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Abstract

Provider profiling has been recognized as a useful tool in monitoring health care
quality, facilitating inter-provider care coordination, and improving medical cost-
effectiveness. Existing methods often use generalized linear models with fixed
provider effects, especially when profiling dialysis facilities. As the number of
providers under evaluation escalates, the computational burden becomes formidable
even for specially designed workstations. To address this challenge, we introduce a
serial blockwise inversion Newton algorithm exploiting the block structure of the
information matrix. A shared-memory divide-and-conquer algorithm is proposed to
further boost computational efficiency. In addition to the computational challenge,
the current literature lacks an appropriate inferential approach to detecting providers
with outlying performance especially when small providers with extreme outcomes
are present. In this context, traditional score and Wald tests relying on large-sample
distributions of the test statistics lead to inaccurate approximations of the small-
sample properties. In light of the inferential issue, we develop an exact test of provider
effects using exact finite-sample distributions, with the Poisson-binomial distribu-
tion as a special case when the outcome is binary. Simulation analyses demonstrate
improved estimation and inference over existing methods. The proposed methods
are applied to profiling dialysis facilities based on emergency department encounters
using a dialysis patient database from the Centers forMedicare &Medicaid Services.
KEYWORDS:
divide-and-conquer, emergency department encounters, exact test, parallel computing, Poisson-binomial
distribution

1 INTRODUCTION

The variable nature of the U.S. health care system has raised public concerns regarding the quality of care.1 In an effort to
accommodate the growing demand for accountability in care delivery, provider profiling, i.e., the identification of outlying care
providers with particularly high or low rates,2 has been implemented in monitoring the structure, processes and outcomes of
health care by regulatory organizations.3,4,5 As one such organization, the Centers for Medicare & Medicaid Services (CMS)
administers quality programs to evaluate care providers,6 with the aim of assuring quality care for beneficiaries and controlling
medical costs. Established by the Medicare Improvements for Patients and Providers Act, the CMS End-Stage Renal Disease
(ESRD) Quality Incentive Program (QIP) promotes high-quality services in kidney dialysis facilities by linking payments for

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may lead
to differences between this version and the Version of Record. Please cite this article as doi:
10.1002/sim.9387

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1002/sim.9387
http://dx.doi.org/10.1002/sim.9387


2 WU ET AL.

treating patients to facilities’ performance on a spectrum of quality measures.7 The QIP will reduce payments to facilities unable
to meet certain standards, motivating them to improve their services. Thus, accurate provider profiling is a high-stakes endeavor.
Among the various patient outcomes used in the ESRD QIP, emergency department (ED) encounters are an important indi-

cator of care delivery, quality of life, and cost effectiveness.8 Lovasik et al.9 reported that ESRD patients have on average 2.68
ED visits per patient-year, 6-fold higher than the national mean rates for U.S. adults, with care access as a preventable cause
of ED use; Zhang et al.10 showed that ED visit rates for patients on thrice-weekly hemodialysis are highest after the interdia-
lytic interval over the weekend, suggesting that the ED visit rate is associated with the dialysis schedule; Cohen et al.11 found
that missed dialysis treatments are associated with a high risk of an ED visit, suggesting an opportunity for facilities to reduce
skipped treatments and ED visits through improved care coordination. Our endeavors in this article are motivated by profiling
dialysis facilities on ED encounters and seek to resolve two associated statistical challenges.
Current approaches to profiling providers typically relate the outcome of interest to risk factors using generalized linear

models (GLMs) with fixed12,13,14,15 or random provider effects16,17,2,18,19,20. The fixed effects approach shall be our primary
focus here, since it has been used by CMS in profiling dialysis facilities, and has been recognized as less affected by shrinkage
estimation than the random effects approach in handling the confounding of patient-level risk factors with provider-level effects
when identifying outlying providers.13,21,14,22
Despite the estimation advantage, using fixed effects models poses a computational challenge to large-scale profiling applica-

tions: existing GLM-oriented algorithms such as Newton–Raphson and Fisher scoring23 developed for general-purpose model
fitting cannot fulfill the computational task as the number of providers escalates along with the sample size (e.g., 7,232 dialy-
sis facilities with 757,086 hospital discharges in our application of ED visits). When thousands of provider effects are admitted
into the parameter space, the computational cost of inverting the Fisher information matrix dramatically increases, and imposes
a formidable burden even on specially designed workstations. In light of this hardship, He et al.12 introduced a block ascent
Newton (BAN) algorithm, a block relaxation approach24,25,26 to sequentially updating provider effects and parameters of risk
factors. Approximating the Fisher information by a block diagonal matrix, the BAN relieves the memory burden at the expense,
however, of prolonged convergence. Some routine tasks involving resampling-based model refitting, e.g., assessing the relia-
bility of quality measures associated with the performance of care providers,27,28 are still computationally infeasible using the
time-consuming BAN.
To tackle the challenge of large-scale model fitting for provider profiling, we propose a serial blockwise inversion Newton

