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34 Abstract: Given the critical central role of gonadotropin-releasing hormone (GnRH) neurons in 

35 fertility, it is not surprising the GnRH neural network is implicated in the pathology of polycystic 

36 ovary syndrome (PCOS), the most common cause of anovulatory infertility. While many 

37 symptoms of PCOS relate most proximately to ovarian dysfunction, the central reproductive 

38 neuroendocrine system ultimately drives ovarian function through its regulation of anterior 

39 pituitary gonadotropin release. The typical cyclical changes in frequency of GnRH release are 

40 often absent in women with PCOS resulting in persistent high-frequency drive that promotes 

41 gonadotropin changes—relatively high luteinizing hormone and relatively low follicle-stimulating 

42 hormone concentrations—that contribute to ovarian hyperandrogenemia and ovulatory 

43 dysfunction. However, the specific mechanisms underpinning GnRH neuron dysfunction in 

44 PCOS remain unclear. Here, we summarize several preclinical and clinical studies that explore 

45 the causes of aberrant GnRH secretion in PCOS and the role of disordered GnRH secretion in 

46 PCOS pathophysiology.

47
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53 Introduction

54 Polycystic ovary syndrome (PCOS) is the most common endocrine disorder seen in the clinic, 

55 with prevalence depending on the diagnostic criteria utilized [1]. PCOS affects approximately 

56 10% of women according to the currently-recommended Rotterdam diagnostic criteria, which 

57 include evidence of at least two of the following: clinical and/or biochemical hyperandrogenism, 

58 chronic oligo- or anovulation, and polycystic ovarian morphology [1-3]. The prevalence of PCOS 

59 approximates 6% according to the classic National Institutes of Health (NIH) definition of PCOS, 

60 which mandates both hyperandrogenism and ovulatory dysfunction [1, 4]. Finally, PCOS affects 

61 approximately 10% of women according to the Androgen Excess and PCOS Society criteria: 

62 hyperandrogenism plus either ovulatory dysfunction or polycystic ovarian morphology [1, 5]. 
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63 PCOS has also been associated with several comorbidities including obesity, insulin resistance 

64 and type 2 diabetes, depression and anxiety, obstructive sleep apnea, and endometrial cancer 

65 [6-12]. 

66 Although the characteristics that define PCOS (i.e., androgen excess, oligo-/anovulation, and 

67 polycystic ovarian morphology) are most directly related to ovarian function, the central 

68 reproductive neuroendocrine system—the gonadotropin-releasing hormone (GnRH) pulse 

69 generator in particular—ultimately drives ovarian function through its regulation of gonadotropin 

70 release, and altered GnRH secretion plays a prominent role in the pathophysiology of PCOS. 

71 In this review, we will: 

72 1) detail the clinical evidence supporting GnRH pulse generator dysregulation as a 

73 prominent player in the pathophysiology of PCOS; 

74 2) discuss evidence from preclinical animal models of PCOS identifying potential 

75 mechanisms underpinning disordered GnRH secretion in PCOS; and 

76 3) review clinical trial data regarding recently-developed pharmacological agents targeting 

77 the GnRH neuronal network in the treatment of PCOS.

78 Neuroendocrine dysfunction in PCOS

79 The functionally-coordinated assembly of hypothalamic GnRH neurons represent the final node 

80 for the neural control of reproductive function. GnRH is secreted in a pulsatile fashion into the 

81 hypothalamic portal system, with GnRH pulse frequency largely reflecting the presence and 

82 degree of ovarian steroid (progesterone, estradiol) negative feedback. GnRH stimulates pituitary 

83 gonadotropes to synthesize and secrete the gonadotropins luteinizing hormone (LH) and follicle-

84 stimulating hormone (FSH). Importantly, high and low GnRH pulse frequencies favor LH or FSH 

85 secretion, respectively [13, 14]; these effects are largely mediated at the level of gonadotropin 

86 gene transcription [15]. Notably, although GnRH release cannot be directly measured in 

87 humans, animal studies confirm that each GnRH pulse elicits a secretory burst of LH [16, 17]; 

88 thus, patterns of pulsatile GnRH secretion can be inferred from patterns of pulsatile LH 

89 secretion in human studies.

90 Altered gonadotropin secretion in PCOS

91 The majority of women and adolescents with hyperandrogenic PCOS exhibit increased LH (and 

92 by inference GnRH) pulse frequency, increased LH pulse amplitude, and exaggerated LH 

93 responses to exogenous GnRH [18-27]. In contrast, such patients demonstrate a relative 
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94 deficiency of follicle-stimulating hormone (FSH), as is expected under persistently high-

95 frequency GnRH stimulation [13]. In one study, when excluding those who had recently 

96 ovulated, serum LH concentrations and LH-to-FSH ratio were elevated in 75% and 94% of 

97 women with PCOS, respectively [24]. Persistently elevated LH pulse frequency and an elevated 

98 LH-to-FSH ratio indicate hyperactive GnRH pulse secretion [13], implicating dysfunction of the 

99 GnRH pulse generator in PCOS pathology. 

100 The aforementioned abnormalities of gonadotropin secretion materially contribute to the ovarian 

101 hyperandrogenemia and ovulatory dysfunction of PCOS. LH is the primary stimulus for ovarian 

102 androgen production, and the ovarian hyperandrogenemia of PCOS is clearly LH-dependent. 

