approach that uses an ambiguity
set constructed based on the empirical mean, stan-
dard deviation, and support of the surgery duration.
Given that the resulting formulation is not tractable,
we deploy a set of approximations based on the

structural properties and a scenario cut-generating
model, which results in an approximate tractable
reformulation (IMSDRO-APRX).

3.1. Multi-stage Stochastic Mixed-Integer Model
We define three horizons (see Figure 3): (i) current
scheduling horizon L, (ii) current arrival horizon T ,
and (iii) past arrival horizon U . By using this model-
ing approach, we account for initial steady-state clini-
cal and surgical workloads. The current scheduling
horizon L is the set of periods from current period t0
until period te, over which we decide the clinic and
surgery appointment dates. There are two types of
patient arrival horizons: (i) “current” arrival horizon T is
the set of periods from current period t0 until period
tb for new patient request arrivals, which is the first
portion of the current scheduling horizon and (ii)
“past” arrival horizon U is the set of periods from
period 1 until period t0�1 for past patient request
arrivals over the previous scheduling horizon. The
reason for defining the set U is twofold. First, the
clinic visit of a patient whose request has been already
received in U may happen on any period (day) in L,
so we may still need to make a surgery visit decision.
Second, the surgery visit of the patients whose
request is received in U may happen on any period in
L and they consume surgery capacity during the hori-
zon L. Due to the access wait time targets to surgery,
jLj ¼ jT jþmax γfWTSγg is the required length of

Figure 2 The Illustration of Minimum Wait Time for Clinic Visit (WTC), Minimum Clinic to Surgery Visits Gap (CSG), Maximum Wait Time to Sur-
gery Visit (WTS) for a Patient Whose Request is Received on Any Period t [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3 The Illustration of Arrival Horizon U for Patient Request Arrivals in the Previous Scheduling Horizon, Arrival Horizon T for Patient Request
Arrivals in the Current Scheduling Horizon, and Current Scheduling Horizon L [Color figure can be viewed at wileyonlinelibrary.com]
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current scheduling horizon. Note that t0 is the first
period of the current scheduling and arrival horizons,
tb ¼ t0þjT j�1 is determined by the surgical unit and
corresponds to the last period for new patient request
arrivals, and te ¼ t0þjT jþmax γfWTSγg corresponds
to the end of current scheduling horizon.
A multi-stage stochastic model allows us to have

several decision layers, where random outcomes are
progressively realized, and the clinical and surgical
decisions should be adapted to this process. In gen-
eral, a T-stage stochastic model includes a sequence of
stochastic parameters ξ1, ξ2,⋯, ξT�1 with a discrete
support (note that T¼ jT j in our model). A scenario is
a realization of these stochastic parameters, and a sce-
nario tree represents the progressive observation of
random parameters. To model stochasticity in the
number of appointment request arrivals as a scenario
tree, a set of scenarios S with a countable size S¼ jSj
is defined. The corresponding scenarios’ probabilities
are π1, π2, ⋯, πS, and a realization of stochastic
parameters for scenario s∈S is presented by
ðξst0 , ξst0þ1, ⋯, ξstbÞ where ξst ¼ðDs

γ;t : γ ∈ ΓÞ is a realiza-

tion for the number of requests on period t∈T over
different classes under scenario s∈S, and Ds

γ;t is the

stochastic set of class γ patients whose request/referral
is received in period t∈T under scenario s∈S. Note
that ξst0 is the same (deterministic) for all scenarios

s∈S because it is the number of appointment requests
in the current period t0 of the arrival horizon T . We

also define ~Dγ;t as the deterministic set of class γ∈Γ
patients whose request was already received on day
t ∈ U . Formally, we have the following assumption
for the number of appointment requests.

ASSUMPTION 1 (Stochasticity Assumption). There is
full distributional information for the number of patient
appointment requests in every period over the current
arrival horizon T . Such uncertainty is modeled by a sto-
chastic process ξ with a realization of stochastic parame-
ters presented by ðξst0 , ξst0þ1, ⋯, ξstbÞ with a probability πs
under scenario s ∈ S, where ξst ¼ðDs

γ;t : γ ∈ ΓÞ is a realiza-

tion for the number of patient appointment requests in
period t∈T under scenario s∈S.

In an MSSP, a policy should be non-anticipative, mean-
ing that the decisions made at each stage must not be
dependent on the future realization of stochastic param-
eters. There are two common ways for formulating an
MSSP (Dupačová 1995). In the first, an MSSP is formu-
lated as a sequence of nested two-stage stochastic
programs in which non-anticipativity is implicitly
imposed. In the second (used in this study), a set of non-
anticipativity constraints (NAC) is explicitly modeled.
Figure 4 (left-hand side) shows an example of a sce-

nario tree with four stages and four scenarios for the
CAS problem with two classes. In each scenario node,
there is a realization ðjDs

1;tj, jDs
2;tjÞ where jDs

1;tj and

jDs
2;tj are the number of class 1 and 2 appointment

requests that are received on period t∈T , respec-

tively. For example, D2
1;3 ¼f1, 2, 3g and D2

2;3 ¼f1, 2g
are for the node at stage 3 and scenario 2. Figure 4
(right-hand side) is an alternative presentation of the
scenario tree, which is called scenario fan, where the
individual scenarios observed in the particular stages
are disaggregated over all periods to form four sce-
narios. However, this scenario fan is not permissible. If
we solve the CAS problem for each of the scenarios,

Figure 4 (LHS): An Illustration of a Scenario Tree for the Number of Appointment Request Arrivals of two Patient Classes in a four-Stage MSSP with
four Scenarios where in Each Node (i, j) Shows the Number of Appointment Request Arrivals of Patient Classes 1 and 2 at Each Stage t
and Scenario s, and (RHS): The Corresponding Scenario Fan with Four Scenario Bundles Required for this four-Stage MSSP. The Dashed
Ovals Covering the Nodes Present NACs [Color figure can be viewed at wileyonlinelibrary.com]
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the solution found might not be feasible for the over-
all problem because they imply decisions that antici-
pate future uncertain events. Thus, we need to
enforce NACs to have permissible decisions. The
dashed ovals covering the nodes represent NACs. For
example, since all four scenarios have the same reali-
zations at stage 1, they share the same scenario bun-
dle, and so a NAC is imposed to guarantee that the
same surgical and clinical decisions are made at all
nodes in this scenario bundle. This is the same for sce-
narios 1 and 2 on period t = 1, scenarios 3 and 4 on
period t = 2, and scenarios 3 and 4 on period t = 3.
The other notations are given in Table 1. Tilde (∼) is

used to distinguish decisions x and y from parameters ~x,

~y, and ~z. The decision ŷ is also similar to decision y
except it applies only to arrivals on current period t0,
which is deterministic (hence no dependence on sce-
nario). We use bold notations whenever some indices
of parameters/variables are removed.
The proposed multi-stage stochastic model for the

CAS problem is presented as follows, noting that the
surgery duration dγ;k is assumed to be deterministic in
this formulation.
Objective function. The objective (1) of the MS-

MIP model is to minimize the expected total clinical
and surgical overtimes of all surgeons over the sched-
uling horizon and scenarios.

min ∑
s∈S

∑
k∈K

πs ∑
m∈L

qkm;sþ ∑
n∈L

okn;s

 !
: (1)

Constraints for access delay to clinic appoint-
ments. Constraints (2) and (3) below guarantee that

the clinic visit decision or xk;mp;γ;t;s for each class γ patient

whose request is received on any day t under scenario
s should be an available date between the earliest
clinic time ECγ;t ¼ tþWTCγ and the latest clinic time
LCγ;t ¼ tþWTSγ �CSGγ (see Figure 2 for the feasible
clinic range).

xk;mp;γ;t;s ¼ 0, 8γ ∈ Γ, t ∈ T , s ∈ S, p ∈Ds
γ;t, k ∈K,

m ∈ ½t0, tþWTCγ �1�∪ ½tþWTSγ �CSGγþ1, te�
: (2)

∑
tþWTSγ�CSGγ

m¼tþWTCγ

∑
k∈K

xk;mp;γ;t;s ¼ 1, 8γ ∈ Γ, t ∈ T , s ∈ S, p ∈Ds
γ;t:

(3)

Constraints for access delay to surgery appoint-
ments. Constraints (4)–(6) state that the surgery of
each patient is performed by the same surgeon who
performed the clinic visit, and the surgery visit for
each patient should be within a clinically safe range
of days (see Figure 2 for the feasible surgery range).
More explicitly, the class γ patients whose requests
are received on either day t ∈ U or day t ∈ T , and have
clinic visit on day m ∈ T could have their surgery visit
on any day between mþCSGγ and tþWTSγ . We

denote the surgery visit decisions by yk;nγ;t;m;s and ŷk;nγ;t;t0
for patients whose clinic visit is any day m ∈ T nft0g
and the current day t0, respectively.

rγ ∑
p∈ ~Dγ;t

~xk;mp;γ;t

 !
≤ ∑

tþWTSγ

n¼mþCSGγ

yk;nγ;t;m;s, 8γ ∈ Γ, t ∈ U , m ∈ T nft0g,
k ∈K, s ∈ S: (4)

rγ ∑
p∈Ds

γ;t

xk;mp;γ;t;s

 !
≤ ∑

tþWTSγ

n¼mþCSGγ

yk;nγ;t;m;s, 8γ ∈ Γ, t ∈ T , m ∈ T nft0g,

k ∈K, s ∈ S: (5)

Table 1 The Description of Indices, Parameters and Decisions of the
MS-MIP Model for the CAS Problem

Indices
t,m,n : Day indices (t is used for the day that an appointment request

is received, and m and n are used for a clinic day and a
surgery day, respectively)

