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Abstract  

Background: Diffusion weighted imaging (DWI) is commonly used to detect prostate cancer, 

and a major clinical challenge is differentiating aggressive from indolent disease.  

Purpose: To compare 14 site-specific parametric fitting implementations applied to the same 

dataset of whole mount-pathologically validated DWI to test the hypothesis that cancer 

differentiation varies with different fitting algorithms.  

Study Type: Prospective  

Population: 33 patients prospectively imaged prior to prostatectomy.  

Field Strength/Sequence: 3T, field-of-view optimized and constrained undistorted single-

shot (FOCUS) DWI sequence. 

Assessment: Datasets, including a noise-free digital reference object (DRO), were 

distributed to the 14 teams, where locally implemented DWI parameter maps were 

calculated, including monoexponential apparent diffusion coefficient (MEADC), kurtosis (K), 

diffusion kurtosis (DK), bi-exponential diffusion (BID), pseudo-diffusion (BID*), and perfusion 

fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of 

benign from cancerous tissue was compared between DWI parameters and the fitting 

algorithms with a receiver operating characteristic area under the curve (ROC AUC).  

Statistical Test: Levene’s test, p<0.05 corrected for multiple comparisons was considered 

statistically significant.  

Results: The DRO results indicated minimal discordance between sites. Comparison across 

sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection 

capability (AUC range = 0.72-0.76, 0.76-0.81, and 0.76-0.80 respectively) as compared to 

bi-exponential parameters (BID, BID*, F) which had lower AUC and greater between site 

variation (AUC range = 0.53-0.80, 0.51-0.81, and 0.52-0.80 respectively). Post-processing 



parameters also affected the resulting AUC, moving from for example, 0.75 to 0.87 for 

MEADC varying cluster size.  

Data Conclusion:  We found that conventional diffusion models had consistent performance 

at differentiating prostate cancer from benign tissue. Our results also indicated that post-

processing decisions on DWI data can affect sensitivity and specificity when applied to 

radiological-pathological studies in prostate cancer. 

  



INTRODUCTION 
 
Prostate cancer accounts for one in five new cancer diagnoses in men, with an estimated 

193,000 new cases in 20201, although not all cases are high risk. Ongoing imaging 

evaluations are aimed at better differentiating aggressive from indolent disease to avoid 

over-treatment of non-aggressive prostate cancer and to accurately detect tumors that have 

high metastatic potential2. Advancements in multi-parametric magnetic resonance imaging 

(MP-MRI) such as, T2-weighted and diffusion weighted imaging (DWI) have yielded 

substantial improvement for prostate cancer detection and MP-MRI is increasingly used for 

justifying and guiding biopsy3.  

DWI is commonly used for diagnosing prostate cancer and is weighted heavily as a 

deciding factor in the Prostate Imaging Reporting and Data System (PIRADSv2.1) grading 

scale for radiographic diagnosis2,4,5. Tissue micro-structure strongly influences diffusion 

properties and abnormalities such as dense cellularity or atrophic glands can result in 

distinct imaging signatures6. However, the calculation of quantitative diffusion values varies 

by fitting algorithms and recent collaborative studies have looked to quantify differences 

between sites7. 

There are three common fitting schemes for deriving quantitative maps from DWI. 

The apparent diffusion coefficient (ADC) is calculated from a mono-exponential fit of the 

different b-values from the DWI data and is the most common metric used for evaluation of 

prostate cancer2,4,5. More complex diffusion models have been developed to separate tissue 

diffusivity from capillary microperfusion8,9. By assuming a bi-exponential relationship 

between both diffusion and perfusion effects, the intra-voxel incoherent motion (IVIM) 

computes both pseudo-diffusion (BID*) and perfusion fraction (F)8,9. Kurtosis (K) and 

diffusion kurtosis (DK) models measure deviations of diffusion from a Gaussian distribution10 

due to cellular restriction.  



The aim of this study, by a collaborative group11-14 organized by the National Cancer 

Institute (NCI), was to undertake a multi-institutional study to quantify whether prostate 

cancer detection varies due to differences in DWI fitting algorithms. In addition, we also 

measure changes in perceived cancer differentiation due to varying post-processing 

parameters were investigated as were changes due to varying the pathologist performing 

the ground truth annotations.  