103 The hyperandrogenemia of PCOS typically does not manifest until after the pubertal increase in 

104 LH secretion [28]. In women with PCOS, long-acting GnRH agonists, which suppress 

105 gonadotropin secretion, markedly reduce circulating androgen concentrations [29, 30]. Likewise, 

106 gonadotropin suppression partly accounts for the efficacy of combined oral contraceptives as a 

107 treatment for the hyperandrogenism of PCOS. In addition, relative FSH deficiency limits 

108 follicular development, contributing to ovulatory dysfunction in PCOS. These well-documented 

109 alterations in gonadotropin secretion in PCOS do not depend on gonadotropin-related genetic 

110 variants; nonetheless, the functional importance of such changes is supported by studies 

111 associating PCOS with variants in a number of gonadotropin-related genes such as FSHB (FSH 

112 beta subunit), FSHR (FSH receptor), LHB (LH beta subunit), and LHCGR 

113 (LH/choriogonadotropin receptor) [31, 32]. 

114 Altered GnRH pulsatility in PCOS

115 Detailed investigations into the hormonal intricacies of PCOS began to be expanded about four 

116 decades ago. Initially, increased LH secretion in PCOS was thought to reflect the positive 

117 feedback actions of increased serum estrone concentrations. Exogenous estrone does not, 

118 however, appear to alter circulating LH concentrations in women with or without PCOS, forcing 

119 investigators to look elsewhere for a mechanism [33]. 

120 The central role of altered GnRH secretion in PCOS became apparent after the changing 

121 patterns of LH pulses—presumably reflecting changes in pulsatile GnRH release, pulse 

122 frequency in particular—were delineated throughout ovulatory cycles [34, 35]. In normal 

123 ovulatory menstrual cycles, LH pulse frequency is about one pulse every 90–100 minutes in the 

124 early follicular phase and one pulse every 60 minutes in the late follicular phase. Following 

125 ovulation, LH pulse frequency falls to about one pulse every 4–6 hours by the mid-luteal phase; 

126 this reduction primarily reflects the negative feedback actions of progesterone [35-39]. 
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127 Progesterone’s ability to reduce LH pulse frequency requires the permissive presence of 

128 estradiol [40, 41], in line with observations that the progesterone receptor is an estrogen-

129 dependent gene. LH pulse frequency increases again across the luteal-follicular transition, 

130 reflecting the loss of inhibition by progesterone, so that by the early follicular phase frequency 

131 has increased once again. This increase in GnRH pulse frequency across the luteal-follicular 

132 transition is important for the early-follicular increase in FSH secretion that promotes follicular 

133 development [42]. The subsequent increase in pulse frequency across the follicular phase—

134 from one pulse every 90–100 minutes to one pulse every 60 minutes—partly accounts for the 

135 transition from FSH predominance (early follicular phase) to LH predominance (late follicular 

136 phase), as is required for successful ovulatory cycles. 

137 In contrast to these typical cyclic events, both hyperandrogenic adolescents and women with 

138 PCOS demonstrate persistently high LH pulse frequency, approximating one pulse per hour, 

139 similar to that in the typical late follicular phase [19, 21, 22, 43]. (High LH pulse frequency is a 

140 consistent finding in PCOS regardless of obesity status, although obesity per se is associated 

141 with relative reductions in mean LH and LH pulse amplitude [24, 25, 44, 45].) Persistently high 

142 GnRH pulse frequency is a prominent contributor to the LH excess and relative FSH deficiency 

143 of PCOS. 

144 Causes of elevated GnRH pulse frequency in PCOS 

145 Although persistently high LH (GnRH) pulse frequency is an expected consequence of 

146 anovulation because of a paucity of progesterone in the circulation, anovulation alone does not 

147 explain why many women with PCOS never established regular cycles during puberty. 

148 Importantly in this regard, high LH pulse frequency in PCOS also reflects a relative resistance to 

149 negative feedback by estradiol and progesterone [46, 47]. Specifically, even when present, 

150 progesterone does not suppress LH pulse frequency in women with PCOS to the same extent 

151 as women undergoing typical cycles [46, 47]. In one study, seven days of exogenous estradiol 

152 and progesterone administration, which produced typical luteal phase levels, reduced LH pulse 

153 frequency by 60% in normally-cycling controls, but by only 25% in women with PCOS [47]. 

