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Abstract 

 Portfolio optimization methods have had many different approaches and additional 
developments since the introduction of modern portfolio theory and the mean-variance optima. 
Research has shown that the financial derivative of options contains valuable future-looking 
implied information regarding the markets that can drastically improve the Sharpe ratios of 
portfolios. While the most common use case has been using option implied volatility to improve 
underlying variance estimations, higher moments such as skewness has been found to also 
provide portfolio improvements. However, these higher moments are very difficult to predict 
correctly, and thus their impact has been largely neglected. The purpose of this thesis will be to 
see if applying the machine learning method of Hidden Markov Models will be effective in 
predicting option skewness regimes rather than explicit values, evaluating effectiveness as the 
ability to improve portfolio performance. By predicting regimes of option skewness, the goal 
will be to gain greater accuracy in evaluating these higher moments rather than predicting 
explicit values, and thus derive more accurate information to feed into portfolio optimization. 
The method of optimization will be held constant to control for studying the effect of implied 
information, and effectiveness of combining higher moments with regime prediction will be how 
much the portfolio optimization process is improved. 
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I. Introduction and Literature Review 
 

Portfolio Optimization 

Markowitz first introduced the idea of mean-variance optimization for portfolios in 1952, 

focusing on knowing with certainty the expected returns and variance of each asset in the 

portfolio. In his paper, Markowitz breaks the optimization down into two stages, with the first 

stage using historical data and probabilistic models to predict the future returns and volatility, 

and the second stage then assuming the expected returns to be certain and deriving an optimal 

portfolio to balance these two features. While some investors are concerned with specific index 

performance or other investing goals, this approach seeks to address investors who are seeking 

the optimal balance between risk and reward. By determining all possible portfolio 

combinations, it’s possible to find the entire efficient frontier, and the idea becomes that any 

investor can simply select a portfolio from their level of risk tolerance on this efficient frontier. 

Figure 1 below shows an example of an efficient frontier, and any portfolio located on the curve 

can be considered “optimal”. 

***Please Insert Figure 1 Here*** 

Specifically optimizing for the Sharpe Ratio, measured as the ratio between return and 

volatility, marks a point on the efficient frontier called the tangency portfolio as it is tangent to 

the line marking the risk-free rate. However, with Markowitz’s method, there are two main 

limitations: being able to accurately predict future returns and risk, and efficiently determining 

this frontier. As computing power has expanded, the latter issue becomes less prominent, thus 

highlighting the importance of being able to accurately predict future returns and evaluate risk.  
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Higher Moments and Options in Portfolios 

In efforts to better understand future returns and risk of a portfolio, researchers have 

investigated measures beyond just the expected value and the standard deviation. In recent years, 

the focus has been on measuring tail events, such as VaR (value at risk) and CVaR (conditional 

value at risk). VaR is defined as the loss during the worst x% of cases, and CVaR is the expected 

value of the loss given that the portfolio is experiencing its tail 5% scenario. Along with VaR and 

CVaR, there has also been an ongoing debate as to the necessity of including higher moments 

such as skewness and kurtosis when the mean and variance are common practice. Skewness and 

kurtosis are important within the context of portfolio returns as it can help interpret likelihoods 

of returns and affects decision making under difference levels of risk tolerance. One of the 

biggest issues that research has shown is that higher moments only matter during rare events and 

are heavily influenced by these rare events, so historical data is not a strong indicator of future 

events (diBartolomeo, 2014). Additionally, skew especially has been hard to predict, where 

being wrong on the sign of the skew leads to extremely large estimation errors. Nonetheless, 

higher moments do contain value, especially in a Bayesian framework where a model is trying to 

constantly update its estimations, in selecting better performing portfolios in an adjusted 

Markowitz optimization schema (Harvey, 2004). 

 In efforts to augment historical data with forward looking indicators, researchers have 

found that options contain implied information about an asset that can greatly improve out-of-

sample portfolio performance. Specifically, the option implied volatility, correlation, skewness, 

and risk premium for stochastic volatility have been found to be useful (McMillan, 2013). Option 

implied volatility refers to the level of volatility that the Black-Scholes equation would need to 

equate current option prices trading in the market. Correlation, skewness, and risk premium can 
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then be derived on these measures of volatility. In previous approaches, this information has 

been used to rank stocks based on desirability through adjusting their variance levels, or as inputs 

for the parametric-portfolio methodology (DeMiguel, 2012). Regardless of how it’s used, the 

information derived from options pricing is beneficial to portfolio optimization due to its 

forward-looking nature that encapsulates investor views and confidence. As such, this thesis will 

focus on investigating one feature of options, the skewness, to enhance predictions about the 

underlying asset and improve portfolio optimization. 

