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Abstract
We give a unified proof of algorithmic weak and Szemerédi

regularity lemmas for several well-studied classes of sparse

graphs, for which only weak regularity lemmas were previ-

ously known. These include core-dense graphs, low thresh-

old rank graphs, and (a version of) Lp
upper regular graphs.

More precisely, we define cut pseudorandom graphs, we

prove our regularity lemmas for these graphs, and then we

show that cut pseudorandomness captures all of the above

graph classes as special cases. The core of our approach

is an abstracted matrix decomposition, which can be com-

puted by a simple algorithm by Charikar. Using work of

Oveis Gharan and Trevisan, it also implies new PTASes for

MAX-CUT, MAX-BISECTION, MIN-BISECTION for a

significantly expanded class of input graphs. (It is NP Hard

to get PTASes for these graphs in general.)

KEYWORDS

approximation algorithms, graph algorithms, regularity

lemmas

1 INTRODUCTION

In graph regularity, the goal is roughly to partition the nodes of an input graph into a few parts so

that the graph looks like a random bipartite graph between most pairs of parts. The area was pio-

neered by a classic lemma of Szemerédi [31], which guarantees the existence of a good partition for

any sufficiently dense input graph. This Szemerédi regularity lemma has many deep algorithmic and

combinatorial applications [22]. It has also spawned a line of work on regularity lemmas themselves;

notable examples include the weak regularity lemma of Frieze and Kannan [12], the strong regularity

lemma of Alon, Fischer, Krivelevich, and Szegedy [2], and so forth. These lie at the center of a deep

mathematical theory of graph limits [3,24].
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A limitation of these regularity lemmas is that they only comment on sufficiently dense input

graphs; for example, if a graph has n nodes and ≤ n1.99
edges, then none of these regularity lemmas

promise a partition with nontrivial properties. There are constructions demonstrating that this is

unavoidable, and there can be no perfectly analogous regularity lemmas that extend to all sparse graphs

[11,15]. However, it may still be possible to prove regularity lemmas for some graph classes of inter-

est. This is the basis for sparse graph regularity, a research area that investigates which useful classes

of sparse graphs admit nontrivial regularity lemmas. Some notable successes in the area include var-

ious sparse regularity lemmas and applications for jumbled graphs and (n, 𝑑, 𝜆) graphs (see survey

[23]), upper regular graphs [21], Lp upper regular graphs [6,7], graphs of low threshold rank [14],

and core-dense graphs [19].

The objective of the current article is to unify and strengthen the linear algebraic foundations of

sparse regularity. We abstract a theorem of Lovász and Szegedy [25] into a matrix decomposition, and

we use this decomposition to define a new class of graphs that we call cut pseudorandom. We then

prove:

• Essentially all classes of graphs mentioned above are cut pseudorandom, and

• Cut pseudorandom graphs have sparse weak and Szemerédi-type regularity lemmas. For many

of the above graph classes, the sparse Szemerédi regularity lemmas were not previously known.

• Additionally, there is a simple polynomial-time algorithm that computes decompositions satis-

fying these sparse regularity lemmas for cut pseudorandom graphs.

In the following, we overview the matrix decomposition and its consequences more formally.

1.1 Cut decompositions

In the following, a cut vector is a vector with entries in {0, 1}, a cut matrix is the scaled outer product

of two cut vectors (i.e., it is a matrix that is constant on some S × T block and zero elsewhere), and

the cut norm ‖A‖□ of a matrix A is maxv,w |vTAw|, where the max is taken over cut vectors v,w. We

write 𝟙 for the cut vector where all entries are ones. In their seminal work on weak algorithmic graph

regularity, Frieze and Kannan proved:

Theorem 1 (Cut approximation [12]). For any binary matrix A ∈ Rn×n and 𝜀 > 0, there is ̂A that is
a sum of O(𝜀−2) cut matrices such that

‖
‖
‖

A − ̂A‖‖
‖□
≤ 𝜀n2

.

The proof of Theorem 1 uses a greedy method: in each round we “select” a new pair of cut vectors

(v,w), and we define ̂A as the projection of A onto the span of the matrices wvT
from pairs chosen so

far. Ideally, one would select cut vectors v,w in each round that achieve the cut norm on A − ̂A, but

from a computational perspective this task is NP-Hard. So instead, the selection process typically uses

approximation algorithms to find v,w; when A is dense an extremely fast one was given by Frieze and

Kannan [12], and for sparse graphs it is common in the current literature to use a nice approximation

algorithm for the cut norm by Alon and Naor [4], based on semidefinite programming.

Later, Lovász and Szegedy [25] proved a highly generalized version of Theorem 1. They used a

slightly different selection rule from [12]: in each round they select the cut vectors (v,w) maximizing

the mass (measured in Frobenius norm) removed from A− ̂A as the result of their choice. This method

is extremely flexible, and it implies a generalization of Theorem 1 to essentially any inner product

space (cf., [25, Lemma 4.1]). But the drawback of this method is that it is not algorithmic in the context
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relevant to graph regularity: it is not clear how to compute (or even approximate) in polynomial time

the cut vector pair that removes the most mass from A − ̂A.

In this article, we propose yet another selection rule: in each round, we select the nonzero cut

vectors v,w maximizing

|
|
|
|
|
|
|

vT
(

A − ̂A
)

w

||v||2||w||2

|
|
|
|
|
|
|

. (1)

We prove that this approach also leads to an approximation as in Theorem 1. Additionally, an

advantage over the previous two methods is that the maximizing cut vectors v,w can be computed

exactly in polynomial time using a simple LP-rounding algorithm by Charikar [8]. Our method also

generalizes to other inner product spaces in the same way as [25], and in the Appendix, we show that

our method remains algorithmic when a diagonal inner product is used.

An important conceptual point is that, since we have a deterministic selection rule, we may treat

this process as an explicit matrix decomposition. We define the ith projection value 𝜙i of the decom-

position to be the mass removed from A in the ith round (as measured by Frobenius norm in the

“main” decomposition, or a different norm when a different inner product is used—see Section 2.2 for

details). There is an analogy here to the singular values, which can be viewed as the mass removed in

each round of a similar greedy process where v,w are not constrained to be cut vectors. The analogy

is not perfect, linear algebraically speaking: for example, there can be n2
nonzero projection values

but there only n singular values, and unlike singular values, the projection values are not necessarily

decreasing. But, as we discuss next, the analogy is useful in the context of regularity lemmas. Using

this, we revisit a recent line of work that proves regularity lemmas by analysis of their singular val-

ues, and we show that simpler and stronger proofs can be obtained when projection values are used

instead.

1.2 Regularity for cut pseudorandom graphs

First, we give a formal background on graph regularity. In this exposition, let G be an n-node undirected

unweighted graph with adjacency matrix AG. The weak regularity lemma of Frieze and Kannan states:

Theorem 2 (Weak regularity lemma [12]). For any 𝜀 > 0, there is a vertex partition Π of G into
|Π| ≤ 2

𝜀

−2 parts and a weighted graph H satisfying:

• The adjacency matrix AH of H is constant on its V1 × V2 block for all V1,V2 ∈ Π, and
• ‖AG − AH‖□ = O(𝜀n2).

It is common to merge the blocks of Π into supernodes, and treat H as a node- and edge-weighted

graph on a small number of nodes that approximates the cuts of G. In parallel, the Szemerédi regularity

lemma controls a more stringent norm, at the price of a worse dependence on 𝜀 in partition size. For a

matrix A ∈ Rn×n
and a partition Π of [n], let us define the partition norm as the quantity

‖A‖Π ∶=
∑

V
1
,V

2
∈Π

‖A[V1 × V2]‖□ ,

where A[V1 × V2] denotes the matrix that agrees with A on its V1 × V2 block and is 0 elsewhere.
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Theorem 3 (Szemerédi regularity lemma [25,31]). For any 𝜀 > 0, there is a vertex partition Π into
|Π| ≤ tower(𝜀−2) parts1 and a weighted graph H satisfying:

• The adjacency matrix AH of H is constant on its V1 × V2 block for all V1,V2 ∈ Π, and
• ‖AG − AH‖Π = O(𝜀n2).