154 Similar findings have been observed in studies of adolescents. LH pulse frequency was 

155 increased 25-40% in mid- to late pubertal adolescents with hyperandrogenism compared to 

156 pubertal stage-matched controls [22, 26, 48, 49]. Further, some 35-50% of hyperandrogenic 

157 adolescents are resistant to suppression of the GnRH pulse generator by combined 

158 progesterone/estradiol treatment [48, 49]. 
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159 GnRH pulse generator resistance to negative feedback restraint in part reflects the central 

160 actions of hyperandrogenemia, as feedback suppression can be normalized with androgen-

161 receptor blockade. In a study of adult women with PCOS, pretreatment with the androgen-

162 receptor antagonist flutamide did not alter baseline LH pulse frequency, but it normalized GnRH 

163 pulse generator sensitivity to combined progesterone/estradiol negative feedback [50]. Other 

164 studies support the hypothesis that hyperandrogenemia per se contributes to the development 

165 of neuroendocrine abnormalities in PCOS. For example, adolescent girls with congenital 

166 adrenal hyperplasia or exaggerated adrenarche may develop LH excess, ovarian 

167 hyperandrogenism, and PCOS [51-53]. As described below, prenatally-androgenized (PNA) 

168 female monkeys, sheep, and rodents demonstrate increased LH pulse frequency and LH 

169 excess [54-56]. Similarly, androgens increase GnRH neuron activity in adult mice [57, 58], and 

170 prepubertal testosterone administration can increase post-pubertal LH pulse frequency in 

171 female rhesus monkeys [59]. Also of interest in this regard, female rhesus monkeys with 

172 naturally higher testosterone levels exhibit higher circulating LH concentrations and LH-to-FSH 

173 ratios—findings that again suggest GnRH pulse generator dysfunction in the context of elevated 

174 androgens [60]. Together, these findings are consistent with the hypothesis that 

175 hyperandrogenemia plays a causative role in PCOS, which is supported by a recent genome-

176 wide association analysis suggesting that higher genetically-determined testosterone levels 

177 increase the risk for PCOS [61].

178 Thus, PCOS appears to be characterized by a vicious cycle in the hypothalamic-pituitary-

179 ovarian axis (Figure 1). Androgen excess, primarily of ovarian origin, impairs GnRH pulse 

180 generator sensitivity to negative feedback suppression, leading to persistently high GnRH pulse 

181 frequency, which in turn enhances LH secretion and limits FSH secretion, both of which 

182 contribute to ovarian hyperandrogenemia and ovulatory dysfunction. 

183 Pubertal genesis of abnormal GnRH secretion in nascent PCOS

184 Prepubertal children exhibit low-frequency LH pulse frequency, low LH pulse amplitude, and low 

185 LH-to-FSH ratio [62]. The onset of puberty is characterized by sleep-associated increases in LH 

186 pulse amplitude and frequency [62]. LH pulse frequency while awake gradually increases 

187 across puberty, while nocturnal LH pulse frequency changes little across puberty [63, 64]. Thus, 

188 in late pubertal girls, LH pulse frequency while awake exceeds sleep-associated LH pulse 

189 frequency [63, 64]. Higher GnRH pulse frequencies are presumably important for enhancing LH 

190 secretion in pubertal girls, while periods of relatively low GnRH pulse frequency—while awake 

191 during early puberty and while asleep in later puberty—may be important for maintaining 
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192 adequate FSH secretion. These differential changes in sleep- vs. wake-associated LH pulse 

193 frequency across puberty may partly reflect greater sensitivity to progesterone negative 

194 feedback on LH release during daytime (vs. nighttime) as described in both early and late 

195 pubertal girls [65, 66]. In this regard, McCartney and colleagues proposed a working model 

196 regarding the typical maturation of LH/GnRH pulse frequency across puberty [62, 65, 66]: (1) in 

197 the state of wakefulness, LH (GnRH) pulse frequency is primarily determined by sex steroid 

198 (progesterone) negative feedback, and the GnRH pulse generator is exquisitely sensitive to low 

199 progesterone concentrations in early puberty (when androgen concentrations are low); (2) the 

200 physiologic and gradual pubertal increase in androgen concentrations antagonizes the negative 

201 feedback effects of progesterone, resulting in a gradual increase in waking GnRH pulse 

202 frequency; and (3) sleep-associated pulse frequency remains relatively constant across puberty 

203 since it is not readily influenced by low (non-luteal) progesterone concentrations. 