γ : Patient class index, γ = (ϕ, ν)∈Γ (ϕ is the referral type and ν
is the disease indications)

k : Surgeon index, k ∈K
p : Patient index, p∈Ds

γ;t

s : Scenario index, s∈S
Deterministic and stochastic parameters

Uk
m

: Total clinical capacity of surgeon k ∈K on clinic day m∈L

V k
n

: Total surgical capacity of surgeon k ∈K on surgery day n∈L

cγ : Clinic duration of a patient class γ∈Γ
d γ;k : Surgery duration of a patient class γ∈Γ performed by

surgeon k ∈K
Ds

γ;t : Set of class γ∈Γ patients whose request is received on day
t∈T under scenario s∈S

~Dγ;t : Set of class γ ∈ Γ patients whose request is already received
on day t∈ U

πs : Probability of occurrence of scenario s∈S
r γ : Surgery probability of a class γ∈Γ patient

~xk ;mp;γ;t
: Binary parameter equal to 1 if a class γ∈Γ patient p whose
request was received on day t ∈ U has clinic visit on day
m∈T nft 0g with surgeon k ∈K, and zero otherwise

~z kγ;t
: The number of class γ ∈ Γ patients whose request is
received on day t ∈ U ∪ft0g, and has clinic visit on day t0 with
surgeon k ∈K, and also needs surgery

~yk ;nγ;t ;m
: The number of class γ∈ Γ patients whose request is received
on day t∈ U , and has clinic visit on day m ∈ U , and surgery
visit on day n∈T with surgeon k ∈K

Stage decision variables

xk ;mp;γ;t ;s
: Binary variable equal to 1 if a class γ∈Γ patient p whose
request is received on day t∈T under scenario s∈S has
clinic visit on day m∈L with surgeon k ∈K, and 0 otherwise

yk ;nγ;t ;m;s
: The number of class γ ∈ Γ patients whose requests are
received on day t ∈ U ∪T under s∈S, and have clinic visit on
m∈T nft 0g, and surgery visit on n∈L with surgeon k ∈K

ŷ
k ;n
γ;t ;t0

: The number of class γ∈Γ patients whose requests are
received on day t ∈ U ∪ft0g, and have clinic visit on day t0,
and surgery visit on n∈L with surgeon k ∈K

qkm;s
: Clinical overtime of surgeon k ∈K on the clinic day m∈L
under s∈S

okn;s : Surgical overtime of surgeon k ∈K on the surgery day n∈L
under s∈S

Keyvanshokooh, Kazemian, Fattahi, and Van Oyen: Coordinated and Priority-Based Surgical Care: An IMSDRO Approach
Production and Operations Management 0(0), pp. 1–26, © 2021 Production and Operations Management Society 9



Keyvanshokooh, Kazemian, Fattahi, and Van Oyen: Coordinated and Priority-Based Surgical Care: An IMSDRO Approach
Production and Operations Management 31(4), pp. 1510–1535, © 2021 Production and Operations Management Society 1519

~zkγ;t ≤ ∑
tþWTSγ

n¼t0þCSGγ

ŷk;nγ;t;t0 , 8γ ∈ Γ, t ∈ U ∪ ft0g, k ∈K: (6)

Constraints (4) are for the class γ patients ~Dγ;t whose
request is received in the previous arrival horizon U
(so they are already in the system) and their clinic

visits are denoted by parameter ~xk;mp;γ;t, and their sur-

gery is being made on 1 day in the current horizon T .
However, constraints (5) are for the class γ patients
Ds

γ;t whose request is received in the current arrival

horizon T under scenario s and their clinic visits are

denoted by xk;mp;γ;t;s. In both constraints (4) and (5), the

clinic appointment of patients may happen on any
day over horizon T nft0g, so their surgery need is
specified by a surgery probability rγ as their clinic
visit has not happened yet. Recall that whether a class
γ patient needs a surgery follows a Bernoulli distribu-
tion with success probability rγ . Constraints (6) are for

the patients denoted by parameter ~zkγ;t whose request

is received on any day in horizon U ∪ft0g (so they are
already in the system), but unlike constraints (4) and
(5), their clinic visit is on the current day t0, and hence
their surgery need is realized.
Clinical and surgical capacity constraints. Con-

straints (7) and (8) restrict the amount of clinical and
surgical workloads (both regular capacity and over-
time) for each surgeon k∈K on each day n∈L, respec-

tively, over the scheduling horizon. Note that ~xk;mp;γ;t

and ~yk;nγ;t;m correspond to the decisions made in the pre-

vious periods; thus, they become parameters in the
current time period.

∑
γ∈Γ

cγ ∑
t∈U

∑
p∈ ~Dγ;t

~xk;mp;γ;tþ ∑
t∈T

∑
p∈Ds

γ;t

xk;mp;γ;t;s

 !
≤Uk

mþqkm;s,

8m∈L, k∈K, s∈S: (7)

∑
γ∈Γ

dγ;k ∑
t∈U

∑
m∈U

~yk;nγ;t;mþ ∑
t∈T

∑
m∈T nft0g

yk;nγ;t;m;sþ ∑
t∈U ∪ ft0g

ŷk;nγ;t;t0

 !

≤Vk
nþ okn;s, 8n∈L, k∈K, s∈S: (8)

Non-anticipativity constraints. In any given stage
over the scheduling horizon, the decision maker can-
not foresee the future outcomes of the total number of
appointment requests; therefore, the clinic and sur-
gery decisions must satisfy NACs. This indicates that
these decisions in a given stage t are identical for each
pair ðs, s0Þ of scenarios with a common ancestor node
in that stage (see Figure 4). If two scenarios s and s0

share the same history of random parameters ξs and

ξs
0
up to stage t, then the decisions made at stage t are

the same among all scenarios placed in the same

scenario bundle. Constraints (9) and (10) are the corre-
sponding NAC for the CAS problem.

xk;mp;γ;t;s ¼ xk;mp;γ;t;s0 , 8k∈K, γ∈Γ, m∈L, t∈T , p∈Ds
γ;t, s,

s0∈S, ðξst0þ1, ⋯, ξstÞ¼ ðξs0t0þ1, ⋯, ξs
0
t Þ: (9)

yk;nγ;t;m;s ¼ yk;nγ;t;m;s0 , 8k∈K, γ∈Γ, m∈T nft0g, t∈T ∪ U ,

n∈L, s, s0∈S, ðξst0þ1, ⋯, ξstÞ¼ ðξs0t0þ1, ⋯, ξs
0
t Þ:
(10)

Note that we do not require defining the NACs for

the other variables qkm;s and okn;s. The reason is because

these auxiliary decisions are calculated directly from

decisions xk;mp;γ;t;s and yk;nγ;t;m;s by constraints (7) and (8),

and thereby preserving the non-anticipativity for
them automatically.
Other constraints. Constraints (11)–(14) define the

binary and non-negativity restrictions on the clinic
and surgery appointment decisions, and clinical and
surgical overtimes, respectively.

xk;mp;γ;t;s∈f0, 1g, 8k∈K, m∈L, γ∈Γ, t∈T , p∈Ds
γ;t, s∈S:

(11)

yk;nγ;t;m;s ≥ 0, 8k∈K, m∈T nft0g, γ∈Γ, t∈ U ∪T , n∈L, s∈S:

(12)

ŷk;nγ;t;t0 ≥ 0, 8k∈K, n∈L, γ∈Γ, t ∈ U ∪ft0g: (13)

qkm;s, o
k
n;s ≥ 0, 8k∈K, m, n∈L, s∈S: (14)

Remark (Patient-centered care). The above MS-
MIP model has been developed to be patient-centered
by putting hard constraints on access delay targets,
thereby guaranteeing full service (i.e., clinic and sur-
gery appointments) within a predefined priority-
based safe interval. It is, however, inevitable to
employ overtime on some days to achieve this goal,
and the best scheduling policy is thus the one that
meets such service level with the minimum possible
clinical and surgical overtime. Generally, there is a
trade-off between access delay targets and surgeon
overtime. The tighter the access targets, the higher the
overtime. In Appendix C, we develop an alternative
bi-objective model, that strikes a balance between
meeting access delay targets and incurring overtime.
It allows decision makers to set penalties on violating
access targets and incurring surgeon overtime.

3.2. Integrated Multi-stage Stochastic and
Distributionally Robust Model
In this section, we extend the MS-MIP model
(1)–(14), by incorporating ambiguous distributional
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information for surgery duration of each patient
class and surgeon pair. Surgery duration is usually
highly variable (see discussions in section 1); how-
ever, there is often little uncertainty in clinic dura-
tion (e.g., in our partner hospitals, the clinic visits
are scheduled in 15-minute time slots). The uncer-
tainty in surgery duration is modeled by using an
ambiguity set that is constructed based on the
empirical mean, standard deviation, and support of
the surgery duration. More precisely, besides
Assumption 1, another important assumption in
the IMSDRO is as follows.

ASSUMPTION 2 (Ambiguity Assumption). There is
ambiguous distributional information about the surgery
duration of each patient class and surgeon pair. This lim-
ited distributional information includes two stochastic
moments (i.e., mean and standard deviation), and the
support. A moment-based ambiguity set is used to model
such uncertainty in the surgery duration.

From the Assumption 2, the surgery duration vec-
tor d¼ðdγ;k : γ∈Γ, k∈KÞ for different classes and sur-
geons has an unknown probability distribution P
with a polyhedral support set Θ as follows:

Θ¼ d∈
jΓj�jKj
þ : dLBγ;k ≤ dγ;k ≤ dUB

γ;k , 8γ ∈ Γ, k∈K
n o

, (15)

where dLB and dUB∈
jΓj�jKj
þ denote the lower and

upper bound vectors for the surgery duration d,
respectively. Such lower and upper bounds can be
computed from available historical data.