We have that ‖A‖□ ≤ ‖A‖Π, and so it is generally stronger to control the partition norm, and

this is sometimes required in applications [1,22]. For an unweighted adjacency matrix, both norms are

bounded by n2
, so these regularity lemmas improve on the trivial control by a factor of 𝜀. The norm

controls of 𝜀n2
in Theorems 2 and 3 apply only when G = (V ,E) has unweighted nodes and edges,

and they are nontrivial only when |E| ≫ 𝜀n2
. It is natural to ask whether analogous theorems can

be proved for sparser graphs. Unfortunately, there are barriers to achieving analogs that work for all
sparse input graphs [11,15,26].

2
However, sparse regularity lemmas can be proved for certain classes

of input graphs that satisfy various “pseudorandomness” criteria. We propose a new such graph class

here, with the goal of simultaneously generalizing pseudorandomness concepts that have been studied

previously in the literature.

In the following, let G = (V ,E,w, vol) be a graph with edge weights (w) and node weights (vol).

Let w∗(u, v) ∶= w(u, v)vol(u)vol(v), let w∗(E) be the sum of w∗(e) over all edges e ∈ E, and let A∗G
be the fully weighted adjacency matrix: that is, the (i, j)th entry of A∗G ∶= w∗(vi, vj), or 0 if (vi, vj) is a

non-edge. The cut decomposition is the greedy matrix decomposition outlined in the previous section,

and 𝜙
(r)

is the vector that holds the projection values from the first r rounds of this process. We define:

Definition 1 (Cut pseudorandomness). The graph G is r cut pseudorandom with respect to a diagonal

positive definite matrix D if, when we take the cut decomposition of A∗G with respect to inner product

⟨x, y⟩ ∶= xTDy, the projection values satisfy

‖
‖
‖
𝜙

(r)‖‖
‖2

= O
(

w∗(E)
⟨𝟙, 𝟙⟩

)

.

Note that the definition of cut pseudorandomness depends not just on the graph G, but also on our

selection rule and hence the inner product in play—a graph that is r cut pseudorandom with respect to

one matrix D might not be so under another matrix D′
. We then prove the following sparse regularity

lemmas for cut pseudorandom graphs:

Theorem 4 (Regularity lemmas for cut pseudorandom graphs). If G is r = Θ(𝜀−2) cut pseudorandom,
then it has a sparse weak regularity lemma, that is, Theorem 2 holds with w∗(E) in place of n2. If G is
r = tower(𝜀−2) cut pseudorandom, then it has a sparse Szemerédi regularity lemma, that is, Theorem
3 holds with w∗(E) in place of n2. (See Theorems 6 and 7 for self-contained statements.)

Moreover, we show that sparse weak and Szemerédi decompositions for cut pseudorandom graphs

can be computed in polynomial time. The point of cut pseudorandomness is not so much that the

definition is clearly interpretable, but rather, that it simultaneously captures several previously studied

graph classes that do have clear interpretations. We discuss these next.

1
Recall that tower(x) = 2

2
2
…

with total height x.
2
A general sparse regularity lemma is possible if one allows a large “exceptional set” in which many edges can be hidden [27,29].

Szemerédi’s original regularity lemma allowed an exceptional set; for dense unweighted input graphs, this is equivalent to the

phrasing by partition norm. For sparser input graphs, the phrasing by partition norm is stronger and often preferable [25], and

our exposition in this article refers to the natural sparse generalization by partition norm.
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1.3 Graph classes captured by cut pseudorandomness

First, we discuss the following version of Lp upper regularity:

Definition 2 (Lp
upper regularity [6,7]). The graph G = (V ,E) is Lp upper 𝜂 regular if, for any vertex

partition Π of size |Π| ≤ 𝜂−1
, we have

(
∑

V
1
,V

2
∈Π

(
vol(V1)(V2)

vol(V)2

)(
w∗(V1,V2)

vol(V1)vol(V2)

)p
)1∕p

≤ O
(

w∗(E)
vol(V)2

)

,

where w∗(V1,V2) is the sum of w∗(e) over all edges going between V1 and V2.

The original definition of Lp
upper regular considers a somewhat narrower class of partitions;

namely, those that satisfy vol(Vi) ≥ 𝜂vol(V) for all Vi ∈ Π. We discuss the significance of this change

in Section 4.1. Lp
upper regular graphs are important mainly because, in [6,7], the authors extend a

theory of graph limits from the case L∞ to general p; their interpretation is further discussed in these

papers. The case p = ∞ was first explored by Kohayakawa [21] and Rödl [28], and the version with

node weights was considered in [1]. These papers develop sparse Szemerédi regularity lemmas for L∞
upper regular graphs, although their lemmas do not readily extend to Lp

upper regular graphs when

p < ∞. L∞ upper regular graphs include the notable special case of jumbled graphs [9,23,33,34],

which in turn include (n, 𝑑, 𝜆) graphs with appropriate parameters; these cases are studied in particular

because they enjoy some expanded applications over the general case [10,13].

Alongside this theory, there are also sparse regularity lemmas for different spectrally motivated

classes of input graphs. These include the following.

Definition 3 (Low threshold rank [5,14,16–18]). For a graph G, let A be its adjacency matrix, D its

diagonal matrix of node degrees, and A = D−1∕2AD−1∕2
its normalized adjacency matrix. For 𝜀 > 0,

the 𝜀 threshold rank of G is

t
𝜀

(G) ∶=
∑

𝜆 an eigenvalue of A,𝜆>𝜀

𝜆

2
.

We say that G has low 𝜀-threshold rank if t
𝜀

(G) = O(1).

We also discuss the “weighted” version of this definition in Section 4.2. Graphs of low threshold

rank gained prominence due to a sequence of papers achieving approximation algorithms for these

graphs, where comparable approximation algorithms are known to be hard in the general case (e.g.,

[5,16–18]). Oveis Gharan and Trevisan [14] gave a nice explanation for these by supplying a weak

regularity lemma for low threshold rank graphs, and using it for further improved approximation

algorithms. A related property was considered by Kannan and Vempala [19]:

Definition 4 (Core density [19]). The core strength of a graph G with adjacency matrix A is the

quantity

∑

i,j

Aij
(
deg(i) + 𝑑

) (
deg(j) + 𝑑

) ,

where 𝑑 is the average node degree. We say that G is core dense if its core strength is O(1).
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TABLE 1 Sparse regularity lemmas for various graph classes in

prior work are indicated with single checkmarks

Sparse graph class
Sparse Szemerédi
regularity?

Sparse weak
regularity?

L∞ upper regular ✓ [21,28] ✓ [21,28]

Lp upper regular ✓✓ ✓ [6,7]

Low threshold rank ✓✓ ✓ [14]

Core dense ✓✓ ✓ [19]

Note: We give a unified proof of all entries in this table, thus recovering

all checkmarks and proving the double checkmarks as new results.

This also has a natural weighted extension, discussed in Section 4.2. The main advantage of core

density is that it can additionally be extended to tensors; we refer to [19] for details. They developed

a weak regularity lemma for these graphs, and similarly used it toward approximation algorithms for

core dense graphs.

Currently, all of the above graph classes have related but somewhat different proofs of weak reg-

ularity lemmas. Our point is that all of these graph classes can be viewed as special cases of cut

pseudorandomness:

Theorem 5 (Cut pseudorandomness of graph classes).

• If a graph is Lp upper 𝜂-regular for any p ≥ 2 (with the change in definition mentioned above),
then it is O(log(1∕𝜂))-cut-pseudorandom.

• If a graph has low 𝜀 threshold rank, then it is O(1∕𝜀2)-cut-pseudorandom.
• If a graph is core dense, then it is r-cut-pseudorandom for every r.

Hence, we get sparse weak and Szemerédi regularity lemmas for these graphs in one shot; except

in the case of L∞ upper regularity, the sparse Szemerédi regularity lemmas are new. We remark that

[6,7] establish weak regularity lemmas for Lp
upper regular graphs for all p ≥ 1, so we leave a small

gap here, since our theorem begins at p ≥ 2. References are given in Table 1.

