Article Type: Research and Analysis

{

Title: Opti @ ture cost and emissions of electric delivery vehicles

SCrl

Authors: wabl Woody,' Michael T. Craig,' Parth T. Vaishnav,' Geoffrey M. Lewis,' Gregory A.
Keoleian'

Institutio

nu

Sustainable Systems, School for Environment and Sustainability, University of
i nn Arbor, Michigan, USA

d

Correspon thor:
Maxwe

440 Chu ~Ann Arbor, MI 48109, USA

M

maxwoody@umich.edu

Contflict o @ Statement: The authors declare no conflict of interest.

or

Data A
correspon

th

tatement: The data that support the findings of this study are available from the
r upon reasonable request.

U

This is the anuscript accepted for publication and has undergone full peer review but has not
been th copyediting, typesetting, pagination and proofreading process, which may lead to
differences be this version and the Version of Record. Please cite this article as doi:
10.1111/jiec.13263.

A

This article is protected by copyright. All rights reserved.


https://doi.org/10.1111/jiec.13263
https://doi.org/10.1111/jiec.13263
https://doi.org/10.1111/jiec.13263

t

Keywo

Electric V
Greenhous€ Gas ions
H I

Multi-Obj iive Optimization
Smart Charging

Last-Mile m
Industrial m

-
C
(O

=

Abstract: O

Electrif@livery vehicles will play an important role in decarbonizing the transportation
sector. As glectricity generating technologies vary regionally and temporally, where electric vehicles
are deleen they are charged will determine the greenhouse gas (GHG) emissions and cost
consequen ivery vehicle electrification. We couple a vehicle charging model with a dataset
that provides hours projections of marginal electricity cost and marginal emissions factors across 134
electricity balancing areas in the United States. We calculate the cost and emissions of charging an
electric deli chicle over a 10-year service life (2021-2030) at different times-of-day and in

s. Using a multi-objective optimization framework we explore two potential goals —
issions and minimizing cost — and investigate the tradeoffs between those goals.

minimizing
We show emissions ranging from 136 to 485 g CO,/mile, and costs ranging from 0.79 to 3.18
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cents/mile depending on location and optimization weighting. We demonstrate the impact of charge
time-of-day optimization frequency, showing emissions reductions of 19%-62% by choosing the
optimal charging time every day, rather than annually. We show that the benefits of electrification are
reduced tial charge times are constrained (e.g., if charging must take place overnight). And
we calculatedhesgarbon price needed to align cost-optimized and emissions-optimized charge timing
in differenr results highlight the opportunity to reduce cost and emissions by strategically
charging atieert@insgimes of day and show the importance of accounting for spatial and temporal
variabilitly wiiemmdeycloping effective carbon reduction strategies.

1. INTRO

USCr

In the Unit between 1990 and 2019, greenhouse gas (GHG) emissions due to the

transportat have increased 24%, more than from any other sector (U.S. Environmental
Protection A 021). Transportation now represents the largest contribution to U.S. GHGs (28%
in 2020) and i cted to remain the largest contributor through 2050 (U.S. Energy Information
Administrafign 0). Rapid deployment of electric vehicles (EVs) has been identified as a crucial
compo bonizing the transportation sector (Ambrose et al., 2020; Taptich et al., 2016;

Tsakalidi

Thoug esearch has focused on passenger vehicles, research on and deployment of electrified
delivery vehicles 1s growing (Pelletier et al., 2016). Even before the COVID-19 pandemic, increases
in online shopping and just-in-time delivery systems were increasing the use of delivery vehicles
(Marmirolg t al., 2020; Morganti & Browne, 2018). Due to their short average route length, low

average sp cially in urban routes), ability to return to a central location each day, and frequent
stops and s Opportunities for regenerative breaking), delivery vehicles are well suited for rapid
fleetwide e & ion (National Renewable Energy Laboratory, 2019; Quak et al., 2016). This

transition has already begun, with multiple delivery companies ordering electric delivery vehicles in
the past seyeral years (Arrival Ltd, 2020; FedEX Corp., 2018; Rivian Automotive, 2019), and several
automoti ies ramping up production of these vehicles (Daimler AG, 2019; Ford Motor
Companxi lOZO : ile benefits of electrified delivery vehicles displacing conventional diesel delivery
vehicles mmélude reduced air pollution (CO,, NO,, PM, 5, PM;,) (Giordano et al., 2018; Hawkins et al.,
2013; Ma 1., 2020) and potential cost savings (Taefi, 2016). However, the emissions
benefits aml cost savings vary depending on where, when, and how these vehicles are
charged (Arvesengt al., 2021; McLaren et al., 2016; Miller et al., 2020; Woody et al., 2021).

