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Abstract

The 3D reference interaction site model (3D-RISM) of molecular solvation is a pow-
erful tool for computing the equilibrium thermodynamics and density distributions of
solvents, such as water and co-ions, around solute molecules. However, 3D-RISM so-
lutions can be expensive to calculate, especially for proteins and other large molecules
where calculating the potential energy between solute and solvent requires more than
half the computation time. To address this problem, we have developed and im-
plemented treecode summation for long-range interactions and analytically corrected
cut-offs for short-range interactions to accelerate the potential energy and long-range
asymptotics calculations in non-periodic 3D-RISM in the AmberTools molecular mod-
eling suite. For the largest single protein considered in this work, tubulin, the total
computation time was reduced by a factor of 4. In addition, parallel calculations with
these new methods scale almost linearly and the iterative solver remains the largest
impediment to parallel scaling. To demonstrate the utility of our approach for large
systems, we used 3D-RISM to calculate the solvation thermodynamics and density
distribution of 7-ring microtubule, consisting of 910 tubulin dimers, over 1.2 million
atoms.
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The 3D reference interaction site model (3D-RISM) of molecular solvation computes equi-
librium thermodynamics and density distributions of solvents around solute molecules. To
accelerate 3D-RISM for large biomolecules, we have developed treecode summation and an-
alytically corrected cut-offs for long- and short-range interactions. This reduces the over
all computation time by a factor of 4 for the protein tubulin and allowed the calculation of
solvation thermodynamics for a 1.2 million atom microtubule.
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Figure 1: Time required for a single 3D-RISM calculation converged to a tolerance of 10−6

employing direct summation. At approximately 2000 solute atoms, the time to initialize the

calculation (potential and asymptotics) becomes larger than the time required to iterate to

a solution.

1 INTRODUCTION

Solvation thermodynamics and the structure of the surrounding liquid play an important

role in determining the properties and interactions of molecular systems in solution. While

explicit solvent approaches are commonly used, they can be computationally expensive and

require elaborate protocols to calculate different physical properties where solvation is in-

volved, such as solvation free energies1, preferential interaction parameters2, and binding free

energy3. Various implicit solvent methods have been developed to simplify and accelerate

the treatment of solvent. Among the most promising are integral equation theories, based on

the Ornstein-Zernike equation4, and closely related classical density functional theories5–7

as they are complete theories, calculating approximate equilibrium distributions of explicit

models, from which all solvation thermodynamics can be computed. The 3D-reference inter-

action site model of molecular solvation (3D-RISM)8,9 is one such integral equation, which

has been coupled with classical and quantum mechanics modeling software10–14 and shown to

provide solvation thermodynamics in good agreement with experiment and explicit solvent
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calculations15–18.

However, 3D-RISM can be computationally expensive, especially for large molecules (see

Figure 1). 3D-RISM calculations consist of three sequential steps: initialization (calculating

potential energy and long-range electrostatic interactions on a 3D grid), iteration to conver-

gence, and integration of the solvent distribution to calculate thermodynamics. For small

molecules, iteration time dominates the calculation, which scales with the number of grid

points, Ngrid, as O (Ngrid logNgrid). Initialization time dominates for typical proteins, scaling

with both the number of solute atoms, Natom, and grid points as O (NatomNgrid). Integrating

solvent thermodynamics is typically 1% or less of the total computation time. Depending on

the precision of the calculation, initialization becomes the most expensive part of the calcu-

lation for solutes of 1000 atoms or more and is a major barrier to the practical application

of 3D-RISM to large molecules.

Limited work has been done to address the computational cost of initialization. For

the case of periodic boundary conditions, Heil and Kast19 developed the “no real-space

supercell” (NRS) method. The NRS method computes all long-range Coulomb interactions

in reciprocal space, where they could be efficiently handled, scaling as O (Ngrid logNgrid)

and requiring only a small fraction of the total calculation time. This cannot be used for

open boundary conditions, where the “supercell” method is used9,20,21. Because there is

no periodic structure, the entire potential energy is calculated for a real-space grid. In

addition, to capture contributions beyond the size of the solvent box, analytic long-range

asymptotic (LRA) expressions of the solvent correlation functions must also be computed

in real- and reciprocal-space. So far, little has been done to address the cost of computing

these expressions.

In this paper, we will focus on the open boundary case and address the cost of computing

potential energy and LRA functions. The potential energy is composed of Coulomb and

Lennard-Jones contributions, while the LRA is a modified Coulomb potential. The long-

range and short-range components of these calculations require different approaches. For

short range calculations, cut-offs are often appropriate. Lennard-Jones calculations are one

such case and analytic corrections are well known22. Long-range calculations require a

different approach.
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A promising approach for dealing with long-range Coulomb-like potentials is treecode

summation. Originally developed for use in gravitational N -body simulations23, in which

the force of N point masses on each other must be computed at each time step of a dynamics

simulation, they can be applied to a wide variety of problems involving the interaction

between N source particles on M target sites which may or may not be coincident with

the sources. For the case of coincident sources and targets, direct summation is O(N2),

while treecode methods are O(N logN). The essential idea behind these methods is the

replacement of particle-particle interactions with suitably chosen particle-cluster interactions,

which can be computed approximately when the cluster and particle are well-separated.

This requires the construction of a hierarchical tree of particle clusters and a criterion for

determining when a particle and a cluster are well-separated.

The simplest interaction between a particle and cluster is a monopole approximation, in

which, for a well-separated interaction, the cluster is replaced with a single particle at the

center whose charge (or mass, or other property) is the sum of all particles contained within

the cluster. This is the strategy of the original gravitational Barnes–Hut treecode23. The

fast multipole method improved the accuracy by using higher order multipole expansions

in terms of spherical harmonics24. Alternatively, the interaction between a particle and a

cluster can be approximated with Cartesian Taylor expansions. However, since hard coded

Taylor expansions to high order can be costly, an alternative approach using recurrence

relations has been developed25–27.

In the evaluation of LRA functions in 3D-RISM, the solute is represented by N source

particles and the solvent grid by M target sites. Traditional particle-cluster treecodes build

a tree on the source particles, with a computational cost that scales as O(M logN). For

M ≫ N, as is typically the case for the 3D-RISM solvent grid, these methods scale poorly.

In this case, it is advantageous to consider an alternative cluster-particle treecode in which

the tree is built on the targets, with a computational cost that scales as O(N logM)28.

The present work demonstrates that cluster-particle treecode summation with Taylor series

recurrence relations provides an effective approach for evaluating the Coulomb potential and

the Coulomb-like LRA functions within 3D-RISM.

In this paper, we detail the theoretical background of cluster-particle treecode summa-
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tion and our approach to cut-offs and test our implementation in the AmberTools molecular

modeling suite29. Section 2.1 and 2.2 provide a brief overview of 3D-RISM theory and poten-

tial energy and LRA functions. In Section 2.3 we detail the cluster-particle treecode method

and its application to Coulomb and screened Coulomb electrostatic potentials. In Section 2.4

we extend the application of cluster-particle treecode methods to the LRA potentials. Our

error-tolerance approach to cutoffs is presented in Section 2.5 and 2.6. We provide details of

our benchmarking protocol in Section 3. Finally, in Section 4 we present the results for serial

benchmarking, along with practical guidelines for selecting parameters and results for scal-

ing with system size and over parallel processes and application to computing the solvation

properties of microtubules.

2 THEORY

2.1 3D-RISM

As detailed descriptions of 3D-RISM can be found elsewhere30–32, we will briefly review

the theory, highlighting the parts where Coulomb interactions are involved. The 3D-RISM

equation is given by

hγ (r) =
∑
α

∫
cα

(
r− r

′
)
χαγ

(
r
′
)
dr

′
, (1)

where α and γ indicate solvent sites (e.g., oxygen or hydrogen in the case of water), and r is a

grid point location. Both hγ (r), the total correlation function (TCF), and cγ (r), the direct

correlation function (DCF), are unknown quantities to be solved for and are represented

on 3D grids. χαγ (r) is the solvent site-site susceptibility, which is computed in advance,

typically using extended RISM (XRISM)33 or dielectrically consistent RISM (DRISM)34.

To compute the convolution integral in equation (1), it is useful to express the 3D-RISM

equation in reciprocal space,

ĥγ (k) =
∑
α

ĉγ (k) χ̂αγ (k) , (2)

where k is the wave vector in reciprocal space and x̂ (k) represents the Fourier transform of

x (r).