1.4 Algorithmic applications

Regularity lemmas are commonly used in approximation algorithms of NP-hard problems that can

be related in some way to graph cuts. For example, it is NP-Hard to find a MAX-CUT PTAS for

general graphs [20], but the weak regularity lemma of Frieze and Kannan [12] was initially used for an

extremely efficient MAX-CUT PTAS for dense unweighted input graphs. A natural direction is then to

determine what other natural classes of graphs admit a PTAS for MAX-CUT or similar problems. Oveis

Gharan and Trevisan [14] proved PTASes for MAX-CUT, MAX-BISECTION, and MIN-BISECTION

for graphs of low threshold rank, following prior work in [5,16–18]. In fact, they essentially prove

more generally that any graph class admitting suitable algorithmic regularity lemmas have PTASes for

these problems. Using their work, we get the following algorithmic corollaries of our decomposition:

Corollary 1. For any 𝜀 > 0 and any n-node unweighted graph G = (V ,E) that is O(𝜀−2) cut pseudo-
random (with respect to any matrix D), one can solve any of the following problems in 2

Õ(1∕𝜀3)+poly(n)
time:

• MAX-CUT within ±𝜀|E| error,
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FIGURE 1 Some existing implications in the area of graph regularity (top), and how the results in this article change the

picture (bottom). For clarity we have omitted arrows in these diagrams that are implied transitively by a chain of other arrows,

even when these direct implications may have advantages (e.g., better quantitative bounds or faster computation). Citations

and explanations are given in the text below.

• MAX-BISECTION within ±𝜀|E| error, and
• MIN-BISECTION within ±𝜀|E| error.

For example, this implies that Lp upper regular graphs (and others) have PTASes for all these

problems, whereas none was previously known (Figure 1). These results are all discussed in more

detail in Section 5.

2 CUT DECOMPOSITIONS

The Frobenius inner product of two matrices ⟨⋅, ⋅⟩F is defined by

⟨A,B⟩F ∶= Tr(ABT ),
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which may be equivalently viewed as the Euclidean inner product of A,B as vectors. The Frobenius
norm ‖A‖F is the corresponding matrix norm, which may also be viewed either as the L2-norm of the

entries or of the singular values of A. The definitions of cut vectors, cut matrices, cut norm, partition

norm, and the 𝟙 vector will continue to be used in the following technical content; see Section 1.1 for

a reminder of these definitions.

2.1 Basic cut decompositions

As a warmup, we will first present the “basic” cut decomposition. The next part presents a generaliza-

tion that is needed for a few applications later in the article.

Let A ∈ Rn×n
, and let S = ∅ be an initially empty subset of cut matrices (recall that a cut matrix

is a scaled outer product of two cut vectors). At all times, the matrix ̂A is defined as the projection, by

⟨⋅, ⋅⟩F, of A onto span(S). Since S is initially empty, ̂A is initially 0.

2.1.1 Decomposition algorithm

Repeat the following process until ̂A = A. Let

v∗,w∗ ∶= arg max
v,w≠0∈X

|
|
|
|

vT

||v||2

(

A − ̂A
) w
||w||2

|
|
|
|
,

breaking ties arbitrarily, and add the cut matrix w∗v∗T
to S. Note that v∗,w∗ can be computed by a

simple polynomial time algorithm of Charikar [8]; see the Appendix for more details. We repeat the

process at most n2
times, since Rn×n

is an n2
dimensional space.

2.1.2 Definitions and properties

Let ̂Ai be the value of ̂A after the ith round of this process, and for i ≥ 1 let Ai ∶= ̂Ai − ̂Ai−1. The ith
cut projection value is the quantity 𝜙i ∶= ‖Ai‖F. Throughout, we use the notation 𝜙

(j)
to denote the

vector containing the first j projection values. Finally, we note that by construction the matrices {Ai}
are pairwise orthogonal (under ⟨⋅, ⋅⟩F), and that each ̂Ai is a linear combination of at most i cut matrices.

2.2 Cut decompositions under diagonal inner products

Let D ∈ Rn×n
be a diagonal positive definite matrix. The cut decomposition of a matrix A with

respect to D is defined as follows. The basic cut decomposition presented above is the same as the cut

decomposition of A with respect to the identity matrix I. First, the inner product ⟨⋅, ⋅⟩D is defined by

⟨A,B⟩D ∶=
⟨

D1∕2AD1∕2
,D1∕2BD1∕2

⟩

F ,

and ‖⋅‖D is the corresponding matrix norm. Again, S is an initially empty set of cut matrices. At all

times, ̂A is the projection of the matrix D−1AD−1
onto the span of the matrices in S, and now the

projection is by the inner product ⟨⋅, ⋅⟩D. In each round, we select the cut matrix M satisfying

M ∶= arg max
M∗ cut matrix

|
|
|
|
|

⟨
M∗

‖M∗‖D
,D−1AD−1 − ̂A

⟩

D

|
|
|
|
|

, (2)

and we add the cut matrix M to S. Roughly as before, we define:
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• ̂Ai is the value of ̂A after i rounds (so ̂A0 = 0),

• Ai ∶= ̂Ai − ̂Ai−1, and

• the ith projection value 𝜙i is ‖Ai‖D.

The first thing to point out is that the algorithm of Charikar [8] no longer directly finds the cut

matrix M maximizing (2) in polynomial time, essentially due to the renormalization of M∗
by ‖⋅‖D.

Thus, in the Appendix, we show that Charikar’s algorithm can be straightforwardly extended to solve

(2), so long as the matrix D holds integer entries on its diagonal between 1 and poly(n) (which it does

for all cases of interest in this article).

2.3 Projection values versus matrix norms

Here, we prove some inequalities that relate the projection values of the decomposition to various

matrix norms of interest. In the following lemmas, let A,D be matrices where D is diagonal positive

definite, and suppose we decompose A with respect to D giving projection values {𝜙i}.

Lemma 1. For all indices 0 ≤ i < n2, we have
(
𝟙TD𝟙

)
𝜙i+1 ≥

‖
‖
‖

A − D̂AiD
‖
‖
‖□

.

Proof. We have

𝜙i+1 = ‖Ai+1‖D =
‖
‖
‖
‖

D1∕2

(
̂Ai+1 − ̂Ai

)

D1∕2
‖
‖
‖
‖F

≥
‖
‖
‖
‖

D1∕2

(
̂Ai+1 − ̂Ai

)

D1∕2
‖
‖
‖
‖2

≥ max
v,w∈X

|
|
|
|
|

vTD1∕2

‖
‖D1∕2v‖‖2

D1∕2

(
̂Ai+1 − ̂Ai

)

D1∕2 D1∕2w
‖
‖D1∕2w‖‖2

|
|
|
|
|

= max
v,w∈X

|
|
|
|
|

⟨
wvT

‖
‖wvT‖

‖D
,

̂Ai+1 − ̂Ai

⟩

D

|
|
|
|
|

.

Recall that we have defined ̂Ai+1 as the projection of D−1AD−1
, by ⟨⋅, ⋅⟩D, onto the span of a set of

cut matrices, including wvT
where v,w maximize the above expression. Thus we may continue

= max
v,w∈X

|
|
|
|
|

⟨
wvT

‖
‖wvT‖

‖D
,D−1AD−1 − ̂Ai

⟩

D

|
|
|
|
|

= max
v,w∈X

|
|
|
|
|

vTD1∕2

‖
‖D1∕2v‖‖2

D1∕2

(

D−1AD−1 − ̂Ai

)

D1∕2 D1∕2w
‖
‖D1∕2w‖‖2

|
|
|
|
|

= max
v,w∈X

|
|
|
|
|
|
|

vT
(

A − D̂AiD
)

w
√

vTDv
√

wTDw

|
|
|
|
|
|
|

≥

‖
‖
‖

A − D̂AiD
‖
‖
‖□

𝟙TD𝟙
.

▪

Lemma 2. For any indices i ≤ j and any partition Π of [n], we have

‖
‖
‖
‖

D
(
̂Aj − ̂Ai

)

D
‖
‖
‖
‖Π
≤
(
𝟙TD𝟙

)
‖𝜙(i ∶∶ j)‖

2
.
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Proof. First, we notice that
‖
‖
‖
‖

D
(
̂Aj − ̂Ai

)

D
‖
‖
‖
‖Π

is maximized when Π is the completely refined

partition that puts each index into its own singleton subset. So without loss of generality we may

prove the inequality in this setting. In the following, absolute value symbols on matrices |M| are

applied entrywise, and we will use the fact that they commute with diagonal matrices; for example,

D|M| = |DM|.