204 Neuroendocrine dysfunction appears to be an early finding in some girls at risk of developing 

205 PCOS. For example, infant daughters of women with PCOS, who have a 5- to 10-fold increased 

206 risk of being diagnosed with adult PCOS [67], demonstrate exaggerated LH responses to acute 

207 GnRH agonist stimulation [68]. Daughters of women with PCOS may also exhibit lower serum 

208 FSH concentrations during childhood [69], although available studies are not consistent in this 

209 regard [28]. Some of the classic neuroendocrine findings of PCOS—elevated basal LH, basal 

210 LH-to-FSH ratio, GnRH agonist-stimulated LH, and GnRH agonist-stimulated LH-to-FSH ratio—

211 are not observed in early puberty in daughters of women with PCOS. Studies in Chilean 

212 daughters of women with PCOS suggest that these aspects emerge toward the end of puberty 

213 (e.g., Tanner stage 4) [28, 70-72]. In addition, in peripubertal girls with hyperandrogenism, 

214 increased LH (GnRH) pulse secretion can be detected prior to the onset of menarche [22], 

215 suggesting that hyperandrogenemia may modulate the normal evolution of LH (GnRH) secretion 

216 across pubertal maturation. However, the mechanisms underlying the emergence of 

217 neuroendocrine dysfunction across puberty in those who go on to develop PCOS remain 

218 unclear.

219 Although high LH pulse frequency is independent of obesity, obesity appears to feed into the 

220 vicious cycle of hormonal interactions in PCOS and may be an important risk factor for the 

221 development of PCOS [73-76]. Peripubertal girls with obesity exhibit 2- to 4-fold elevated serum 

222 free testosterone concentrations compared to pubertal stage-matched controls without obesity 

223 [77-82]. In such girls, circulating LH concentrations predict elevated free testosterone better 

224 than circulating insulin concentrations [79, 83]. As a group, girls with obesity develop elevated 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

225 LH pulse frequency by mid- to late puberty [64]. Also of interest, while non-hyperandrogenemic 

226 late pubertal girls with obesity exhibit the expected overnight decrease in LH pulse frequency, 

227 late pubertal girls with both obesity and hyperandrogenemia demonstrate high-frequency LH 

228 pulses during daytime and nighttime hours without the expected overnight decrease [64, 84]. 

229 The above evidence supports the hypothesis that androgen excess modulates the pubertal 

230 maturation of GnRH secretion, and McCartney and colleagues proposed a working model 

231 regarding the pubertal genesis of abnormal GnRH pulse generator function in those with 

232 peripubertal hyperandrogenemia. In particular, and in contrast to the typical maturational 

233 changes in LH/GnRH pulse frequency across female puberty (described above), when 

234 neuroendocrine puberty occurs in the setting of hyperandrogenemia (from any cause), atypically 

235 high androgen concentrations markedly antagonize progesterone negative feedback. This 

236 causes a rapid transition from low 24-hour GnRH pulse frequency to high 24-hour GnRH pulse 

237 frequency—without the prominent sleep-wake changes that may be important for appropriate 

238 balance of LH and FSH secretion. High 24-hour GnRH pulse frequency would be expected to 

239 cause LH excess and relative FSH deficiency, which would support a progression to full-blown 

240 PCOS. 

241 Aberrant reproductive neuroendocrine activity in preclinical animal models with PCOS-

242 like features

243 Ethical constraints prohibit direct scientific assessment of GnRH release in humans. However, 

244 prenatal exposure to androgens programs a number of PCOS-like features in several animal 

245 species [85]. For example, in addition to exhibiting ovarian hyperandrogenism and ovulatory 

246 dysfunction, prenatally-androgenized (PNA) female monkeys demonstrate central resistance to 

247 the negative feedback effects of sex steroids, increased LH (GnRH) pulse frequency, increased 

248 circulating LH concentrations, and increased LH-to-FSH ratio [86]. PNA rodents and sheep 

249 exhibit similar findings [87, 88]. While PNA mice exhibit PCOS-like neuroendocrine dysfunction, 

250 it remains unclear to what degree similar in vivo abnormalities (e.g., elevated serum LH, 

251 elevated LH pulse frequency) are observed in postnatally-androgenized mice [85, 89]. However, 

252 in female monkeys, experimentally producing mild hyperandrogenemia (3.7-fold elevated 

253 testosterone concentration) beginning prepubertally produced elevations in post-pubertal LH 

254 pulse frequency [59]. 

255 We note that the degree to which such animal models are relevant to human PCOS remains 

256 controversial, in part because no animal model perfectly replicates any human disorder, 

257 including PCOS, and in part because various aspects of reproductive physiology can differ by 
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258 species. Further complicating this, PCOS is heterogeneous in its presentation, and different 

259 pathogenic factors likely play different relative roles in different subsets of patients. With regard 

260 to PNA models, it remains unclear whether women with PCOS were exposed to excess 

261 androgens in utero. For example, some but not all studies suggest that cord blood androgen 

262 concentrations are elevated at the time of delivery in daughters of mothers with PCOS [90]. 

263 While direct surveillance of in utero androgen exposure is exceedingly difficult in humans, 

264 anogenital distance—a surrogate measure of intrauterine androgen exposure—appears to be 

265 longer in women with PCOS [91-93], although results are mixed in newborn daughters of 

266 mothers with PCOS [94, 95]. Similarly, a recent study suggested that sebum production is 

267 temporarily increased in newborn daughters of women with PCOS, consistent with in utero 

268 exposure to maternal androgen excess [96]. 