DEFINITION 1 (Marginal moment-based ambiguity
set). Given a set of |L| observations of surgery dura-

tion d, denoted by fdlgl∈L where dl∈
jΓj�jKj
þ , a

moment-based ambiguity set Φ(μ, σ, Θ) is defined
for the probability distribution P using the marginal

mean vector μ∈
jΓj�jKj
þ and standard deviation vec-

tor σ∈jΓj�jKj of these realizations of surgery dura-
tions as follows:

Φðμ, σ, ΘÞ¼ P :

Z

Θ
dPðdÞ¼ 1,

�
(16a)

Z

Θ
dγ;kdPðdÞ¼ μγ;k, 8γ∈Γ, k∈K (16b)

Z
Θ
d2γ;kdPðdÞ¼ μ2γ;kþσ2γ;k, 8γ∈Γ, k∈K

�
: (16c)

Φ(μ, σ, Θ) is the set of all plausible surgery distribu-
tions that satisfy (16a)–(16c). Constraint (16a)
ensures that this moment-based ambiguity set con-
tains only plausible probability distributions over the

polyhedral support set Θ. Constraints (16b) and (16c)
limit such probability distributions to have marginal
first and second distributional moments being equal
to those of the observed surgery durations. This set
satisfies all candidate distributions whose marginal
means and standard deviations match μγ;k and σγ;k,
respectively, for each pair of patient class γ∈Γ and
surgeon k∈K.
We are now ready to develop the IMSDRO model

for the CAS problem, which is derived based on both
Assumptions 1 and 2. The integrated model combines
the MS-MIP model (1)–(14) with a DRO approach
such that we can handle different types of uncertainty
in one optimization model. We formulate this inte-
grated model as the following min–max problem:

ZIMSDRO

¼ min
x,y, ŷ,q

∑
s∈S

πs ∑
k∈K

∑
m∈L

qkm;sþ max
P∈Φðμ,σ,ΘÞ

P fsðys, ŷ, dÞ
� �( )

(17a)

s:t: ðxs, ys, ŷ, qsÞ ∈Rs, 8s ∈ S (17b)

where P is the expectation taken over the probabil-
ity distribution P, and the feasible region Rs is
defined by constraints (2)–(7) and (9)–(14) for each
individual scenario s ∈ S. Given the surgery
appointment decisions ys and ŷ, and a realization of
random variable d, f sðys, ŷ, dÞ is defined by

∑
n∈L

∑
k∈K

max

�
0, ∑

γ∈Γ
dγ;k

�
∑
t∈U

∑
m∈T nft0g

~yk;nγ;t;mþ ∑
t∈T

∑
m∈T nft0g

yk;nγ;t;m;s

þ ∑
t∈U∪ft0g

ŷk;nγ;t;t0

�
�Vk

n

�
:

Intuitively, f sðys, ŷ, dÞ is the cumulative surgical
overtimes of all surgeons over the scheduling hori-
zon. The objective function of the IMSDRO model
(17a) and (17b) then implies that we are making the
clinic and surgery appointment decisions, and clinical
and surgical overtimes decisions so as to minimize
the expected clinical overtimes plus the worst-case
expected surgical overtimes of all surgeons over the
set of plausible surgery duration distributions
P∈Φ(μ, σ, Θ). The distributionally robust part seeks
the worst-case distribution P of d for which
P½ f sðys, ŷ, dÞ� is maximized.
Our next step is to reformulate the min–max

IMSDRO model (17a) and (17b) into a tractable refor-
mulation using the moment-based ambiguity set
Φ(μ, σ, Θ). We first analyze the inner-maximization
problem in the model (17a) and (17b). For any
fixed surgical decisions ys and ŷ, and the uncertain
realization vector d, we consider the followingmoment
problem:
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max
P∈Φðμ,σ,ΘÞ

P fsðys, ŷ, dÞ
� �

, (18)

where the probability measure P is decision vari-
able. We next expand this problem, which helps
convert the min–max IMSDRO model (17a) and
(17b) into an equivalent single-level minimization
one.

REMARK. The min–max IMSDRO model (17a) and
(17b) with the moment problem (18) has a special
structure, which is useful for many operational prob-
lems in which f sðys, ŷ, dÞ has the form of cumulative
maximization values. So, our methodologies can be
used for a broad range of settings.

PROPOSITION 1 (Reformulation of the min–max
IMSDRO model). Under the moment-based ambiguity
set Φ(μ, σ, Θ) for the probability distribution P of the
surgery duration characterized by the constraints (16a)–
(16c), the min–max IMSDRO model (17a) and (17b) can
be reformulated as the following equivalent minimization
problem,

ZIMSDRO ¼ min
x,y, ŷ,q,δ,α,β

∑
s∈S

πs

(
∑
k∈K

�
∑

m∈L
qkm;s

þ∑
γ∈Γ

�
μγ;kα

k
γ;sþðμ2γ;kþσ2γ;kÞβkγ;s

��
þδs

)

(19a)

s:t: δs ≥max
d∈Θ

f sðys, ŷ,dÞ� ∑
γ∈Γ

∑
k∈K

dγ;kα
k
γ;s� ∑

γ∈Γ
∑
k∈K

d2γ;kβ
k
γ;s

( )
,

8s∈S (19b)

ðxs,ys, ŷ, qsÞ∈Rs, 8s∈S (19c)

δs∈, αs, βs∈jΓj�jKj, 8s∈S, (19d)

where δs∈, and αs, βs∈jΓj�jKj are dual variables for
constraints (16a) and (16b), respectively.

Structural properties. The proof of Proposition 1 is
provided in Appendix A.1. The reformulation (19a)–
(19d) of the IMSDRO model in Proposition 1 is still
nonlinear due to the maximization expression on the

right-hand side of Equation (19b). To obtain a tracta-
ble reformulation, we first attain a characterization of
the overtime function f sðys, ŷ, dÞ by converting it into
an equivalent minimization linear program (LP) with
the help of the surgical overtime definition (see
LP (30a)–(30c) in the proof of Proposition 2 in
Appendix A.2). We formulate its dual to merge it with
the maximization over d∈Θ in constraint (19b), and
then reformulate the resulting problem based on the
special structural properties, including (i) the surgery
duration d has a polyhedron-shaped support Θ, and (ii)
the dual variables for the f sðys, ŷ, dÞ problem is
bounded below and above by zero and one.

PROPOSITION 2 (Reformulation of surgical overtime
function). For any fixed and feasible value of ys, ŷ, αs,
βs, xs, and qs vectors and δs under scenario s∈ S in the
minimization problem (19a)–(19d), the value of the maxi-
mization problem on the right-hand side of constraint

(19b), that is, Ψsðys, ŷ, αs, βsÞ¼ maxd∈Θ

n
f sðys, ŷ, dÞ

�∑γ∈Γ ∑k∈Kdγ;kα
k
γ;s�∑γ∈Γ∑k∈Kd

2
γ;kβ

k
γ;s

o
, is equivalent

to the following problem under each scenario s∈S:

where feasible region Λs is a polyhedron given by

Λs ¼fλs ∈jKj�jLj : 0≤ λkn;s ≤ 1, 8k∈K, n∈Lg for each

scenario s∈ S, and λkn;s is the dual variable associated

with surgical overtime constraints.

The proof of Proposition 2 is provided in
Appendix A.2.
Discrete approximations. We next analyze the

inner-maximization problem (21) embedded in
Ψsðys, ŷ, αs, βsÞ for each pair of class γ∈Γ and sur-
geon k∈K and compute its optimal solution based on
the structure of the polyhedron-shaped support Θ
defined by the set (15):

max
dLBγ;k ≤ dγ;k ≤ dUB

γ;k

∑
n∈L

∑
t∈U

∑
m∈T nft0g

~yk;nγ;t;mþ ∑
t∈T

∑
m∈T nft0g

yk;nγ;t;m;s

( 

þ ∑
t∈U∪ft0g

ŷk;nγ;t;t0

)
� λkn;sdγ;k�αkγ;sdγ;k�βkγ;sd

2
γ;k

!
:

(21)

Ψsðys, ŷ, αs, βsÞ¼max
λs∈Λs

∑
γ∈Γ

∑
k∈K

max
dLBγ;k ≤ dγ;k ≤ dUB

γ;k

∑
n∈L

∑
t∈U

∑
m∈T nft0g

~yk;nγ;t;mþ ∑
t∈T

∑
m∈T nft0g

yk;nγ;t;m;s

( (

þ ∑
t∈U∪ft0g

ŷk;nγ;t;t0

)
�λkn;sdγ;k�αkγ;sdγ;k�βkγ;sd

2
γ;k

!
� ∑

n∈L
Vk

nλ
k
n;s

)
, (20)
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The inner-maximization problem (21) is a con-
cave quadratic program. However, finding a
closed-form solution for this problem over dγ;k is
not trivial because the optimal value of dγ;k
depends on all the coefficients in Equation (21),
which are themselves variables in problem (20).
Even if the closed-form optimal solution for dγ;k is
incorporated into Equation (20), it becomes non-
linear because we obtain a quadratic expression in