‖
‖
‖
‖

D
(
̂Aj − ̂Ai

)

D
‖
‖
‖
‖Π
=

( n∑

a,b=1

|
|
|
|

(

D
(
̂Aj − ̂Ai

)

D
)

a,b

|
|
|
|

)

=
⟨

𝟙𝟙T
,

|
|
|
|
D
(
̂Aj − ̂Ai

)

D
|
|
|
|

⟩

F

=
⟨

D1∕2𝟙𝟙TD1∕2
,

|
|
|
|
D1∕2

(
̂Aj − ̂Ai

)

D1∕2
|
|
|
|

⟩

F
D diagonal

≤
‖
‖
‖

D1∕2𝟙𝟙TD1∕2‖‖
‖F

‖
‖
‖
‖

D1∕2

(
̂Aj − ̂Ai

)

D1∕2
‖
‖
‖
‖F

Cauchy–Schwarz

=
(
𝟙TD𝟙

) ‖
‖
‖
̂Aj − ̂Ai

‖
‖
‖D

=
(
𝟙TD𝟙

)
‖
‖
‖
‖
‖
‖

j∑

k=i+1

Ak

‖
‖
‖
‖
‖
‖D

.

Next, since the matrices {Ak} are pairwise orthogonal under ⟨⋅, ⋅⟩D, we have

‖
‖
‖
‖
‖
‖

j∑

k=i+1

Ak

‖
‖
‖
‖
‖
‖

2

D

=
j∑

k=i+1

‖Ak‖
2

D = ‖𝜙(i ∶∶ j)‖2

2

which combined with the above, gives

‖
‖
‖
‖

D
(
̂Aj − ̂Ai

)

D
‖
‖
‖
‖Π
≤
(
𝟙TD𝟙

)
‖𝜙(i ∶∶ j)‖

2
.

▪

Lemma 3. For any index r, we have
‖
‖
‖
𝜙

(r)‖‖
‖2

≤
‖
‖
‖
Λ(r)‖‖

‖2

,

where Λ is the vector containing the singular values of the matrix D−1∕2AD−1∕2 in non-increasing
order.

Proof. First, we have

‖
‖
‖
𝜙

(r)‖‖
‖

2

2

=
r∑

i=1

‖Ai‖
2

D

=
‖
‖
‖
‖
‖

r∑

i=1

Ai

‖
‖
‖
‖
‖

2

D

{Ai} orthogonal

= ‖
‖
‖
̂Ar
‖
‖
‖

2

D

= ‖
‖
‖

D1∕2
̂ArD1∕2‖‖

‖

2

F
.
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Recall that ̂Ar is the projection of D−1AD−1
, by ⟨⋅, ⋅⟩D, onto the span of r cut matrices, which all

have rank one. Equivalently, we can say that D1∕2
̂ArD1∕2

is the projection of the matrix D−1∕2AD−1∕2
,

by standard Frobenius inner product ⟨⋅, ⋅⟩F, onto the span of r matrices of rank one. Let M∗
be the

matrix maximizing ‖M∗‖F over the matrices that are projections of D−1∕2AD−1∕2
onto the span of r

rank one matrices; thus, we have

‖M∗‖F ≥
‖
‖
‖

D−1∕2
̂ArD−1∕2‖‖

‖F
.

Since M∗
is found by taking the leading r terms of the singular value decomposition of D−1∕2AD−1∕2

,

it follows that ‖M∗‖F is exactly the 2-norm of the leading r singular values. Thus

‖
‖
‖
𝜙

(r)‖‖
‖

2

2

= ‖
‖
‖

D1∕2
̂ArD1∕2‖‖

‖

2

F
≤ ‖M∗‖2

F =
‖
‖
‖
Λ(r)‖‖

‖

2

2

.

▪

3 SPARSE REGULARITY LEMMAS FOR CUT PSEUDORANDOM GRAPHS

We will prove various regularity lemmas for cut pseudorandom graphs in this section. Let us first

introduce some notation. The graphs G = (V ,E) discussed in the rest of this article are undirected

and have both edge weights and node weights, all of which are positive. In principle, we can allow

self-loops if desired.

• We write vol(v) for the weight of a node v, or vol(V) for the summed weight of the node set V .

• We write w(e) for the weight of an edge e, or w(E) for the sum of w(e) over all e ∈ E, or w(V1,V2)
for the sum of w(e) over all e ∈ E ∩ (V1 × V2).

• We write w∗(u, v) ∶= w(u, v)vol(u)vol(v), and similarly w∗(E) is the sum of w∗(e) over all edges

e ∈ E, and w∗(V1,V2) is the sum of w∗(e) over all edges e ∈ E ∩ (V1 × V2).
• The edge-weighted adjacency matrix A has entries Aij = w(vi, vj) for each edge (vi, vj), or Aij =

0 if (vi, vj) is a non-edge. The fully weighted adjacency matrix A∗ instead has entries A∗ij =
w∗(vi, vj), or A∗ij = 0 if (vi, vj) is a non-edge.

Definition 5 (Cut pseudorandomness). We say that a graph G is r cut pseudorandom with respect

to a diagonal positive definite matrix D if, when we take the cut decomposition of its fully weighted

adjacency matrix A∗ with respect to D, the projection values {𝜙i} satisfy

‖
‖
‖
𝜙

(r)‖‖
‖2

= O
(w∗(E)
𝟙TD𝟙

)

.

We will sometimes just say “cut pseudorandom,” making D implicit, when we do not need to

reference it.

We notice that cut pseudorandomness implies r′ < r cut pseudorandomness, so it is typically

strongest to state our results with r as small as possible.

3.1 Sparse cut approximation and sparse weak regularity

Here, we prove two closely related results on approximating the cut norm of a graph:
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Lemma 4 (Sparse cut approximation). Let 𝜀 > 0 and let G = (V ,E) be r = Θ(𝜀−2) cut pseudorandom.
Then there is a graph H = (V ,EH), possibly with different node and edge weights from G, such that:

• The edge-weighted adjacency matrix of H is the sum of O(𝜀−2) cut matrices, and
• ‖

‖A∗G − A∗H‖‖□ = O(𝜀w∗(E)), where A∗G,A∗H are the fully weighted adjacency matrices of G,H,
respectively.

Proof. Compute a cut decomposition of the fully weighted adjacency matrix A∗G of G with respect

to the matrix D implying cut pseudorandomness. Let {𝜙i} be the projection values. The smallest entry

𝜙i in 𝜙
(r)

satisfies

𝜙i ≤
‖
‖𝜙

(r)‖
‖2√

r
= O

(

𝜀

‖
‖
‖
𝜙

(r)‖‖
‖2

)

= O
(

𝜀 ⋅
w∗(E)
𝟙TD𝟙

)

,

where the last equality follows by cut pseudorandomness of G. By Lemma 1, we have

𝜙i ≥

‖
‖
‖

A∗G − D̂A∗i−1
D‖
‖
‖□

𝟙TD𝟙
,

where ̂A∗i−1
is from the decomposition of A∗G. Combining these inequalities, we have

‖
‖
‖

A∗G − D̂A∗i−1
D‖
‖
‖□

= O(𝜀w∗(E)).

Then, we recall by construction that ̂A∗i−1
is a linear combination of i − 1 ≤ r cut matrices. We

interpret this as the edge-weighted adjacency matrix of the graph H, and we interpret the diagonal

entries of the matrix D as the node weights of H. Thus D̂A∗i−1
D = A∗H , and the lemma follows. ▪

Theorem 6 (Sparse weak regularity lemma). Let 𝜀 > 0 and let G = (V ,E) be r = Θ(𝜀−2) cut
pseudorandom. Then there is a graph H = (V ,EH), possibly with different node and edge weights from
G, such that:

• There is a vertex partition Π into |Π| = 2
O(𝜀−2) parts such that for all Vi,Vj ∈ Π the edge-weighted

adjacency matrix of H is constant on its Vi × Vj block, and
• ‖

‖A∗G − A∗H‖‖□ = O(𝜀w∗(E)), where A∗G,A∗H are the fully weighted adjacency matrices of G,H,
respectively.