269 Much of our understanding of the likely neurobiological mechanisms leading to androgen-

270 mediated neuroendocrine dysfunction in PCOS is derived from rodent models. Studies 

271 performing electrophysiologic recordings of GnRH neurons in murine brain slices from control 

272 vs. dihydrotestosterone (DHT)-treated mice suggest that DHT—a non-aromatizable androgen—

273 increases GnRH neuron firing rates [58]. GnRH neuron firing frequency is similarly increased in 

274 adult PNA mice, which have elevated endogenous testosterone production [97, 98]. Consistent 

275 with these observations, LH pulse frequency is elevated and relatively resistant to progesterone 

276 negative feedback in PNA mice and sheep [55, 99], as it is in women with hyperandrogenic 

277 PCOS. Such resistance to progesterone negative feedback in these animal models likely 

278 reflects reduced progesterone receptor expression in the arcuate nucleus [100-103]. 

279 Interestingly, conditional neuron-specific knockout of the androgen receptor in mice reduces the 

280 ability of postnatal DHT administration to induce PCOS-like features such as ovulatory 

281 dysfunction, polycystic ovaries, and obesity [104]. These data implicate the importance of 

282 neuroendocrine androgen action in the development of PCOS-like features in this model. Also 

283 of interest in this regard are mice treated with long-term with the aromatase inhibitor letrozole. 

284 These mice exhibit PCOS-like features such as hyperandrogenemia, ovulatory dysfunction, and 

285 polycystic ovaries [105]. Many of the neuroendocrine changes observed in letrozole-treated 

286 rodents—higher serum LH and lower serum FSH concentrations, reduced progesterone 

287 receptor mRNA expression in the mediobasal hypothalamus, higher numbers of arcuate 

288 nucleus kisspeptin neurons [105-107]—reflect reduced estrogen negative feedback per se. 

289 However, co-treatment with flutamide improves estrous cyclicity and reduces both 
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290 hyperandrogenemia and pituitary expression of Lhb mRNA, suggesting that some of the 

291 neuroendocrine findings in this model likely reflect letrozole-induced hyperandrogenemia [108].

292 Potential role of γ-aminobutyric acid (GABA)ergic neurons in PCOS-related GnRH neuron 

293 dysfunction

294 The pharmacological agent valproate increases GABAergic tone, and long-term therapeutic use 

295 of valproate for epilepsy and bipolar disorder has been associated with an increased risk for 

296 PCOS [109, 110]. In addition, cerebrospinal fluid GABA concentrations may be elevated in 

297 women with PCOS [111]. Although one study suggested that valproate administration to normal 

298 women for one month did not increase LH pulse frequency [112], studies in preclinical animal 

299 models suggest that GABAergic neurons play a role in the disordered GnRH secretion 

300 characteristic of PCOS.

301 The influence of sex steroids on GnRH secretion appears to be substantively mediated 

302 indirectly through neuronal systems afferent to GnRH neurons. Thus, neuronal circuits afferent 

303 to GnRH neurons likely mediate hyperandrogenemia-related GnRH neuron dysfunction in 

304 PCOS. Because GnRH neurons have high intracellular chloride concentrations, GABAA-

305 receptor stimulation depolarizes GnRH neurons and can induce action potential firing in these 

306 cells [113, 114]. GABAergic transmission to GnRH neurons, as well as the amplitude of the 

307 GABAergic postsynaptic currents, is decreased and increased by progesterone and DHT, 

308 respectively, suggesting that GABA neurons mediate progesterone-mediated suppression and 

309 androgen-mediated stimulation of GnRH neuron activity [88, 115]. In PNA mice, anatomical 

310 GABAergic innervation onto GnRH neurons is increased, as is functional excitatory GABAergic 

311 drive [102, 116-118]. These GABAergic neurons, originating largely from the arcuate nucleus, 

312 demonstrate less colocalization with progesterone receptors compared to control mice, 

313 suggesting a possible mechanism for increased GABAergic drive that would potentially be 

314 associated with progesterone resistance [102]. Long-term selective activation of arcuate 

315 nucleus GABAergic neuron terminals in the rostral preoptic area—where GABAergic terminals 

316 densely contact GnRH neurons—leads to a PCOS-like phenotype including hyperandrogenemia 

317 and disrupted estrous cycles, along with a possible increase in LH pulse frequency [119]. In 

318 addition to influencing GnRH neurons via direct synaptic inputs, GABAergic neurons may 

319 influence GnRH release indirectly via arcuate nucleus KNDy neurons. For example, PNA ewes 

320 exhibit increased GABAergic appositions onto both mediobasal hypothalamus GnRH neurons 

321 and arcuate nucleus KNDy neurons [120]. Overall, these studies imply that PNA causes 

322 organizational and functional changes within the GABAergic neuronal networks that in turn 
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323 promote GnRH neuron overactivity and LH excess, in addition to other PCOS-like 

324 characteristics. 