(SerBIN) algorithm. Exploiting the block structure of the Fisher information matrix, the SerBIN substantially reduces the time
complexity of inverting that high-dimensional matrix when thousands of provider effects are present. The algorithm also allows
joint updating of a large number of provider effects and other parameters, leading to cost-efficient scalability and fast conver-
gence. Employing the divide-and-conquer (DAC) strategy in a shared-memory context, a novel parallelization of the SerBIN is
developed to further reduce the computational burden, especially when the sample size grows beyond one million. By splitting
the intensive task of computing the information submatrix for regression coefficients into a series of lightweight inner product
calculations, the computational efficiency is further improved without extra hardware requirements.
In addition to the computational issue, current literature lacks a distribution-based inferential approach to detecting providers

with outlying performance. Traditional testing procedures, including the score and Wald tests, are based on the asymptotic
distribution of the test statistics. In the presence of small providers with near-zero variation in outcomes, these large-sample
techniques can lead to poor approximations of the small-sample distributions.29,30 AsHe et al.12 pointed out, for a small provider
with invariant outcomes, its effect estimate tends to infinity with an invalid Wald test statistic.
To bypass unwarranted large-sample approximations, we propose an exact test of provider effects using finite-sample dis-

tributions specific to outcome types. When the outcome is binary, the tail probabilities can be calculated according to the
Poisson-binomial distribution.31,32 Compared with the score and Wald tests, the exact test achieves improved power with
controlled type I error, even if patient-level risk factors are correlated with the corresponding provider effect. Unlike resampling-
based methods,12,14 the proposed exact test, as a distribution-based approach, is computationally scalable to data sets of
extraordinarily large sample size and provider count, and is free from resampling-induced arbitrariness in provider flagging.
The remainder of the paper is structured as follows: Section 2 introduces a GLM framework and presents the SerBIN algorithm

and its shared-memory DAC parallelization. Section 3 develops the distribution-based exact test. Sections 4 and 5 evaluate the
proposed methods through simulations and an application to a national ED visits database for Medicare beneficiaries on dialysis.
Section 6 concludes with a discussion.
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2 MODEL AND ESTIMATION

Before delving into the estimation strategy, we briefly introduce a GLM of the outcome of interest on fixed provider effects and
risk factors.

2.1 Model
Let m denote the total number of providers, let ni be the number of subjects from provider i (i = 1,… , m), and let n ∶= ∑m

i=1 nibe the total count. For subject j (j = 1,… , ni) of provider i, let Yij denote the outcome variable, and let Zij be a p × 1 vector of
risk factors. We assume that given Zij , outcome Yij follows a distribution in the exponential family with parameters !ij and �,
i.e.,

�(Yij|Zij ;!ij , �) ∝ exp
{Yij!ij − b(!ij)

a(�)

}

, (1)
for known functions a and b with E(Yij|Zij ;!ij) = ḃ(!ij), where the dot notation denotes differentiation with respect to !ij ∶=

i + Z⊤ij�, a linear predictor relating to provider effect 
i and coefficients � of risk factors. The specification of a and b is
subject to the type of outcome Yij . In this article, we focus on the commonly encountered normal, binary and Poisson outcomes
in provider profiling, which correspond to the canonical identity, logit and log links, respectively. Given the observed data
{(Yij ,Zij) ∶ i = 1,… , m, j = 1,… , ni}, we have the log-likelihood

l(
, �) ∝
m
∑

i=1

ni
∑

j=1

{

Yij(
i + Z⊤ij�) − b(
i + Z
⊤
ij�)

}

, (2)

where 
 = [
1,… , 
m]⊤. The score and the Fisher information matrix of (2) are available in Appendix A of the Supporting
Information.

2.2 Serial blockwise inversion Newton algorithm
In our application, fitting model (1) amounts to estimating 7,232 facility effects and 86 regression parameters. Using the clas-
sical Newton-Raphson algorithm, this estimation requires inverting a large information matrix with 7,318 rows and columns, a
computational challenge that existing software packages cannot handle. Inspired by analyses of Prentice and Gloeckler33 and
Kalbfleisch and Prentice34, we propose a serial blockwise inversion Newton (SerBIN) algorithm, which takes advantage of the
diagonal information submatrix (
) of facility effects. Let ◦ denote the Hadamard product, and k ∈ {0} ∪ ℕ index iterations.
With the notation in Appendix A of the Supporting Information, we present the SerBIN as Algorithm 1, in which � ∶= [
⊤, �⊤]⊤.
The global convergence of the SerBIN is guaranteed with mild assumptions. Details can be found in Boyd and Vandenberghe
(2004).35
A primary advantage of SerBIN is the improved Newton step Δ� = −1(�) (�) in Lines 8 and 9 of Algorithm 1. Let

11,12,21,22 denote the four blocks of (�). Then, from the blockwise inversion formula,35 we have
−1(�) =

[

−111 +  ⊤
1 

−12, − ⊤
2

−2, −1

]