Multi-Period Optimization 

 While higher moments and options can aid in deriving a better prediction on future asset 

performances, another approach researchers have tested is using the same amount of information 

but factoring in regime shifts to segment expected behavior. A regime within the context of a 

stock can be defined by as a period with defined characteristics, such a bull versus bear regimes 

characterized by above and below average returns, respectively. By identifying regimes and 

changes in regimes using Hidden Markov Models (HMM), it becomes possible to not only get a 

probabilistic interpretation of what type of returns and volatility are expected, but also to classify 

the current regime and help guide portfolio selection (Kim, 2019). Hidden Markov Models are a 

machine learning method that allows for predicting unobservable variables based on a set of 

observable states. Thus, it becomes very applicable in the use case of identifying regimes, which 

is not directly observable, based on observable metrics of each regime, such as interest rate or 

volatility amongst many other possible measurable metrics. These efforts have led to multi-

period optimization strategies, enabling more detailed and effective portfolio selection (Oprisor, 

2020). Since each period can be understood to have its own optimal portfolio, multi-period 

strategies best mimic how markets can change over time and allow modeling of transitional 
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probabilities and optimizing to get the best performance per regime rather than a blanket 

optimization schema regardless of regime. 

 The goal of this thesis will be to try and combine these two approaches, applying a multi-

period approach to higher moments from option-implied metrics, specifically focusing on 

skewness of the options and its implications within asset performance. Since skewness of options 

is a very volatile number, simplifying the predictions to regimes of the options’ skewness rather 

than explicit numerical interpretations can hopefully reduce estimation error while still providing 

tangible benefits to the portfolio optimization via additional information and segmentation. 
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II. Theoretical Framework  

There are going to be two main areas of research that this thesis aims to tackle and 

combine: ways to use options data and incorporate information about higher moments, and how 

to perform multi-period optimizations through regime detection. 

Options Related Moments 

 As described in the previous section, the goal will be to make use of the higher moments 

of options to get implied information about the underlying assets, focusing on option skewness 

measurements. One of the most common and basic ways to price options is using the Black-

Scholes equation for pricing European options.  

𝐶 = 𝑆𝑁(𝑑!) − 𝑁(𝑑")𝐾𝑒#$% 

Where 𝐶 denotes the price of the European call option, 𝑆 denotes the current stock price, 𝑁(𝑑) 

denotes the standard normal distribution, 𝐾 denotes the strike price, 𝑟 denotes the risk-free rate, 𝑡 

denotes the time to expiry, and 𝑑! =
&'(!")*($*,

#/")%

,√%
, 𝑑" = 𝑑! − 𝑠√𝑡. 

Using the Black-Scholes equation, we can utilize the market prices of the at-the-money 

(ATM) contract to derive an implied volatility of the underlying stock by reversing and solving 

for what level of volatility is needed to get the market price that is currently trading. At the 

money refers to the contract trading closest to the current price of the stock, and it has a delta of 

50. Delta measures the change in the price of the option with change in the underlying asset 

price, and a delta of 50 is atm while deltas of 100 are far in the money. One of the major 

assumptions of Black-Scholes is that the asset follows a log-normal distribution of returns, which 

would not account for any influence by higher moments. Under this assumption, the volatility 

curve would be perfectly symmetrical, since there is equal probability of the asset increasing and 

decreasing in price. Thus, instead of using the implied volatility alone, the goal will be to 
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incorporate the skewness of the implied volatility, as that has been found to contain information 

about the higher moments of the option price and as a result, gives higher moment implied 

information about the underlying asset as well to improve portfolio optimization. 

 To calculate skewness, skewness must first be defined. Under the Black-Scholes 

equation, the implied volatility of a call and put equidistant from the strike price should be equal. 

However, in practice, options typically do not have the same implied volatility across all the 

strike prices and time to expiries. The financial explanation is one of supply and demand: across 

different strikes, there are differing levels of buying interest, thus leading to prices being higher 

or lower and as a result, differing levels of implied volatility. The result when plotting volatility 

is that of a volatility smile or smirk, and when time is factored in, a volatility surface. 