325 Although the specific mechanisms by which pathological GABA signaling develops remains to 

326 be determined, impaired microglia pruning of GABAergic synapses in early development has 

327 been implicated [121]. In the PNA mouse model, fewer “sculpting” microglia populate the rostral 

328 preoptic area during adolescent development, and microglia in this region are found to engulf 

329 fewer GABAergic synapses. Whether prenatal androgen excess directly or indirectly drives 

330 changes in microglia behavior remains to be determined, but these data suggest the PNA 

331 catalyzes a cascade of events that shape the developing PCOS-like brain prior to disease 

332 onset. Also of interest: even though atypically high GABAergic input onto GnRH neurons is 

333 observable before puberty and before the emergence of PCOS-like findings in PNA mice [116, 

334 118], both the atypical GABAergic input onto GnRH neurons and the PCOS-like findings can be 

335 reversed after puberty with androgen-receptor blockade [117, 118].

336 Potential role of anti-Müllerian hormone in PCOS-related GnRH neuron dysfunction

337 Serum anti-Müllerian hormone (AMH) concentrations—derived from granulosa cells in preantral 

338 and small antral ovarian follicles—are elevated in women with PCOS, including during 

339 pregnancy [122, 123]. Another study suggested that cord blood AMH concentrations are 

340 elevated in neonates born to women with PCOS [124]. In postmenarchal adolescent daughters 

341 of women with PCOS, high circulating LH concentrations correlate with high AMH 

342 concentrations [72]. More compellingly, experiments in the mouse model suggest that AMH can 

343 directly stimulate GnRH neuron activity and GnRH secretion [122, 125]. 

344 Two recent studies indicate that AMH administration to pregnant mice produces a PCOS-like 

345 syndrome in female progeny, characterized by increased anogenital distance, disrupted estrous 

346 cyclicity, and elevated testosterone concentrations [122, 126]. In one of these studies, female 

347 mice born to AMH-treated mothers (PAMH) demonstrated increased mean LH concentrations, 

348 LH pulse frequency, GnRH neuron firing rate, and GABAergic appositions onto GnRH neurons 

349 [122]. Notably, while AMH appeared to activate GnRH neurons, the fetal effects of maternal 

350 AMH administration appeared to reflect GnRH-mediated maternal hyperandrogenism, as AMH 

351 did not appear to cross the placental barrier, and maternal cotreatment with a GnRH antagonist 

352 prevented the aforementioned manifestations in female offspring [122]. Therefore, elevated 

353 AMH in pregnant mothers may contribute to the prenatal androgen excess associated with the 

354 development of PCOS features. Also of interest, partial GnRH-receptor inhibition in adult PAMH 

355 female mice (i.e., the progeny of pregnant dams treated with AMH) normalized circulating LH 
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356 and testosterone concentrations, LH pulse frequency, estrous cyclicity, and ovarian morphology 

357 (number of corpora lutea and antral follicles) [122].

358 In a more-recent study [126], AMH administration to pregnant dams led to hyperandrogenemia, 

359 disrupted estrous cyclicity, elevated LH, subfertility, and increased adiposity in first-, second-, 

360 and third-generation offspring. Accompanying experiments suggested that transgenerational 

361 transmission of epigenetic modifications (DNA hypomethylation) accounted for some but 

362 perhaps not all of these findings [126]. For example, treatment of third-generation mice with the 

363 methyl donor S-adenosylmethionine normalized ovulatory function, LH, testosterone, and body 

364 weight, but it did not appear to reverse an increase in preoptic area Gnrh1 and Kiss1 expression 

365 observed in PAMH mice [126]. 

366 Potential role of kisspeptin neurons in PCOS-related GnRH neuron dysfunction

367 The neuropeptide kisspeptin potently stimulates GnRH neuron activity and GnRH release. Most 

368 arcuate nucleus kisspeptin neurons co-express neurokinin B and dynorphin and have thus been 

369 called KNDy (kisspeptin/neurokinin B/dynorphin) neurons. A number of studies suggest that 

370 arcuate nucleus KNDy neurons form an extensively-interconnected autoregulatory network, with 

371 neurokinin B augmenting and dynorphin reducing KNDy neuron activity [127-130]. Accordingly, 

372 arcuate kisspeptin neurons are postulated to be a fundamental component of the GnRH pulse 

373 generator [128, 131-133]. In addition, KNDy neurons are believed to at least partly mediate sex 

374 steroid negative feedback on GnRH secretion [129, 132, 134].