6



As both the TCF and DCF are unknown, we require a closure relation to solve for the

TCF and DCF in equation (1). In this work we use the Kovalenko-Hirata closure (KH)20,

hγ (r) =

exp (dγ (r)) + 1 dγ (r) ≤ 0

dγ (r) + 2 dγ (r) > 0,

dγ (r) = −βuγ (r) + hγ (r)− cγ (r) , (3)

where uγ (r) is the potential energy between solvent site γ and the entire solute and β =

1/kBT where kB is the Boltzmann constant and T is the temperature. Though other closures

can provide better agreement with explicit solvent simulations, we use the KH closure in this

work because it provides reliable numerical convergence of the 3D-RISM equations, allowing

us to obtain solutions for all the treecode summation parameters explored. As the potential

energy, which includes Coulomb and Lennard-Jones interactions, and long-range asymptotics

(see Section 2.2) are computed in advance on 3D grids with the same dimension as that of

the TCF and DCF, the choice of closure has no bearing on the direct or treecode summation

results.

Once the TCF and DCF have been solved for, it is possible to compute thermodynamic

properties of the solvent. The most commonly used is the excess chemical potential of the

solute

µKH
ex = kBT

∑
γ

ργ ×
∫

dr

[
1

2
(hγ(r))

2Θ(−hγ (r))−
1

2
hγ(r)cγ(r)− cγ(r)

]
(4)

where Θ is the Heaviside function and ργ is the bulk density of site γ. As 3D-RISM is

treating a single solute at infinite dilution, the excess chemical potential is also the solvation

free energy (SFE). Because the SFE is of general interest, we will use it to quantify the

accuracy of our numerical methods and parameter choices.

2.2 Long-range asymptotics

The long-range asymptotic behavior of both the TCF and DCF are affected by Coulomb

interactions introduced in the potential energy. In particular, the long-range asymptotics

must be explicitly handled during the forward and backward Fourier transforms used to
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compute the convolution integral in equation (2). Several approaches have been developed

to handle this9,19,20,32,35,36. Since we employ open boundary conditions, we use the approach

originated by Ng37 and Springer38 and extended for ionic solutions in 3D-RISM by Kovalenko

and co-workers9,21,36. For any system where both solute and solvent have partial charges on

atomic sites, the long-range asymptotics of the DCF are given by

c(lr)γ (r) = −β
∑
a

QU
a qγ

|r−Ra|
erf

(
|r−Ra|

η

)
(5)

and

c(lr)γ (k) = −qγ4πβ

k2
exp

(
−k2η2

4

)
×
∑
a

QU
a exp (ik ·Ra) (6)

where a is the solute site with position Ra and partial charge QU
a , β = 1

kbT
, kb is the

Boltzmann constant, T is temperature, ϵ is the dielectric constant, η is a charge smearing

parameter, and qγ is the partial charge on solvent site γ. Both equations are computed on a

3D grid, as with the potential energy. Prior to transforming the DCF into reciprocal space

equation (5) is subtracted off. After the forward Fourier transform has been performed,

equation (6) is added back to the DCF in reciprocal space and ĥγ (k) is computed from

equation (2).

In the case that the solvent also contains ionic species, such as Na+ or Cl-, it is also

necessary to treat the long-range asymptotics of the TCF, given by

h
(lr)
j (r) = − β

2ϵ

∑
a

QU
a qj

|r−Ra|
exp

(
κ2
Dη

2

4

)[
e(−κD|r−Ra|) erfc

(
κDη

2
− |r−Ra|

η

)
− e(κD|r−Ra|) erfc

(
κDη

2
+

|r−Ra|
η

)]
(7)

and

h
(lr)
j (k) = − qj4πβ

ϵ (k2 + κ2
D)

exp

(
−k2η2

4

)
×
∑
a

QU
a exp (ik ·Ra) (8)

where κD is the contribution to the inverse Debye length of ionic co-solvent species j with

net charge qj. After ĥγ (k) has been computed with equation (2), equation (8) is subtracted

off. Then equation (7) is added to the TCF after the backward Fourier transform has been

applied. Equations (5) and (7) are also used when calculating thermodynamic observables

to include the long-range contributions not captured in the finite 3D grids used to represent
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the TCF and DCF. For example, equation (4) becomes

µKH
ex = kBT

∑
γ

ργ

{∫
grid

dr

[
1

2
(hγ(r))

2Θ(−hγ (r))−
1

2
(h(lr)

γ (r))2Θ
(
QUqj

)
− 1

2
hγ(r)cγ(r) +

1

2
h(lr)
γ (r)c(lr)γ (r)− cγ(r)

]
+

∫
dr

[
1

2
(h(lr)

γ (r))2Θ
(
QUqj

)
− 1

2
h(lr)
γ (r)c(lr)γ (r)

]}
. (9)

Note that the first two integrals are over the volume of the grid while the last integral is over

all space and can be numerically computed via 1D integrals21.

2.3 Cluster-Particle Treecode for Electrostatic Interactions

Consider a general potential function ϕ(x,y), and a collection of M target sites xi and N

disjoint source particles yj with charges qj. Then the potential at a target site xi is

V (xi) =
N∑
j=1

qjϕ(xi,yj), (10)

In 3D-RISM such expressions arise in computing the electrostatic potential and the LRA

functions, where the target sites lie on a regular grid, and the source particles are the atomic

solute sites, with M ≫ N . The cost of evaluating these expressions by direct summation

is O(MN). In this section we describe the cluster-particle treecode we utilize to reduce the

cost to O((M +N) logM)28.

2.3.1 Cluster-particle treecode algorithm

The treecode starts by building a hierarchical tree of clusters on the M target locations.

The root cluster is the smallest rectangular box containing the targets. The root is divided

along all Cartesian directions for which the side length of the root parallel to that direction

is within
√
2 of the shortest side length; this yields 8, 4, or 2 child clusters. The child

clusters are similarly divided until the cluster contains less than N0 targets, a user-specified

parameter. The tree has L levels, where level 1 is the root cluster and level L contains the

leaves. Each target site xi belongs to a nested set of clusters xi ∈ CL ⊆ ... ⊆ C1, where
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cluster Cℓ is at level ℓ. Let Iℓ denote the set of source particles yj with charge qj that are

well-separated from cluster Cℓ but not from clusters Cℓ−1, ..., C1, and let D denote the set

of source particles yj with charge qj that are not well-separated from any cluster containing

xi. Then equation (10) can be rewritten as

V (xi) =
∑
yj∈D

qjϕ(xi,yj) +
L∑

ℓ=1

∑
yj∈Iℓ

qjϕ(xi,yj), (11)

where the first term on the right hand side accounts for sources that are close to xi and the

second term accounts for sources that are well-separated from xi. The first term is computed

by direct summation, and the second term is computed by Taylor approximation. Expanding

the second term ϕ(xi,yj) about x
ℓ
c, the center of cluster ℓ, gives∑

yj∈Iℓ

qjϕ (xi,yj) ≈
∑
yj∈Iℓ

qj

p∑
∥k∥=0

1

k!
∂k
xϕ
(
xℓ
c,yj

) (
xi − xℓ

c

)k
=

p∑
∥k∥=0

mk

(
xℓ
c

) (
xi − xℓ

c

)k
, (12)

where p is the order of the approximation, the coefficients mk are

mk

(
xℓ
c

)
=
∑
yj∈Iℓ

qj(−1)∥k∥ak
(
xℓ
c,yj

)
, (13)

and the Taylor coefficients ak are

ak
(
xℓ
c,yj

)
=

1

k!
∂k
yϕ
(
xℓ
c,yj

)
. (14)

Note that equation (12) is a Taylor polynomial in three dimensions, where ∥k∥ = k1+k2+k3,

k! = k1!k2!k3!, ∂k
y = ∂k1

y1
∂k2
y2
∂k3
y3
, (xi − xc)

k = (xi1 − xc1)
k1 (xi2 − xc2)

k2 (xi3 − xc3)
k3 , and

1, 2, 3 denote the three respective Cartesian directions. Also note that the criterion for a

target site and source cluster being well-separated is r/R < θ, where r is the cluster radius,

R = |x − yj| is the distance between the target cluster and source cluster, and θ is the

user-specified MAC parameter23.

2.3.2 Recurrence relations for Taylor coefficients of Coulomb potential

We illustrate this approach using the example of the Coulomb potential,

ϕ(xi,yj) =
1

|xi − yj|
. (15)
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In this case the Taylor coefficients in equation (14) can be calculated efficiently using the

recurrence relation25,27,

ak(x,y) =
1

|x− y|2

[(
2− 1

∥k∥

) 3∑
i=1

(xi − yi)ak−ei −
(
1− 1

∥k∥

) 3∑
i=1

ak−2ei

]
, (16)

where ei is the ith Cartesian basis vector, and xi represents the ith Cartesian component

of x. After explicitly computing the coefficients for ∥k∥ = 0, 1, the rest may be computed

using equation (16). Furthermore, if any index of k is negative, then ak = 0.

2.4 Cluster-Particle Treecode for Real-Space Long-Range Asymptotics

In addition to the Coulomb potential, the cluster-particle treecode is utilized in 3D-RISM

to compute the LRA total and direct correlation functions, as described in this section.