Proof. This follows almost immediately from Lemma 4. We simply recall that the edge-weighted

adjacency matrix of H in Lemma 4 is the sum of ≤ r cut matrices, and we notice that each cut matrix

is the outer product of two cut vectors, which each define a bipartition of the vertex set. Thus, the

common refinement Π of all these bipartitions has |Π| ≤ 2
2r = 2

O(r)
parts, and the edge-weighted

adjacency matrix of H is constant on its Vi × Vj block for all Vi,Vj ∈ Π. ▪

We remark here that it is common to merge together the parts in Π into supernodes, setting the

weight of each supernode to be the sum of the node weights that comprise it. In this sense, one can

view H as a graph on very few nodes that approximates G in cut norm. We will stay away from this

phrasing, however, as it requires one to formalize the embedding of the nodes of H into the nodes of

G which can get cumbersome.
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3.2 Sparse Szemerédi regularity

We now prove our sparse Szemerédi regularity lemma. Our approach is a thematic expansion on ideas

from [25,30], which give proofs of regularity lemmas based on the SVD. We show that our projection

values can be effectively substituted for singular values in a way that makes the approach work for

sparse regularity as well. This particular exposition is influenced by [32].

Theorem 7 (Sparse Szemerédi regularity lemma). Let 𝜀 > 0 and let G = (V ,E) be r = tower(Θ(𝜀−2))
cut pseudorandom. Then there is a graph H = (V ,EH), possibly with different node and edge weights
from G, and a vertex partition Π into |Π| = tower(O(𝜀−2)) parts such that:

• For all Vi,Vj ∈ Π the edge-weighted adjacency matrix of H is constant on its Vi × Vj block, and
• ‖

‖A∗G − A∗H‖‖Π = O(𝜀w∗(E)), where A∗G,A∗H are the fully weighted adjacency matrices of G,H,
respectively.

Proof. Let G be r cut pseudorandom with respect to the matrix D. We will treat the parameter r as

an integer that can be selected later in the proof, verifying at the end that we only need to use a bound

of the form r = tower(Ω(𝜀−2)). Let q be an integer and let f ∶ N → N be a function satisfying f (n) > n
for all n, both of which we will also choose later in the proof. Compute the cut decomposition of A∗G
with respect to D. By Lemma 4, so long as r ≥ f (q), there exists an index j ≤ f (q) such that

‖
‖
‖

A∗G − D̂A∗j D‖
‖
‖□

= O
(

w∗(E)
f (q)1∕2

)

, (3)

where ̂A∗j is from the cut decomposition. Additionally, let i ∶= min{q, j}. As before, ̂A∗i (also from the

cut decomposition) is a linear combination of i cut matrices, each of which is formed using two cut

vectors, which each define two bipartitions of the vertices. Let Π be the common refinement of these

bipartitions, which thus has |Π| ≤ 2
O(i)

parts, and we note that ̂A∗i is constant on each V1×V2 block for

V1,V2 ∈ Π. We define H to be the graph whose node weights are given by D and whose edge-weighted

adjacency matrix is given by ̂A∗i ; thus H satisfies the first point in the theorem. Our goal is now to

bound ‖
‖A∗G − A∗H‖‖Π. Using the triangle inequality we can write

‖
‖A∗G − A∗H‖‖Π =

‖
‖
‖

A∗G − D̂A∗i D‖
‖
‖Π
≤
‖
‖
‖

A∗G − D̂A∗j D‖
‖
‖Π
+ ‖
‖
‖

D̂A∗j D − D̂A∗i D‖
‖
‖Π
.

So it suffices to bound each of the two norms on the right-hand side as O(𝜀w∗(E)).
The first norm. To bound

‖
‖
‖

A∗G − D̂A∗j D‖
‖
‖Π

, we leverage our freedom to choose f and (partially) our

freedom to choose q. We have:

‖
‖
‖

A∗G − D̂A∗j D‖
‖
‖Π
=

∑

V
1
,V

2
∈Π

max
S⊆V

1
,T⊆V

2

|
|
|
|

(

A∗G − D̂A∗j D
)

(S,T)
|
|
|
|

≤ 2
O(q) ‖‖

‖
A∗ − D̂A∗j D‖

‖
‖□

≤
2

O(q)

f (q)1∕2
w∗(E),

where the second-to-last inequality is by unioning over the ≤ 2
O(q)

pairs of parts in the partition, and

the last inequality is from (3). We now choose f to be an exponential function of the form f (q) = Cq
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with a large enough base C, and we enforce a lower bound of q ≥ log(1∕𝜀), giving

‖
‖
‖

A∗G − D̂A∗j D‖
‖
‖Π
≤

2
O(q)

f (q)1∕2
w∗(E)

≤ w∗(E) ⋅ 2
−O(q)

≤ O(𝜀w∗(E)) (first norm control).

The second norm. We next bound
‖
‖
‖

D̂A∗j D − D̂A∗i D‖
‖
‖Π

. In the case where j ≤ q, we have i = j and so

̂A∗i = ̂A∗j and so this term is identically zero. So we will assume in the following that i = q < j ≤ f (q).
The idea here is to consider the projection values {𝜙i} from the decomposition, and choose the value

of q to be sure that not too much of the total mass of the projection values lies between 𝜙i+1 and

𝜙j, and then we can apply Lemma 2 to convert this to a bound on the partition norm. Let f (i) denote

the function f iterated i times, and suppose r ≥ fΩ(𝜀−2)(0). Letting {𝜙i} be the projection values of

the decomposition, and denote by 𝜙(x ∶∶ y) the vector holding the subsequence of projection values

(𝜙x,… , 𝜙y). By the pigeonhole principle there is an integer log(1∕𝜀) ≤ k = O(𝜀−2) satisfying
3

‖
‖
‖
𝜙

(
f (k)(0) + 1 ∶∶ f (k+1)(0)

)‖
‖
‖

2

2

= O
(

𝜀

2‖‖
‖
𝜙

(r)‖‖
‖

2

2

)

. (4)

We set q ∶= f (k)(0) according to this index k satisfying (4). Now we bound:

‖
‖
‖

D̂A∗j D − D̂A∗i D‖
‖
‖Π
≤
(
𝟙TD𝟙

)
‖𝜙(i ∶∶ j)‖

2
Lemma 8

≤
(
𝟙TD𝟙

)
⋅ ‖‖
‖
𝜙

(
i ∶∶ f (i)

)‖
‖
‖2

j ≤ f (i)

=
(
𝟙TD𝟙

)
⋅ O

(

𝜀

‖
‖
‖
𝜙

(r)‖‖
‖2

)

using (4)

= O(𝜀w∗(E)) (second norm control),

where the last step follows from the assumption that G is cut pseudorandom.

Parameter checks. Our control on the first term requires us to choose f to be an exponential function.

In the second norm control, we set q = f O(𝜀−2)(0), and thus q = tower(O(𝜀−2)). The partition size

is |Π| = 2
O(q) = tower(O(𝜀−2)) as well. We pick up a lower bound of r ≥ f (q) in the setup, and

r ≥ fΩ(𝜀−2)(0) in the second norm control; thus both are satisfied so long as r = tower(Ω(𝜀−2)). ▪

4 CUT PSEUDORANDOMNESS OF SOME GRAPH CLASSES

In the following, we will consider some graph classes studied in prior work on sparse regularity and

show that they are cut pseudorandom.

4.1 Lp upper regularity

In this part, we will discuss a slightly modified version of Lp upper regularity:

3
The lower bound k ≥ log(1∕𝜀) is only used to enforce the lower bound q ≥ log(1∕𝜀) picked up in the analysis of the first norm;

it does not play a role in bounding the second norm.
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Definition 6 (Lp
upper regularity [6,7]). A graph G = (V ,E) is Lp

upper regular with parameters

(C, 𝜂) if, for any vertex partition Π of size |Π| ≤ 𝜂−1
, we have

(
∑

V
1
,V

2
∈Π

vol(V1)vol(V2)
vol(V)2

⋅
(

w∗(V1,V2)
vol(V1)vol(V2)

)p
)1∕p

≤ C w∗(E)
vol(V)2

.

We also allow p = ∞, in which case we amend the above sum to a max in the usual way, giving the

condition

max
Vi,Vj⊆V ,

vol(Vi),vol(Vj)≥𝜂vol(V)

w∗(V1,V2)
vol(V1)vol(V2)

≤ C w∗(E)
vol(V)2

.