To betts 41@ tand the spatial and temporal variability of the emissions benefits of electrifying
delivery ve a
hourly marginal emissions factor (MEF) dataset spanning 134 balancing areas (BAs) through 2030.

oss the United States, we couple a delivery vehicle charging model with an
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The small spatial resolution of the MEF data, combined with the use of projected MEFs over the
lifetime of the vehicle fills an important gap in the literature. We include a novel evaluation of how
frequently to update vehicle charging-time-of-day to meet operational goals, i.e., cost reduction and
emissio ion. We assess tradeoffs in cost and emissions reductions using a multi-objective
optimizationduamework, highlighting that in some regions cost and emissions goals align, and in
other regio pn price is needed to achieve alignment. Our results will inform carbon reduction
strategies OfdeliTe eet operators, and deployment and operational practices encouraged by policy
makers i I—

1.1 Literatthw

There are s@veral sfudies focusing on the life cycle emissions of electrified delivery vehicles in

compariso i al combustion engine vehicle (ICEV) alternatives. Lee et al. (2013) show electric
delivery vehicl ve 42%-61% lower GHG emissions than diesel alternatives when operated in U.S.
urban settimng et al. (2018) show that on average electric delivery vehicles operating in
China have 69% [ower GHG emissions compared to diesel alternatives. Giordano et al. (2018)
compare el diesel delivery vans in European cities and find that in cities with particularly
clean electr an electric delivery vehicle may have life cycle GHG emissions that are only 10%
of the emissi diesel delivery vehicle. Marmiroli et al. (2020) report similar results — that an
electric delivery vehicle has lower GHG emissions than a diesel and a compressed natural gas

alternative ing across Italian and Norwegian power grids, different vehicle loadings, and
different drivesssiedes. These studies show that the emissions attributable to electric delivery vehicles
are lower t a issions attributable to conventional alternatives. However, these studies do not
show the fulf¥i t of adopting a new electric delivery vehicle, due to the use of Average Emissions
Factors r than Marginal Emissions Factors (MEFs).

AEFs represen missions (mass of pollution per unit of energy generated) from the entire

generati given time and location. MEFs represent the emissions from generators that are
added or removed from the generation mix in response to additions to or reductions in demand (Ryan
et al., 2016). Thus, while AEFs represent a mixture of all generation sources at a particular place and
time, MEF resent the emissions of whichever single generator is on the margin at a particular
place and time, As new demand is added to the grid, generators will not scale up production equally.

And as the and is met by a single generator, the emissions of that generator can be attributed
to the sour ew demand. MEFs should be used to study increased electric vehicle adoption

because this nts a new load (i.e., it is not part of the current demand), necessitating a change in
the genera‘n mix (Ryan et al., 2016, 2017). As MEFs are typically higher than AEFs, the
environ| impact of technologies and policies may be underestimated when AEFs are used
(BigazzWe AEFs, MEFs vary based on location and time (Graff Zivin et al., 2014).

Previous s ight duty EVs that have used hourly MEFs typically consider specific regions as
case studies (Axsemet al., 2011; Kim & Rahimi, 2014; Tu et al., 2020; Weis et al., 2015) or have used
large regions, ¢.2. the eight North American Electric Reliability Council (NERC) regions (Archsmith

et al., 2015 ivin et al., 2014; Tamayao et al., 2015; Yuksel et al., 2016; Yuksel & Michalek,
2015). ler EPA eGRID subregions have also been used with MEFs (Tamayao et al., 2015)
and AEFs ( ., 2019; F. Yang et al., 2018). These may include county level data for driving

conditions and temperature but rely on NERC or eGRID level emission factor aggregations when
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comparing the emissions of different vehicles (Wu et al., 2019; Yuksel & Michalek, 2015).
Additionally, past studies largely use historic MEFs that are calculated by regressing historic
emissions on historic generation or consumption (Donti et al., 2019; Siler-Evans et al., 2012).
TamayaMS) consider multiple MEF data sources, but each one uses historic MEF values.