2.4.1 Direct correlation function

Writing the asymptotic direct correlation function from equation (5) in the cluster-particle

form shown in equation (11) yields,

c(lr)γ (ri) =
−qγ
kbT

[ ∑
Ra∈D

QU
a ϕ

(lr)
c (ri,Ra) +

L∑
l=1

∑
Ra∈Il

QU
a ϕ

(lr)
c (ri,Ra)

]
, (17)

where the DCF interaction potential is

ϕ(lr)
c (ri,Ra) =

1

|ri −Ra|
erf

(
|ri −Ra|

η

)
. (18)

Following39, the Taylor coefficients of the DCF potential function in equation (18) are com-

puted by the recurrence,

ak(x,y) =
1

|x− y|2

[(
2− 1

∥k∥

) 3∑
i=1

(xi − yi)ak−ei −
(
1− 1

∥k∥

) 3∑
i=1

ak−2ei + bk

]
, (19)

where the bk(x,y) are the Taylor coefficients of an auxiliary Gaussian function, exp
(
− |x− y|2 /η2

)
,

whose recurrence is

bk(x,y) =
2

η2∥k∥
×

(
3∑

i=1

(xi − yi)bk−ei −
3∑

i=1

bk−2ei

)
. (20)

11



2.4.2 Total correlation function

Similarly, writing the asymptotic total correlation function from equation (7) in the cluster-

particle form shown in equation (11) yields,

h(lr)
γ (ri) =

−qγ
2ϵkbT

exp

(
κ2
Dη

2

4

)[∑
Ra∈D

QU
a ϕ

(lr)
h (ri,Ra) +

L∑
l=1

∑
Ra∈Il

QU
a ϕ

(lr)
h (ri,Ra)

]
, (21)

where the TCF interaction potential is

ϕ
(lr)
h (ri,Ra) =

1

|ri −Ra|

[
e(−κD|ri−Ra|) erfc

(
κDη

2
− |ri −Ra|

η

)

− e(κD|ri−Ra|) erfc

(
κDη

2
+

|ri −Ra|
η

)]
. (22)

The TCF potential function in equation (22) has a complicated form and computing its

Taylor coefficients is a formidable task. Note however that the Taylor expansions are only

used when a source particle and target cluster are well-separated, in other words when

|ri −Ra| is large, and in that case we can take advantage of the asymptotic properties of

the complementary error function. Thus for large values of |r−Ra|, we have

erfc

(
κDη

2
− |r−Ra|

η

)
≈ 2, (23)

erfc

(
κDη

2
+

|r−Ra|
η

)
≈ 0, (24)

Using this observation, the TCF interaction potential in equation (22) is approximated by

ϕ
(lr)
h (ri,Ra) ≈

2 exp (−κD |ri −Ra|)
|ri −Ra|

. (25)

Functionally, this is nothing more than a screened Coulomb interaction, so following27, we

may use the recurrence relation for its Taylor coefficients given in equation (26),

ak(x,y) =
1

|x− y|2

[(
2− 1

∥k∥

) 3∑
i=1

(xi − yi)ak−ei −
(
1− 1

∥k∥

) 3∑
i=1

ak−2ei

+ κD

(
3∑

i=1

(xi − yi)bk−ei −
3∑

i=1

bk−2ei

)]
, (26)

where the bk(x,y) are the Taylor coefficients of an auxiliary exponential function, 2 exp (−κD |x− y|),

whose recurrence is

bk(x,y) =
κD

∥k∥

(
3∑

i=1

(xi − yi)ak−ei −
3∑

i=1

ak−2ei

)
. (27)
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2.5 Frequency Cut-Off for Reciprocal-Space Long-Range Asymptotics

As with their real-space counterparts, direct calculation of the reciprocal-space long-range

asymptotics, equations (6) and (8), requires O(MN) operations. However, equations (6)

and (8) decay rapidly with increasing k2, allowing us to apply a cutoff in k2 beyond which

it is reasonable to approximate the asymptotics with 0. The upper bound of the error due

to truncating the asympotics is then given by

ϵ
(lr)
c,tol = max

∣∣c(lr)γ (kcut)
∣∣

=
qγ4

√
2πβ

k2
cut

exp

(
−k2

cutη
2

4

)∑
a

QU
a , (28)

ϵ
(lr)
h,tol = max

∣∣∣h(lr)
j (kcut)

∣∣∣
=

qj4
√
2πβ

ϵ (k2
cut + κ2

D)
exp

(
−k2

cutη
2

4

)∑
a

QU
a ,

where kcut is the highest frequency wave vector considered, and we have used the fact that

|exp (ik ·Ra)| = |cos (k ·Ra) + i sin (k ·Ra)| ≤
√
2. The user may then request arbitrary

values for the error, or error tolerance, in the long-range asymptotics, and an appropriate

cut off can be found using a numerical root-finder, such as Newton-Raphson. An appropri-

ate value for the allowable error will depend on the residual tolerance that the 3D-RISM

equations are solved to.

2.6 Truncated Lennard-Jones Potential

It is also possible to truncate the Lennard-Jones (LJ) potential, which is given by

uLJ
γ, a (r) =

Aγ,a

r12
− Bγ,a

r6
,

where Aγ,a and Bγ,a are parameters for the specific pair of interaction sites. Again, we can

express the upper bound for the magnitude of the error due to truncation as

ϵLJtol =
∣∣uLJ

γ, a (rcut)
∣∣ = ∣∣∣∣Aγ,a

r12cut
− Bγ,a

r6cut

∣∣∣∣ ,
where the cut-off distance, rcut, can be determined for a specific error tolerance. An ap-

propriate value of ϵLJtol will depend on the residual tolerance that the 3D-RISM equation is
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converged to. The cut-off distance for a particular error tolerance depends on the LJ pa-

rameters of a and γ, so, in practice, we will determine separate cutoff distances for all pairs.

The applied LJ potential is then

uLJ-trunc
γ,a (r) =

uLJ
γ, a (r) r < rcut,γ,a

0 r > rcut,γ,a

(29)

and the omitted part is

uLJ-omitted
γ,a (r) =

0 r < rcut,γ,a

uLJ
γ, a (r) r > rcut,γ,a

. (30)

However, even cut-offs with very small error tolerances can result in large systematic

errors for various observables. To determine the impact on the excess chemical potential, we

can take the functional derivative of equation (4) with respect to the potential energy,

∂µex,KH

∂u (r)
= kBT

∑
γ

ργ

∫
dr[

hγ(r)∂hγ(r)

∂uγ (r)
Θ (−h (r))− ∂cγ(r)

∂uγ (r)
− 1

2

(
∂hγ(r)

∂uγ (r)
cγ(r) +

∂cγ(r)

∂uγ (r)
hγ(r)

)]
. (31)

For a discrete change, such as the truncation, we can rewrite this as

∆µex,KH = kBT
∑
γ

ργ

∫
dr[

hγ(r)∆hγ(r)Θ (−h (r))−∆cγ(r)−
1

2
(∆hγ(r)cγ(r) + ∆cγ(r)hγ(r))

]
.

Now, consider rcut large enough that u (rcut) ≪ 1. Only the TCF and DCF near or beyond

the cut-off will be affected, so we use

∆cγ (r) ≈ −β∆uγ (r) (32)

= −β
(
uLJ
γ − uLJ-trunc

γ

)
(33)

= −βuLJ-tail
γ (34)
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Solute Number

of Atoms

Net

Charge

Phenol 13 0e

Cucurbit[7]uril 122 0e

Adhiron 1,324 −1e

Tubulin 13,456 −36e

Microtubule (1 ring) 174,681 −455e

Microtubule (7 ring) 1,222,767 −3185e

Table 1: Solutes used in this work.

and neglect terms with hγ(r) or ∆hγ (r), as these decay much faster than the DCF (see

Section 2.2). Equation (31) then simplifies to

∆µKH
ex = kBT

∑
γ

ργ

∫
dr [−∆cγ(r)]

= −4π
∑
a

∫ ∞

rcut

dr uLJ
a,γ (r) r

2

= −4π

3

∑
a

(
1

3

Aγ,a

r9cut,γ,a
− Bγ,a

r3cut,γ,a

)
,

which is the same correction that may be applied to explicit solvent calculations with trun-

cated LJ interactions22. Corrections like this can similarly be determined for other thermo-

dynamic observables.

3 METHODOLOGY

3.1 Benchmark System Preparation

Four solutes were selected for benchmarking and testing, giving a range in the number of

atoms of over four orders of magnitude, from 13 to 13,456 atoms (see Table 1). For each

solute, the tleap program in AmberTools 1740 was used to assign the final parameters.