The original definition considers partitions where vol(Vi) ≥ 𝜂vol(V) for all parts Vi ∈ Π. Our

change to possibly unbalanced partitions is in line with the take on regularity throughout this article

inspired by [11,25], which de-emphasizes the need for balance between different parts in the partition.

It is very likely possible to enforce balance by adding some massaging steps to the decomposition itself;

for examples of this in prior work, see [1] (cf., Algorithm 4.3, Step 6.2, and its proof of correctness),

or [6] (cf., Lemmas 3.1–3.3). However, we have not included similar massaging here.

This change is definition is rather restrictive for p = ∞: for example, supposing G has unit node and

edge weights, the left-hand side is maximized at 1 by choosing V1,V2 to be singleton sets containing

nodes connected by an edge, and thus it forces |E| ≥ Cn2
, hence requiring the graph to be dense in

the classical sense. At the other extreme, the change does not matter at all when p = 1: all graphs are

L1
upper regular in either definition. As we will see shortly, the changed definition only needs to be

applied at the case p = 2, which we believe is more toward the unrestrictive end.

Theorem 8. For any 𝜂 > 0, p ≥ 2, every G that is Lp upper regular with parameters (𝜂,O(1)) is
also r = Θ(log 1∕𝜂) cut pseudorandom.

Proof. First, as shown in [6,7], Hölder’s inequality implies that Lp
upper regularity implies Lp′<p

upper regularity, so it suffices to prove the claim for p = 2 only. To do so, let A∗,D be the fully weighted

adjacency matrix and node weight matrix of G, respectively. Take the cut decomposition of A∗ with

respect to D, and let Π be the common refinement of all the ≤ 2r bipartitions used in the leading r cut

matrices of the decomposition, which have the matrix ̂A∗r from the decomposition in their span. Thus

we have |Π| < 1∕𝜂, assuming r = O(log 1∕𝜂) with a small enough implicit constant.

By construction, the matrix ̂A∗r is the projection of the matrix D−1A∗D−1
, by ⟨⋅, ⋅⟩D, onto the span

of the first r selected cut matrices. Let ̂B∗r be the projection of D−1A∗D−1
, by ⟨⋅, ⋅⟩D, onto the span of

all cut matrices corresponding to parts in Π (i.e., all cut matrices of the form v1vT
2
, where v1, v2 are the

indicator vectors of some V1,V2 ∈ Π). Notice that the span of these cut matrices from Π contains the

span of the leading r cut matrices in the decomposition, and thus we have

‖
‖
‖
̂A∗r
‖
‖
‖D
≤
‖
‖
‖
̂B∗r
‖
‖
‖D
.

For all V1,V2 ∈ Π, we have that ̂B∗r is constant on its V1 × V2 block, and each entry on the block is

given by

⟨
v1vT

2

‖
‖v1vT

2
‖
‖

2

D

,D−1A∗D−1

⟩

D

=
vT

2
A∗v1

(
vT

1
Dv1

) (
vT

2
Dv2

) = O
(

w∗(V1,V2)
vol(V1)vol(V2)

)

. (5)
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Using this, we bound

‖
‖
‖
𝜙

(r)‖‖
‖

2

2

=
r∑

i=1

‖
‖A∗i ‖‖

2

D =
‖
‖
‖
‖
‖

r∑

i=1

A∗i
‖
‖
‖
‖
‖

2

D

= ‖
‖
‖
̂A∗r
‖
‖
‖

2

D
{A∗i } orthogonal

≤
‖
‖
‖
̂B∗r
‖
‖
‖

2

D

= ‖
‖
‖

D1∕2
̂B∗r D1∕2‖‖

‖

2

F

=
∑

V
1
,V

2
∈Π

∑

a∈V
1
,b∈V

2

(
̂B∗r
)2

ab
DaaDbb

=
∑

V
1
,V

2
∈Π

vol(V1)vol(V2) ⋅ O
(

w∗(V1,V2)
vol(V1)vol(V2)

)2

using (5)

= vol(V)2 ⋅
∑

V
1
,V

2
∈Π

vol(V1)vol(V2)
vol(V)2

⋅ O
(

w∗(V1,V2)
vol(V1)vol(V2)

)2

= vol(V)2 ⋅ O
(

w∗(E)
vol(V)2

)2

G is L2
dense, |Π| ≤ 𝜂−1

= O
(

w∗(E)
vol(V)

)2

= O
(w∗(E)
𝟙TD𝟙

)2

.

▪

4.2 Core density and low threshold rank

In this part, let deg(v) denote the weighted degree of the node v; that is, deg(v) ∶=
∑

v∈e w(e).

Definition 7 (Core density [19]). For a graph G = (V ,E) with unit node weights, the core density is

the quantity

∑

(u,v)∈E

1
(
𝑑eg(u) + 𝑑

) (
𝑑eg(v) + 𝑑

) .

We say that G is core dense if its core density is O(1).

Theorem 9. Let G be a core dense graph with average weighted node degree 𝑑. Then G is r cut
pseudorandom, for any parameter r.

Proof. Let A be the (edge- or fully) weighted adjacency matrix of G, and let D be the diagonal

matrix where Dii ∶= deg(vi) + 𝑑. The entry (u, v) of the matrix D−1∕2AD−1∕2
is exactly

1
√(

𝑑eg(u) + 𝑑
) (
𝑑eg(v) + 𝑑

) ,

so the sum square of entries of this matrix is exactly the core density of A. Thus, since G is core dense,

we have

‖A‖2

D−1 = ‖
‖
‖

D−1∕2AD−1∕2‖‖
‖

2

F
= O(1).



78 BODWIN AND VEMPALA

Using this together with Lemma 3, letting Φ = 𝜙(n2)
be the vector holding all projection values of the

decomposition of G with respect to D, we have

‖Φ‖2

2 ≤
‖
‖
‖

D−1∕2AD−1∕2‖‖
‖

2

F
= O(1).

Additionally, in G we have

𝟙TD𝟙 =
∑

v∈V
deg(v) + 𝑑 = 2w(E) + 2w(E) = O(w(E)),

and so

w(E)
𝟙TD𝟙

= O(1),

thus implying cut pseudorandomness. ▪

Finally, we consider graphs of low threshold rank:

Definition 8 (Low threshold rank graphs [5,14,16–18]). Let G be a graph with unit node weights and

(edge- or fully) weighted adjacency matrix A, and let D be the diagonal matrix where Dii = deg(vi).
We say that G has low 𝜀 threshold rank if

∑

𝜆 is an eigenvalue of D−1∕2AD−1∕2
,𝜆>𝜀

𝜆

2 = O (1) .

Theorem 10. For any 𝜀 > 0, any graph G with low 𝜀 threshold rank is r = Θ(𝜀−2) cut pseudorandom.

Proof. LetΛ(r) be the vector containing the leading r eigenvalues of the matrix D−1∕2AD−1∕2
. Using

Lemma 3, when we decompose A with respect to D, the projection values {𝜙i} satisfy

‖
‖
‖
𝜙

(r)‖‖
‖

2

2

≤
‖
‖
‖
Λ(r)‖‖

‖

2

2

=

(
∑

𝜆∈Λ(r),𝜆>𝜀

𝜆

2

)

+

(
∑

𝜆∈Λ(r),𝜆≤𝜀

𝜆

2

)

≤ O (1) + r𝜀2

= O(1),

where the second-to-last inequality is obtained using the definition of cut pseudorandomness and a

union over the r eigenvalues in Λ(r), and the last one is obtained using the parameter restriction r =
O(𝜀−2). Finally, as before we notice that 𝟙TD𝟙 = 2w(E), so w(E)∕(𝟙TD𝟙) = O(1), thus implying cut

psuedorandomness. ▪

5 ALGORITHMIC APPLICATIONS

Here, we will survey some of the algorithmic applications that arise from our new regularity lemmas.
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5.1 Graph algorithms

Oveis Gharan and Trevisan [14] developed the following algorithmic applications of cut decomposi-

tions:

Theorem 11 ([14]). Let 𝜀 > 0, let G = (V ,E) be a node- and edge-unweighted graph, and let H
be a graph on the same vertex set V which may have node and edge weights. Suppose H satisfies the
premises of Lemma 4—that is,

• The edge-weighted adjacency matrix of H is the sum of O(𝜀−2) cut matrices (given as input), and
for each cut matrix C we have |w∗(C)| = O(w∗(E)), and

• ‖
‖AG − A∗H‖‖□ = O(𝜀|E|), where AG is the adjacency matrix of G and A∗H is the fully weighted
adjacency matrix of H.