λkn;s. To overcome this issue, we approximate (21)

using a piece-wise linear function with equal length
pieces. This is a common technique in optimization
(Yang and Goh 1997). We define a set of H + 1

segment points ϒγ;k ¼f~dγ;kðiÞg
H

i¼0 for the surgery

duration of each class γ ∈ Γ and surgeon k∈K pair,

where ~dγ;kðiÞ¼
�
1� i

H

�
dLBγ;kþ

�
i
H

�
dUB
γ;k , i ∈ {0, ⋯, H} is

the ith segment point in the set ϒγ;k for each class
γ∈Γ and surgeon k∈K pair.
The inner-maximization problem (21) then reduces

to the following approximation problem of finding
the maximum over H+ 1 different quantities for each
(γ, k) pair under each scenario s:

max
i¼0, ⋯, H

∑
n∈L

∑
t∈U

∑
m∈T nft0g

~yk;nγ;t;mλ
k
n;sþ ∑

t∈T
∑

m∈T nft0g
yk;nγ;t;m;sλ

k
n;s

( (

þ ∑
t∈U∪ft0g

ŷk;nγ;t;t0λ
k
n;s

)!
~dγ;kðiÞ�αkγ;s

~dγ;kðiÞ�βkγ;s
~dγ;kðiÞ2

)
:

(22)

Choosing a large number of segment points for
each (γ, k) pair models the support of the surgery
duration distribution more precisely, thereby
increasing the precision of the estimation made by
the approximation problem (22) for (21); however,
this comes at the cost of more computational time.
We analyze how different choices of segment points
affect the solution quality and computational time
in Appendix D.
If we insert the approximation problem (22) into

the optimization problem (20) derived in Proposition
2 under each scenario s∈S, it yields an approximation

called ~Ψsðys, ŷ, αs, βsÞ for the problem (20). In Theo-
rem 1, we find an equivalent MILP for the

approximation problem ~Ψsðys, ŷ, αs, βsÞ by leverag-
ing McCormick-type constraints (McCormick 1976).

THEOREM 1 (Scenario cut-generating problem).
Under each scenario s∈S, the optimization problem (20)
is approximated by the following MILP:

~Ψsðys, ŷ, αs, βsÞ¼ max
τ, η, λ

χsðys, ŷ, αs, βs; τs, ηs, λsÞ (23a)

s:t: ∑
H

i¼0

ηkγ;i ¼ 1, 8γ ∈ Γ, k ∈ K (23b)

τkn;s;γ;i�λkn;s�ηkγ;i ≥ �1, 8γ ∈ Γ, k ∈ K, n ∈ L, i¼ 0, ⋯, H

(23c)

τkn;s;γ;i� λkn;s ≤ 0, 8γ∈Γ, k∈K, n∈L, i¼ 0, ⋯, H (23d)

τkn;s;γ;i�ηkγ;i ≤ 0, 8γ∈Γ, k∈K, n∈L, i¼ 0, ⋯, H (23e)

τkn;s;γ;i ≥ 0, ηkγ;i∈f0, 1g, 0≤ λkn;s ≤ 1, 8γ∈Γ, k∈K, n∈L,

i¼ 0, ⋯, H (23f)

where the objective function χsðys, ŷ, αs, βs;τs, ηs, λsÞ is
defined for each scenario s∈S as follows:

∑
γ∈Γ

∑
k∈K

∑
H

i¼0

∑
n∈L

∑
t∈U

∑
m∈T nft0g

~yk;nγ;t;mþ ∑
t∈T

∑
m∈T nft0g

yk;nγ;t;m;sþ ∑
t∈U∪ft0g

ŷk;nγ;t;t0

 !
~dγ;kðiÞτkn;s;γ;i

(

�αkγ;s
~dγ;kðiÞηkγ;i�βkγ;s

~dγ;kðiÞ2ηkγ;i
)
� ∑

k∈K
∑
n∈L

Vk
nλ

k
n;s: (24)

The proof of Theorem 1 is provided in Appendix A.3.
The important implication of Theorem 1 is that it pre-
vents having an embedded MILP model on the right-
hand side of constraints (19b) by recognizing which sce-
nario cuts must be added to replace the nonlinear con-
straints (19b). Using the results of Theorem 1, we can
approximate the IMSDROmodel (19a)–(19d) as follows:

~Z
IMSDRO ¼ min

x, y, ŷ, q, δ, α, β
∑
s∈S

πs

(
∑
k∈K

�
∑

m∈L
qkm;s

þ∑
γ∈Γ

μγ;kα
k
γ;sþðμ2γ;kþσ2γ;kÞβkγ;s

�� �
þδs

)
(25a)

s:t: δs ≥ ~Ψsðys, ŷ, αs, βsÞ, 8s∈S (25b)

ðxs, ys, ŷ, qsÞ∈Rs, 8s∈S (25c)

δs∈, αs, βs∈jΓj�jKj, 8s∈S: (25d)

REMARK. The minimization problem (25a)–(25d) is an
approximation of the IMSDRO model (19a)–(19d). We
shall call it the IMSDRO-APRX model. Although this
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model has a linear objective functionwith continuous and
binary variables, due to the right-hand side of constraints
(25b), which includes an embedded optimization problem
(23a)–(23f), this model is not an MILP that is solvable by
off-the-shelf MILP solvers (such as Gurobi and Cplex). In
section 4, we develop a constraint generation algorithm,
which is based on iteratively generating constraints (25b)
for each individual scenario s∈S, as needed, to efficiently
solve the IMSDRO-APRXmodel.

4. Constraint Generation Algorithm

We develop a new constraint generation algorithm for
solving the IMSDRO-APRX model, which exploits the

structure of the embedded MILP ~Ψsðys, ŷ, αs, βsÞ to
generate effective scenario cuts. The main idea is
explained as follows. The algorithm starts by solving
the IMSDRO-APRX model without having any of the
constraints (25b). At each iteration, it solves a relaxed
master problem (RMP) to obtain a solution
ðxs, ys, ŷ, qs, δs, αs, βsÞ. Given this solution, it then
solves what we call the scenario cut-generating problem
~Ψsðys, ŷ, αs, βsÞ or (23a)–(23f). If ŷ, ys, αs, and βs do

not satisfy δs ≥ ~Ψsðys, ŷ, αs, βsÞ, the scenario cut-
generating problem returns scenario cuts in the form
of Equation (26b) back to RMP and the algorithm pro-
ceeds to next iteration. If ðxs, ys, ŷ, qs, δs, αs, βsÞ is
optimal, the algorithm then terminates. The RMP at
the Jth iteration is formulated as follows:

~Z
RMP ¼ min

x, y, ŷ, q, δ, α, β
∑
s∈S

πs

(
∑
k∈K

 
∑

m∈L
qkm;s

þ∑
γ∈Γ

μγ;kα
k
γ;sþðμ2γ;kþσ2γ;kÞβkγ;s

! !
þδs

)
(26a)

s:t: δs ≥ χsðys, ŷ, αs, βs;τ
ðjÞ
s , ηðjÞs , λðjÞs Þ, 8s∈S, j¼ 1, ⋯, J�1

(26b)

ðxs, ys, ŷ, qsÞ∈Rs, 8s∈S (26c)

δs∈, αs, βs∈jΓj�jKj, 8s∈S, (26d)

where the superscript j denotes all iterations up to the
current iteration J, and the solution of the scenario cut-
generating problem (23a)–(23f) at jth iteration is

denoted by
�
τðjÞs , ηðjÞs , λðjÞs

�
for each scenario s. The lin-

ear function χs

�
ys, ŷ, αs, βs; τ

ðjÞ
s , ηðjÞs , λðjÞs

�
in con-

straints (26b) is represented by the expression (24)

with ðτs, ηs, λsÞ¼
�
τðjÞs , ηðjÞs , λðjÞs

�
for each scenario s.

These scenario cuts are iteratively derived by passing

the current solution
�
x
ðJÞ
s , y

ðJÞ
s , ŷðJÞ, qðJÞs , δðJÞs , αðJÞ

s , βðJÞs

�

of the RMP to the scenario cut-generating problem,
and checking whether it satisfies (25b). If not, we add
the corresponding scenario cut to the RMP for each
scenario s. The details of the constraint generation
algorithm are presented in Algorithm 1.
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It is worth mentioning that the total number of sce-
nario cuts that are being passed back to the RMP at
each iteration is not necessarily equal to the total
number of scenarios. Indeed, for only violated scenar-
ios, Algorithm 1 passes back their corresponding sce-
nario cuts to the RMP. In Appendix D, we compare
multi-cut and single-cut versions of Algorithm 1 for
the CAS problem.

THEOREM 2. The constraint generation Algorithm 1 con-
verges to an optimal scheduling policy for the IMSDRO-
APRX model in a finite number of iterations.

The proof of Theorem 2 is provided in Appendix A.4.