OpenBabel41,42 was used to create the 3D structure of phenol from the SMILES string

“c1ccc(cc1)O”. The general Amber force field parameters (GAFF)43 and AM1-BCC (AM1
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with bond charge corrections) charges44 were assigned using antechamber. The 3D structure

of cucurbit[7]uril (CB7), a neutral host molecule, was obtained from the Statistical Assess-

ment of the Modeling of Proteins and Ligands 4 (SAMPL4) exercise data set45. GAFF

parameters were used with charges derived using the pyR.E.D. server46–50. Adhiron (PDB

ID: 4N6T) is an engineered scaffold protein51 and was parameterized using Amber FF14SB52.

A complete crystal structure of tubulin, the main constituent protein of microtubles, does

not exist. We constructed a 3D model from PDB IDs 1TVK and 1SA053,54, using Modeller55

to combine the structures and fill in residues missing from the H1-B2α-tubulin loop and the

α- and β-tubulin N-termini. The C-terminal tails were not present in the crystal structures

and replaced with N-methylamide (NME) caps. Amber FF14SB was used for the amino

acids, the pyR.E.D. force field for GTP and GDP, and the MG2+parameters for use with

SPC/E water from Li et al.56.

Solvent density distributions and thermodynamics were computed for microtubules con-

sisting one to seven rings. A single equilibrated microtubule ring from Ref.57 was used to

construct microtubules of different lengths by replicating and translating the ring an inte-

ger multiple of 82.746 Å along the microtubule axis, which is the unit cell length from the

original simulation. The resulting structure was parameterized using Amber ff14SB52 for

protein, R.E.DD.B.58 for GTP and GDP and Li/Merz SPC/E 12-6 for Mg2+ 56.

3.2 3D-RISM Calculations

All RISM calculations were performed in AmberTools 1929.

The solvent was prepared for 3D-RISM using the rism1d program and consisted of 55.2

M modified SPC/E water10,59 with 0.1 M NaCl using the corresponding Joung-Cheatham

parameters60. Dielectrically consistent RISM (DRISM) theory34 was used with a dielectric

constant of 78.44 and the Kovalenko-Hirata (KH) closure9 at a temperature of 298.15 K.

The solution was solved on 65536 grid points with 0.025 Å grid spacing using the default

parameters for the modified direct inversion of the iterative subspace (MDIIS) solver61.

The rism3d.snglpnt program was used for all 3D-RISM calculations. Default MDIIS

settings, the KH closure, and a 0.5 Å grid spacing were used for all calculations. No cut-off

was used for electrostatic interactions. The buffer distance between the solute and the edge

16



of the solvent box was either explicitly set or determined from the requested LJ tolerance.

In all cases, rism3d.snglpnt automatically increased the buffer distance to ensure that all

grid dimensions were divisible by factors of 2, 3, 5, and 7, and that the number of y- and

z-grid points was divisible by the number of processes.

Performance and accuracy of the treecode summation was tested by performing calcu-

lations using direct summation for all calculations or using treecode for only one of DCF,

TCF, or Coulomb calculations. The direct sum benchmark calculations use a buffer distance

of 24 Å and were converged to a residual tolerance of 10−13. All other 3D-RISM calculations

detailed below were repeated five times to provide average timings. A buffer distance of

24 Å and grid spacing of 0.5 Å were selected as a compromise between precision and com-

putational cost; obtaining a relative numerical error of 10−10 would require a solvent grid

much too large to be considered. When using treecode summation, all combinations of the

MAC parameter θ from 0.2 to 0.7 in steps of 0.1, the Taylor series order p from 2 to 20 in

steps of 2, and maximum leaf size N0 values of 60, 500, and 4000 were used. In all cases,

the 3D-RISM equations were solved to a residual tolerance of 10−10. Optimized serial and

parallel jobs were run with the settings in Table 2. To test the parallel scaling of treecode

summation, calculations were performed on 1, 2, 4, 8, 16, 24, 32, 48, 64, 72, and 96 processes

for all solutes.

Reciprocal-space cut-offs for the long-range asymptotics were compared against the same

benchmark calculations as were used for treecode summation. In this case, the residual

tolerance was varied from 10−10 to 10−3.

For the LJ cut-offs tests, we allowed the buffer distance to vary based on the LJ tol-

erance. This is required to ensure that the cut-offs fit within the solvent box so that the

correction to excess chemical potential can be applied. Only the two neutral systems were

considered as they allow us to isolate the LJ contribution from the electrostatics. At even

the lowest tolerances, the grid sizes were still manageable. LJ and residual tolerances were

independently varied from 10−10 to 10−3. The benchmark calculation in this case used LJ

and residual tolerances of 10−13.

Serial and parallel calculations for phenol, CB7, 4N6T, and tubulin were run on our Linux

cluster, Metropolis, which has seven nodes connected by QDR Infiniband interconnects, each
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Solute Tolerance TCF DCF Coulomb Reciprocal-

MAC Order MAC Order MAC Order Space

Microtubules 10−6 0.3 6 0.3 8 0.3 8 10−8

Tubulin 10−6 0.3 6 0.3 8 0.3 8 10−8

Adhiron 10−6 0.3 2 0.3 6 0.3 6 10−7

CB7 10−6 0.3 2 0.3 6 Direct 10−7

Phenol 10−6 0.3 2 Direct Direct 10−7

Table 2: Optimized 3D-RISM parameter settings. Treecode parameters MAC, order p. All

LJ cutoffs were adjusted to fit inside the solvation box.

with 256 GB of memory and two 12 core Intel 2.4 GHz Xeon E5-2600 v2 (“Ivy Bridge-EP”)

CPUs. AmberTools was compiled with the Intel Fortran and C++ compilers 19.1.05362 and

the OpenMPI 3.1.3 MPI library63. Additional parallel benchmarking was performed on the

Skylake nodes of Stampede2 at the Texas Advanced Computing Center through the Extreme

Science and Engineering Discovery Environment (XSEDE)64,65, which each have two 24 core

Intel Xeon Platinum 8160 CPUs, 192 GB of memory and are connected by a 100 Gb/sec

Intel Omni-Path network. In this case, the software was compiled with the Intel Fortran

and C++ compilers 17.0.466 and MVAPICH2 2.3 MPI library67. Microtubule calculations

were performed on Bridges at the Pittsburgh Supercomputing Center through XSEDE64,65,

using 16 to 24 cores per job.

4 RESULTS AND DISCUSSION

4.1 Numerical precision requirements

Computational efficiencies from treecode summation and cut-offs must not come at the cost

of the numerical precision of computed thermodynamic observables. Generally, the SFE

will be the most important value to be calculated with 3D-RISM. The numerical precision

required depends on the application to be considered. For SFE calculations absolute errors

up to 0.1 kcal/mol are generally acceptable. An absolute error < 0.1 kcal/mol typically means
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Figure 2: Dependence of the relative numerical error of the solvation free energy (SFE)

and partial molar volume (PMV) on the 3D-RISM residual tolerance. Relative errors are

calculated against a reference calculation converged to a residual tolerance of 10−13.

relative errors as large as 10−3 for small molecules but may need to be less than 10−5 or even

10−6 for large proteins. To ensure stability, molecular dynamics simulations with 3D-RISM

require relative errors less than 10−5 to ensure sufficient agreement between SFEs and their

derivatives10. Energy minimization is even more demanding, requiring relative errors less

than 10−10.

In practice, the convergence criterion for our iterative solver is to reach a given max-

imum allowable residual tolerance. Figure 2 shows the relative error of SFE and PMV

thermodynamic quantities as the residual tolerance of the 3D-RISM calculation is adjusted.

Overall, we find that that residual tolerance and relative error are directly proportional for

observables we have considered. In general, we can say that

ϵSFE ? 10× tolerance. (35)

For the SFE, there is no apparent dependence on the size of the solute, though tubulin has

an anomalously large relative error for a residual tolerance of 10−10. There does appear to be

a dependence on the solute size for the PMV, with larger solutes achieving smaller relative

errors for the same residual tolerance. The vast majority of 3D-RISM calculations should
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use a residual tolerance of 10−5 or 10−6.

4.2 Treecode summation

To determine the impact on speed and numerical precision of the treecode parameters MAC,

p, and N0 for TCF LRA, DCF LRA, or Coulomb potential energy, SFEs calculated from

3D-RISM for different size solutes with different treecode parameters were compared against

direct sum calculations (Figures 3, 4 and 5). Each data point in the plots represents a

different value of p for a given MAC, increasing from right to left. Only results for N0 = 500

are shown, as we found that N0 = 60 and N0 = 500 performed almost identically, while

N0 = 4000 was generally slower for the same numerical precision. The cluster of data points

in the lower left corner of each plot indicates that increasing p does not provide any additional

precision. Though there is some noise in the timing, mostly due to interprocess interference,

increasing p almost universally reduces the relative error, but also increases execution time.

In all cases, a MAC ≤ 0.4 was sufficient to obtain solutions with the smallest possible error,

provided that the number of Taylor series terms was large enough. Results for MAC = 0.7

were omitted, as the performance was consistently worse for all calculations. Otherwise, the

best choice of parameters depended on the quantity being summed, TCF LRA, DCF LRA,

or Coulomb potential energy, and the size of the solute.