375 Women with PCOS appear to have elevated circulating kisspeptin levels (standardized mean 

376 difference 1.15 with 95% confidence interval 0.68–1.62) [135]; the source of this kisspeptin is 

377 unknown but is unlikely to be the brain. Women with PCOS may be more likely to harbor the GG 

378 genotype of the kisspeptin gene polymorphism rs4889 [136]. The relevance of these findings 

379 remains uncertain, but they provide initial support for the hypothesis that changes in 

380 kisspeptin/KNDy neurons may play a role in the dysregulated GnRH secretion characteristic of 

381 PCOS. 

382 Changes in KNDy neurons have been reported in animal models used to study PCOS. PNA 

383 rodents exhibit increased arcuate nucleus Kiss1 expression and/or increased arcuate nucleus 

384 kisspeptin neuron numbers in some, but not all, studies [103, 137-139]. PNA rats may also 

385 exhibit increased hypothalamic Tac2 (neurokinin B) mRNA expression and increased numbers 

386 of arcuate nucleus neurons expressing neurokinin B [137, 139]. In PNA ewes, arcuate nucleus 

387 kisspeptin cell body size was increased, but there was no change detected in the numbers of 
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388 arcuate nucleus kisspeptin-expressing cells, and fewer arcuate nucleus neurokinin B- and 

389 dynorphin-expressing cells were reported [101, 140]. Dynorphin acts through the κ-opioid 

390 receptor (KOR), which is expressed on both KNDy neurons and GnRH neurons in ewes [141, 

391 142]—in addition to elsewhere in the brain. The non-selective opioid antagonist naloxone can 

392 increase LH release under conditions of progesterone negative feedback suggesting opioids 

393 have a restraining effect on the reproductive neuroendocrine system [143]. In one study, PNA 

394 mice did not exhibit altered hypothalamic dynorphin mRNA expression, although it is notable 

395 that the reproductive parameters of the PNA mice (e.g., estrous cyclicity) were less disrupted in 

396 this study [138]. In contrast, a recent study suggested that progesterone-receptor and dynorphin 

397 RNA transcript numbers are reduced in the KNDy neurons of PNA mice [103]. Taken together, 

398 these studies suggest that the opioid signaling component of the KNDy pathway may be 

399 involved in PCOS pathophysiology and may be an important therapeutic target. Indeed, a recent 

400 preclinical study in PNA mice suggests that KOR agonist difelikefalin, which does not cross the 

401 blood-brain barrier but still has access to regions near the fenestrated capillaries of the median 

402 eminence, ameliorates estrous cyclicity in addition to reducing serum testosterone [144]. Such 

403 results in an animal model with PCOS-like features suggest that KOR agonists deserve further 

404 study as potential pharmacological agents for PCOS.

405 Recent anatomical evidence suggests that KNDy neurons receive fewer glutamatergic and 

406 GABAergic inputs in PNA mice [103]. Interestingly, the firing rates of Tac2-GFP-identified 

407 (KNDy) neurons in brain slices from both prepubertal and adult control and PNA mice were 

408 unaffected by either age or PNA treatment [145]. This may indicate that the reductions in GABA 

409 and glutamate inputs effectively cancel each other out, but further functional studies are 

410 required to test this hypothesis. Interestingly, the ability of the neurokinin-3 receptor (NK3R) 

411 agonist senktide to increase KNDy neuron firing rate was reduced in 3-week-old PNA mice, 

412 implying developmental changes [145]. Of note, the above reports of changes in gene 

413 expression could lead to an altered neurosecretory output from KNDy neurons despite similar 

414 firing characteristics.

415 Potential efficacy of pharmacological agents targeting the GnRH-related neuronal 

416 network in PCOS

417 The previously-described data—those suggesting that hyperandrogenemia per se causes 

418 dysregulated GnRH secretion—implies the potential utility of androgen-receptor blockade in 

419 restoring normal GnRH secretion in PCOS. For example, although the androgen-receptor 

420 antagonist flutamide did not alter baseline LH pulse frequency in PCOS, it normalized GnRH 
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421 pulse generator sensitivity to estradiol and progesterone negative feedback [50]. However, 

422 when used in isolation, the overall therapeutic value of androgen-receptor blockade remains 

423 unclear. For example, studies are mixed on whether flutamide improves ovulation rates in 

424 PCOS [146-148]. In addition, androgen-receptor antagonists may adversely affect the 

425 development of male offspring, limiting their therapeutic potential in potentially-fertile women. It 

426 remains possible that such agents could have unique benefits during critical developmental 

427 windows. For example, a recent retrospective study of adult women with PCOS suggested that, 

428 compared to antiandrogen initiation in adulthood, the initiation of antiandrogen treatment during 

429 adolescence is associated with a greater likelihood of first childbirth after spontaneous 

430 (unassisted) conception during adulthood [149]. 