***Please Insert Figure 2 Here*** 
 

In general, the volatility is asymmetric, and that asymmetry is option skew. Due to 

investor interest, calls are generally sold more, and puts are bought more, so the volatility smile 

has a skew to it in favor of puts. The skew of options will be measured as the difference of 

equidistant implied volatilities, and this distance can be measured as the difference between 

equidistant implied volatility, with one very notable measurement detailed below as the 

difference between the implied volatilities of the 25-delta put and call, normalized by the 

volatility of the 50-delta option (Mixon, 2011). 

𝑆𝑘𝑒𝑤 =
𝐼𝑉#"01 − 𝐼𝑉"01

𝐼𝑉023
 

Through these measurements, we will be able to calculate the skewness of the option 

over time in a standardized method. One major assumption that is kept is that the implied 

volatility can be accurately obtained, either through reverse solving the Black-Scholes equation, 

or provided via market data and interpolation. 
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Multi-Period Optimization 

 The traditional Markowitz optimization problem simply seeks to minimize the difference 

between the portfolio variance and expected returns. The formulation is as follows: 

min
4
𝑤5Σ𝑤 − 𝑤5𝜇 such that 𝑤5𝑒 = 1, where 𝑤 is the weights, 𝜇 is the expected returns, and Σ is 

the covariance matrix. The only constraint that is leveraged is that the weights sum to 1, i.e., not 

allowing any short selling of assets. In this most basic version, there is no account of transaction 

costs or other desirable properties of portfolios. 

After the parameters are set, the optimal weights can be solved for. The Markowitz 

optimization will serve as the basis of optimization that this thesis will focus on improving 

through additional inputs of option related moments. By holding the core optimization constant, 

the effect of the additional data can be tested and isolated. 

To achieve multi-period optimization, regimes must be established, and one such method 

to do so is the use of Hidden Markov Models. In the figure below, the schema for an HMM is 

depicted, with hidden states being the unobservable underlying characteristics, and the 

observable states being ones that we can record. Hidden Markov Models follow the assumption 

that the current hidden state depends only on the previous hidden state, and the current 

observable variable depends only on the current unobservable state. In previous financial 

implications, the hidden states have been defined and periods of stagnancy, falling, or rising, and 

the observations have been market metrics such as Sharpe ratio or interest rate. To solve the 

HMM and obtain probabilities or to find the set of states that was most likely, The Baum-Welch 

or Viterbi algorithms, respectively, can be employed. These techniques have been widely used 

throughout machine learning and other HMM use cases. 

***Please Insert Figure 3 Here*** 
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Once the regimes are predicted, multi-period portfolio optimization can use the regime 

characteristics to select which assets to include in the portfolio. Since the Viterbi algorithm can 

give the most likely scenario, the transitional probabilities determined by the Baum-Welch 

algorithm can determine which assets are most likely to be in a favorable or unfavorable regime. 

By trimming down the asset selection process, the asset universe that is fed into the static 

weighting optimization will only allow investments in favorable assets and thus improve the 

performance of the portfolio. 

***Please Insert Figure 4 Here***  
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III. Methodology 

Data Acquisition 

 The data is acquired through OptionMetrics, a largely cited options data source, accessed 

via WRDS. The IvyDB US database within OptionMetrics contains volatility surfaces for 

options through many years. In this thesis, the data was used from 2014 to 2019, stopping shy of 

the hyper-volatile events of 2020. Information about the volatility surface and asset price were 

pulled daily for ten stocks: Apple (AAPL), Amazon (AMZN), Microsoft (MSFT), Alphabet 

(GOOG), Meta (FB), Tesla (TSLA), Nvidia (NVDA), Dow Jones Industrial Average (DIA), 

Aggregate Bond ETF (AGG), and SPDR Gold Trust (GLD). The technology stocks were chosen 

due to technology stocks historically having volatile option skew numbers and giving more 

information regarding option implied metrics, and the above stocks represent the biggest 

technology stocks in terms of market capitalization and trading volume. The other three stocks of 

DIA, AGG, and GLD were chosen as common hedges of technology stocks and have some of 

the largest trading volume as well, thus allowing portfolio optimization to select hedges and form 

the best and most representative portfolios. 