Treecode summation shows the largest relative speedups for the TCF LRA. In fact,

treecode is faster than direct summation for all solutes at all precisions and is nearly two

orders of magnitude faster than direct summation for tubulin and adhiron for relative errors

of 10−5, which is sufficient for most calculations. However, the treecode parameters that give

the best performance vary with the relative error and the solute. For tubulin, MAC = 0.4

and 0.5 have the best performance, while MAC = 0.3 is close. MAC = 0.3 provides the best

performance for both adhiron and CB7, except for the largest relative errors, where MAC =

0.4 and even 0.5 are slightly faster. Even phenol shows speedups relative to direct summation

for all MAC values with an appropriate p; however, the extreme values of MAC = 0.2 and

0.6 have the best performance.

The performance of treecode summation for the DCF LRA is still much better than direct

summation for tubulin, adhiron, and CB7 but not for phenol. In contrast to TCF LRA, it
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Figure 3: Relative speedup of treecode TCF LRA compared to direct summation vs. relative

error in µex,kh for tubulin, adhiron, CB7, and phenol. Taylor series order p = 2k, k =

1, . . . , 10, increasing from right to left for each line.
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1, . . . , 10, increasing from right to left for each line.
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p = 2k, k = 1, . . . , 10, increasing from right to left for each line.
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MAC p N0

TCF 0.3 max
(
2, log10(tolerance)+5.7

−0.7

)
500

DCF 0.3 max
(
2, log10(tolerance)+1.9

−0.8

)
500

Coulomb 0.3 max
(
2, log10(tolerance)+1.4

−0.8

)
500

Table 3: Guide to selecting treecode parameters for a given residual tolerance. Recommended

parameters should be tested before production use.

is difficult to distinguish between the performance of different MAC values. MAC = 0.3,

0.4 and 0.5 have similar performance for tubulin and adhiron over almost the full range of

relative errors. However, MAC = 0.5 is unable to achieve the lowest relative errors, even

for p = 20, and is generally slower than MAC = 0.3 and 0.4 to achieve the same relative

error. For CB7, MAC = 0.2 and 0.3 have nearly identical results, outperforming larger

MAC values. The trend towards better performance from smaller MAC values continues for

phenol, though the tree code is generally slower than direct summation for this small solute.

The Coulomb potential energy has the simplest functional form and also shows the least

benefit from treecode summation. Only tubulin has speedups at all relative errors. However,

treecode summation is faster than direct summation for adhiron for relative errors > 10−7

and for CB7 for relative errors > 10−4. Treecode is slower than direct summation for all

phenol calculations. Otherwise, the performance with different MAC values is similar to

that observed for DCF LRA. The best performance for tubulin and adhiron is achieved with

MAC = 0.3 and 0.4, while MAC = 0.5 has similar performance for larger relative errors but

does not reach the lowest relative errors, even for p = 20. MAC = 0.2 and 0.3 again show

similar performance for CB7, though they are faster than direct summation only for p < 4

and p < 6, respectively.

4.2.1 Treecode summation parameter selection

Even when considering just biological molecules, there is a wide range of shapes, sizes and

charges for both the solutes and solvents that may be studied with 3D-RISM. As a result,

it is not possible to prescribe a uniform set of parameters for treecode summation and cut-
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Figure 6: Relative error in µex,kh of 3D-RISM calculations with treecode parameters MAC =

0.3 and N0 = 500 vs. Taylor series order, p, for tubulin, adhiron, CB7, and phenol.
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off methods developed here; some testing will always need to be done before starting a

large calculation. However, we can provide guidance to narrow the search for parameters

that minimize computation time while preserving necessary numerical precision. Numerical

precision is set by the user by specifying the residual tolerance at the beginning of the

calculation. As shown in Figure 2, relative error has a linear relationship with the residual

tolerance. Therefore, we specify our guidelines relative to the residual tolerance.

Treecode summation requires the user to specify maximum leaf size N0, MAC parameter,

and Taylor series order p. Of these, N0 and MAC have clear best choices. N0 = 500 is a safe

and close to ideal choice for all calculations; N0 = 60 provides almost identical performance

while N0 = 4000 gives slower performance in some cases. If a smaller grid spacing of 0.25 Å

is used, then a cluster of N0 = 500 at this smaller grid spacing will occupy about the same

volume as N0 = 60 for a grid spacing of 0.5 Å and we would not expect a significant change

in performance. We also recommend MAC = 0.3 for all calculations. While other values can

be considered for the TCF LRA calculation, MAC = 0.3 performs well for all calculations

where treecode is faster than direct summation. As observed for TCF and DCF LRA and

Coulomb calculations, larger MAC values perform better for larger solutes; MAC = 0.4 may

be a better choice for solutes larger than those considered here.

The Taylor series order is the most difficult parameter to select as it depends on both

the size of the solute, the type of calculation being approximated, and the desired numerical

precision. Figure 6 shows the relationship between relative error and Taylor series order for

MAC = 0.3 and N0 = 500 from Figures 3 to 5 grouped by calculation type across solutes.

For all solutes and all calculations, we observe a linear relationship between log10 (error) and

p until the error due to the treecode is smaller than the error due to reaching the convergence

criterion of the iterative solver, which is a residual tolerance of 10−10 in this case. The slope

in all cases appears similar, but there are different y-intercepts for the different solutes and

calculation types. In addition, tubulin has systematically higher errors, likely due to the

convergence anomaly shown in Figure 2. In Table 3, we provide expressions for p-values

based on the input residual tolerance, where we have used equation (35) to relate expected

error to the input tolerance. As the case of tubulin demonstrates, these expressions are not

exact. Rather, we recommend checking the relative error for a given p by performing a test
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Figure 7: Relative speedup in µex,kh vs. relative error of reciprocal space cut-offs for TCF and

DCF LRA compared to the full direct summation. Error tolerance ϵ
(lr)
cut = 10−10, . . . , 10−3,

increasing from left to right for each line.

calculation with the prescribed p and another with p + 2. If the error is sufficiently small,

then other calculations can be performed with different conformations.

It is also worth remembering that treecode summation is not always faster than direct

summation. In particular, for small molecules, it may be better to use direct summation for

the DCF LRA and Coulomb potential.

4.3 Reciprocal-space cut-offs for long-range asymptotics

Performance data for reciprocal-space LRA cut-offs is given in Figure 7. Here, the cut-off

wave number was determined from equation (28) and applied to both the DCF and TCF LRA

calculations. Tubulin, again, differs from the other solutes as it requires smaller tolerances

for equation (28) to achieve the same relative error in the SFE. The cutoff is based on the

magnitude of the wave vector k, the largest value of which is determined by the grid spacing

in real-space rather than the size of the grid. In this case, we used a grid spacing of 0.5 Å,

which is coarse but still of practical use. Finer grid spacings of 0.25 or 0.3 Å are typically used

for SFE calculations and would produce larger speed-ups for the same cut-off. Regardless,
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Figure 8: Relative error in µex,kh due to applying reciprocal space cut-offs for TCF and DCF

LRA compared to full summation.

cut-offs are always faster than the full direct summation, even if the speedups may be small

in some cases.

4.3.1 Reciprocal-space cut-off parameter selection

To select the error tolerance for the reciprocal-space LRA cutoff, it is useful to compare the

relative error of the calculation against the selected error tolerance, as in Figures 8. We

observe, when plotted on a log-log scale, there is a nearly linear relationship between the

relative error in the SFE and the cutoff error tolerance, suggesting that the cut-off tolerance

can be selected using the relationship

error = A · ϵBcut (36)

where a and b fit to the data. Using the fact that the relative error in the SFE is typically

10 times larger than the specified residual tolerance, equation (35), we can rewrite this

expression as

ϵcut = a · toleranceb

where a = (10/A)1/B and b = 1/B.
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From Figure 8, we observe that the reciprocal-space LRA for tubulin incurs a larger error

for the same value of ϵ
(lr)
cut compared to other solutes. Fitting to just the adhiron, CB7 and

phenol data, we arrive at

ϵ
(lr)
cut ≈ 0.04 · tolerance0.9

while fitting tubulin gives

ϵ
(lr)
cut ≈ 0.006 · tolerance1.1.

This roughly equates to using a cut-off tolerance that is a factor of 10 smaller than the residual

tolerance for most solutes, though some, like tubulin, may require the cutoff tolerance to be

a factor of 100 smaller than the residual tolerance to avoid losing numerical precision.

4.4 Real-space cut-offs for the Lennard-Jones potential

LJ real-space cut-offs differ from the previous calculations as we have an analytic correction

for the omitted part of the calculation. In cases where the solute is neutral or the solvent

is non-ionic, long-range LJ iterations are the largest source of error. In these cases, the
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solvation box can be safely trimmed to include the LJ cut-off distance and nothing more. If

the solute is charged and ionic solvents or co-solvents are present, long-range electrostatics

will dominate the size of the box and the LJ calculation need only be considered for a small

part of it.