, (3)
where 1 ∶= 21−111 ,  ∶= 22 − 112 is the Schur complement of 11 ∶= (
), a diagonal submatrix (7,232 × 7,232 in our
application) of (�), and 2 ∶= −11. As a space-time trade-off, 1, −1 and 2 in Lines 5–7 of Algorithm 1 are temporarily
stored in memory to avoid repetitive computing. Specifically, 1, although defined as a matrix product, can instead be calculated
by multiplying each column of 21 with the corresponding diagonal element of −111 , which reduces the cost from O(m2p) to
O(mp). With (�) as the input, computing Δ� via (3) costs O(mp2 + p3), much less than O((m + p)3) resulting from a naive
Newton–Raphson algorithm given that m ≫ p. Because of this efficiency gain, the SerBIN outperforms existing Newton–
Raphson implementations such as glm in R36 or the GENMOD procedure in SAS® (left panel of Figure 1), both of which result
in a system crash with out-of-memory errors when applied to the ED visits data. Backtracking line search35 allowing flexible
step size determination is introduced in Lines 10–12 of Algorithm 1 to handle nearly singular instances of (�).
In a related setting, He et al.12 proposed a block ascent Newton (BAN) algorithm as an instance of block relaxation meth-

ods:24,25,26 the information matrix (�) is substituted by a block diagonal matrix diag((
),(�)), and 
 and � are sequentially
updated using the Newton–Raphson algorithm. Feasible as an alternative approach to circumventing the direct inversion of (�),
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Algorithm 1: Serial Blockwise Inversion Newton (SerBIN)
1 initialize k← 0, �(0) = 0;
2 set s ∈ (0, 0.5), t ∈ (0.5, 1) and � > 0;
3 do
4 v← 1;
5  (k)

1 = (k)21
[

(k)11
]−1 ; // O(np + mp)

6  (k) = (k)22 −  (k)
1

[

(k)21
]⊤ ; // O(np2)

7  (k)
2 =

[

 (k)
]−1  (k)

1 ; // O(mp2 + p3)

8 Δ
(k) = (
(k))◦ (
(k)) +
[

 (k)
2

]⊤ {
 (k)
1  (
(k)) − (� (k))

}

; // O(np + mp)

9 Δ� (k) =
[

 (k)
]−1 (� (k)) −  (k)

2  (
(k)) ; // O(mp + p2)
10 while l(�(k) + vΔ�(k)) < l(�(k)) + sv ⊤(�(k))Δ�(k) do v← tv;
11 �(k+1) = �(k) + vΔ�(k);
12 k← k + 1;
13 while ‖g(k) − g(k−1)‖∞ ≥ �;

the sequential updating scheme omitting the off-diagonal elements of (�) gives rise to prolonged convergence. By contrast,
SerBIN jointly updates 
 and � and requires far fewer iterations than BAN before termination. This advantage enables SerBIN
to outperform BAN in terms of time to convergence (middle panel of Figure 1), and considerably reduces the computational
cost of resampling-based reliability assessments of quality measures.27,28
To demonstrate the advantage of the proposed algorithm via simulations, we compare SerBIN with glm and BAN in terms

of runtime (time to convergence) and display the results in Figure 1. With provider counts ranging from 100 to 2,000 in the
left panel, SerBIN has its runtime no greater than one second, while the runtime of glm increases dramatically to over 1,000
seconds. With larger provider counts and more covariates, the middle panel of Figure 1 suggests that on average, SerBIN is five
times as fast as BAN. When applied to the ED visits data (see Section 5), the advantage of SerBIN over BAN becomes more
pronounced: on an Intel® Xeon® Gold 6254 quad-processor, the former ends within 10 seconds, while the latter takes nearly 40
minutes to converge. Although the runtime of an algorithm generally depends upon the coding decisions in the implementation
as well as the characteristics of the data in question (e.g., binary predictors with near-zero variance), the marked difference in
runtime adds to the computational efficiency of the SerBIN.

2.3 Shared-memory DAC algorithm
A time-complexity analysis reveals that at each iteration, computing 22 = (�) (or1⊤21) in Line 6 of Algorithm 1 costsO(np2),
which becomes a bottleneck of SerBINwhen sample size n is extraordinarily large. To further boost computational efficiency, we
introduce the notion of DAC to the calculation of (�), taking advantage of the ubiquitous shared-memory multicore computer
architecture.
Observe that the original task of computing (� (k)) at iteration k of Algorithm 1 can be evenly divided into p2 smaller tasks

of computing vector inner products, as suggested by the following reformulation:

(� (k)) =
m
∑

i=1

ni
∑

j=1
b̈(
 (k)i + Z⊤ij�

(k))ZijZ⊤ij = (⟨Z
r,Zc◦(k)⟩),

where ⟨Zr,Zc◦(k)⟩, an inner product of Zr and Zc◦(k), is the rcth element of (� (k)), with Zc denoting the cth column of the
n × p matrix Z of risk factors, and (k) denoting the vector of b̈(
 (k)i + Z⊤ij�

(k)). Since (� (k)) is a symmetric matrix, it suffices
to only compute the p(p + 1)∕2 upper triangular entries of (� (k)). Letting C ≤ p(p + 1)∕2 be the number of threads scheduled
for conquering the p(p + 1)∕2 sub-tasks in parallel, we present as Algorithm 2 the DAC algorithm of computing (� (k)), with
{b̈(
 (k)i + Z⊤ij�

(k)) ∶ i = 1,… , m, j = 1,… , ni} and Z as inputs at iteration k of Algorithm 1. Similarly, 1⊤21 can also be
computed in a DAC fashion. The improved Algorithm 1, embedded with the DAC algorithm of computing (�) and 1⊤21,



WU ET AL. 5

500 1000 1500 2000

0.5

1

5

10

50

100

500

1000

provider count

ru
nt

im
e 

(s
ec

)
glm
SerBIN

2000 3000 4000 5000 6000 7000 8000

20

50

100

200

provider count
ru

nt
im

e 
(s

ec
)

BAN
SerBIN

2 4 6 8 10 12 14 16

3

4

5

6

number of threads

sp
ee

du
p 

of
 D

A
C

B
IN

 r
el

at
iv

e 
to

 S
er

B
IN provider count = 2000

provider count = 4000
provider count = 8000

FIGURE 1 (1) Runtime of SerBIN and glm with provider counts varying from 100 to 2,000 (left). To accommodate large
provider counts for glm, experiments were conducted on an Intel® Xeon® Gold 6254 quad-processor with base frequency
3.1GHz and RAM 576GB. SerBIN was implemented using Rcpp and RcppArmadillo.37,38,39 Three covariates were included
in model fitting with � = [1, 0.5,−1]⊤. The vertical axis is set as the base-10 log scale. (2) Runtime of SerBIN and BAN
with provider counts varying from 2,000 to 8,000 (middle). Experiments conducted on an Intel® CoreTM i9-9900K processor
with base frequency 3.6GHz and RAM 16GB. BAN was implemented using Rcpp and RcppArmadillo. A design matrix of 100
covariates was drawn based on (6), and then dichotomized column-wise according to the columnmedian. Regression parameters
� were jointly sampled from a standardmultivariate normal distribution. (3) Speedup of DACBIN relative to SerBINwith various
thread and provider counts (right). Speedup with a given number of threads is defined as the ratio of the runtime of SerBIN to
the runtime of DACBIN. Experiments conducted on the Intel® CoreTM i9-9900K processor with 100 covariates generated as
in (2). DACBIN was implemented using Rcpp and RcppArmadillo.

is hence called a DACBIN algorithm. The computational gain of DACBIN compared to SerBIN is illustrated by simulation
experiments in the right panel of Figure 1.
Before the DAC steps in Algorithm 2, Lines 1–9 establish a one-to-one mapping between the one-dimensional sub-task

index id = 1,… , p(p + 1)∕2, and the two-dimensional index of the upper triangular portion of (�) on a row-major basis. In
practice, scheduling the p(p + 1)∕2 parallel tasks on C threads can be readily achieved by most shared-memory application
programming interfaces (e.g., OpenMP® and Intel® Threading Building Blocks®). Because of the memory-efficient communi-
cation in a shared-memory parallel computing scheme, the DACBIN, designed for large-scale data sets, is applicable on desktop
workstations with moderate hardware configurations and common operating systems.
Using three levels of provider counts, the right panel of Figure 1 shows that the optimal levels of speedup of DACBIN relative

to SerBIN are achieved at different thread counts. In particular, given only 6 threads, the parallel DACBIN is 3 times faster than
the serial SerBIN when 8,000 providers are present.

3 EXACT-TEST-BASED PROVIDER PROFILING

When identifying outlying providers with extreme outcomes, it is of particular interest to know whether a provider effect is
significantly different from an effect of reference. This amounts to testing the null hypothesis that H0i ∶ 
i = 
M with a
prespecified 
M. In our application of ED visits, for instance, 
M is the provider effect of a population average provider, called
population norm and defined as the median of 
. This median reference effect is more robust than the average and has been
applied in some profiling analyses.12,14,15 Existing inferential procedures used for identifying outlying providers, including the
score and Wald tests, largely rely on the asymptotic distribution of the test statistics. When, however, there are many small
providers with few subjects and little variation in the outcomes, these large-sample techniques can lead to poor approximations
of the finite-sample distributions.29,30 Assuming that the outcomes {Yij ∶ j = 1,… , ni} from provider i are independent given
risk factors Zi = [Z⊤i1,… ,Z⊤ini]