 

METHODS 

This study was proposed and organized through an NCI working group. Investigators 

from the central organizing institution and fourteen other institutions participated. Data was 

collected at the central site and distributed to each satellite institution for processing. 

Fourteen implementations were included in this project from investigators at MCW (Team 

2), University of Washington, Johns Hopkins University, University of Michigan, University 

of Texas at Austin, University of Texas Southwestern Medical Center, Oregon Health and 

Science University, Memorial Sloan Kettering Cancer Center, Mount Sinai, Brigham and 

Women’s Hospital, and Barrows Neurological Institute, in no particular order. Resulting 

maps were then sent back to the central site for analysis. A diagram showing the design in 

this study can be seen in Figure 1.    

Patient Population and Data Acquisition This study was IRB-approved at the 

central site. All patients provided written informed consent. Inclusion criteria required 

patients to undergo MRI prior to prostatectomy and have high-quality images. Thirty-nine 

consecutive patients met the first inclusion criterion, scanned between December of 2014 

and August of 2016. Six patients were subsequently excluded due to excessive motion on 

their MRI. Imaging from the remaining 33 patients (demographics and cancer stage 

indicated in Table 1) was acquired on a 3T MRI scanner (General Electric, Waukesha, WI) 

using an endorectal coil and phased-array torso coil. The MP-MRI sequences comprised of 



field-of-view optimized and constrained undistorted single shot (FOCUS) DWI15 with ten b-

values (b=0, 10, 25, 50, 80, 100, 200, 500, 1000, and 2000 s/mm2), NEX: 1, 2, 1, 1, 1, 2, 2, 

4, 8, 12 respectively, TR/TE=4/69-99ms; interpolated resolution=0.625x0.625x4mm voxels, 

acquisition matrix 80x80, FOV 160x160mm, echo train length 1 (80 echos). Additionally, an 

anatomical T2 -weighted  multi-slice dataset was acquired (acquisition matrix 384x256, 

TR=5000ms, TE=0.125s, FA=111 echo train length 24, interpolated 0.234x0.234x3mm, 

FOV 120x120mm). Robotic prostatectomy was performed approximately 2 weeks later and 

the extracted prostate was sectioned using patient-specific custom 3D-printed slicing jigs to 

match orientation and 3mm slice thickness of the T2-weighted image6,16,17.  

Histo-Pathological Analysis  Prostate samples were cut at 4um thickness, and 

whole-mount sections were hematoxylin and eosin (H&E) stained, digitized, and annotated 

by a urological fellowship trained pathologist (KI, 23 years of experience) (Figure 1). A total 

of 169 slides were included. Each slice was manually aligned to the T2-weighted image 

using control points and a non-linear transform. Regions with tears and histology artifacts 

were excluded with manually placed ROIs applied after the spatial transform. Annotations 

of different Gleason patterns were brought into MRI space using the same non-linear 

transform6,15.  Pathologist-annotated (KI) regions that consisted of at least 200 contiguous 

voxels axially (11mm2 in plane, 33mm3) were included, which resulted in 231 cancer (CA) 

regions of interest (ROIs), and 564 ROIs not associated with cancer (benign atrophy, BA). 

These ROIs were used to extract the quantitative parametric diffusion values. A subset of 

slides was annotated by five pathologists from four universities  with 23 (KI), 15 (WH), 13 

(GP), 11 (TA), and 1 (WP) year of experience. This subset included 33 slides from 28 

patients17. 

Diffusion Signal Fitting  DICOM datasets obtained with FOCUS DWI were de-

identified to meet HIPPA compliance and distributed to the collaborating sites for analysis. 

Each site was asked to calculate diffusion parameter maps using publicly available or locally 



developed software, implemented to fit DWI signals. The individual methods used for each 

site implementation are detailed in the supplement, and in Table 27-9,18-31. These methods 

included a mono-exponential fit (parameter: MEADC), diffusion kurtosis (parameters: 

kurtosis (K), and diffusion (DK))10, and a bi-exponential fit (parameters: diffusion (BID), 

pseudo-diffusion (BID*) and perfusion fraction (F))8. Each site submitted the calculated 

maps back to the central site for comparative analysis. Sites were not required to fit each 

model in order to maximize participation in this collaborative research project. The site-

specific parametric maps were aligned and resampled to the T2-weighted image at the 

coordinating site to ensure the same resampling code was used.  