Then in 2
Õ(1∕𝜀3) + poly(n) time, one can find any of:

• A MAX-CUT on G within ±𝜀|E| error,
• A MAX-BISECTION on G within ±𝜀|E| error, and
• A MIN-BISECTION on G within ±𝜀|E| error.

Note that MAX-CUT, MAX-BISECTION, and MIN-BISECTION all have OPT = Θ(|E|), so this

algorithm is an efficient FPTAS. Theorem 11 is highly nontrivial; the proof includes a number of

detailed and clever technical ideas that we will not recap here. Their proof is for a specific node-weight

function for H (specifically, each node v is weighted by deg (v)−1∕2
), but it extends easily to arbitrary

positive node weights.

In [14], the authors observe that graphs of low threshold rank satisfy the premises, and so they

enjoy these approximation algorithms. By Lemma 4, the premises of Theorem 11 also hold for the

appropriate class of cut pseudorandom graphs. We thus have:

Corollary 2. For any 𝜀 > 0 and any unweighted graph that is r = O(𝜀−2) cut pseudorandom (with
respect to any matrix D), one can compute MAX-CUT, MAX-BISECTION, and MIN-BISECTION with
an efficient FPTAS.

(The hypothesis that |w∗(C)| = O(w∗(E)) was not stated explicitly in the proof of Lemma 4, but it

follows instantly from the proof.)

5.2 MAX CSP algorithms and tensor decompositions

MAX-CUT can be viewed as MAX-2-CSP; this naturally leads to the question of whether the regularity

method also gives PTASes for MAX-k-CSP. Such a PTAS was proved by Kannan and Vempala in [19],

for core-dense graphs. The core of their approach was the following tensor decomposition theorem.

Recall that a tensor T ∈ Rn
1
×n

2
×…ns is an s-dimensional array. While there is no direct analog of SVD

for tensors, we observe next that the cut decomposition extends naturally. For a tensor T as above,

define its s-form

T(x1
,… , xs) =

n
1
,…,ns∑

i
1
,i

2
,…,is=1

Ti
1
,…,ir x

1

i
1
… xr

is ,
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and define the cut norm of T as

‖T‖□ ∶= max
(u1
,…,us)∈X

|
|
|
T(u1

,… , us)||
|
.

Theorem 12. Let T ∈ Rn
1
×…×ns and let 𝜀 > 0. Then there is ̂T that is a linear combination of

r = O(𝜀−2) “cut tensors,” that is, each is formed by an outer product of a tuple of cut vectors, satisfying

‖
‖
‖

T − ̂T‖‖
‖□

= O
(

𝜀 ‖T‖F
√

n1 × · · · × ns

)

.

Here ‖T‖F denotes the L2
vector norm of the entries of T . We will point out that our cut decom-

position approach can be extended to prove this tensor decomposition theorem existentially. This is

only half the work needed for a PTAS: one also must compute the decomposition quickly, and unfor-

tunately, our algorithms do not readily extend to tensors. However, Kannan and Vempala [19] gave

a different algorithm that computed the decomposition in the case of core-dense tensors (we refer to

[19] for details on how the definition of core-dense matrices extends to tensors).

Define the inner product ⟨⋅, ⋅⟩F over tensors that works as the standard Euclidean inner product

over their entries. Let S be an initially empty set of tensors, and at all times we define the tensor ̂T as

the projection of the input tensor T onto the span of the tensors in S, under ⟨⋅, ⋅⟩F. In each round, we

find the cut vectors maximizing the quantity

arg max
(u1
,…,us)∈X

|
|
|
|
|

(T − ̂T)(u1
,… , us)

||u1||2,… , ||us||2

|
|
|
|
|

.

Then, we add the tensor u1
⊗ · · ·⊗ us

to S (where ⊗ denotes outer product). Letting ̂Ti be the value

of ̂T in the ith round of the decomposition, and Ti ∶= ̂Ti − ̂Ti−1, we define the ith projection value

as 𝜙i ∶= ‖Ti‖F. Similar to the case of matrices, the tensors {Ti} are orthogonal under ⟨⋅, ⋅⟩F, and it

follows that 𝜙i ≤ 𝜀
‖
‖
‖

T − ̂Ti
‖
‖
‖F

for some i = O(𝜀−2). This matrix ̂Ti satisfies the theorem, and the proof

is completed by the chain of inequalities

‖
‖
‖

T − ̂Ti
‖
‖
‖□

√
n1 × · · · × ns

≤ max
(u1
,…,us)∈X

|
|
|
|
|

(T − ̂Ti)(u1
,… , us)

||u1||2,… , ||us||2

|
|
|
|
|

≤ 𝜙i ≤ 𝜀
‖
‖
‖

T − ̂Ti
‖
‖
‖F
.

ACKNOWLEDGMENTS
We are grateful to Keaton Hamm and to several anonymous reviewers for corrections, useful technical

discussions, and references to prior work.

REFERENCES

1. N. Alon, A. Coja-Oghlan, H. Hàn, M. Kang, V. Rödl, and M. Schacht, Quasi-randomness and algorithmic regularity
for graphs with general degree distributions, SIAM J. Comput. 39 (2010), no. 6, 2336–2362.

2. N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy, Efficient testing of large graphs, Combinatorica 20 (2001),

no. 4, 451–476.

3. N. Alon, E. Fischer, I. Newman, and A. Shapira, A combinatorial characterization of the testable graph properties:
It’s all about regularity, SIAM J. Comput. 39 (2009), 143–167.

4. N. Alon and A. Naor, Approximating the cut-norm via Grothendieck’s inequality, Proc. 36th Annu. ACM Symp.

Theory Comput., ACM, 2004, pp. 72–80.



BODWIN AND VEMPALA 81

5. B. Barak, P. Raghavendra, and D. Steurer. Rounding semidefinite programming hierarchies via global correlation,

Proc. 2011 IEEE 52nd Annu. Symp. Found. Comput. Sci., IEEE, 2011, pp. 472–481.

6. C. Borgs, J. Chayes, H. Cohn, and Y. Zhao, An Lp theory of sparse graph convergence I: Limits, sparse random
graph models, and power law distributions, Trans. Amer. Math. Soc. 372 (2014), no. 5, 3019–3062.

7. C. Borgs, J. Chayes, H. Cohn, and Y. Zhao, An Lp theory of sparse graph convergence II: LD convergence, quotients,
and right convergence, Ann. Probab. 46 (2014), 337–396.

8. M. Charikar, Greedy approximation algorithms for finding dense components in a graph, Proc. Int. Workshop

Approx. Algorithms Comb. Optim., Springer, 2000, pp. 84–95.

9. F. R. K. Chung, R. L. Graham, and R. M. Wilson, Quasi-random graphs, Combinatorica 9 (1989), no. 4, 345–362.

10. D. Conlon, J. Fox, and Y. Zhao, Extremal results in sparse pseudorandom graphs, Adv. Math. 256 (2012), 206–290.

11. J. Fox and L. Miklós Lovász, A tight lower bound for Szemerédi’s regularity lemma, Combinatorica 37 (2014), no.

5, 911–951.

12. A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica 19 (1999), no. 2,

175–220.

13. S. Gerke and A. Steger, The sparse regularity lemma and its applications, Surv. Comb. 327 (2005), 227–258.

14. S. O. Oveis Gharan and L. Trevisan, A new regularity lemma and faster approximation algorithms for low threshold
rank graphs, Theory Comput. 11 (2015), 241–256.

15. W. T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct. Anal GAFA 7 (1997),

no. 2, 322–337.

16. V. Guruswami and A. K. Sinop, Lasserre hierarchy, higher eigenvalues, and approximation schemes for graph
partitioning and quadratic integer programming with PSD objectives, Proc. 2011 IEEE 52nd Annu. Symp. Found.

Comput. Sci., IEEE, 2011, pp. 482–491.

17. V. Guruswami and A. K. Sinop, Faster SDP hierarchy solvers for local rounding algorithms, Proc. 2012 IEEE 53rd

Annu. Symp. Found. Comput. Sci., IEEE, 2012, pp. 197–206.