Onat et al. (20 ompare EVs to internal combustion engine vehicles (ICEVs) in each state, using
estimated 2 @ s, and an alternative scenario in which all charging is accomplished via solar
energy. TheusedfHiStoric MEFs neglects ongoing grid decarbonization over vehicles’ lifetimes. To

accountafomemgeimg decarbonization, MEFs can instead be calculated using emission and generation
outputs fro! power system optimization models run for future scenarios (Ryan et al., 2016).

Using projeggion@yf future costs and emissions, and by accounting for the daily variability each,
charging tifaie-of-ddy can be optimized. Tu et al. (2020) optimize passenger EV charge timing in an

Ontario case with the goal of minimizing GHG emissions, showing EV emissions can be
reduced by, o. Hoehne and Chester (2016) optimize charge time-of-day each day in the U.S.,
choosing t rgén the lowest emitting hours of the day, and show GHG emissions up to 31% lower
compared d pre-timed charging. Dixon et al. (2020) optimize charge timing not only to
minimize GHG enlissions, but also to absorb excess wind generation that would otherwise be
curtailed. 0-Grid (V2G) charging may be used to further lower overall emissions (Xu et al.,
2020). Ho issions minimization is not the only relevant goal for an electric delivery vehicle

that must c@mpete economically with other delivery options (Feng & Figliozzi, 2013).

Multiple stugi w that the daily variation in electricity cost and MEFs reveals significant
tradeoffs. Kim ahimi (2014) project MEFs for Los Angeles in 2020 and 2030 based on planned
development8 afdfesource dispatching, showing the highest marginal carbon intensity if EV charging

takes p ak hours. McLaren et al. (2016) similarly show higher emissions when charging
18 restricte eak hours, in low, medium, and high carbon grids across the United States. Weis
et al. (201 at controlled EV charging in the PJM region leads to lower costs but higher
emissio shifted to coal plants. Graff Zivin et al. (2014) use MEFs at the NERC region

level to show that emissions are generally highest in the hours that electricity demand and cost are
lowest. Th!' presents a clear challenge to fleet operators and policy makers, who would like to

minimize lic reducing emissions. These tradeoffs can be investigated via multi-objective
optimizatio timal solutions compared using Pareto frontiers (Brinkel et al., 2020; Maigha &
Crow, 201

Based on ou of the literature our study fills several important gaps (see table S1):

eport the first nationwide comparison of EV charging emissions at or below the spatial
resglution @f electricity balancing authorities (134 regions), rather than NERC regions (8
MEPA eGRID regions (22 regions).

-We reporfithe GHG emissions impact of electric delivery vehicles more appropriately, by
usi , and by including projected future changes to the grid.

ulti-objective optimization to evaluate the tradeoffs between cost-optimized and
s-optimized charging.

-We include novel evaluations of optimization frequency and available charging window that
offer comparisons between idealized and more realistic time-of-day optimization results.
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2. METHGDS=d

2.1 Goal a

I
Here we as@ess the spatial and temporal variability in cost and emissions of charging an electric
delivery v demonstrate the opportunity to lower cost or emissions by optimizing the time-
of-day of cl#ftgi inally, we evaluate the tradeoffs between cost and emissions that arise from
time-of-daygoptimization.
Though pr hase impacts vary between EVs and ICEVs, we are primarily concerned with the
vehicle’s ul as@y The use phase makes up the majority of a vehicle’s total emissions, especially in

emissions from chlrging at different times and in different places. The grid’s ability to react to
changes in ay also be an important factor in optimizing charge time-of-day. Here we take

the perspeﬁsingle delivery vehicle, acknowledging that our results may change when taking

carbon intensive Eids (Ellingsen et al., 2016; Hawkins et al., 2013), and we are comparing the

the perspedfive of a delivery fleet or the entire stock of delivery vehicles in a region (Dixon et al.,
2020; Ona W99015). Although we are comparing the cost and emissions of different operations for

an electric yehi b comparison with a conventional delivery vehicle is also warranted, and is
included imfSupporfing Information S1.