Digital reference object (DRO) Design  Two separate DROs were created for the IVIM 

and Kurtosis models32. Methods for the DRO analysis are detailed in the supplement.  

Correlation Analysis  To determine concordance of the quantitative parametric maps 

submitted, median values were calculated from pathologist defined region and a percent 

difference calculation and a Pearson correlation coefficient were calculated. This was done in 

both cancerous regions (G3+) and benign atrophy.  

In Vivo Data Extraction and Cancer Differentiation  For each parametric map submitted 

by the sites, median values were calculated from each pathologist defined region. An empirical 

receiver operating characteristic (ROC) curve was calculated for each fit to determine the ability 

of each contrast to differentiate regions of cancer. Two classification tasks were considered: 

cancer (G3+) versus benign atrophy, and low-grade (LG=G3) vs high-grade (HG=G4+). The area 

under the curve (AUC) served as the metric of interest to assess concordance between site 

implementations.  

Clustergram Analysis  To visually measure group concordance and similarity, 

clustergrams were created comparing the value within each lesion across all sites who submitted 

a given fit. Median values were extracted from all lesions greater than 200 voxels in-plane. For 

each lesion, a standard deviation was calculated quantifying variability across implementations 



for a given fit. Standard deviations were then sorted and displayed using  Matlab (Mathworks Inc, 

Natick, MA). 

Zonal Anatomy Regions of interest defining prostate peripheral zone (PZ) and transition 

zone (TZ), were manually drawn on the T2-weighted image, and verified by a radiologist. Zone  

masks were used to determine the location of each pathologist annotation. In cases where a 

lesion crossed the zone boundary, the mode was used to determine the predominant zone. The  

ROC analysis was repeated within each contrast, plotting cancer vs benign atrophy stratified by 

zone. 

Index Lesion  The ROC analysis was repeated including only the index lesion to mirror 

the experimental setup of biopsy confirmed radiology studies. The index lesion was defined as 

the largest in-plane pathologically-confirmed cancerous region. A matching number of benign 

atrophy regions were included in the analysis. 

Annotation Extraction Metric  The metric for extracting values from the region of interest 

was varied and the receiver operating characteristic analysis was repeated. Mean, median, and 

10th percentile values were tested (90th percentile for kurtosis fits). A cluster limit of 200 was 

used for this analysis.  

Cluster Limit  The ROC analysis was repeated varying the minimum lesion size required 

to be included in the analysis. Cluster limits of 100, 200, 300, 400, and 500 voxels were tested. 

With T2-weighted voxels being 0.234x0.234x3mm3, this corresponded to within slice areas of 5.5, 

11.00, 16.5, 22, and 27.5mm2 (16.5, 33, 49.5, 66, and 82.5mm3). In DWI image space, this was 

approximately 10, 20, 30, 40, and 50 voxels. Both conditions, cancer vs. benign, and low-grade 

vs. high-grade were evaluated. 

Multi-pathologist Analysis  The ROC analysis was repeated varying the pathologist 

annotating the ground truth. This analysis was performed on a subset of 33 slides annotated by 

five pathologists. A cluster limit of 200 was used and median values were taken from the regions 



of interest. Cancer versus regions left unlabeled by all five pathologists (unlabeled consensus)17 

was tested in addition to HG versus LG.  

Statistical Comparisons  Basic descriptive statistics of mean and standard deviation 

values of ROC-AUC analysis  for each contrast, site implementation, and condition were 

calculated. To measure differences between implementations, we used a Levene’s test applied 

to the standard deviation. To quantify differences in the ROC-AUC between contrasts and 

implantations, we used a linear model with contrast as a covariate, with MEADC as the baseline 

category, with the sandwich standard error estimates being used to account for lack of 

homoscedasticity between groups33. Pairwise comparisons were performed (consistency and 

contrast comparisons), with the Tukey’s honestly significant difference (HSD) procedure used to 

correct P-values for multiple comparisons. P<0.05 was considered significant (R-software, v3.6.3 

(www.r-project.org).  

 

RESULTS  

Sample images from each site and software implementation applied to the same slide can 

be seen in Figure 2. Sites were not required to fit each model to maximize participation. Submitted 

maps varied in noise levels and visual interpretability, which was most evident in BID* and F. 

Universally, regions of cancer showed a decrease in ADC, BID, and DK compared to benign 

atrophy, and an increase in K.   