5. Data-Driven Rolling Horizon
Procedure

Generally, the policy obtained from solving the
IMSDRO-APRX model is not readily implementable
for the real-world CAS problems because it is scenario
dependent and does not allow for information gained
over time to be used. Indeed, the critical limitation of
scenario-based stochastic models is that their optimal
policy is only valid for a limited set of scenarios. To
resolve this issue, we develop a data-driven RHP to (i)
make the scheduling policy implementable in practice,
and (ii) evaluate the scheduling policy empirically on
a rolling basis. It allows practitioners to make use of
the latest data that is revealed as time progresses, and
adjust their decisions in a rolling horizon fashion. By
using this RHP, we dynamically observe the realiza-
tion of the uncertain parameters in one period and
update the scenario tree for the following periods.
In our data-driven RHP, we consider a set of data

as the realization of uncertainties, which include the
realized number of appointment requests, the real-
ized surgery needs, and the realized surgery dura-
tions over an arrival horizon of T¼ jT j periods (days).
Our approach for generating this data set is explained
in Appendix B. One member of this data set is then
randomly drawn as a sample path, which provides a
trajectory of the realization of the stochastic parame-
ters over the planning horizon. The decision-making
process in our data-driven RHP has three main steps:
(i) the current period’s stochastic quantities are real-
ized, (ii) the scenario tree is updated, and (iii) the
IMSDRO-APRX model is solved. Note that, in each
period (day), only the stochastic quantities from the
beginning of the planning horizon until the current
period are observed, but the future uncertainty
remains unknown to the model (thus, the RHP will
not use any future information).
For implementation of a scheduling policy in the

current period t0∈T , given a scenario tree for the

number of appointment requests over periods
t0þ1, ⋯, t0þT�1 and an ambiguity set for the sur-
gery duration, we solve the T-stage IMSDRO-APRX
model with an arrival horizon of T periods in which
the uncertain parameters for period t0 are known
based on the realized path ω. We then implement the
obtained optimal policy only for the current period t0
and update the number of patients who need clinic
and surgery appointments over t0þ1, ⋯, t0þT�1
periods, as well as the remaining clinical and surgical
capacities. We repeat this procedure, and “roll the
patient arrival horizon forward 1 day” by adding a
new period to the calendar at every step, so that at the
following period t0þ1, the arrival horizon includes
period t0þ2 to period t0þT. Note that the length of
the arrival horizon is always T periods (see Figure 5).
By drawing enough realized sample paths, we can
estimate the average clinical and surgical overtimes of
surgeons over all sample paths. The data-driven RHP
provides a framework that makes the decisions made
by the IMSDRO approach implementable in practice.
The details of the data-driven RHP are presented in

Algorithm 2. Here, IMSDRO-APRX(i, ω) represents
the problem in which the first period of the arrival
horizon is day i, and its data are based on the sample
path ω. This sample path provides the related data for
the new arrival horizon T . Note that the next period,
i + 1, becomes the first period after rolling forward
one period, and Algorithm 1 is used to solve
IMSDRO-APRX(i, ω) again. After the T-stage
IMSDRO-APRX(i, ω) model is solved, an i-th stage
decision is implemented and new information is
obtained, we roll forward (i.e., shift the time window)
to solve another T-stage IMSDRO-APRX model with
the uncertainty determined by the implemented i-th
stage decision and by an observation of sample path
ω only for ith stage. Note that the scenario tree that is
considered in step 4 can be updated at each iteration i
using the scenario generation and reduction algo-
rithm illustrated in Appendix B, to capture any possi-
ble seasonality or trend in the data.

6. Case Study: Empirical Results and
Managerial Insights

We populate our models and algorithms based on
appointment scheduling data from a highly special-
ized surgical clinic of a partner hospital. We provide
numerical results to evaluate the performance of our
approach compared to current practice of the surgical
clinic and obtain managerial insights.

6.1. Experimental Setup
Appointment requests are received throughout the
day either from other units within the same or nearby
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hospitals or from remote healthcare facilities. Each
patient request asks for a clinic consultation appoint-
ment with one of the surgeons. Some patients may
require a surgical procedure; this is determined dur-
ing the patient’s clinic consultation appointment.
Appointment requests include information on (i) the
referral type, that is, either local or remote referral
and (ii) the indication of disease, which can be one of
the 12 possible medical conditions.
The surgical clinic is currently scheduling appoint-

ment requests with the surgeon who has the earliest
clinic consultation availability. However, this policy
has resulted in long wait time to surgery, which is
particularly troubling for patients with acute condi-
tions. It has also been observed that some surgeons
end their surgical day early on some days and very
late on other days. Our models are designed to guar-
antee that all patients will be offered a clinic consulta-
tion and a surgical appointment (if needed) within a
time window that is safe for them to wait.
We consider five priority classes; class 1 includes

the most acute and urgent conditions, whereas class 5
is assigned to patients who only need a clinic appoint-
ment for follow-up/consult or those who do not need
a surgery in the near future. Each class corresponds to
a maximum wait time to surgery WTSγ , except class 5
that does not require a surgery. Clinic to surgery gap
CSGγ is another parameter that depends on patient
class. The minimum wait time for clinic visits (WTCγ),
however, depends only on the referral type. For local

referrals (i.e., the patient is physically at the hospital
or in the same region), WTCγ is zero, whereas for
remote referrals, we assume WTCγ is five business
days from the day the request is received to give the
patient at least 1 week to make travel arrangements.
Table 2 shows these values in days for different
patient priority classes.
The probability of requiring a surgery depends on

the patient class. The surgical clinic under study per-
forms about 400 surgeries per month. This corre-
sponds to a rate of about 60 appointment requests per
business day. Each clinic appointment takes 15
minutes in length; that is, clinic days are divided into
15-minute time slots and each clinic appointment
takes one slot. The surgical clinic has eight surgeons
(i.e., jKj ¼ 8). These eight surgeons are divided into
two teams taking alternating turns between the clinic
and the operating room (OR) from 1 day to another
(i.e., on a given day, four surgeons are seeing patients
in the clinic and four surgeons are performing surger-
ies in the OR). Hence, each surgeon separately main-
tains both a clinical and a surgical calendar. The
specialized surgical unit in our case study have access
to dedicated ORs as well as to a number of swing ORs
that they can use, if needed. Thus, operating room
capacity can be flexible, if needed.
Surgery duration dγ;k depends on both patient class

and the specific surgeon who performs the operation.
Recall that patient class γ is a tuple of two elements:
referral type and indication of disease. We assume

Figure 5 The Illustration of the Data-Driven Rolling Horizon Procedure for Solving the IMSDR-APRX Model with an Arrival Horizon of
T ¼ft0, ⋯, t bg on Every Stage (Day) for the CRS Problem [Color figure can be viewed at wileyonlinelibrary.com]
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surgery duration is independent of referral type but
depends on the indication of disease. Therefore, given
8 surgeons and 12 disease indications, we consider 96
indication-surgeon pairs to define surgery duration.
For each indication-surgeon combination, we employ
the empirical surgery mean, standard deviation and
support of past surgeries to construct the ambiguity
sets. Appendix B elaborates on our approach for both
generating the ambiguity set for the surgery duration

Table 2 The Values of Wait Time to Clinic (WTC), Clinic to Surgery
Gap (CSG), and Wait Time to Surgery (WTS) in Terms of
Number of Days

Class WTC CSG WTS

1 0 or 5 0 5
2 0 or 5 1 7
3 0 or 5 2 10
4 0 or 5 3 18
5 0 or 5 NA NA
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and the scenario tree for the number of patient
referrals.
Our analyses aim to address the following ques-

tions in sections 6.2–6.4, respectively. (i) How effec-
tive is our stochastic-robust policy in terms of clinical
and surgical access times and surgeons’ overtime
compared to different benchmark policies? (ii) What
is the trade-off between meeting the clinical and sur-
gical access targets and incurring overtime? (iii) How
do the key parameters of our stochastic-robust policy
impact its performance?

6.2. Assessing the Performance of Different
Scheduling Policies
We evaluate our stochastic-robust policy against three
benchmark policies in terms of the clinical and surgi-
cal overtimes (i.e., objective function) as well as the
clinical and surgical access times using the RHP pro-
posed in section 5. These four policies are summa-
rized below.

• Stochastic-robust policy. This policy is derived
by solving the IMSDRO-APRX model (25a)–
(25d), in which the uncertainty in the surgery
duration is modeled by an ambiguity set, and
the uncertainty in the number of appointment
requests is modeled by a scenario tree.

• Stochastic policy. This policy is obtained by
solving the MS-MIP model (1)–(14), in which
the uncertainty in the number of appointment
requests is modeled by a scenario tree, and the
surgery durations are set to their empirical
mean values.

• Deterministic policy. This policy is obtained
by solving the deterministic version of the MS-
MIP model (1)–(14), in which both the surgery
durations and the number of appointment
requests are set to their empirical mean values.

• Current policy. This heuristic policy mimics the
current/existing policy used by the surgical

clinic. As discussed above, for each appoint-
ment request, this policy suggests the sur-
geon with the earliest clinic appointment
availability. On the clinic appointment date, if
the patient requires a surgery, it offers the
earliest surgical appointment with the same
surgeon. Therefore, this policy does not incor-
porate the access targets and thus does not
stratify patients by class.

To further evaluate our results, we employ two
other instances A and B for the CAS problem in addi-
tion to our case study (base case). The differences
between the case study and these instances are (i) the
number of surgeons is 4 (instance A) and 10 (instance
B) as opposed to 8 (case study), and (ii) the number of
scenarios for arrival is 20 (instance A) and 10 (instance
B) as opposed to 14 (case study). Other parameters
are similar to the case study.
Evaluation of objective function values (over-

time). For this analysis, 60 sample paths of a length
5 working weekdays for the arrival horizon are ran-
domly drawn that include the realized (i) number
of appointment referrals, (ii) surgery needs, and
(iii) surgery durations. For each sample path, the
RHP (Algorithm 2) is implemented for each of the
above policies by solving their models with a 5-day
arrival horizon (i.e., T¼ jT j ¼ 5) and rolling the
horizon forward to cover 10 days. We use this roll-
out window for demonstration only. Our approach
is not limited to a 10-day roll-out window and one
may continue rolling the horizon forward for as
long as needed.