For testing purposes, we used only phenol and CB7, which are electrostatically neutral,

to clearly see the effect of the LJ cutoff and to allow us to set the size of the solvent box

to exactly accommodate the cut-off. Figure 9 compares the cut-off with and without the

correction where each data point from right to left reduces the LJ error tolerance by a

factor of 10 and increases the box size accordingly. As the box-size is determined by cut-

off tolerance, only the corners are omitted from the LJ calculation; therefore, not applying

cut-offs would provide only slight differences from the uncorrected cut-offs. While increasing

the cut-off distance reduces the SFE relative error for both CB7 and phenol, the cut-off

correction cancels a significant amount of error compared to the cut-off alone for very little

computation cost. For phenol, as the cut-off error tolerance, ϵ
(LJ)
cut , is decreased, the relative

error in the SFE decreases at the same rate for both the corrected and uncorrected data

(Figures 9 and 10). However, the correction reduces the relative error by a factor of more

than 10−2. As a result, the same relative error is achieved from using the correction with

ϵ
(LJ)
cut = 10−3, a buffer of about 10 Å, as for the uncorrected calculation with ϵ

(LJ)
cut = 10−8, a

buffer of almost 70 Å. Furthermore, because the grid size is reduced, the corrected calculation

is more than 100X faster than the uncorrected value for both the LJ part of the calculation

and the total time. The relationship between the relative error and ϵ
(LJ)
cut is slightly different

for CB7 as the correction becomes more effective as ϵ
(LJ)
cut is lowered. Still, to achieve the

same relative error, the corrected calculation is at least 10X faster for the same precision

and is typical more than 100X faster.

4.4.1 Lennard-Jones cut-off parameter selection

Only CB7 and phenol were examined for the Lennard-Jones cut-off error tolerance and these

show significantly different responses at high values of ϵ
(LJ)
cut . As with the reciprocal-space

LRA cut-off, the real-space Lennard-Jones cut-off can be selected by comparing the relative

error of the calculation against the selected error tolerance (10) and fitting with equation (36).
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Figure 10: Relative error in µex,kh due to applying real-space cutoffs for the Lennard-Jones

potential with different tolerances.

For phenol, we have an error estimate of

ϵ
(LJ)
cut ≈ 107 · tolerance2.1

and, for CB7, we have

ϵ
(LJ)
cut ≈ 3 · tolerance1.1.

The enormous difference in parameters for phenol and CB7 is due to difference in slopes in

Figure 10. A safe default choice would be to set ϵ
(LJ)
cut to be one tenth the residual tolerance.

This should guarantee the desired precision over a wide range of residual tolerances and, for

small solutes, will have little impact on the calculation time compared to smaller values of

ϵ
(LJ)
cut . If a more aggressive optimization is desired for larger solutes, the phenol values can

be used as a starting point and compared against calculations using larger cutoff tolerances.

4.5 Accuracy of density distributions

While the solvation free energy is the most commonly used output from 3D-RISM calcula-

tions, it is the result of integrating over the TCF and DCF, which are the solutions to the

3D-RISM equations. A more direct way to assess the accuracy of the solution is through the
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Kirkwood-Buff integral for each solvent site68,69,

Iα =

∫
all space

hα (r) dr,

which involves only the TCF and is used to calculate various properties, such as the excess

number of atoms. In Table 4, we have employed direct summation with Lennard-Jones and

long-range asymptotics cutoffs solved to a tolerance of 10−10 as the reference calculation to

assess the impact of approximations of treecode summation and cutoff separately. When

treecode summation solutions with the same cutoffs are compared against the reference, the

difference in the Kirkwood-Buff integral ranges from 5.1×10−5 to 1.2×10−7, which is within

the expected error as the treecode calculations are solved to a tolerance of 10−6. Conversely,

the errors are larger when compared against direct summation with no cutoffs, but this is

primarily due to the Lennard-Jones corrections for the Kirkwood-Buff integral, of the type

described in Section 2.6. In this case, the result from the cutoff with correction is more

accurate than truncating the LJ interaction at the edge of the solvation grid, though the

difference is small.

Alternatively, the accuracy of the full solution can be assessed by calculating the root-

mean-squared difference between the TCF grids. Table 4 shows that the RMSD for the

treecode summation are of similar magnitude to the errors in the Kirkwood-Buff integrals.

Furthermore, they are only slightly larger than the target residual for the solution, which

is the RMSD between TCF from the 3D-RISM equation, equation (1), and the closure,

equation (3). When we compare the direct summation with no cutoffs, we see that the

errors are generally lower in magnitude but larger than the 10−10 residual tolerance of the

solver. This is due to tolerance of the cutoffs (see Table 2) and shows that the cutoffs have

little impact on the solution.

4.6 Scaling with solute size

Using parameters determined in Section 4.2.1, 4.3.1 and 4.4.1, we can compare the com-

puting time required for total cost of the calculation with treecode summation and cut-offs

with the performance of direct summation (Figure 11). For comparison to direct summation

(Figure 1), we again use a residual tolerance of 10−6, which is sufficient for most 3D-RISM
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Kirkwood-Buff RMSD

Solute Method O H Na+ Cl−
∑

γ hγ(r)

Tubulin Direct sum,

no cutoffs

3.9× 10−4 3.9× 10−4 1.2× 10−3 7.6× 10−4 1.8× 10−4

Treecode

sum, cutoffs

5.7× 10−7 1.7× 10−6 1.9× 10−6 1.2× 10−7 3.8× 10−5

Adhiron Direct sum,

no cutoffs

2.3× 10−4 2.3× 10−4 2.9× 10−3 5.3× 10−4 9.8× 10−5

Treecode

sum, cutoffs

7.5× 10−7 4.6× 10−6 1.9× 10−5 1.1× 10−6 1.9× 10−4

CB7 Direct sum,

no cutoffs

6.8× 10−4 6.8× 10−4 1.0× 10−3 1.0× 10−3 4.7× 10−5

Treecode

sum, cutoffs

1.1× 10−5 1.1× 10−6 1.5× 10−5 8.1× 10−6 7.3× 10−4

Phenol Direct sum,

no cutoffs

6.1× 10−4 6.1× 10−4 7.5× 10−4 7.1× 10−4 1.3× 10−5

Treecode

sum, cutoffs

3.7× 10−5 5.1× 10−5 2.4× 10−6 1.1× 10−5 2.5× 10−4

Table 4: Relative error compared to direct summation with Lennard-Jones and long-range

asymptotic correction cut-offs for the Kirkwood-Buff integral of each solvent species and

the root-mean-squared deviation of the total correlation function. Treecode summation and

cutoff parameters are from Table 2.
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Figure 11: Total runtime of 3D-RISM converged to a tolerance of 10−6 with potential and

asymptotics calculated using treecode summation and speedup relative to direct summation

(Figure 1). Required runtime is shown for setting up the calculations (potential and asymp-

totics) and iterating to a converged solution. Treecode and cut-off parameters can be found

in Table 2.
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Figure 12: Runtime for different components of the potential and asymptotics calculation

for Figure 11 using direct and treecode summation. Calculations were solved to a residual

tolerance of 10−6.

calculations. For larger tolerances, more aggressive parameters can be used, resulting in

potentially larger speedups. Combined, treecode summation and cut-off methods can signif-

icantly reduce the total calculation time – nearly 4X faster in the case of tubulin and 1.6X for

adhiron. In the case of tubulin, computing the potential and asymptotics accounts for about

20% of the total runtime when using treecode and cut-offs versus nearly 80% using direct

summation. Smaller solutes obtain similar results; potential and asymptotics calculations

are accelerated by a factor of 3X to 10X and, with the exception of tubulin, account for less

than 10% of the total runtime when treecode summation is used. Overall, iteration time is

now the dominant computational cost for all solute sizes.

To assess how the treecode summation and cut-off methods individually perform, we

have broken down the potential and asymptotics into their various components (Figure 12).

For the direct summation calculations, the real-space TCF LRA calculation dominates the

runtime, followed by the real-space DCF LRA and the Coulomb potential energy calculations.

After applying our treecode summation and cut-off methods, the real-space DCF LRA is the

most expensive part of the calculation for all but tubulin while the real-space TCF LRA

and Coulomb potential energy require about the same amount of time as the Lennard-Jones
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potential energy. Tubulin is an exception, as the reciprocal-space DCF and TCF LRA require

the largest fraction of time, about 25% of the total time for the potential and asymptotics.