Correlation Analysis The correlation analysis revealed similar patterns in percent 

difference and correlation coefficient in both normal and cancerous ROIs. Mono-exponential ADC, 

kurtosis, and diffusion kurtosis were more similar between sites than the IVIM fits (Figure 3). Value 

ranges are shown in Supplemental Table 1 and 2. Larger variability of bi-exponential model 

parameters was also consistent with observations for noise-free DRO (Supplemental Figure 1), 

although with smaller absolute percent-deviations. 



Variation in Cancer Differentiation  The ROC analysis calculated using a cluster limit of 

200 and a median value from each ROI is shown in Figure 4. Comparing cancer to benign atrophy, 

MEADC had a median AUC of 0.78, range 0.76-0.80, while BID, BID* and F had median values 

of 0.71, 0.56, 0.61 respectively, and ranges of 0.53-0.80, 0.51-0.81, and 0.52-0.80 respectively. 

Kurtosis models resulted in median AUC of 0.78 and 0.75 for DK and K respectively with ranges 

of 0.76-0.81 and 0.72-0.76 respectively. Comparing G3 to G4+, MEADC had a median AUC of 

0.67, range 0.66-0.68, while BID, BID* and F had median values of 0.60, 0.54, 0.59 respectively, 

and ranges of 0.52-0.68, 0.50-0.69, and 0.51-0.69 respectively. Kurtosis models resulted in 

median AUC of 0.67 and 0.64 for DK and K respectively with ranges of 0.65-0.70 and 0.63-0.65 

respectively. Values are summarized in Supplemental Table 3. Across all contrasts cancer vs 

benign atrophy resulted in a higher AUC than low-grade vs high-grade.  

Statistical Comparisons  Comparing the ROC AUCs between contrasts and conditions 

(BA vs CA, and HG vs LG), MEADC significantly outperformed alI other contrasts with the 

exception of DK, and K. DK outperformed all biexponential parameters across conditions (. 

Statistical results are detailed in Table 3. Comparing contrast specific ROC AUC variance 

between conditions, we found that MEADC and K had significantly less variance between site 

specific ROC AUC compared to BID, for both conditions, and trended towards significance for the 

other biexponential parameters, consistent with what can visually be seen in Figure 4 (Levene’s 

test p<0.05 corrected for multiple comparisons). Statistical results from each comparison are 

detailed in Table 4. 

Zonal Anatomy  The results from the zone analysis are shown in Supplemental Figure 3, 

with data shown in Supplemental Table 4. The median AUCs for the peripheral zone (PZ) were 

0.81, 0.77, 0.77, 0.73, 0.58, and 0.63 for MEADC, DK, K, BID, BID*, and F respectively. For the 

transition zone (TZ), median AUCs were 0.84, 0.74, 0.86, 0.72, 0.60, and 0.62 respectively. 

Summary values with ranges are shown in Supplemental Table 4, where in general, the IVIM 

parameters showed greater variability in range and overall lower performance compared to the 



kurtosis and mono-exponential parameter maps. Across site implementations, kurtosis performed 

better in the transition zone than the peripheral zone; however, all other parameter maps were 

roughly equivalent independent of zone. 

Index Lesion  The results of the index lesion analysis are shown in Supplemental Table 

5 and Supplemental Figure 4. The median AUCs were 0.82, 0.75, 0.58, 0.62, 0.79, and 0.77 for 

MEADC, DK, K, BID, BID* and F respectively. While MEADC remains similar to the other 

experiments, the BID and BID* parameter maps become less variable under this condition, while 

the DK and K maps become more variable between site implementations.  

Clustergram Analysis The results of the clustergram analysis are shown in Supplemental 

Figure 2 for each of the contrasts. The heat maps shown indicate standard deviation from the 

mean for each value. More consistency and grouping were seen in the MEADC, K, DK, and BID, 

with less consistency seen in BID* and F. For MEADC, K, and DK, results indicated that four site 

implementations were virtually identical in values.    

Cluster Limit  The results of the cluster limit analysis are detailed in Figure 5, with values 

shown in Supplemental Table 4. Across both conditions (high-grade vs low-grade and cancer vs 

benign atrophy) parameter maps AUC increased as minimum cluster to be included was 

increased from 100 to 500 T2-resolution voxels in 100 increments. Increases in median AUC went 

from 0.74 to 0.87, 0.69 to 0.80, 0.71 to 0.85, 0.68 to 0.77, 0.51 to 0.60, and 0.59 to 0.65 for 

MEADC, DK, K, BID, BID* and F respectively. Independent of cluster limit, mono-exponential 

ADC and the kurtosis fit parameters showed smaller ranges of variability between sites. 