2.2 Veh

To calculate t rging emissions of an electric delivery vehicle we begin with a simplified
chargin ¢ that assumes one continuous linear charging event per day (i.e., charging at a central
depot wi -route charging, which is typical for electric freight vehicles (Pelletier et al., 2018)).

Vehicle parameters are estimated based on current EV battery and charging infrastructure technology
(Table 2). We assume a 10-year vehicle lifetime and use a static 55-mile daily route, which is an
average va elivery van based on the National Renewable Energy Laboratory (NREL) Fleet
DNA data . With these parameters the vehicle requires 30 kWh of energy each day to

he average energy consumption of the vehicle is 0.55 kWh/mile, which is similar

to the value uscd by Giordano et al. (2018) to model a light-duty delivery van operated in an urban
setting. W ¢ same energy consumption each day, as Miller et al. (2020) have shown including
iongn grid emissions and fuel intensity results in error of under 1% when compared to

using an a¥ra§e V'ue for the entire year.

2.3 Vehicl igig Emissions and Cost
To estimat iallt/-differentiated emissions and costs of EV charging given future changes in the

electricity syste e use NREL’s Cambium resource (Pieter et al., 2020). Cambium provides

ns factors, cost, generation, and other data for 134 BAs on an hourly basis from
resource is built on output from a sequence of two models: the Regional Energy
Deployment Systcm (ReEDs) (Brown et al., 2019) and PLEXOS (Energy Exemplar, n.d.). ReEDS is a
linear optimization capacity planning model that simulates electricity sector investment (i.e.,
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deployment and operation of generation, transmission, and storage) based on energy demand and
various system constraints. ReEDS determines how the grid will change for each biennial simulation
between 2020-2050 under a variety of future scenarios, and has been used to investigate renewable
electriciHrdination (Bistline et al., 2020), battery storage for peak demand (Frazier et al.,
2020), and othemtopics. Then, within each modeled year, the future generator fleet is dispatched using
a unit co @M ind economic dispatch (UCED) model in PLEXOS (Energy Exemplar, n.d.). The
UCED conftfélssigudsEoperations of each power plant while minimizing variable costs and enforcing
operatiamalIeemstEints (e.g., supply and demand balance and reserve constraints). In short, ReEDS
determinesaﬁtimal investments and retirements in generation and transmission assets, then the UCED

model dete timal hourly operations of those assets. An overview of the system is shown in
Figure 1.

In our base ¢ ¢ use the mid-case from NREL’s 2020 standard scenarios, which is the business-as-
usual scenafffo. id-case takes into account state, regional, and federal policies in place as of June
20, 2020 ( etdl., 2020), uses NREL’s Annual Technology baseline for generation costs, and the
Annual En ook’s 2020 reference case for fuel costs and demand growth projections (U.S.
Energy Informatiofil Administration, 2020). To capture emissions impacts, we use Cambium’s Short
Run MEFs s), which are calculated using emissions and generation output from the UCED

serves a magginal increase in load at that point in time (plus transmission, distribution, and efficiency
losses). To validate Cambium data, we compare Cambium’s 2020 projected SRMEFs with recent
(2018) M ed from the Climate and Energy Decision Making Center (CEDM) (Azevedo et
al., 2021), §ho Supporting Information S2. The Cambium MEFs are generally higher, though the

model. Likﬁ MEF resources, the SRMEF is equal to the emissions rate of the generator that

values are reasonably close in most regions.