Using a cutoff for the reciprocal-space DCF and TCF LRA is the only optimization that

does not improve the scaling with system size. As it is a cut-off in reciprocal space, only large

values of k are omitted, which are determined by the grid spacing used and have nothing

to do with solute size. As a result, we observe a performance improvement of 2.5-3.5X for

all solutes and anticipate even greater speedups for finer grid-spacings. In fact, there should

be little or no additional computation time for calculating the reciprocal-space DCF and

TCF LRA on finer grids. Despite the fact that the scaling remains O (NatomNgrid), the use

of cut-offs means that this part of the calculation remains a small fraction of the total and

may be further reduced by other means, such as lookup-tables.

4.7 Parallel scaling

3D-RISM in AmberTools is parallelized using the message passing interface (MPI) with a

distributed memory model. This allows 3D-RISM to make use of the aggregate memory of

multiple nodes for large systems but means that the code must follow the memory model

of the underlying FFT library for all of the solvation grids. We use the Fastest Fourier

Transform in the West (FFTW)70 library, which decomposes the memory in real-space along

the z-axis into slabs. Each process gets one slab of each grid, whether or not that grid

is directly processed by FFTW, and includes potential energy and LRA grids. In order

to ensure adequate load balancing, 3D-RISM uses equal sized slabs for all nodes and will

automatically increase the total grid size to ensure this if necessary. At the same time, each

process gets a full copy of the solute information. This accounts for much less memory than

the grids and is only a small fraction of the the aggregate memory footprint, even for 96

processes.

Treecode summation and cut-off methods have a small effect on the overall parallel scaling

of 3D-RISM (Figure 13). On the Metropolis cluster, with only 24 cores per node, calculations

on all solutes scale well until 24 cores for both types of calculations. Adding resources beyond

24 cores causes the solution for phenol to slow down. CB7 is the next to saturate at about

72 cores for direct summation while adhiron and tubulin do not exhibit any slow down.
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Figure 13: Speedup over multiple cores of the total calculation time for direct and treecode

summation 3D-RISM calculations converged to a tolerance of 10−6 on Metropolis and Stam-

pede2 clusters. Treecode and cut-off parameters can be found in Table 2.
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As expected, large systems scale better than smaller systems. However, for the treecode

summation and cut-off methods, 64 cores appears to be the limit for all solutes. In addition,

phenol now exhibits the best scaling of all the systems until it saturates, while there is a

notable decline in the scaling of CB7 and adhiron.

To investigate the role of hardware, we also ran calculations on Stampede2, which has

double the cores and memory bandwidth of Metropolis (Figure 13). As with Metropolis, all

solutes scale well up to 24 cores for both direct summation and treecode/cut-off methods.

Unlike Metropolis, scaling is closer to linear and does not seem to be affected by solute

size at these small core numbers. However, 24 cores remains the scaling limit for phenol,

which indicates that this is a software limitation. After this point, larger solutes scale

more efficiently and phenol and CB7 saturate at 24 and 64 cores respectively. Otherwise,

treecode/cut-off calculations scale as well as direct summation calculations until the high

core counts are reached.

As we did with single-core performance, to better understand the contributions of differ-

ent parts of the calculation, we have decomposed the calculation into various components

for the potential and asympytotics calculations and the iteration time, the latter of which

we have not attempted to accelerate. We use tubulin for this discussion (Figure 14), though

the same behavior is observed for the other molecules as well.

For direct-sum calculations, the largest bottleneck to scaling is the iterative stage of

the calculation. The scaling of this part of the code is sub-linearly and becomes the most

expensive part of the calculation when eight or more processes are used. In contrast, all

other parts of the calculation scale almost linearly. As each MPI process has a full copy of

the solute, the direct sum calculation is trivially parallel, with no communication between

the processes, and should scale linearly as observed. The cause of the sub-linear scaling of

the iterative calculation is beyond the scope of this paper, but is likely hardware dependent

as the iterative calculation performs much better on Stampede2. Profiling data (not shown)

indicates that the iterative calculation has much higher memory bandwidth requirements

than the direct summation, and the higher memory bandwidth of Stampede2 could account

for these differences.

Applying cut-offs to LJ and reciprocal-space calculations has little impact on scaling.
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Figure 14: Computation time over multiple cores of the total calculation time and various

components for direct and treecode summation 3D-RISM calculations on a tubulin dimer

converged to a tolerance of 10−6 on Metropolis and Stampede2 clusters. Treecode and cut-off

parameters can be found in Table 2.
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For tubulin, the selected error tolerance for the reciprocal-space cut-offs excludes few grid

points, so there is little difference from the no-cut-off calculation. LJ cut-off calculations

do not require any communication but do limit the amount of work some processes are

required to do. However, because the cut-offs are set to fit inside the solvation box and

each solute atom has the cut-off applied independently, the work load remains relatively

balanced. On Metropolis, the LJ cut-off calculation is slightly super-linear but this is likely

due to some small variance in the single processor calculation. On Stampede2, scaling of LJ

and reciprocal-space LRA with and without cut-offs is nearly identical.

TCF and DCF LRA and Coulomb potential energy with treecode summation all scale

well until around 32 cores on both Metropolis and Stampede2. The most likely reason for the

scaling to plateau is that each process performs its own treecode decomposition on its own

piece of the grid. Because a slab-decomposition memory layout is required by the FFTW3

library we use for the iterative part of the code, the memory that each process receives

becomes narrower as the process count increases. As tree nodes narrow, it is more difficult

to satisfy the MAC and the Taylor expansion becomes less efficient. To partially alleviate

this constraint, when the tree is built, nodes are only subdivided along a given Cartesian

direction if the node box length parallel to that direction is within a factor of
√
2 of the

shortest box length. However, this can result in only two or four children in a given tree

level, and the top levels of the tree will still have node boxes with uneven aspect ratios,

so narrow tree root nodes may still affect performance. Additionally, slabs near the middle

of the grid where the solute is located may end up doing more local source particle-target

particle direct sums, while slabs near the edges of the grid will be able to use the Taylor

expansion much more often.

Overall, the performance of treecode summation for high process counts does not ad-

versely affect the overall parallel scaling of the calculation as the total time and scaling is

dominated by the iterative solver. This is because treecode summation is so much faster

than direct summation, even at the highest node counts, that it is an almost negligible part

of the calculation.
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Figure 15: 3D-RISM calculations on microtubules of various lengths. (A) A single micro-

tubule layer of 13 tubulin dimers and (B) a microtubule composed of seven layers. Solvent

isosurfaces are two times the bulk density each species; transparent orange : Na+, green : Cl-,

blue : water oxygen, white : water hydrogen. Thermodynamic properties and computation

time as a function of microtubule layers: (C) Non-bonded potential energy and solvation

free energy with the Universal Correction, (D) number of excess Na+or depleted CL- ions

per layer, (E) partial molar volume per layer, and (F) CPU core hours for each calculation.

4.8 Application to microtubule stability and growth

Microtubules are components of the cytoskeleton found in all eukaryotic cells and self-

assemble from tubulin dimers.71 Stability is critical to the function of microtubules, par-

ticularly during cell mitosis when they go through phases of linear growth and rapid col-

lapse, known as “dynamic-instability”. Despite decades of work, the physical mechanisms of

microtubule stability and growth are still not well understood. Here, we demonstrate how

3D-RISM can quantify the role of ions in stabilizing microtubules. Figure 15 A and B shows

the distribution of solvent around a single ring of 13 tubulin dimers and a microtubule com-

posed of seven rings. It is clear that a large excess of sodium ions surrounds the microtubule
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but most of the neutralization is due to a depletion of chloride ions, as can be seen from the

preferential interaction parameter (PIP) in molar units2,72 (Figure 15 D),

Γ(M)
α = ρα

∫
all space

gα (r)− 1 dr.

This is due to both the displacement of chloride and sodium ions – approximately 95 ion

pairs per layer – as well as the electrostatic repulsion and attraction. As the number of MT

layers grows, the partial molar volume of the layers remains almost constant (Figure 15 E),

so the change in the number of excluded ions per layer is not due to changes in the excluded

volume but displacement of chloride ions at the ring interface.

To understand the role of solvation energetically, we use the molecular mechanics with

3D-RISM73 approach without entropy to calculate the change in interaction energy and the

solvation free energy (Figure 15 C) for adding a ring to a microtubule. Here, the change in

the effective potential energy is

∆E = ∆Emm +∆∆Gsolv

=
(
EMT

mm − EMT-L
mm − EL

mm

)
(
∆GMT

solv −∆GMT-L
solv −∆GL

solv

)
,

where MT and L denote the final microtubule and the added layer, Emm is the molecular

mechanics energy, and ∆Gsolv is the solvation free energy, calculated with the partial molar

volume correction of Palmer et al.,16

∆Gsolv = ∆G3D-RISM + av + b,

which compensates for the mechanical work due to the large pressure artifacts present in

3D-RISM. Here v is the partial molar volume, a = −0.1499 kcal/mol/Å3 compensates for

the effective pressure and b = −0.1 kcal/mol corrects for artifacts from other sources, such

as the grid spacing. The constants a and b are taken from previous work for the specific

closure, grid spacing, and water model, temperature and density used here.15 As the rings

are identical and rigid, both the internal energy of the dimers and the entropy are omitted

and only intermolecular contributions to the energy are included: Coulomb, Lennard-Jones

and solvation solvation free energy. Overall, the ions in the solvent neutralize the overall
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charge of the microtubule and combine with short-range inter-dimer salt bridges to almost

stabilize the structure. While not visible in Figure 15 C due to the scale, the change in

total energy of adding one ring slightly increases from 75 kcal/mol to 4063 kcal/mol as the

microtubule grows, while the LJ contribution is consistent at -2333 kcal/mol per layer. The

slightly positive binding energy is consistent with the fact that we used GDP-tubulin in our

calculations, which is known to cause instability and collapse in microtubules. Since the ∆E

is only about 1% of the magnitude of ∆∆Gsolv and ∆UCoulomb, small changes in structure,

such as an extended conformation of GTP-tubulin, could tip the balance to stability.