Additionally, the variability between sites in the IVIM parameter maps tended to increase as 

cluster limit was increased (Figure 5). Supplemental Figure 5 shows the number of lesions 

included in the analysis at each step, indicating that the number of lesions across all conditions 

decreased by more than half as the cluster limit increased from 100 to 500. 

Extraction Metric  The results of varying the extraction metric (median, mean or 10th 

percentile) are shown in Supplemental Table 7 and Supplemental Figure 6. While the median 



value across all sites is relatively consistent independent of which metric is chosen, the variability 

between sites is highly dependent on the metric used to extract a value from an ROI.  

Multi Pathologist  The results of the multi pathologist experiment are shown in Figure 6. 

Varying the ground truth had a substantial effect on both the median AUC as well as the extent 

of the inter-site-variability. MEADC, DK, and K values calculated from observer 5’s annotations 

had the greatest AUC and tightest range of AUC between sites at differentiating cancer from 

regions left unlabeled by all pathologists (unlabeled consensus). Numeric results are shown in 

Supplemental Table 8. The AUCs from BID varied by observer showed consistency between site 

implementation with the exception of a few outliers, while BID* and F both showed large ranges 

of AUC regardless of the observer defining ground truth.  

 
DISCUSSION  

This study tested inter-site concordance of diffusion derived parametric maps on the same 

pathologically validated prostate cancer dataset under a variety of post processing conditions. In 

addition to measuring the consistency of values between sites, inter-site variability in performing 

a diagnostic task was measured. We found that mono-exponential and kurtosis diffusion models 

were reliably calculated independent of implementation (high correlation between site 

implementations) and performed well at differentiating prostate cancer (consistently high ROC 

AUC between implementations). Values calculated from IVIM algorithms varied more between 

sites (low correlation between site implementations, large range of ROC AUC between sites), 

although those that applied physical constraints performed better at differentiating prostate cancer 

(high ROC AUC). In addition, we found that post-processing decisions made at the central 

analysis site such as ROI sizes and varying the observer defining ground truth, affected the 

diagnostic potential of all DWI parametric maps, as measured by ROC AUC.  

The correlation analysis demonstrated the stability of each fit across sites. The mono-

exponential and kurtosis fits had a low percent difference and high correlation coefficient 



independent of which pair of sites was analyzed. Of the diffusion fits included in this study, six 

MEADC fit implementations resulted in almost identical maps and values. Kurtosis was likewise 

consistent across institutions and provided as good or better contrast than ADC with respect to 

identifying high-grade tumors. The IVIM contrasts were much less similar between 

implementations, both in normal and cancerous regions.  

A number of post processing parameters were tested. Varying the minimum lesion size 

included in the analysis caused approximately 0.1 increase in AUC independent of contrast and 

site implementation. With the exception of this analysis explicitly testing size, an ROI cluster limit 

of 200 voxels (11mm2) was selected to capture all clinically significant tumors as outlined in PI-

RADSV2. For DWI acquisition, typical cluster sizes are only 2-15 acquired voxels, highly 

susceptible to partial volume at lesion boundaries6. However, anatomical boundaries are more 

clearly seen in T2 imaging and thus aligning the annotations with the T2 images results in a more 

accurate alignment. This limitation partially explains cluster-size sensitivity of the corresponding 

lesion AUC analysis for DWI-derived parameters.  

Prior work measuring inter-pathologist variability annotating Gleason patterns has been 

done on tissue microarrays34,35, and in whole mount prostate samples17. Interestingly, varying the 

pathologist performing the gold-standard annotations changed the resulting ROC AUC in the 

contrasts that varied minimally between site implementations (MEADC, K, and DK). While in most 

cases observers marked similar areas overall, the size and boundaries of the lesions varied 

between observers as expected. Partial volume and lesion size limitations resulted in different 

numbers of ROIs included from each pathologist, which may partially explain the differences in 

ROC AUC.  