While struc
mechanis 1citly model and account for the generating capacity, some of it cleaner than the
existin ould be added specifically because of the introduction of electric delivery vans. If
the intervention (i.e., increased EV charging) leads to the construction of new renewable generators

nges to the grid are incorporated into the model every two years, there is no

but fossil generators remain on the margin, then this method may not adequately illustrate the true
impact of tL
research.

ntion. Investigating this potential shortcoming is an opportunity for future

To calcula(@ use the total marginal end use cost (TMC) from Cambium, which is the sum of

energy, capagi erating reserve, and portfolio (cost to comply with renewable portfolio standards
and clean dflergy standards) costs. Figure S2 shows the hourly MEFs and hourly electricity costs for
three di ium scenarios (low, mid, and high renewable electricity prices) between 2020-
2030. O e the mid case, and we show sensitivity analysis to renewable electricity prices

electricity prices mgve farther apart over time. In Figure S3 the same trend is shown from 2020-2050.
Therefore,
expected to incrgasé over time.

using the hlfh and low cases in Supporting Information S1. In each scenario, the low and high daily

unity for cost savings or emissions savings by optimizing charging times is

ive Optimization to Minimize Costs and Emissions

As delivery vehicle'routes are predictable, schedulable, and repeatable (Tsakalidis et al., 2020),
delivery vehicles are well suited to time-of-day charging optimization (Dahmane et al., 2021). We use
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a multi-objective optimization to select charging times that minimize emissions and/or costs. For
input to this optimization, we first quantify charging emissions (ey, 4 ,,) and costs (cp, q,5) for each
potential charging start time /4 (0-23) in each day d (1-365) in each year y (2021-2030) as:

{

h+N
BS « DOD
endy = Z MEFy 4. * S — ¢Y)
h
H I htN BS x DOD
! Chdy = Z ™ Ch,d,y * — N 2)
h

where N isfthe nuniber of hours for which the battery is charged, BS is the battery size, DOD is the

G

depth of di Y MEF is the marginal emissions factor, and 7MC is the total marginal cost. This
results in a lime arge profile at a constant charging power of 7.5 kW.

Given thesm\d emissions associated with beginning charging in each hour through 2030, our
multi-objeati imization decides when to start charging to minimize a weighted combination of
costs and emissioai We run our optimization for each BA separately. In deciding when to start
charging, ee optimization frequencies: annually, daily, or decadally. When optimizing
annually, o zation selects one charging start time across days for each year. Its objective

function is:

§

Emissions and Cost (Annual Optimization)
2030

23 365
Min ( E Bn E (axepqy+(1—a)= Ch,d,y)) 3)
Bo.B1,--Bn
21 h=0 d=1

ex hour of day, day of year, and year, respectively; « is a unitless weighting

ed in a particular hour:

1, Charging starts at hour h
0, Charging does not start at hour h

Bn = { (4)

We minimi

-

ions only when a = 1 and minimize costs only when « = 0. As charging takes

place once@a ay, the charging start time is subject to the constraint:

Zﬁh =1 (5)

mization frequency, we optimize the charging start time per equations 1-5 above

th

For the
but only fo d then the same charging start time is used for the remainder of the decade. Thus,
the charging time 1§)optimized only once per decade. For the daily frequency, we optimize unique

U

charging st s each day for the entire decade as follows:

Emissions and Cost (Daily Optimization)
2030 365 23

Min ( Br(axepq, + (1 —a)* Ch,d,y)) (6)

A

Bo.B1.--Bn
y=2021d=1 h=
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While this is probably not a realistic option for a company, as they have various operating constraints
and may not be able to change their charging time every day, this does represent an upper bound as to
what is possible through charge time-of-day optimization.

Regardless®t optimization frequency, our base case assumes that charging can take place at any time
throughou dayy(i.e., the delivery route is scheduled around the optimal charging time). However,
as most de im icles make deliveries during the day, delivery companies would have to make
significant oBerational changes to fully realize the benefits of time-of-day optimization. As an
intermediatg option, companies may adopt a charge time-of-day optimization framework while
limiting chL nighttime hours. We show such a scenario in section 3.2.3 by constraining h, the

hour at thng starts, to h = {0 — 4,20 — 23}. This means that the vehicle must start

charging saietimgiafter 8 pm and must be finished charging by 8 am.

2.5 Creatim Frontiers

For each Bmar, our base case (annually optimized charging start times) selects among a
potential sQhuiti ace of 24 possible charging start times. We create a Pareto frontier by finding the
set of chargi times for which no improvement can be made for one of the objectives without
worsening ghe other objective. For a convex solution space, the points along the Pareto frontier can be
found by v This is shown in Figure 2 by the filled-in points. Each point represents an optimal

solution ac mmggbo a particular weighting of the objectives. Figure 2 also shows the charging start
time that c@rreS§poriéls with each of these points.