⊤ and the provider effect 
i, we propose an exact test of the null H0i, leveraging the conditional
distribution of Oi ∶= ∑ni

j=1 Yij given Zi. Since the estimation of � involves a large number of subjects according to (2), we
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Algorithm 2: DAC Computation of (�)
1 for id = 1 to p(p + 1)∕2 do // precompute index mapping
2 initialize rid ← 1, cid ← p, and l ← p;
3 while id > l do // identify row index rid
4 l ← l + p − rid , rid ← rid + 1;
5 end
6 while id < l do // identify column index cid
7 cid ← cid − 1, l ← l − 1;
8 end
9 end
10 for id = 1 to p(p + 1)∕2 do // schedule p(p + 1)∕2 tasks on C threads at iteration k
11 (� (k))ridcid ← ⟨Zrid ,Zcid◦(k)⟩ ; // compute upper triangular elements of (� (k))
12 if rid < cid then (�(k))cidrid ← (� (k))ridcid ; // assign values to lower triangular entries
13 end

assume that �̂ is sufficiently accurate to replace �. Ruling out the variation of �, this assumption validates the calculation of tail
probabilities under the null. Similar treatments have been adopted in the literature.12,14,15,40 Depending on the type of outcome
Yij , we consider three commonly encountered scenarios of the distribution of Oi given Zi:
If outcome Yij is normal, we have Oi|Zi ∼  (

∑ni
j=1 ḃ(
i + Z

⊤
ij�), ni�

2). With an unbiased estimator �̂2 ∶= (n − m −
p)−1

∑m
i=1

∑ni
j=1(Yij − 
̂i − Z

⊤
ij �̂)

2, we further assume that �2 is fixed at �̂2. The cumulative distribution function (CDF) of Oi
conditional on Zi can be written as

Fi(o; 
i, �) =
1

√

2�ni�̂2

o

∫
−∞

exp

⎧

⎪

⎨

⎪

⎩

− 1
2ni�̂2

[

x −
ni
∑

j=1
ḃ(
i + Z⊤ij�)

]2⎫
⎪

⎬

⎪

⎭

dx, o ∈ ℝ.

When Yij is binary, we have Yij|Zi ∼ Bernoulli(ḃ(
i+Z⊤ij�)). It follows thatOi|Zi has a Poisson-binomial distribution. Letting
Si ∶= {1,… , ni}, the CDF of Oi conditional on Zi is

Fi(o; 
i, �) =
o
∑

l=0

∑

Ai∈il

{

∏

a∈Ai

ḃ(
i + Z⊤ia�)
∏

q∈Aci

[1 − ḃ(
i + Z⊤iq�)]
}

, o ∈ {0} ∪ Si, (4)

whereil ∶= {Ai ⊂ Si ∶ |Ai| = l}, and Aci ∶= Si ⧵ Ai.When Yij is Poisson, i.e., Yij|Zi ∼ Poisson(ḃ(
i +Z⊤ij�)), we have Oi|Zi ∼ Poisson(
∑ni
j=1 ḃ(
i +Z

⊤
ij�)). The CDF of Oi given

Zi is
Fi(o; 
i, �) =

1
o!

[ ni
∑

j=1
ḃ(
i + Z⊤ij�)

]o

exp

{

−
ni
∑

j=1
ḃ(
i + Z⊤ij�)

}

, o ∈ {0} ∪ ℕ.

Provided the CDFs above, the mid p-value Pi associated with a two-sided exact test against the nullH0i is given by
Pi = 2 ⋅min{Gi(Oi; 
M, �̂), 1 − Gi(Oi; 
M, �̂)}, (5)

where Gi(o; 
i, �) ∶= Fi(o; 
i, �) − 0.5 Pr(Oi = o|Zi; 
i, �) is a sub-CDF of Fi(o; 
i, �). Note that Gi(Oi; 
M, �̂) is equal to
Fi(Oi; 
M, �̂) when Yij is normal. With � ∈ (0, 1), a 100(1 − �)% confidence interval of provider effect 
i can be constructed
based on Fleiss et al.41 The lower limit 
 i and upper limit 
 i of the confidence interval are determined by Gi(Oi; 
 i, �̂) = 1 − �1
and Gi(Oi; 
 i, �̂) = �2 where �1, �2 ∈ [0, 1) with �1 + �2 = �.
Since the exact tests for normal and Poisson outcomes are based on the well-studied normal and Poisson distributions, we

will exclusively focus on binary outcomes throughout the rest of this article.
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4 SIMULATION STUDY

Weperform simulation-based evaluations of the proposed estimation and inferencemethods. In each scenario, we generate 1, 000
data replicates. Provider-specific discharge counts are drawn from Poisson(80) and left-truncated by 11. Provider effects are
independently drawn from a normal distribution (�, �2). With calibrations based on the ED visits data, we set � = log(4∕11)
and � = 0.4. Following Kalbfleisch and Wolfe,13 subject-specific covariates Zij are generated according to

Zij|
i ∼
(

(�∕�)(
i − �)w,
 − �2J
)