We calculate the mean (~Z) and standard deviation (~σ)
of the objective functions (clinical and surgical over-
times) over all sample paths as the output of the data-
driven RHP to assess these policies. Note that we start
our analyses with long-run average system state and
further use a 10-day burn-in period so that our results
and findings are not affected by the initial system status.
The empirical results for our case study and test

instances A and B are reported in Table 3. The optimal
objective values (Z�) are calculated by solving the
IMSDRO-APRX, MS-MIP, and deterministic models

(without using the RHP). Moreover, ~Zmax , ~Z, and ~σ
are the maximum, the mean and the standard devia-
tion, respectively, of the true objective function values
obtained by using the data-driven RHP on the 60 sam-
ple paths described above. The out-of-sample stability
error is then calculated as follows:

We do not include the current policy in this analysis.
This is because the current policy does not incorpo-
rate the access target constraints in its decision, and
there is no optimal objective value for this policy. We
do, however, incorporate it in the clinical and surgical
access times analyses.
As reported in Table 3, the optimal objective function

value of the stochastic-robust policy is slightly larger
(2.9% more overtime) than the stochastic policy. This

Out�of� sample stability error¼ Mean objective value ð~ZÞ�Optimal objective value ðZ�Þ�� ��
Optimal objective value ðZ�Þ �100%:
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is because the stochastic-robust policy accounts for
the uncertainty of surgery duration by considering a
whole range of possibilities for the probability distri-
bution of the surgery duration and optimizes the
worst-case performance as opposed to the stochastic pol-
icy that only considers the surgery duration mean
and optimizes the mean performance. Also, the deter-
ministic policy has the smallest optimal objective
function value, because it optimizes for a single sce-
nario in which the number of patient referrals and
surgery durations are both set to their empirical
means.
However, when we simulate and exploit these

scheduling polices for the 60 sample paths, we observe
from Table 3 that the stochastic-robust policy yields
both the smallest mean objective function value (i.e., the
lowest surgeon mean overtime) and the smallest vari-
ability around the overtime (i.e., the lowest standard
deviation) relative to the stochastic and deterministic
policies. In particular, the mean objective function
value (i.e., overtime) of the stochastic-robust policy is
4.6% and 9.8% less than the stochastic and determinis-
tic policies, respectively. This observation illustrates
that even though the stochastic-robust policy hedges
against the worst-case and makes more conservative
decision strategies, the worst-case situation may not
necessarily occur for all possible surgeries in practice.
This can subsequently leads to a smaller overtime
mean and variability for the stochastic-robust policy
relative to the other policies. Limiting the variability is
of paramount importance in healthcare operations as

having consistent performance allows the surgical
clinic to better plan for and manage their resources.
On the other hand, the stochastic policy makes sched-
uling decisions based on the surgery duration mean
scenario; thus, it results in a more compact schedule
compared to the stochastic-robust policy. However,
the surgery duration mean scenario does not necessar-
ily happen for all possible surgeries in practice, which
subsequently leads to more overtime relative to the
stochastic-robust policy. The deterministic policy has
the poorest performance with respect to both mean
objective value and variability. This is because it
deploys a policy that was optimized for only one sin-
gle scenario of patient arrival mean and surgery dura-
tion mean, for many sample paths. Results are similar
for the test instances A and B.
Moreover, the out-of-sample stability (Kaut and Wal-

lace 2003) guarantees that the mean objective function

value ~Z obtained from implementing the optimal
scheduling policy by using the data-driven RHP is
approximately the same as the optimal objective value
Z� of the optimization models. As reported in Table 3,
the stochastic-robust policy has the smallest out-of-
sample stability error (3.10%) compared to the sto-
chastic policy (4.42%) and the deterministic policy
(9.96%) in the case study and similarly in the two test
instances A and B. The small difference between the
mean objective function value and the optimal objec-
tive value further confirms the validity and reliability
of the IMSDRO-APRX model as a reasonable approxi-
mation method.
To further assess the stochastic-robust, stochastic,

and deterministic policies, Figure 6 graphs the cumu-
lative clinic and surgery overtime of these policies
(aggregated over all eight surgeons) over 10 business

Table 3 The Out-of-Sample Stability Analysis of the Stochastic-Robust,
Stochastic, and Deterministic Policies. Numbers are the Total
Clinical and Surgical Overtime Aggregated Over all Eight
Surgeons and the 5-Day Horizon

Statistics

Stochastic-
robust
policy

Stochastic
policy

Deterministic
policy

The case study:

Optimal objective value (Z �) 4451 4325 4311

Mean objective value (~Z ) 4317 4525 4788

Max objective value (~Z max ) 5285 5389 5528

Standard deviation (~σ) 378 416 445
Out-of-sample error 3.10% 4.42% 9.96%
Test instance A:

Optimal objective value (Z �) 6375 6211 6125

Mean objective value (~Z ) 6254 6348 6633

Max objective value (~Z max ) 6835 6992 7025

Standard deviation (~σ) 656 712 695
Out-of-sample error 1.93% 2.16% 7.66%
Test instance B:

Optimal objective value (Z �) 2274 2175 2165

Mean objective value (~Z ) 2199 2257 2379

Max objective value (~Z max ) 2868 2912 3012

Standard deviation (~σ) 295 318 342
Out-of-sample error 2.99% 3.63% 9.00%

Figure 6 The Comparison of the Stochastic-Robust, Stochastic, and
Deterministic Policies Over 10 Business Days Implemented
by the Rolling Horizon Procedure in Terms of Mean, 25%-QT
and 75%-QT Cumulative Overtimes for the Case Study [Color
figure can be viewed at wileyonlinelibrary.com]
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days for the case study. We observe that the
stochastic-robust policy is better than both the sto-
chastic and deterministic policies in terms of cumula-
tive overtime mean and variability, and this is
consistent through the end of the horizon. In particu-
lar, by day 10, the stochastic-robust policy incurs a
statistically smaller cumulative overtime compared to
the stochastic policy (p < 0.001) and the deterministic
policy (p = 0.006). Thus, the stochastic-robust policy
offers an excellent performance with a much lower
variability, which is critical for implementation in
everyday practice. Results were similar for test
instances A and B and are not shown here.
Evaluation of clinical and surgical access times.

We next compare the scheduling policies in terms of
the clinical/surgical access times. To do so, we define
a new performance metric for earliness or tardiness
that is “the number of days between the scheduled
clinic and surgery appointment date and the maxi-
mum wait time target date.” We call it the access mea-
sure with respect to the target. Since there are different
patient classes with various access delay target win-
dows, this metric helps us better understand how
much earlier or later, with respect to the maximum
wait target, the policies schedule the appointments.
The negative (positive) value implies how much ear-
lier (later) a policy schedules the clinic and surgery
appointment with regard to the maximum wait tar-
get. In this analysis, we use the RHP for implementing
the stochastic-robust, stochastic, and deterministic
policies obtained by solving the IMSDRO-APRX, MS-
MIP, and deterministic models, respectively. Note
that the current policy is also included in this analysis.
We calculate the access earliness or tardiness measure
with respect to the target for each patient whose refer-
ral is received within the roll-out window for the case
study as well as the test instances A and B. We com-
pute the mean, worst-case, and standard deviation
(SD) of these access measures.

Table 4 demonstrates empirical results of compar-
ing various policies in terms of clinical/surgical access
measures with respect to the target. We summarize
the system performance by averaging across all clas-
ses. We observe that the stochastic-robust, stochastic,
and deterministic policies all yield negative clinical
and surgical access delay measures. This is because
the three policies are able to grant the predefined
priority-based access targets to all patients. However,
the current policy performs quite differently. While it
performs better than the other three policies in terms
of providing early access to a clinic consultation
appointment, it often fails to provide the crucial surgi-
cal appointment within the safe time window, thus
compromising health outcomes especially for acute
patients. This is because, unlike the model-based poli-
cies, the current policy does not consider wait time
targets and the uncertainty about the number of
appointment requests, probability of surgery need,
and surgery duration. It simply assigns the patient to
the surgeon with the earliest clinic appointment
availability.
We next graph the daily mean of surgical access

measures with respect to the maximum wait target
by the day of referral arrival over 10 days for the
case study in Figure 7. Again, we summarize the
system performance by averaging over all patient
classes.
Figure 7 shows that the current policy consistently

yields significantly higher wait time to surgery com-
pared to all other polices. This implies a major draw-
back of the current policy that patients often need to
wait a long time to receive a surgical visit, which can
deteriorate their condition. The other three policies,
however, uniformly provide on-time (often early)
access to surgical procedure. It is worth noting that
robustifying surgery duration in the stochastic-robust
policy adds little in terms of computational complex-
ity compared to the stochastic policy.

Table 4 The Statistical Performance Comparison of Scheduling Policies in Terms of Mean, Worst-Case, and SD for the Clinical and Surgical Access
Measures with Respect to the Maximum Wait Target (in Days)

Statistics

Clinical access measure with respect to the target Surgical access measure with respect to the target

Stochastic-robust
policy

Stochastic
policy

Deterministic
policy

Current
policy

Stochastic-robust
policy

Stochastic
policy

Deterministic
policy

Current
policy

The case study:
Mean −2.42 −2.67 −2.97 −4.55 −2.78 −2.83 −2.97 4.65
Worst-case 0 0 0 0 0 0 0 7
SD 0.89 1.12 1.21 1.69 1.07 1.15 1.18 1.47
Test instance A:
Mean −1.78 −1.85 −1.97 −3.25 −1.85 −1.93 −2.25 8.85
Worst-case 0 0 0 0 0 0 0 11
SD 0.76 0.89 0.91 1.49 0.76 0.93 0.98 1.28
Test instance B:
Mean −2.98 −3.12 −3.25 −4.96 −3.52 −3.75 −3.98 3.85
Worst-case 0 0 0 0 0 0 0 5
SD 1.16 1.21 1.47 2.01 1.28 1.55 1.62 1.85
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In conclusion, our coordinated stochastic-robust
policy obtains the lowest overtime along with the
smallest variability while respecting both clinical and
surgical access limits (through imposing the clinical
and surgical access constraints (2)–(6)) so that it finds
safe clinical and (as needed) surgical appointments
within the target window.

