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Abstract
The current theory of carcinogenesis for the deadliest of ‘ovarian’ cancers—high-grade serous carcinoma (HGSC)—holds that
themalignancy develops first in the fallopian tube and spreads to the ovaries, peritoneum, and/or regional lymph nodes. This
is based primarily on the observation of early forms of serous neoplasia (serous tubal intraepithelial lesions [STILs], and serous
tubal intraepithelial carcinomas [STICS]) in the fimbria of women undergoing risk reduction surgery. However, these lesions
are uncommon in the general population, confer a low risk (5%) of HGSC following their removal in at-risk women with
germ-line BRCA1/2mutations, and require 4 ormore years to recur as intraperitoneal HGSC. These features suggest that iso-
lated STILs and STICs behave as precursors, with uncertain cancer risk rather than carcinomas. Their evolution to HGSCwithin,
or after, escape from the tube could proceed stepwise with multiple biologic events; however, it is unclear whether tubal or
ovarian HGSCs encountered in the setting of advanced disease evolved in the same fashion. The latter scenario could also be
explained by a ‘catastrophic’model in which STICs suddenly developwith invasive andmetastatic potential, overwhelming or
obscuring the site of origin. Moreover, a similar model might explain the sudden emergence of HGSC in the peritoneal cavity
following escape of precursor cells years before. Long-term follow-up data fromopportunistic or prophylactic salpingectomy
should shed light on where malignant transformation occurs, as well as the timeline from precursor to metastatic HGSC.
© 2022 The Pathological Society of Great Britain and Ireland.
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The tubal theory of ovarian carcinogenesis

Extrauterine high-grade serous carcinoma (HGSC) is a
disease that underscores the importance of tumor origin
to management and prevention [1]. Over 90% of tumors
present at Stage II or higher, screening efforts have been
unfruitful, and only 20% of women survive 10 years [1–3].

With genetic screening and risk-reducing salpingo-
oophorectomy (RRSO), early HGSCs with TP53mutations
have been reported in the fallopian tubes of asymptomatic
vulnerable women with germline BRCA1/2 mutations
(BRCAm) [4–14]. A pathologic dissection protocol (‘SEE-

FIM’), introduced in 2005, focused on the distal fallopian
tube (fimbria), and a range of serous cancer precursors
(serous tubal intraepithelial lesions, STIL) and serous tubal
intraepithelial carcinomas (STIC)withTP53mutations have
been described (Figure 1A–C) [15–17]. Approximately 5%
of BRCAm RRSOs contain an STIC and of these about 5%
will eventually be followed by disseminated HGSC
[18–20]. Both the distal fallopian tube and endometrial lin-
ing have nowbeen shown to harbor possible precursorswith
TP53mutations (Figure 2) [21–23].
Based on literature review, from 11–60% (mean 31%)

of HGSCs are associated with an STIC [24]. With STIC
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as the cornerstone in early HGSC development, models
have been constructed with a ‘window of opportunity’ to
intercept these early malignancies at a curable stage [25].

Incidental versus symptomatic STIC

STIC is generally defined as a stratified depolarized popu-
lation of atypical proliferating nonciliated cells. The term
implies an intramucosal malignancy. However, most
STICS found incidentally are not followed by a subsequent
intraperitoneal HGSC. If HGSC does occur, based on a
small number of cases reported, it usually emerges 4–
7 years later [18,26,27]. Contrasted with the rapid growth
rate of most established HGSCs leading to short recurrence
intervals, most isolated STICs seem to function more as
precursors—akin to STILs—than intramucosal carcinomas
that can readily metastasize. For the purpose of this review,
these precursors are combined under the term serous tubal

intraepithelial neoplasia (STIN), implying an intraepithelial
neoplasm with a risk—albeit low—of an HGSC outcome.
Given the long recurrence interval, one can argue that
HGSC following the discovery of such lesions occurred
after a form of ‘precursor escape.’ This model fits the con-
cept of primary peritoneal carcinomas, which could have
an ultimate origin in a tubal precursor [28–30].

STIC is much less commonly found in women pre-
senting with advanced HGSC (averaging 31%) [24].
Explanations include simple inundation of the STIC by
tumor overgrowth, precursor escape, or rapid develop-
ment of an STIC with instant metastatic potential.