, j = 1,… , ni, (6)
where � ∈ [0, 1), 
 is a p× p matrix with diagonal ones and off-diagonal �’s, w is a p× 1 vector of ones, and J is a p× p matrix
of ones. Consequently, we have Corr(Zij , 
i) = �w and Zij ∼  (0,
). Regression coefficients � are drawn from a standard
multivariate normal distribution. The outcome Yij is sampled fromBernoulli(ḃ(
i+Z⊤ij�)), where ḃ denotes the logistic function.The proposed exact test is compared with the score and Wald tests in terms of type I error, power and coverage probability.
To compute the CDF (4), we use an R package poibin,42 an implementation based on the discrete Fourier transform of the
characteristic function of the Poisson-binomial distribution.43
Panel A of Figure 2 displays left- and right-tailed type I error rates associated with the three tests at varied levels of correlation

�. When the provider size is small (n1 = 11), the exact test has its two-tailed error rates closest to the nominal level � = 0.05.
By contrast, the type I error rates of the score test are consistently greater than 0.05, while those of the Wald test are less than
0.05. Regarding the difference between left- and right-tailed error rates, we observe that the score and Wald tests have more
skewed one-tailed error rates than the exact test. When the provider size grows large (n1 = 50), the score test still barely controls
its overall type I error, and the Wald test remains conservative. One-tailed error rates become more balanced for all three tests.
Two-tailed type I error rates for the three tests are available in Appendix C of the Supporting Information.
Panel B of Figure 2 provides power calculations at different levels of relative deviation of provider effect (
1 − �)∕�. Except

when n1 = 11 and the deviation is negative, the test power increases as relative deviation grows in magnitude. The exact test
consistently exhibits higher power than the other two for negative relative deviation. When the deviation is positive, the power
of the exact test becomes slightly lower than that of the score test, largely due to the inflated type I error shown in Panel A.
Figure 3 presents coverage probabilities of confidence intervals from test inversion with varying levels of correlation � and

relative deviation of 
1, the effect of the first provider. Since the number of providers does not systematically affect testing a
single facility effect, we use a fixed number of m = 100 providers in each of the 1,000 simulated data sets, and a fixed number
of n1 = 11 subjects in the first provider. The three panels in the first row indicate that when the provider effect 
1 is at least 2�
smaller than �, the coverage probabilities of the score and Wald tests can be far below the nominal level of 0.95. Throughout
the remaining six plots, each coverage probability curve of the score test lies between the curves of the other two tests. This
confirms the liberality of the score test and the conservativeness of the Wald test.

5 APPLICATION

We evaluate the proposed estimation and inference methods through profiling dialysis facilities according to ED encounters
within 30 days of hospital discharge. The data set was extracted from the Medicare administrative claims database for ESRD
patients on dialysis. It contained 7,232Medicare-certified dialysis facilities with 757,086 qualifying discharges in 2018 and 2019.
These facilities had discharges varying from 11 to 842 (mean 104.7) and ED visits from 0 to 130 (mean 16.95). Corresponding
to a hospital discharge, each record consists of patient demographics, clinical characteristics, and prevalent comorbidities as risk
factors. Prevalent comorbidities were determined using the previous 12 months of Medicare Part A claims (inpatient hospital
care, skilled nursing facility care, skilled home health care, and hospice care).44 Individual comorbidities were then grouped
into categories based on the Agency for Healthcare Research and Quality Clinical Classifications Software.45 Each comorbidity
category was included as a separate risk factor in the model. Since facilities have little opportunity to affect newly discharged
patients until dialysis resumption, discharges with events over the first 3 days were excluded, following guidelines from the
National Quality Forum Technical Expert Panel. Therefore, the outcome of interest is defined as an ED visit within 4 to 30 days
after discharge. Additional details about the data are available in Appendix D of the Supporting Information.
Since the outcome of ED visits is binary, we fit model (1) (logit link) of 7,232 facility effects and 86 covariates using the

SerBIN algorithm, which takes 9.35 seconds to converge on the Intel® 6254 quad-processor. By contrast, theBAN takes 2,351.59
seconds (0.65 hour) until convergence, and the glm in R fails to accommodate the massive ED visits data. Table 1 provides
a summary of counts, percents, estimated odds ratios, test statistics, p-values and 95% confidence intervals for 9 risk factors.
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FIGURE 2 Type I error rates and powers of exact, score and Wald tests. All values were calculated based on 1,000 independent
replicates with m = 100, �2 = 0.16, and significance level � = 0.05. With correlation � varying from 0 to 0.9, rates in Panel A
were obtained assuming 
1 = 
M = � = log(4∕11). In Panel B, correlation was fixed at � = 0.5, whereas 
1 is allowed to vary
in terms of relative deviation (
1 − �)∕�.

We observe that discharges with cardiogenic shocks were associated with a lower risk of ED visit than discharges without. In
addition, younger patients were significantly more likely to have ED visits than older patients. Moreover, longer hospital and
nursing home stays were associated with a lower risk of ED visit. A complete list of risk factors with summary statistics is
available in Appendix E of the Supporting Information.