6.3. Access Delay vs. Overtime Trade-Off Analysis
As emphasized in section 3, the IMSDRO-APRX
model ensures patient-centered care by providing 100%
service level in terms of granting access targets to all
patients while optimizing the overtime. In Appendix

C, we however formulate an alternative model that
establishes a trade-off between meeting access delay
targets and incurring overtime. This is a bi-objective
optimization model, which minimizes (i) the expected
penalty due to not meeting clinical and surgical access
delay targets (weighted by w1), and (ii) the maximum
expected penalty due to incurring overtime (weighted
by w2). Here, we investigate this balance through
implementing the RHP by the stochastic-robust policy
obtained from solving this alternative model.
We calculate the cumulative overtime mean of each

surgeon, and the mean of surgical access measures
with respect to the maximum wait target by each day.
We consider three possible scenarios: (i) the
“stochastic-robust policy (access priority),” which
puts a large penalty on not meeting the access delay
targets (w1 ¼ 50, w2 ¼ ε), (ii) the “stochastic-robust
policy (overtime priority),” which puts a large penalty
on the overtime incurred (w1 ¼ ε, w2 ¼ 50), and (iii)
the “stochastic-robust policy (trade-off),” which aims
at striking a balance between these two objectives
(w1 ¼ 40, w2 ¼ 10). Figure 8 demonstrates the results
for the case study.
As seen in Figure 8, while the stochastic-robust pol-

icy (access priority) has the highest cumulative over-
time mean per surgeon, it provides patients with the
fastest surgical access compared to the other two
stochastic-robust polices. It is also worth noting that
the stochastic-robust policy (access priority) yields a
surgical access measure mean of −2.1 days with
respect to the maximum wait target (i.e., 2.1 days ear-
lier than the deadline). This is about 55% better than
the current policy, which yields a surgical access mea-
sure mean of 4.65 days (see Table 4). This occurs

Figure 7 The Comparison of the Surgical Access Measure with
Respect to the Maximum Wait Target (averaged across all
classes) by the Day of Referral Arrival Obtained by Different
Policies Over the 10-Day Horizon by the Rolling Horizon Pro-
cedure [Color figure can be viewed at wileyonlinelibrary.
com]

Figure 8 The Illustration of Trade-Off between not Meeting Access Delay Targets and Incurring Overtime for the Case Study. The Cumulative Sur-
geon Overtime Mean and Surgical Access Delay Mean with Respect to the Target are Obtained by Three Different Stochastic-Robust Poli-
cies Over a 10-Day Roll-Out Window by the Rolling Horizon Procedure for the Case Study [Color figure can be viewed at
wileyonlinelibrary.com]
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because unlike the current policy, which is a heuristic,
the stochastic-robust policy (access priority) solves an
optimization model to make appointment decisions.

6.4. Sensitivity Analysis Results
In this section, we evaluate (i) the in-sample stability,
(ii) the importance of modeling the probability of
needing a surgery, and (iii) the importance of number
of days in an arrival horizon. In Appendix D, we pro-
vide additional analyses for our models/algorithms.
In-sample stability analysis. There are two essential

criteria, (i) in-sample and (ii) out-of-sample stability, to
evaluate the efficiency of a scenario tree construction
method (Kaut and Wallace 2003). In section 6.2, we
show that the out-of-sample errors are 3.10% (case
study), 1.93% (test instance A) and 2.99% (test instance
B). Here, we evaluate the in-sample stability. If |J| sce-
nario trees ξ j, j∈ J are generated by using our scenario

tree construction method (see Appendix B), and we
then solve the IMSDRO-APRX model for each of these
scenario trees to calculate the optimal decision vector
x�j with objective function fðx�j , ξ jÞ for scenario tree

j∈ J, then in-sample stability implies fðx�j , ξ jÞ≈ fðx�u, ξuÞ,
∀j, u∈ J. To evaluate the in-sample stability, we gener-
ate different scenario fans with 100 scenarios for the
number of appointment requests by the Latin Hyper-
cube Sampling method. Then, a forward scenario con-
struction approach is applied to construct a scenario
tree by using different values for the parameter ζrel
(see Appendix B). Recall that ζrel represents a reduc-
tion scale of the scenario tree compared with the sce-
nario fan. For each instance with different scenario
trees and various values of ζrel, the in-sample stability
error is calculated by:

The number of scenarios decreases as the value of ζrel
increases.
Table 5 shows the empirical results of the in-sample

stability analysis. The difference between the objec-
tive function values with different scenario trees is
smaller (i.e., smaller in-sample error) when ζrel ¼ 0:7.
More importantly, the lack of any substantial differ-
ence between the optimal objective function values
indicates a very good in-sample stability of our sce-
nario tree construction approach.
Importance of modeling the probability of need-

ing a surgery. In the case study, about one in three
appointment requests will end up requesting a surgi-
cal procedure after the clinic visit. Hence, the
expected probability of needing surgery is 0.33, based

on which we draw the sample paths. To assess the
probability of surgery need, we implement the RHP
for the case study under two scenarios: (i) considering
the surgery need and (ii) ignoring the possibility of
surgery need. We then investigate how the stochastic-
robust policy performs under these two scenarios by
calculating the mean and variability of the cumulative
overtime values over 10 days for one surgeon. Figure 9
illustrates the results for the comparison of consider-
ing vs. ignoring the surgery need.
In Figure 9, the blue curve only considers the already

booked surgeries over the next periods; it ignores the
likelihood of future possible surgeries. On the other
hand, the red curve does account for the probability of
future surgeries when making scheduling decisions. As
seen in Figure 9, the stochastic-robust policy performs
significantly better (i.e., less overtime) when the proba-
bility of future surgeries is taken into account. In partic-
ular, the stochastic-robust policy considering surgery
probabilities yields a daily overtime mean of 90
minutes for a surgeon, which is about 26% better (less
overtime) than the stochastic-robust policy ignoring the
probability of surgeries with a daily overtime mean of
122 minutes for a surgeon.
It is worth noting that we defined the “regular

time” for each surgeon as 6 hours per day and called
any OR time beyond that “overtime” as a conserva-
tive approach to scheduling ORs. This definition is
not meant to reflect the regular and overtime shifts
that the hospital uses to determine provider compen-
sation. We employed this conservative definition of
regular time to encourage our models to limit the OR
time to the ideal level of 6 hours per day. The models
will then incur a penalty for going over this ideal
level. Thus, a mean overtime of 90 minutes observed

in Figure 9 implies that the surgeons will work, on
average, 7.5 hours per day under the stochastic-
robust policy that considers future surgery needs. To
sum up, we demonstrate that the idea of care coordi-
nation can help to achieve less overtime by consider-
ing the uncertainty around future surgery needs.
Importance of number of days in the arrival hori-

zon. In the case study, we consider a 5-day arrival
horizon. In other words, we account for the uncer-
tainty around the number of appointment requests
and the surgery durations of the next 5 days when
making appointment decisions. In this analysis, we
investigate how the number of days considered in the
arrival horizon affects the quality of the stochastic-
robust policy. Figure 10 demonstrates the performance

In� sample stability error¼Max of objective values�Min of objective values

Average of objective values
�100%:
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of the stochastic-robust policy by computing the cumu-
lative overtime mean for a surgeon obtained from solv-
ing the IMSDRO-APRX model by using the RHP for 10
days in our case study. We consider three different
arrival horizons with T¼ jT j ¼ 3, 5 and 7 days.
From Figure 10, we observe that as the number of

days in the arrival horizon increases, the performance
of the stochastic-robust policy gradually improves (i.e.,
less overtime is incurred) as we roll forward in the
arrival horizon. The longer the arrival horizon, the less
myopic the policy. This is because longer-term uncer-
tainty about the number of appointment requests and
surgery duration is taken into account when the
stochastic-robust policy makes the clinical/surgical
decisions. As seen in Figure 10, reducing the length of
arrival horizon from 5 to 3 days increases the overtime
mean per surgeon by about 15 minutes on day 10.
However, increasing the length of arrival horizon from
5 to 7 days only reduces the overtime mean per sur-
geon by 6 minutes on day 10 (the cumulative overtime

means are 1050, 900, and 840 minutes by day 10, for
T = 3, 5 and 7, respectively, which are equivalent to
105, 90, and 84 minutes per surgeon per day). This sug-
gests that while in general including additional days in
the arrival horizon is helpful, increasing the horizon
from 5 to 7 days has little benefit and may not worth
the additional computational burden.

7. Practical Implications and Insights

In section 6, we demonstrated the application of our
IMSDRO approach to coordinate clinic and surgery
visits in a highly specialized surgical unit. We showed
that our model can provide access to surgery within a
safe time frame, especially for acute patients who will
most suffer from a long wait time, while minimizing
the overtime. We summarize the insights and practi-
cal implications below.