The b-values used to calculate the IVIM fits varied between implementations. Additionally, 

some sites chose to apply post-calculation filters such as upper and lower bounds, non-negativity 

constraints, or other error reduction techniques on their parameter maps to ensure physical 

values. Those that included physical constraints and other post-fitting filters had the highest ROC 



AUC (sites 2, 3, 5, 7, and 10). The b-values used in the DWI fitting also varied in the 

implementations of K, DK, and MEADC at different sites. This variability in implementation may 

explain why some sites MEADC values were consistently higher than others, though the ability to 

differentiate cancer was not adversely affected with MEADC.  

The top performing site implementations for MEADC varied only slightly, so no general 

recommendations can be made by our conclusions. For the IVIM submissions, in general, the 

sites that chose to implement constraints on the values calculated performed better due to having 

less outlier values. The choice of b-values included in the fitting did not appear to affect the top 

performing implementations, as there was a mix of submissions that used all provided b-values, 

and those that limited the b-values included in fitting. Regarding kurtosis, the top performing 

implementations used all b-values provided, but generally all performed similarly so no consensus 

recommendations can be offered beyond constraining values.     

Limitations 

One major limitation to this study is the relatively small cohort of 33 patients. We felt there 

was a balance between including a larger cohort and increasing the analysis burden on the 

external sites. Future studies should increase the N and reduce the scope to less fitting models.  

Regarding the patient cohort, there were wide ranges in the PIRADS scores, Gleason scores, 

and PSA levels, and there may be potential bias as all the subjects included had a prostatectomy. 

While this was essential for the pathological validation, our conclusions may not generalize to 

patients that, for example, undergo radiation treatment rather than surgery. Future studies should 

determine whether DWI performance between sites varies dependent on PIRADS score, Gleason 

score at diagnosis, and National Comprehensive Cancer Network (NCCN) risk stratification, as 

these analyses were beyond the scope of this study. Unfortunately, with our small cohort, we 

were statistically under powered to split it into smaller subgroups. Additional future studies should 

determine whether cancer detection varies between repeated pre-surgical quantitative DWI, both 

in the same scanner, and between vendors. 



Anatomical landmarks are more readily apparent on the higher resolution T2-weighted 

images and thus using T2 space for an analysis using aligned pathology is the best practice for 

creating a reliable ground truth. However, efforts to convert, align, scale, and resample the 

diffusion maps to the T2 resolution for comparison to the ground truth pathologist annotations may 

have introduced minor alignment differences between submissions. These potential sources of 

error should be mitigated in the future with a consensus on data format and orientation standards 

for large multicenter research studies.  

Conclusion 

This study tested inter-site concordance of diffusion derived parametric maps on the 

same pathologically validated prostate cancer dataset under a variety of post processing 

conditions. We found that conventional diffusion models (mono-exponential and kurtosis fits) 

had less variability between algorithms in differentiating prostate cancer and performed 

significantly better overall. More complex IVIM models, in some implementations, also 

performed well at differentiating prostate cancer, although were more inconsistent between 

algorithms due to varying constraints and resulted in non-diagnostic AUCs of less than 0.70. We 

also found that post-processing decisions made at the central analysis site affected the 

diagnostic potential of all DWI parametric maps, as measured by ROC AUC. These results 

indicate that a careful selection, explanation of methods, understanding of their effects on the 

ROC AUC, and code sharing will ease the adoption of advanced quantitative imaging into the 

clinical setting.  
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Table 1. Patient demographics and clinical data (n=33, age 59.7 +/- 5.7). Abbreviations: 
Extraprostatic extension (EPE) from pathology report; Prostate specific antigen (PSA).   

 
 
 

Patient 
No. 

Age 
(Yr) 