The conundrum of tumor origin

The challenges faced in resolving the origin of all
HGSCs can be appreciated from examination of the sur-
gical specimen. Table 1 is a summary of pathology

Figure 1. Serous cancer precursors in the fallopian tube containing TP53 mutations. (A,C,E) H&E images, including p53 signature (A) and
serous tubal intraepithelial lesion (C). (E) A serous tubal intraepithelial carcinoma for comparison. Panels (B,D,F) display diffuse nuclear stain-
ing for p53 in the non-ciliated cells, in keeping with a TP53 mutation.
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reports from 387 consecutively diagnosed HGSCs from
specimens reportedly containing both fallopian tubes,
removed at Brigham and Women’s Hospital between
2015 and 2020. A review of the cases was performed
under Institutional Board approval. All cases were pro-
cessed using the SEE-FIM protocol. Cases were catego-
rized with attention to the fallopian tubes, both of which
were removed: (1) the presence of STIC; (2) endosalpin-
geal involvement (any fimbrial involvement was
included); (3) one or more tubes not found or obliterated;
(4) serosal or paratubal involvement only; and (5) no
tumor identified. These data are from reports only, and
interpretation is limited somewhat by the prior adminis-
tration of chemotherapy, which might lower the fre-
quency of STIC; however, a minority of cases showed

a marked chemotherapeutic response (cases with no
remaining tumor were not included).
From the two columns at the left of Table 1, 17.5% of

cases likely arose in the tube based on the presence of
STIC. From the two columns at the right, 20.6% of cases
did not exhibit involvement of either the endosalpinx or
the tube, in which case the cancer likely initiated away
from the tubal mucosa. The middle three columns are a
‘mixed bag.’ Endosalpingeal involvement or complete
obliteration of the tube could signify overgrowth by a
primary tubal carcinoma or metastatic disease. Either
way, this process implies rapid growth and contrasts
with the isolated ‘STIC’ that behaves as an indolent pre-
cursor with a low risk of subsequent metastatic HGSC.
The data thus support the role of three phenomena in
the genesis of HGSC: (1) an initiating event character-
ized by a TP53 mutation in the upper female genital
tract; (2) Malignant transformation of the cells, either
in the tube or following precursor escape; and (3) possi-
bly, rapid transformation and dissemination beginning
either in the tube, ovarian surface, or the peritoneal cav-
ity [31,32]. What remains is a high percentage of cases
presenting with high-stage HGSC without a clear-cut
"early" cancer in the tubal mucosa.

The case for sudden catastrophic genomic events

A current model of HGSC formation is through gradual
genetic evolution (Figures 3A and 4A). Comparing
intraepithelial (i.e. STIC) and invasive serous carcino-
mas, phylogenetic analyses based on single nucleotide
variants (SNVs) and copy number variants (CNVs)
derived from whole-exome sequencing (WES) describe
a window of �6.5 years between development of an
STIC and initiation of HGSC [25,33]. Once the precur-
sors find their way to the ovary, the progression appears
to be clinically rapid, as less than 5% of HGSCs are con-
fined to the ovary at diagnosis [34], and based on phylo-
genetic analyses, metastases rapidly follow HGSC
formation within an average window of �2 years. This
current model thus describes the STIC-HGSC transition
as a major bottleneck in clinical progression, which
appears to be eventually overcome through gradual
accumulation of SNVs and CNVs (Figures 3A and
4A). One well-established example of such a carcino-
genic sequence is the Vogelstein model of colorectal car-
cinogenesis, which involves mutations in the APC and
KRAS genes, followed by loss of the tumor suppressor
genes, SMAD4, and TP53, sequentially leading to the
formation of adenomas and ultimately carcinoma [35].

Table 1. Breakdown of 387 consecutive HGSC cases by pattern of fallopian tube involvement in the pathology report.
STIC not identified (82.5%)

STIC identified (17.5%) Endosalpingeal involvement One or more tubes not identified Serosal involvement only No tumor identified

Unilateral Bilateral Unilateral Bilateral

15.2% 2.3% 30.0% 15.2% 16.5% 7.2% 13.4%

Figure 2. Evidence of TP53 mutations in histologically benign-
appearing endometrial lining epithelial cells. (A) H&E-stained sec-
tion and (B) shows strong staining for p53, indicating the presence
of a TP53 mutation.

Origin and prevention of high-grade serous carcinoma 257

© 2022 The Pathological Society of Great Britain and Ireland. www.pathsoc.org J Pathol 2022; 257: 255–261
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


This is perhaps the best demonstration of the gradual
pathogenesis model, with the windows between
adenoma–carcinoma being estimated at 5–15 years.
However, in contrast to colorectal carcinoma, the num-
ber of genetic events definitively linked to serous carci-
nogenesis is low. It is understood that TP53 mutation

and the resulting p53 dysfunction are crucial truncal
events [36,37]. Other genetic events impacting the
RB/p16/CDK4 pathway, such as RB promoter methyla-
tion and/or RB gene copy loss, are also frequent, if not uni-
versal [38,39]. CCNE1 amplification, based on its well-
established prognostic significance, could accelerate

Figure 3. Three models of HGSC pathogenesis. (A) ‘Gradual’model of HGSC formation, with sequential accumulation of mutations. (B,C) Two
potential routes in the ‘Catastrophic’ models of HGSC formation, with early TP53 mutation, ultimately leading to genomic catastrophe
(e.g. chromothripsis). (B) The catastrophic event happens in situ (i.e. in the intraepithelial fallopian tubal lesion), leading to the formation
of identifiable STIC. (C) The precursor escapes into the peritoneum, prior to the catastrophic genomic event, which occurs later in the peri-
toneal cavity. In both (B) and (C), genomic catastrophe is either lethal to the precursor cells or carcinogenic, and thus carcinogenic progres-
sion is stochastic over time, arising from a selected precursor cell.