 After the data is pulled, the skewness can be calculated using the method Mixon 

described. OptionMetrics offers the implied volatilities of the interpolated 25 and 50 delta 

options for both calls and puts, so the skew can be calculated as the 25-delta put minus the 25-

delta call divided by the implied volatility of the 50-delta option, taken as the average implied 

volatility of the 50-delta options. The term horizon was chosen as 30 days since the portfolio 

rebalancing is every 30 days, and monthly options are a common trading strategy that offers high 

liquidity. So, after accessing OptionMetrics, the daily information about 30 day option skewness 

and asset returns for each of the 10 stocks listed should be complete. 
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HMM Training 

 Once the skewness of the options and underlying data metrics are calculated, the regimes 

prediction will be accomplished via HMM. The number of hidden states will be set as two, 

representing a bull and bear regime, where a bull regime can be expressed as one with a lower 

skewness measure. In general, a lower and more negative skew implies more investors seeking to 

own the asset, a bullish signal (Norland, 2019). The observation variable will be the skewness 

measure every 21 days, roughly one month in time as each month has 21 trading days. The 

HMM will assume a Gaussian distribution of skewness measures for each hidden state. The 

HMM is trained with the Baum-Welch algorithm with monthly observations of data from 2014-

2018 inclusive, employing the use of the python package hmmlearn. Once the HMM is trained 

for a particular asset, it will then make a prediction on each month using the Viterbi algorithm. 

The confidence of the binary regime prediction will be calculated using the transition 

probabilities from the Baum-Welch algorithm. In this way, there is a deterministic ordering of 

which stocks are the most likely to belong to a regime that is “bullish”, i.e. low skewness, for 

each month, according to the results of the HMM. 

Portfolio Weighting 

Within the portfolio optimization, the year 2019 will be the test year. The portfolio will 

be rebalanced monthly, with the objective function being maximization of Sharpe ratio. The 

expected returns will be an exponentially weighted average of returns with a 21-day half-life. 

The risk will be computed similarly as the exponentially weighted standard deviation, again with 

a half-life of one trading month. The optimization is done via the PyPortfolioOpt library in 

python, combined with data manipulation using Pandas. 
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 The benchmark portfolio will be the above optimization applied to the universe of 10 

stocks, without any trimming of asset class. The filtered performance considering the HMM 

results will be the performance of the same optimization but applied to only the top 5 (50% of 

total asset universe) most “bullish” stocks as deemed by the HMM regimes. Should all stocks in 

a particular month be in a bearish regime, it will be the 5 stocks that are least likely to be in those 

regimes. To test whether there has been any statistically significant improvement because of the 

filtering, a linear regression test for alpha can be used (Foster, 2011). Since the benchmark 

portfolio will be considered the market portfolio, the returns of the filtered assets can be modeled 

as 𝑅 = Β𝜇 + 𝛼, where 𝑅 denotes the filtered returns, 𝜇 denotes the benchmark returns, and 𝛼 

denotes a constant improvement. A statistically significant value of 𝛼 would indicate that there 

has been an improvement in the portfolio performance.  
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IV. Results 

First conducting an exploratory data analysis, we confirmed that the skewness measures 

of most stocks do represent a relatively normal distribution. This result helps verify that the 

HMM model assumptions are somewhat valid, although more testing is needed to assess the 

extent to which the distribution is normal. 

***Please Insert Figure 5 Here*** 

Next, the transitional probabilities for each asset were determined via the Baum-Welch 

algorithm, and the probability of staying within the current regime, i.e., not switching regimes 

the next month, was found to be 91.3% chance on average. While we can’t say what degree 

accuracy this entails, it suggests that regimes last over several months and do not switch on short 

horizons, which would match previous literature and financial market findings that economic 

cycles have long horizons. 

***Please Insert Figure 6 Here*** 

According the HMM results, the figure below shows which ones were the top 5 bullish 

stocks per month in 2019. 28 out of these 60 predictions truly had a top 5 average return in that 

month, and in 7/12 months the top returning stock was included in the list. These results raise 

some concerns, as the accuracy seems to be only about half, but since we were not trying to 

merely predict highest returns in the HMM but rather most optimal skew, the returns itself do not 

necessarily indicate anything. Having the highest returning assets are indeed indicative of good 

portfolio performance to come, but it does not validly measure the success of the HMM. Another 

interesting note is that the highest returning stocks in 2019, NVDA and AAPL, never made the 

top 5 most bullish stocks picked by the HMM, but further investigation is needed to determine if 

this marks any significance. 
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***Please Insert Figure 7 Here*** 

The results of the portfolio performance can be seen in the figure below. The benchmark 

portfolio has an annualized return of 13.62%, volatility of 10.26%, and a Sharpe ratio of 1.29. 