5.1 Test comparison
The proposed exact test is compared with the score andWald tests, with facility-specific test statistics shown in Figure 4. To ease
comparison, exact test statistics are derived by converting lower-tail probabilities (first minimand of (5)) to quantiles according
to the standard normal distribution. The diagonal histograms reveal that the distributions of the three tests are all slightly skewed
right. The upper diagonal panels display a positive relationship of the test statistics and the rate of ED visits. In addition, facilities
with the highest 10% ED visit rates tend to have their exact test statistics smaller than their score and Wald test statistics, while
those with the lowest 10% ED visit rates have their exact test statistics greater than the score and Wald test statistics. In other
words, the proposed exact test is more conservative in flagging underperforming facilities with many ED visits and more liberal
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FIGURE 3 Coverage probability (CP) versus correlation � with varying levels of provider effect 
1. In each scenario, 1,000
data sets are simulated with m = 100 providers, with the first provider having n1 = 11 subjects.

in identifying overperforming facilities with few ED visits. This feature is further demonstrated in Table 2, where facilities are
flagged based on the three tests given a significance level of 0.05. A facility is flagged as ‘better’ (or ‘worse’) than expected if
the associated facility effect is significantly less (or greater) than the national norm. Among the 7,232 facilities, 426 (5.89%)
and 719 (9.94%) are identified by the score test as ‘better’ and ‘worse’ facilities, respectively; 366 (5.06%) and 654 (9.04%)
are flagged by the Wald test as ‘better’ and ‘worse’ facilities, respectively. By contrast, the proposed exact test leads to 489
(6.76%) ‘better’ facilities and 637 (8.81%) ‘worse’ facilities. These numbers also suggest that the exact test leads to less skewed
outlier detection than the other two tests. As a side note, the outlying points farthest away from the 45-degree lines shown in
Figure 4 (the two right and two bottom panels of scatter plots) result from the numerical instability of the Wald test especially
for small-sized facilities with low rates of ED visit.

5.2 Accounting for incomplete risk adjustment
As shown in Table 2, the proportion of dialysis facilities flagged as better or worse than expected is consistently greater than 14%
by all the three tests, a much higher proportion of outliers than what is normally anticipated. This phenomenon likely indicates
the presence of inadequate risk adjustment for observed or unobserved risk factors associated with the ED visit (outcome), which
contributes to the substantial variation between facilities.12,13,40 Much of the between-facility variation is typically beyond the
control of dialysis facilities, and thus should be accounted for in profiling analysis.2,22 To address the overdispersion, we adjust
the exact test statistics in Figure 4 based on their empirical null (EN) distribution46,47 and the corresponding facility volumes.
Exact-test based flagging results with EN adjustment and the results without EN adjustment are presented in Table 3. After
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TABLE 1 Summary of model fitting for risk factors (binary) with 2018–2019 ED visits data (reference group in parentheses).
BMI, body mass index; ESRD, end-stage renal disease; LOHS, length of hospital stay; NHS, nursing home stay (past 365 days);
PC, prevalent comorbidity. OR, odds ratio; SE, standard error; Z-stat, Z-statistics (ratio of coefficient estimate to SE); LB and
UB stand for lower and upper bounds of the 95% confidence intervals. A complete list of risk factors with summary statistics is
available in Appendix E of the Supplementary Information.

risk factor count proportion OR SE Z-stat p-value LB UB
Year 2018 381400 50.4% 0.970 0.007 -4.672 <0.001 0.958 0.982

female 358157 47.3% 1.015 0.008 1.932 0.053 1.000 1.031
diabetes as cause of ESRD 371643 49.1% 0.998 0.008 -0.273 0.785 0.983 1.013

cardiogenic shocks 99201 13.1% 0.879 0.010 -12.736 <0.001 0.862 0.896
age in years (60–74)

18–24 4034 0.5% 1.542 0.042 10.330 <0.001 1.420 1.674
25–44 87330 11.5% 1.346 0.012 25.506 <0.001 1.315 1.377
45–59 204969 27.1% 1.176 0.008 19.025 <0.001 1.156 1.195
≥75 154396 20.4% 0.954 0.010 -4.733 <0.001 0.936 0.973

BMI (18.5–25)
≤18.5 22708 3.0% 1.010 0.020 0.520 0.603 0.971 1.051
25–30 198852 26.3% 1.002 0.009 0.214 0.831 0.984 1.020
≥30 346225 45.7% 0.982 0.009 -2.128 0.033 0.966 0.999

time on ESRD (1–2 years)
91 days to 6 months 33355 4.4% 1.121 0.018 6.337 <0.001 1.082 1.162
6 months to 1 year 59437 7.9% 1.019 0.015 1.293 0.196 0.990 1.048

2–3 years 98224 13.0% 1.001 0.012 0.049 0.961 0.976 1.025
3–5 years 160276 21.2% 1.009 0.011 0.833 0.405 0.987 1.031
≥5 years 296878 39.2% 1.007 0.010 0.626 0.531 0.986 1.027

LOHS (1st quartile)
2nd quartile 230587 30.5% 0.945 0.009 -6.621 <0.001 0.930 0.961
3rd quartile 131203 17.3% 0.923 0.010 -7.945 <0.001 0.905 0.942
4th quartile 196958 26.0% 0.910 0.009 -10.124 <0.001 0.894 0.927

NHS (0 day)
1–89 days 131289 17.3% 0.943 0.010 -6.233 <0.001 0.925 0.960

90–365 days 78628 10.4% 0.859 0.012 -12.170 <0.001 0.839 0.881

EN adjustment, there are 389 (5.38%) facilities switching from ‘worse’ to ‘expected’, and 349 (4.82%) facilities switching from
‘better’ to ‘expected’, leading to a reduction in outlier proportion from 15.57% to 5.37%.