PSA 
ng/ 
mL 
 

Gleason 
score 

Gleason grade T 
Stage EPE 

Number 
of 
PIRADS 
lesions 

PIRADS 
Score G3 G4-FG G4-Cr G5 

1 61 13.1  3+4 (=7) 1 1 0 0 T3a 1 1 PR4 

2 68 4.5  3+4 (=7) 1 1 0 0 T2c 0 2 PR5,PR5 

3 59 6.6  3+4 (=7) 1 0 0 0 T2c 0 2 PR3,PR4 

4 56 4.4  5+4 (=9) 1 1 1 1 T3a 1 1 PR5 

5 64 6.3  4+3 (=7) 1 1 1 0 T3a 1 1 PR5 

6 55 4.9  3+4 (=7) 1 1 0 0 T3b 0 1 PR4 

7 58 21.9  3+4 (=7) 1 1 1 0 T2c 0 1 PR5 

8 60 3.0  3+4 (=7) 1 1 1 0 T2c 0 2 PR4,PR2 

9 71 6.6  3+4 (=7) 1 1 1 0 T2c 0 2 PR5,PR3 

10 59 5.5  3+4 (=7) 1 1 1 0 T3a 1 1 PR5 

11 57 5.0  3+4 (=7) 1 1 1 0 T3a 1 3 PR4,PR4,PR2 

12 49 4.9  3+3 (=6) 1 0 0 0 T2c 0 2 PR4,PR4 

13 58 6.5  3+3 (=6) 1 0 0 0 T2c 0 3 PR4,PR4,PR4 

14 60 4.5  3+3 (=6) 1 0 1 0 T2a 0 1 PR3 

15 66 11.0  3+4 (=7) 1 1 1 1 T3a 1 1 PR4 

16 52 4.9  3+4 (=7) 1 1 0 0 T2c 0 1 PR4 

17 63 5.2  3+4 (=7) 1 1 1 0 T3a 1 2 PR4,PR4 

18 62 6.9  3+4 (=7) 1 1 1 1 T2c 0 0 0 

19 56 6.4  3+3 (=6) 1 0 0 0 T2a 0 1 PR2 

20 55 3.4  3+3 (=6) 1 0 0 0 T2c 0 1 PR3 

21 61 10.3  4+5 (=9) 1 1 1 0 T3b 0 1 PR4 

22 45 7.2  3+3 (=6) 1 0 0 0 T2a 0 1 PR4 

23 53 18.5  3+4 (=7) 1 1 0 0 T2c 0 1 PR3 

24 59 7.3  4+3 (=7) 1 1 1 1 T2c 0 1 PR5 

25 61 5.0  3+4 (=7) 1 0 0 0 T2a 0 3 PR4,PR4,PR2 

26 54 17.2  3+4 (=7) 1 1 1 0 T2c 0 3 PR4,PR5,PR4 

27 68 18.7  3+4 (=7) 1 1 1 0 T3b 0 2 PR5,PR4 

28 63 4.9  3+4 (=7) 1 1 1 0 T2c 0 3 PR4,PR4,PR4 

29 59 4.0  3+4 (=7) 1 1 1 0 T2c 0 1 PR4 

30 59 2.8  3+3 (=6) 1 1 0 0 T2c 0 2 PR5,PR4 

31 66 5.9  3+4 (=7) 1 1 1 1 T3a 1 1 PR4 

32 66 5.2  3+4 (=7) 1 1 1 0 T2c 0 0 0 

33 67 8.2  4+5 (=9) 1 1 0 0 T2c 0 1 PR4 
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Table 3. Statistical results comparing site implementation ROC AUC values between contrasts 
and conditions aancer vs. benign atrophy (CAvBA), and low-grade vs. high-grade cancer 
(LGvHG). 
 
CAvBA BID BIDS BIPF DK K MEADC 
BID  0.988 0.982 0.054 0.040* 0.011* 
BIDS   1.000 0.203 0.162 0.060 
BIPF    0.204 0.162 0.058 
DK     1.000 0.998 
K      1.000 
MEADC       

 
 
 
LGvHG BID BIDS BIPF DK K MEADC 
BID  0.999 0.898 0.094 0.017 0.005* 
BIDS   0.983 0.196 0.044* 0.014* 
BIPF    0.512 0.169 0.069 
DK     0.988 0.942 
K      1.000 
MEADC       

 
 
 
Table 4. Statistical results comparing the contrast specific variances between ROC AUC across 
conditions CvBA and LGvHG.  
 
CvBA BID BIDS BIPF DK K MEADC 
BID  0.177 0.538 0.029 0.505 0.032* 
BIDS   0.955 <0.001* <0.001* <0.001* 
BIPF    <0.001* <0.001* <0.001* 
DK     <0.001* 0.998 
K      <0.001* 
MEADC       

 
 
LGvHG BID BIDS BIPF DK K MEADC 
BID  0.260 0.696 0.015* 0.710 0.012* 
BIDS   0.939 <0.001* <0.001* <0.001* 
BIPF    <0.001* 0.006* <0.001* 
DK     <0.001* 1.000 
K      <0.001* 
MEADC       
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