Figure 4. Cartoon of mucosal epithelium corresponding to the models in Figure 3. (A) A gradual stepwise sequence including normal, precur-
sor, nonmetastasizing STIC, and metastasizing STIC. (B) A catastrophic model in which a metastasizing STIC emerges rapidly from normal
mucosa or an early precursor. (C) A precursor escape model in which cells with TP53mutations escape the tube and becomemetastatic-capa-
ble later in the peritoneal cavity. STICs in such instances could be metastatic deposits.
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disease progression [40,41], but no other genetic events
have been identified as either sufficient or necessary for
HGSC formation. Perhaps reflecting this, some murine
models of HGSC often resort to combinations of genetic
lesions (such as Dicer-Pten double-knockout) rarely seen
in human HGSCs; however, this limits their value as
models for this disease [42,43].

An alternative to the gradual model is one involving
rapid, catastrophic genomic events. Chromothripsis,
which, briefly, is thought to entail shattering, followed
by subsequent, sometimes seemingly random, reassembly
of one or few chromosome(s) [44], has been reported
detectable in about 60% of ovarian HGSCs [45]. In some
cancers, e.g. glioblastoma, these catastrophic events have
been associated with amplification of bona fide onco-
genes, such as MYC, where MYC overexpression alone
does not appear to be sufficient to induce catastrophic
events [46], arguing that chromothripsis may be an impor-
tant truncal event, driving carcinogenesis. Pertinent to
HGSC, chromothripsis is generally common in cancers
associated with p53 dysfunction, including liposarcoma
(where p53 dysfunction is induced byMDM2 copy gain),
pediatric medulloblastoma in Li–Fraumeni patients
(where p53 dysfunction is associated with germline
TP53 mutations), and HGSC (where p53 dysfunction is
associated with somatic TP53 mutations) [47]. Although
several different working definitions exist for chromo-
thripsis, one identifiable finding is alternating gains and
losses occurring in a single region [44]. Thus, at least some
of the genomic complexity in HGSCs could be explained
by a single catastrophic genomic event, rather than as a
gradual accumulation of CNVs. Arguably, such cata-
strophic events would be difficult to incorporate into phy-
logenetic analyses, creating a different molecular timeline
relative to the gradual model (Figures 3B,C and 4B,C).

Hypothesis and prevention

The impact of bilateral salpingo-oophorectomy (BSO) on
subsequent ovarian cancer (a reduction in cases of �15-
fold versus controls) is well established, both in the gen-
eral population and in BRCAm women [48]. Retrospec-
tive studies have estimated a risk reduction for bilateral
salpingectomy as well, albeit less so than BSO [49]. The
promise of prophylactic or opportunistic salpingectomy
is palpable. The most plausible early examples of HGSC
(STICs) are found in the fallopian tubes from BRCAm

women; however, only a fraction will metastasize, sug-
gesting that incidental isolated STICs are best viewed as
intraepithelial neoplasms of uncertainmalignant/recurrent
potential. This scenario contrasts with the more than 90%
ofwomenwithHGSCwho presentwith disseminated dis-
ease, and on average about 30% will harbor a recogniz-
able STIC, most of which are unmistakably malignant.
These facts argue for a dualistic pathway including a rel-
atively rapid onset of metastatic HGSC originating in
the tube or peritoneal cavity. The relative contributions
of malignant transformation occurring in the tube versus

the peritoneal cavity remain to be determined. However,
estimates will be feasible in the context of data emerging
following opportunistic or prophylactic salpingectomy. It
is unlikely that salpingectomy will completely eliminate
the risk of HGSC. However, a dramatic reduction in cancer
incidence following these procedures will argue for a
model with rapid cancer development in which metastatic
spread occurs from an established tubal HGSC. A less
striking reduction in HGSC incidence would favor a model
of precursor escape or an alternate site of tumor initiation.
Addressing the latter might necessitate attention to removal
of the tubes and the peritoneal milieu where precursor cells
with future malignant potential could be left behind.
Resolving the role of each scenario will require long-term
follow-up studies to account for the potential delays inher-
ent in the time required for transition from precursor to
malignancy.

Note in Proof: A recent publication by Amuzu, et al
describes a case of a 0.8 mm HGSC in the setting of
STIC identified at preventive surgery in a woman with
a germ-line BRCA1 mutation, that metastasized and lay
dormant in the peritoneum for 15 years. The secondary
HGSC differed from the original by whole genome dou-
bling, inferring a single "catastrophic" genomic event in
the genesis of the recurrent tumor [50]
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