6 DISCUSSION

The increasing availability of massive data poses daunting challenges to existing statistical methods when comparing resource
utilization and quality of care among health care providers. To facilitate large-scale estimation and inference for provider profil-
ing, we propose a serial blockwise inversion Newton algorithm with a shared-memory divide-and-conquer parallelization, and
a distribution-based exact test of provider effects, allowing different outcome types within the framework of generalized linear
models. The proposed algorithm and its parallelization achieve superior convergence speed and memory efficiency compared to
existing implementations, and is scalable to massive data with a large number of providers; the exact test utilizes finite-sample
distributions to control type I error and enhance statistical power without possibly inaccurate large-sample approximations.
The advantages of the proposed methods are demonstrated by simulations and an application to profiling kidney dialysis facil-
ities according to emergency department encounters among patients with end-stage renal disease, making use of the extensive
Medicare administrative claims data.
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FIGURE 4 A matrix of histograms and scatter plots of test statistics using 2018–2019 ED visits data. Facilities are stratified by
ED visit rate or discharge count. Dashed lines represent 2.5% and 97.5% quantiles of the standard normal distribution. 45-degree
lines are in solid black.

In Table 1, we observe that discharges with cardiogenic shocks were slightly less likely to result in an ED visit than discharges
without. This counterintuitive evidence suggests that the higher death rate among patients with cardiogenic shocks possibly
reduces their chance of getting admitted to ED. As expected, discharges with cardiogenic shocks had a death rate of 5.477%,
while those without had a significantly lower death rate of 2.374%. In this case, an ED visit and a death should be viewed as
competing risks to one another within 30 days of discharge: an ED visit is recorded only if it occurs before a death, if any, and
a death is recorded only if there is no ED visit prior to that death. The GLM framework, although routinely used for profiling
providers,18,48 does not explicitly consider competing risks (e.g., post-discharge death) and event times. Overlooking competing
risks and event times may lead to less comprehensive modeling and distorted provider evaluation, especially when the rate of
competing risks is nontrivial. To address this issue, we have been working on developing a discrete competing risk model based
on the cause-specific hazard approach. We will report this work as a separate article in the near future.
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TABLE 2 Facility flagging (count/proportion) based on exact, score and Wald tests at significance level � = 0.05 using 2018–
2019 ED visits data. ‘better’ indicates that the facility effect is significantly less than the national norm; ‘worse’ indicates that
the facility effect is significantly greater than the national norm; ‘expected’ means that the facility effect is not significantly
different from the national norm.

exact score total Wald
better expected worse better expected worse

better 426/5.89% 63/0.87% 0/0% 489/6.76% 366/5.06% 123/1.70% 0/0%
expected 0/0% 6024/83.30% 82/1.13% 6106/84.43% 0/0% 6079/84.06% 27/0.37%
worse 0/0% 0/0% 637/8.81% 637/8.81% 0/0% 10/0.13% 627/8.67%
total 426/5.89% 6087/84.17% 719/9.94% 7232/100% 366/5.06% 6212%/85.90% 654/9.04%

TABLE 3 Exact-test based facility flagging (count/proportion) with and without empirical null (EN) adjustment at significance
level � = 0.05 using 2018–2019 ED visits data. ‘better’ indicates that the facility effect is significantly less than the national
norm; ‘worse’ indicates that the facility effect is significantly greater than the national norm; ‘expected’ means that the facility
effect is not significantly different from the national norm.

exact test without EN exact text with EN total
better expected worse

better 140/1.94% 349/4.82% 0/0% 489/6.76%
expected 0/0% 6106/84.43% 0/0% 6106/84.43%
worse 0/0% 389/5.38% 248/3.43% 637/8.81%
total 140/1.94% 6844/94.63% 248/3.43% 7232/100%

DATA AVAILABILITY STATEMENT

Because the emergency department visits data for dialysis patients contain protected health information and personally
identifiable information, they will not be publicly available as required by the Centers for Medicare & Medicaid Services.
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SUPPORTING INFORMATION

The SerBIN, DACBIN, and exact tests are implemented as an R package FEprovideR available at https://cran.r-project.org/
package=FEprovideR. Additional supporting information may be found online in the Supporting Information section at the end
of the article.

https://cran.r-project.org/package=FEprovideR
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