431 Pharmacological agents targeting high-order neuronal control of GnRH secretion (e.g., the 

432 KNDy neuronal network) may prove useful in the future. For example, a study in adults with 

433 PCOS suggested that the selective NK3R antagonist pavinetant (formerly MLE4901 and 

434 AZD4901) administered at a dose of 80 mg/day for one week reduced LH pulse frequency (by 

435 3.55 LH pulses over 8 hours), circulating LH concentrations (50% reduction in LH area under 

436 the curve), and basal (i.e., non-pulsatile) LH secretion (80% lower) while preserving FSH 

437 secretion [150]. Although the efficacy of NK3R blockade appeared to be diminished over time in 

438 this study (i.e., changes were not statistically significant after 28 days of use), the reduction in 

439 LH area under the curve, LH-to-FSH ratio, LH pulse frequency, and basal LH secretion 

440 remained significantly lower at 28 days when analysis was restricted to non-ovulatory patients 

441 [150]. In another study of women with PCOS, 40 mg of pavinetant administered twice daily for 7 

442 days reduced both circulating LH concentrations and LH pulse frequency by nearly 40%, while 

443 reducing FSH concentrations by 20% [151]. Although these are interesting proof-of-concept 

444 studies, the clinical development of pavinetant has since been abandoned, at least in part 

445 because of the potential for liver toxicity [152]. A related, recently-published phase 2a 

446 multicenter randomized controlled trial demonstrated that 12 weeks’ administration of 

447 fezolinetant (ESN364), another NK3R antagonist, at 180 mg/day reduced serum testosterone by 

448 approximately 35%, LH and FSH by approximately 60% and 18%, respectively, and LH-to-FSH 

449 ratio by nearly 60% [153]. While LH pulse frequency was not assessed in this study, reductions 

450 in LH-to-FSH ratio and testosterone were sustained for 12 weeks of treatment [153]. No clear 

451 changes in circulating estradiol concentrations or ovulatory function were observed in this 

452 relatively short-term study [153]. The success of longer-term NK3R antagonism in PCOS 

453 remains to be determined. The potential impact of chronic NK3R antagonism on gonadotropin 

454 surge generation and ovulation is unknown. Of note, it is possible that long-term, continuous 
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455 NK3R antagonist administration could promote hypogonadotropic hypogonadism, as occurs in 

456 some individuals with homozygous loss-of-function variants of TACR3, the gene encoding 

457 NK3R [154]. 

458 The site of action of NK3R antagonists may be the KNDy neuron as discussed above, but it is 

459 important to bear in mind that this receptor has also been reported in the terminal regions of 

460 GnRH neurons in the rat, and that the NK3R agonist senktide increases GnRH release when 

461 applied to the median eminence, even in kisspeptin knock out mice, suggesting that GnRH 

462 neurons themselves could also be targeted [155, 156].

463 Summary and future directions

464 It has long been recognized that PCOS is associated with persistently high LH (GnRH) pulse 

465 frequency and disordered gonadotropin secretion—LH excess and high LH-to-FSH ratio in 

466 particular. Although the translational research community has uncovered some of the 

467 mechanisms accounting for aberrant GnRH secretion in PCOS, much remains unclear. 

468 Hyperandrogenemia per se contributes to GnRH pulse generator overactivity, at least in part by 

469 reducing GnRH pulse generator sensitivity to sex steroid (progesterone) negative feedback. 

470 This leads to persistently high GnRH pulse frequency, which preferentially favors LH production 

471 and limits FSH production. In turn, these alterations in gonadotropins bolster ovarian androgen 

472 production and contribute to ovulatory dysfunction. The degree to which these alterations of 

473 GnRH secretion originate in fetal development remains unclear, but the endogenous androgen 

474 excess that develops in prenatally-androgenized animals appears to maintain such 

475 abnormalities in prenatally-androgenized animals [50, 98, 117, 118]. In addition, androgen-

476 receptor antagonism normalizes GnRH pulse generator sensitivity to negative feedback in 

477 women with PCOS [50] and rescues at least some of the neuroendocrine defects identified in 

478 preclinical models [117, 118]. These findings suggest the possibility that androgen-receptor 

479 blockade can normalize GnRH secretion in PCOS, although results to date are mixed and 

480 additional study is needed. Early studies of agents that modulate GnRH secretion via higher-

481 order neuronal inputs (e.g., selective neurokinin-3 receptor antagonists) also suggest potential 

482 promise as future treatments for PCOS. Preclinical models will continue to play an important 

483 role in improving our understanding of neuroendocrine dysfunction in PCOS. Future directions 

484 should include studies to define the pathogenic neuroendocrine changes occurring during 

485 critical developmental windows in addition to the initial testing of novel therapeutics for PCOS.

486
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487 Figure legend

488 Figure 1. (A) Simplified model of hypothalamic-pituitary-ovarian interactions during a normal 

489 menstrual cycle. (B) Proposed vicious cycle in the hypothalamic-pituitary-ovarian axis in PCOS. 

490 [+] = feedforward stimulation; [–] = negative feedback; P4, progesterone. 

491
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