18. V. Guruswami and A. K. Sinop, Approximating non-uniform sparsest cut via generalized spectra, Proc. 24th Annu.

ACM-SIAM Symp. Discrete Algorithms, SIAM, 2013, pp. 295–305.

19. R. Kannan and S. S. Vempala, Spectral algorithms, Found. Trends Theor. Comput. Sci. 4 (2009), no. 3-4, 157–288.

20. S. Khot, G. Kindler, E. Mossel, and R. O’Donnell, Optimal inapproximability results for MAX-CUT and other
2-variable CSPs? Proc. Annu. IEEE Symp. Found. Comput. Sci. FOCS, vol. 146-154, 2004, pp. 146–154.

21. Y. Kohayakawa, “Szemerédi’s regularity lemma for sparse graphs,” in F. Cucker, M. Shub, Eds., Foundations of
computational mathematics, Springer, New York, NY, 1997, pp. 216–230.

22. J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi, “The regularity lemma and its applications in graph
theory,” Summer school on theoretical aspects of computer science, in G. B. Khosrovshahi, A. Shokoufandeh, A.

Shokrollahi, Eds., Springer, New York, NY, 2000, pp. 84–112.

23. M. Krivelevich and B. Sudakov, “Pseudo-random graphs,” More sets, graphs and numbers, in E. Györi, G. O. H.

Katona, L. Lovász, T. Fleiner, Eds., Springer, New York, NY, 2006, pp. 199–262.

24. L. Lovász, Large networks and graph limits, American Mathematical Society Colloquium Publications, 2012.

25. L. Lovász and B. Szegedy, Szemerédi’s lemma for the analyst, Geom. Funct. Anal. 17 (2007), 252–270.

26. G. Moshkovitz and A. Shapira, A short proof of Gowers’ lower bound for the regularity lemma, Combinatorica 36
(2016), no. 2, 187–194.

27. G. Moshkovitz and A. Shapira, A sparse regular approximation lemma, Trans. Amer. Math. Soc. 371 (2019), no.

10, 6779–6814.

28. V. Rödl, The dimention of a graph and generalized Ramsey theorems, PhD thesis, Master’s thesis, Charles

University, Prague, 1973.

29. A. Scott, Szemerédi’s regularity lemma for matrices and sparse graphs, Comb. Probab. Comput. 20 (2011), no. 3,

455–466.

30. B. Szegedy, Limits of kernel operators and the spectral regularity lemma, Eur. J. Comb 32 (2010), 1156–1167.

31. E. Szemerédi, Regular partitions of graphs. Technical report, Stanford University of California, Department of

Computer Science, 1975.

32. T. Tao, The spectral proof of the Szemerédi regularity lemma. https://terrytao.wordpress.com/2012/12/03/

the-spectral-proof-of-the-szemeredi-regularity-lemma/, 2012.

33. A. Thomason, Pseudo-random graphs, Ann Discrete Math 33 (1987), 307–331.

34. A. Thomason, Random graphs, strongly regular graphs and pseudorandom graphs, Lond. Math. Soc. Lect. Note

Ser 123 (1987), 173–195.

How to cite this article: G. Bodwin, and S. Vempala, A unified view of graph regularity via
matrix decompositions, Random Struct. Algorithms. 61 (2022), 62–83. https://doi.org/10.

1002/rsa.21053

https://terrytao.wordpress.com/2012/12/03/the-spectral-proof-of-the-szemeredi-regularity-lemma/
https://terrytao.wordpress.com/2012/12/03/the-spectral-proof-of-the-szemeredi-regularity-lemma/
https://doi.org/10.1002/rsa.21053
https://doi.org/10.1002/rsa.21053


82 BODWIN AND VEMPALA

APPENDIX: CUT NORM MAXIMIZATION

Here, we prove that our cut decompositions are computable in polynomial time with respect to any

diagonal matrix D with positive polynomially bounded integer entries on the diagonal. Recall that the

goal is to compute cut vectors v,w in each round maximizing

|
|
|
|
|

⟨
vwT

‖
‖vwT‖

‖D
,D−1AD−1 − ̂Ai

⟩

D

|
|
|
|
|

=
wT

(

A − D̂AiD
)

v
‖
‖wTDw‖‖2

‖
‖vTDv‖‖2

.

We can reparametrize this expression by setting A ← A − D̂AiD, and then the goal is to solve

max
S,T⊆[n]

A(S,T)
√∑

i∈S 𝑑i
∑

j∈T 𝑑j

,

where 𝑑i ∶= Dii. We do so as follows.

Theorem 13. There is an algorithm that, given A ∈ Rn×n and nonnegative vector of integers 𝑑 ∈ n,
returns S∗,T∗ ⊆ [n] exactly solving

max
S,T⊆[n]

A(S,T)
√∑

i∈S 𝑑i
∑

j∈T 𝑑j

in time polynomial in n, the description length of A (number of bits) and
∑

i∈[n] 𝑑i.

Proof. We verify that the proof of Charikar [8] works with slight extensions to edge and vertex

weights. Let c =
∑

i∈S 𝑑i∕
∑

j∈T 𝑑j and enumerate all possible values of c. For each value, consider the

following linear program.

max

∑

i,j∈[n]
xij,

s.t.

xij ≤ Aijsi,Aijtj for all i, j
∑

i∈[n]
𝑑isi ≤

√
c

∑

j∈[n]
𝑑jtj ≤

1
√

c
.

First, take any two subsets S,T . Then for the LP solution we set

x =
√

c
∑

i∈S 𝑑i
= 1

√
c
∑

j∈T 𝑑j

and xij = Aij ⋅ x, si = x, tj = x for i ∈ S, j ∈ T , respectively, and all other variables to zero. Then,

∑

ij
xij =

(
∑

i∈S,j∈T
Aij

)

⋅ x
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= A(S,T)
√

c
∑

j∈T 𝑑j

= A(S,T)
√∑

i∈S 𝑑i
∑

j∈T 𝑑j

.

Thus the LP solution has value at least as large.

Now for the converse, take any solution to the LP. We can assume that xij = min{Aijsi,Aijtj}. Define

the following subsets for any r ≥ 0:

S(r) = {i ∈ [n] ∶ si ≥ r}, T(r) = {j ∈ [n] ∶ tj ≥ r}

Also, let E(r) =
{
(i, j) ∶ xij ≥ Aijr if Aij ≥ 0; xij ≤ Aijr if Aij < 0

}
. Then, (i, j) ∈ E(r) implies that

i ∈ S(r), j ∈ T(r). And since xij = min Aijsi,Aijtj, it follows that E(r) is precisely the set of edges (i, j)
between S(r) and T(r) with weights Aij.

Next, note that

∫

∞

0

(
∑

i∈S(r)
𝑑i

)

𝑑r =
∑

i∈[n]
𝑑isi ≤

√
c.

Similarly,

∫

∞

0

(
∑

j∈T(r)
𝑑i

)

𝑑r =
∑

j∈[n]
𝑑jtj ≤

1
√

c
.

Therefore, by Cauchy–Schwarz,

∫

∞

0

√
∑

i∈S(r)
𝑑i

∑

j∈T(r)
𝑑j 𝑑r ≤

(

∫

∞

0

∑

i∈S(r)
𝑑i𝑑r
∫

∞

0

∑

j∈T(r)
𝑑j𝑑r

)1∕2

≤ 1.

Also,

∫

∞

0

∑

ij∈E(r)
Aij𝑑r =

∑

i,j
xij.

Therefore, if there is an LP solution of value v, then

∫
∞

0

∑
ij∈E(r) Aij𝑑r

∫
∞

0

√∑
i∈S(r) 𝑑i

∑
j∈T(r) 𝑑j 𝑑r

≥

∑

ij
xij ≥ v.

And hence there exists an r s.t.
∑

ij∈E(r) Aij
√∑

i∈S(r) 𝑑i
∑

j∈T(r) 𝑑j

≥ v

as claimed. Thus we can solve the problem using the LP, and then scanning for the best value of r. ▪

Notice that the runtime of this algorithm depends polynomially on the number of possible values

of
sT Ds
tT Dt

where s, t range over cut vectors. Thus, when D holds integers, this number of possible values

depends polynomially on
∑

i∈[n] 𝑑i, as claimed.
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