Our results show the role of the ionic environment in stabilizing microtubules but does

not elucidate the mechanism that leads to instability when GTP is hydrolyzed to GDP.

A leading hypothesis is that hydrolysis induces conformational changes in tubulin, causing

strain in the lattice due to the kinked conformation of the GDP-tubulin or compaction of

dimers within the lattice.74 Numerous molecular dynamics simulations of free tubulin have

failed to show a clear conformational change between GTP- and GDP-tubulin, with both

adopting a kinked conformation, though there is evidence that GTP-tubulin is more flexible

and less strained in the microtubule lattice.75–81 Compaction of GDP-tubulin relative to

GTP-tubulin in simulation of protofilaments has been recently reported75 and the structure

used in this calculation represents a compact lattice, as it is composed of GDP-tubulin with

a dimer repeat length of 81.2 Å57. However, microtubule lattice compaction is not observed

in all species82, so it is unclear what role it plays. Our calculation could be extended to

include different conforms and isotypes to capture the role of both inter- and intramolecular

energy in microtubule stability.

Treecode summation was essential to completing these calculations, as the total time

was roughly linearly proportionate to the number of layers added (Figure 15 F). However,

while the iterative solver remains the most costly part of the calculation, we see, unlike

our smaller systems, that calculating the final thermodynamics now requires a significant

fraction of the total time while the potential and asymptotics time is around 10% of the total

calculation. The reason for the increased cost of the thermodynamics is the last integral in

equation (9). Though negligible for smaller systems, it has a complexity of O (N2
atom)

21 and

becomes significant for systems of this size. This will need to be addressed for practical
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extension to even larger systems.

5 CONCLUSIONS

In this work, we have developed and implemented treecode summation for long-range in-

teractions and cut-offs for short-range interactions to accelerate the potential and long-

range asymptotics calculations for non-periodic 3D-RISM calculations. The previous ap-

proach used direct sum calculations that scaled as O (NgridNatom) and were a major imped-

iment to studying large proteins and protein complexes. By implementing the numerical

methods demonstrated here, we have reduced the computational complexity to at most

O((Ngrid+Natom) logNgrid) for almost all parts of the calculation. Furthermore, our analytic

correction for the Lennard-Jones cut-off enables much smaller solvation boxes to be used for

neutral solutes or non-ionic solvents, which can reduce the required computation time by a

factor of 100 for many situations.

Though proteins of almost any size will benefit from using treecode summation and ana-

lytically corrected Lennard-Jones calculations, larger systems benefit more. For the largest

protein in our benchmark calculations, tubulin, the total computation time was reduced by

a factor of 4 and the potential and asymptotics now account for only 20% of the calculation

time, compared to 80% when direct summation was used. These methods also enabled us

to calculate the solvation thermodynamics of a microtubule composed of 910 tubulin dimers

with 3D-RISM – a calculation impossible before now. Our results show the significant role

that solvation plays in the balance between microtubule stability and instability.

Parallel calculations with these new methods scale almost linearly and the iterative

solver remains the largest impediment to parallel scaling. Though calculating the long-

range asymptotic correction to solvation free energy is a significant time cost for the largest

microtubule system, the iterative solver is now the most expensive part of the calculation

for almost all practical length scales and future work will focus on accelerating this.

44



6 ACKNOWLEDGMENTS

TL was supported by the National Science Foundation (NSF) under Grants CHE-1566638

and CHE-2018427 and the Research Corporation for Science Advancement (RCSA) Cot-

trell Scholar Award 23967. RK and LW were supported by NSF grant DMS-1819094 and

the Michigan Institute for Computational Discovery and Engineering. This work used the

Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by

National Science Foundation grant number ACI-1548562. XSEDE Stampede 2 and Bridges

clusters at the Texas Advanced Computing Center and Pittsburgh Supercomputing Center

were used though allocation MCB190048. We thank consultant Albert Lu for their assis-

tance with optimizing the parallel efficiency of 3D-RISM, which was made possible through

the XSEDE Extended Collaborative Support Service (ECSS) program.

7 DATA AVAILABILITY STATEMENT

The code for this paper is freely available through AmberTools (https://ambermd.org). All

additional data are available from the corresponding author upon reasonable request.

References

1. G. Duarte Ramos Matos, D. Y. Kyu, H. H. Loeffler, J. D. Chodera, M. R. Shirts, and

D. L. Mobley, J. Chem. Eng. Data 62, 1559 (2017).
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and P. Cieplak, Nucleic Acids Research 36, D360 (2008), ISSN 0305-1048, URL https:

//doi.org/10.1093/nar/gkm887.

59. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

60. I. S. Joung and T. E. Cheatham, J. Phys. Chem. B 112, 9020 (2008).

61. A. Kovalenko, S. Ten-no, and F. Hirata, J. Comput. Chem. 20, 928 (1999).

62. Intel Compilers. 19.1.0.53, URL https://software.intel.com/en-us/compilers.

63. E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay,

P. Kambadur, B. Barrett, A. Lumsdaine, et al., in Recent Advances in Parallel Virtual

Machine and Message Passing Interface, edited by D. Kranzlmüller, P. Kacsuk, and

J. Dongarra (Springer, Berlin, Heidelberg, 2004), Lecture Notes in Computer Science,

pp. 97–104.

64. J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood,

S. Lathrop, D. Lifka, G. D. Peterson, et al., Comput. Sci. Eng. 16, 62 (2014).

49



65. N. Wilkins-Diehr, S. Sanielevici, J. Alameda, J. Cazes, L. Crosby, M. Pierce, and

R. Roskies, in High Performance Computer Applications: 6th International Confer-

ence, ISUM 2015, Mexico City, Mexico, March 9-13, 2015, Revised Selected Papers

(Springer, 2016), ISBN 978-3-319-32243-8, URL http://link.springer.com/10.1007/

978-3-319-32243-8.

66. Intel Compilers. 17.0.4, URL https://software.intel.com/en-us/compilers.

67. MVAPICH2, 2.3, URL https://mvapich.cse.ohio-state.edu/.

68. J. G. Kirkwood and F. P. Buff, The Journal of Chemical Physics 19, 774 (1951), ISSN

0021-9606, URL https://aip.scitation.org/doi/abs/10.1063/1.1748352.

69. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Elsevier, 2013), 4th ed.

70. M. Frigo and S. G. Johnson, Proc. IEEE 93, 216 (2005).

71. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular biology

of the cell (Garland Science, 2002), 4th ed., ISBN 978-0-8153-3218-3 978-0-8153-4072-0.

72. P. E. Smith, The Journal of Physical Chemistry B 110, 2862 (2006), ISSN 1520-6106,

publisher: American Chemical Society, URL https://doi.org/10.1021/jp056100e.

73. S. Genheden, T. Luchko, S. Gusarov, A. Kovalenko, and U. Ryde, J. Phys. Chem. B

114, 8505 (2010).

74. G. J. Brouhard and L. M. Rice, Nature reviews. Molecular cell biology 19, 451 (2018),

ISSN 1471-0072, URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019280/.

75. M. Igaev and H. Grubmüller, PLOS Computational Biology 16, e1008132 (2020), ISSN

1553-7358, publisher: Public Library of Science, URL https://journals.plos.org/

ploscompbiol/article?id=10.1371/journal.pcbi.1008132.

76. M. Hemmat, B. T. Castle, J. N. Sachs, and D. J. Odde, Biophysical Journal 117, 1234

(2019), ISSN 0006-3495, URL https://www.sciencedirect.com/science/article/

pii/S0006349519306976.

50



77. M. Igaev and H. Grubmüller, eLife 7, e34353 (2018), ISSN 2050-084X, URL https:

//elifesciences.org/articles/34353.

78. A. Grafmüller, E. G. Noya, and G. A. Voth, Journal of Molecular Biology 425, 2232

(2013), ISSN 0022-2836, URL https://www.sciencedirect.com/science/article/

pii/S0022283613001927.
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