Table 5 The In-Sample Stability Analysis for the Scenario Tree Construction Approach

Test instance

ζ rel ¼ 0:8 ζ rel ¼ 0:7

# of scenarios Objective fun. In-sample error # of scenarios Objective fun. In-sample error

The case study 7 4625 4.64% 13 4545 3.29%
8 4561 14 4451
10 4474 15 4478
11 4687 17 4578

Test instance A 9 6625 3.03% 17 6488 2.21%
10 6737 18 6536
11 6536 20 6421
13 6585 22 6485

Test instance B 10 2265 1.99% 17 2254 1.85%
11 2235 19 2289
13 2280 20 2247
14 2280 21 2265

Figure 9 A Comparison of Cumulative Overtime Means for the
Stochastic-Robust Policy in the Case Study When the Proba-
bility of Needing a Surgery is Considered vs. Ignored [Color
figure can be viewed at wileyonlinelibrary.com]

Figure 10 Importance of the Number of Days for the Arrival Horizon
T : The Performance of the Stochastic-Robust Policies with
T = 3, 5, and 7 Days in Terms of Cumulative Overtime
Mean per Surgeon Over 10 Days for the Case Study
Obtained by Solving the IMSDRO-APRX Model by Using the
Rolling Horizon Procedure [Color figure can be viewed at
wileyonlinelibrary.com]
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First and foremost, surgical divisions that offer surgi-
cal procedures after a clinic consultation appointment
should consider leveraging optimization algorithms
that coordinate the clinic and surgery appointments
when scheduling new appointments. Simple heuristic
scheduling protocols, such as scheduling new appoint-
ment requests with the surgeon who has the earliest
availability (i.e., the “current policy” in our case study),
often result in prolonged wait times for patients with
acute conditions like cancer. The lengthy wait times to
receive a surgical procedure may result in adverse
events and poor patient outcomes. In contrast, through
minimizing the overtime, our proposed coordinated
stochastic-robust policy achieved both clinical and sur-
gical access targets, which were stratified into five clas-
ses based on patients’ acuity level. Simple heuristics
may allocate clinic and surgery appointment dates for
a patient several days beyond the acceptable wait time
target windows. This is not clinically safe for patients
and may lead to additional complications. The success
of our algorithmic, optimization-based method indi-
cated that it is not always effective to offer the earliest
available appointment slot to a new patient as com-
monly done in current practice. If the patient has an
acute condition, consideration of the likelihood of sur-
gery and availability of providers is key to ensure
timely access to surgery.
Moreover, even though our model considered over-

time to meet the priority-based access to care targets,
our empirical results showed that the mean overtime
per surgeon is around 90 minutes. It should be noted
that we defined the regular time for surgeons as 6
hours per day in the case study. Thus, the mean over-
time of 90 minutes per day means that a typical day
for surgeons lasts 7.5 hours, on average. We also
demonstrated that our stochastic-robust policy
achieves the lowest overtime and the smallest vari-
ability among the four policy we investigated, while
respecting both clinical and surgical access limits. The
average workday of 7.5 hours, together with granting
access targets of the stochastic-robust policy, confirm
that the appointment scheduling plans obtained from
our IMSDRO approach are feasible and implementa-
ble in practice. Our optimization models provide gen-
erality over a broader range of operation systems and
parameters than most heuristics, which do not readily
extend to new settings. Our analytic approach allows
the decision maker to modify the parameters of the
system to find an acceptable optimal policy. For
instance, if the amount of overtime suggested by our
model is not desirable, the decision maker can relax
the priority-based access targets to reduce the
required overtime. If new surgeons are hired or new
procedures are offered, the model can be easily
extended to accommodate the new conditions.

Modeling care coordination in our coordinated
stochastic-robust policy results in better utilization of
scarce resources, including surgeon time and operat-
ing rooms. We saw in Figure 9 that the policy that
takes uncertain future surgeries into consideration
outperforms the policy that ignores the uncertainty of
the need for surgery (26% less overtime). Moreover,
we demonstrated in multiple ways that the stochastic-
robust policy achieves much lower variability in sur-
geon overtime and patient access time compared to
alternative policies. This is extremely important in
healthcare setting since avoiding extreme scenarios
and achieving a reliable performance will allow the
hospital management to better control patient flow
and manage their resources and processes.
Our research promotes patient-centered care by strat-

ifying patients into different priority classes based on
what is known about the patient at the time the patient
referral is received (e.g., the indication of disease),
which are then translated into appropriate and safe
maximum wait time targets. Surgical divisions should
also take the uncertainty in appointment request arrival,
surgical demand, and surgery durations into account
when scheduling clinic consultation and surgery
appointments. Our models provide a creative way to
do so using data that are commonly available in the
patient’s electronic health records and the clinic’s data-
sets, and do not rely on assumptions on the probability
distribution of surgeries. Further, the proposed data-
driven rolling horizon procedure introduces an innova-
tive way of making use of the latest data that is revealed
as time progresses, and adjusting the decisions in prac-
tice for stochastic optimization problems.
Furthermore, we provided two optimization

models derived by our IMSDRO approach. The focus
of the first (main) one was on ensuring patient-
centered care by providing 100% service level in
terms of meeting access delay targets to all patients
while minimizing the surgeon overtime. The second
optimization model considered two competing objec-
tives, namely, meeting access delay targets and incur-
ring overtime. As illustrated in Figure 8, this model
allows decision makers to establish a trade-off
between providing timely access to care to patients
and asking surgeons to work overtime hours.
Our coordinated stochastic-robust policy improves

the surgical access times by about 160%, on average,
compared to the current policy (see Table 4). Intui-
tively, this is because our method takes into account
the wait time target windows as well as various inher-
ent sources of uncertainty, including the number of
appointment requests, probability of surgery need,
and surgery duration while coordinating clinic and
surgery appointments. Also, the current policy
ignores the valuable indication of disease that is
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available in the patient’s electronic health records
when a new appointment request is received. Unlike
the current policy that operates based on a first-come
first-serve idea, our model often defers the surgery of
low-priority patients in order to preserve the near
future capacity to serve high-priority patients that
may arrive later. This approach helps meet the
desired service level with minimum overtime.

8. Conclusion, Limitations, and Future
Research

In this study, we studied a new class of appointment
scheduling problems called the CAS in which patients
are stratified into different classes, with limits on the
allowable access delay from request to appointment
dates. We introduced the concept of care coordination
in the sense of setting appointments for pairs of
sequential clinic and (if needed) surgery visits that
together achieve timely access to care. Methodologi-
cally speaking, our IMSDRO is the first optimization
approach that can jointly incorporate different types
of uncertainty in the number of patient appointment
requests by a scenario tree, and in surgery durations
by a moment-based ambiguity set for distributional
robustness. Using the special structure of the CAS
problem, we proposed a constraint generation algo-
rithm for efficiently solving this problem. We then
developed a new data-driven rolling horizon proce-
dure to implement the decisions made by the
IMSDRO approach in practice. This allows healthcare
practitioners to make efficient use of data that are
obtained as time unfolds, and so adjust their decisions
in a rolling horizon framework. In a sense, our
methods can be applied in an online (or real-time)
fashion. We tested the validity of our models in a case
study of scheduling clinic consultation and surgery
appointments, and demonstrated that a significant
improvement could be achieved by employing our
proposed policies. We provided a number of practical
insights from our empirical analyses as well.
This study has a few limitations. First, in our

models, we do not consider patient no-shows and
cancelations as well as the potential seasonality in
demand as they rarely happen in a highly specialized
surgical suite. Patient preferences are also not part of
our models and algorithms. Clearly, in many health-
care environments, the patient can prioritize the selec-
tion of the provider with whom they feel most
comfortable. Our scope is; however, limited to the
important class of environments in which the patients
typically accept the provider offering the earliest
access. Second, the allocation of resources, including
operating rooms, to surgeons is not the main focus in
our paper. We also assumed that each patient’s surgi-
cal need follows a Bernoulli distribution with a

success probability that only depends on the patient
class. Alternative approaches to modeling this uncer-
tainty can be studied in future research. Finally, given
that a tractable system state can be defined, approxi-
mate or robust dynamic programming approaches
may be used to solve the CAS problem. These ideas
could be promising future research directions.

Acknowledgment

The authors thank the departmental editor Professor
Edward Anderson, the anonymous senior editor, and
the anonymous referees for their constructive and
detailed comments, which have helped us signifi-
cantly improve both the content and the exposition of
this study.

References
Ahmadi-Javid, A., Z. Jalali, K. J. Klassen. 2017. Outpatient

appointment systems in healthcare: A review of optimization
studies. Eur. J. Oper. Res. 258(1): 3–34.

Alden, J. M., R. L. Smith. 1992. Rolling horizon procedures in
nonhomogeneous Markov decision processes. Oper. Res. 40(3-
supp.-2): S183–S194.

Bandi, C., D. Gupta. 2020. Operating room staffing and schedul-
ing. Manuf. Serv. Oper. Manag. 22(5): 958–974.

Bertsekas, D. 2005. Rollout algorithms for constrained dynamic
programming. Lab. for Information and Decision Systems
Report 2646.

Bertsekas, D. P., D. A. Castanon. 1999. Rollout algorithms for sto-
chastic scheduling problems. J. Heuristics. 5(1): 89–108.

Bertsekas, D. P., J. N. Tsitsiklis, C. Wu. 1997. Rollout algorithms
for combinatorial optimization. J. Heuristics. 3(3): 245–262.

Browne, C. B., E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowl-
ing, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, S.
Colton. 2012. A survey of Monte Carlo tree search methods.
IEEE Trans. Comput. Intell. AI Games. 4(1): 1–43.

Deglise-Hawkinson, J., J. E. Helm, T. Huschka, D. L. Kaufman, M.
P. Van Oyen. 2018. A capacity allocation planning model for
integrated care and access management. Prod. Oper. Manag. 27
(12): 2270–2290.

Denton, B., D. Gupta. 2003. A sequential bounding approach for
optimal appointment scheduling. IIE Trans. 35(11): 1003–1016.

Denton, B., J. Viapiano, A. Vogl. 2007. Optimization of surgery
sequencing and scheduling decisions under uncertainty.
Health Care Manag. Sci. 10(1): 13–24.

Diamant, A., J. Milner, F. Quereshy. 2018. Dynamic patient sched-
uling for multi-appointment health care programs. Prod. Oper.
Manag. 27(1): 58–79.
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