The portfolio with filtered assets has an annualized return of 17.70%, volatility of 14.11%, and a 

Sharpe ratio of 1.23. The Sharpe ratio decreased, despite having higher returns, indicating that 

there may not have been a significant improvement. The benchmark portfolio was found to have 

held 4.16 stocks on average with an average weight of 0.19, and the filtered portfolio held 2.58 

stocks on average with an average weight of 0.37. This shows that there was nearly double the 

diversity in the benchmark portfolio, which is likely what led to the lower volatility and better 

Sharpe ratio. Note that in May, there was a steep drop in both portfolios, and this was due to the 

performance of FB, where both portfolios held large weights of that stock. Overall, the most held 

stock in the benchmark was AGG and GLD in the filtered, likely due to their hedging properties. 

***Please Insert Figure 8 Here*** 

 Finally, the results of running a regression test for alpha show that there was not a 

statistically significant improvement in returns, with a p-value of 0.78. Thus, we find that the 

filtering done by HMM have a strongly correlated returns to the benchmark and do not actually 

offer any statistically significant improvement. 

***Please Insert Figure 9 Here*** 
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V. Conclusions and Limitations 

The HMM transition probability matrix predicts that volatility skewness regimes based 

on monthly options last over several months, which likely indicates that this methodology favors 

coupling longer term portfolio rebalancing with shorter-term options. So, any advantages of this 

methodology would likely lie in the term horizon difference. However, one major limitation of 

this method is that is very difficult to assess the accuracy of the HMM. The HMM algorithms 

can only tell us what the most likely sequence of regimes is, but it can’t tell what extent it is 

likely. The assumption of two hidden states, first order dependence, and Gaussian emission of 

skew remain simplifying assumptions, and an ideal model performance would need further 

exploration and testing. 

The increased volatility of the filtered portfolio performance is likely due to lower asset 

universe and thus lower number of assets in the portfolio and hedging properties no longer 

applying. The lack improvement in Sharpe Ratio suggests that this exact methodology of HMM 

using predicted option skewness doesn’t aid portfolio optimization, and the alpha test showing 

insignificance likely indicates that there is not a pure outperformance by the filtered assets. A 

large limitation in this area is that the asset universe and option horizon was chosen based on 

previous literature, so more research is needed to determine the effect of smaller portfolio size 

versus efficacy of option skewness regimes in portfolio optimization. Expanding the asset 

universe and changing term horizons would be very natural next steps of exploration.  

Thus, from this thesis, we can only conclude that using monthly option implied skewness 

regimes predicted via first-order two-state Gaussian HMMs do not enhance the Sharpe Ratio 

schema of portfolio optimization schema. As is the nature of portfolio construction, more testing 

is needed to make broader statements about the effects of HMMs and option skewness. 



 

15 

 

Anthony Zhao 

VI. Figures 

 

Figure 1: Efficient Frontier from Modern Portfolio Theory 

 
 

Figure 2: Symmetric Implied Volatility Curve 
 

 

Figure 3: Depiction of a First Order HMM 

 

Figure 4: Process of Using HMM Regime Information in Portfolio Optimization 
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Figure 5: Skewness Distribution of AAPL 

 

Figure 6: Transitional Probabilities of AAPL Skew Regimes 
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 Top “Bull” Stocks in 2019 

Month 1 FB GLD DIA MSFT GOOG 

Month 2 FB GLD DIA MSFT GOOG 

Month 3 FB GLD AMZN DIA MSFT 

Month 4 FB GLD AMZN DIA MSFT 

Month 5 FB GLD AMZN DIA MSFT 

Month 6 FB GLD DIA AMZN MSFT 

Month 7 GLD DIA MSFT GOOG AMZN 

Month 8 GLD DIA MSFT GOOG AMZN 

Month 9 GLD DIA AGG MSFT GOOG 

Month 10 GLD DIA MSFT GOOG AMZN 

Month 11 GLD DIA AGG MSFT GOOG 

Month 12 GLD TSLA DIA AGG MSFT 

Figure 7: Top Bullish Stocks of 2019 
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Figure 8: Portfolio Performances in 2019 

 

 
Figure 9: Regression Results for Alpha Significance Test  
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