The Par iercan be used to make operational decisions based on the objectives. In the example
shown in 2, if optimizing only for emissions (¢ = 1), then the vehicle should be charged
starting at 1 ptimizing only for cost (& = 0), then the vehicle should be charged starting at
ightings will result in choosing different points along the Pareto frontier. The points
not along the frontier are dominated, i.e., at least one of the objectives can be improved upon without

offer, are s in the results section.

3. RESULD
3.1 Cha%

rge
Across the l34 BAs between 2020 and 2030, optimal charging start times when optimizing only for
emissions (@ = re generally in the middle of the night or in the mid-afternoon (Figure 3).
Through 2 al start times shift from nighttime to mid-afternoon as the latter becomes more

s. When optimizing charging start times according to cost (& = 0), optimal start
12-1 a.m., though mid-morning (8-10 a.m.) charging becomes favorable in some

any sacriﬁ&i of the alternative objective(s). Pareto frontiers for specific BAs, and the insights they

favorable in mo

3.2 Cost and Emissions
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The cost and emissions of electric delivery vehicles vary greatly depending on charging time-of-day.
Here we show the variation in charging across balancing areas and by optimization frequency, as well
as highlighting results from the 20 largest balancing areas (by cumulative energy demand 2021-2030)
which toHunt for approximately 50% of the total US demand. The 20 largest BAs also

contain 15 ofgilagg20 largest cities in the U.S., which are likely locations for the first deployment of
electric de @ icles (See Figure S1 and Table S6).

3.2.1 Regional Variation
]

Within thes=4 BAs, annual emissions-optimized (@ = 1) charging results in demand-weighted
average emissions of 323 g CO,/mile and demand-weighted average cost of 2.13 cents/mile (with
ranges of 1806 to 381 g CO,/mile and 0.83 to 3.18 cents/mile, respectively) (Figure 4a). When just the
20 largest nvestigated the average demand-weighted emissions and costs equal 318 g
COy/mile a ents/mile, respectively (with ranges of 238 to 376 g COy/mile, and 1.27 to 2.97
cents/mile way) (Figure 4b).

Emissions charge timing typically does not align with cost optimized charge timing (Figure
3). When chargingl$imes are optimized according to cost rather than emissions (¢ = 0), the overall
creases and the charging emissions increase. Within the 134 BAs, annual cost-
optimized harging results in demand-weighted average emissions of 371 g CO,/mile and
demand-wdighted average cost of 1.53 cents/mile (with ranges of 155 to 485g CO,/mile and 0.79 to
1.87 cents/mile, respectively) (Figure 4a). When just the 20 largest BAs are investigated the average
demand-w issions and costs equal 352 g CO,/mile and 1.55 cents/mile, respectively (with
ranges of 244 t g COy/mile, and 1.12 to 1.84 cents/mile respectively) (Figure 4b). Switching

ns-optimized (¢ = 1) charge timing to annual cost-optimized (@ = 0) charge

an 18% increase in demand-weighted average emissions and a 27% decrease in
erage cost over a vehicle’s 10-year lifetime.

3.2.2 0, requency

In the base case results shown above, the optimal charging start time was chosen for each year of the
decade (i.ewed annually). In our first alternate scenario, we optimize the charging start time in
e same start time through 2030. For regions with relatively stable optimal start times,
ce in emissions between the base case and the decadal alternative scenario.

egions the first year may be an outlier in terms of optimal time-of-day. In these
date the charging start time each year can result in significantly higher emissions.

erage of 8% increase (18 g CO,/mile), compared to the base case of updating
optimal Hes each year. Costs exhibit a 57% decrease to a 60% increase, with a demand-

weighted a 14% decrease (0.25 cents/mile) (Figure 4c).
In our seco, tive scenario, as shown in Equation 6, we optimize charging start times daily.

pproximates an upper limit of what can be accomplished through charge time-of-

. In this alternative scenario, using a=1 weighting, emissions would decrease by

d 62%, with a demand-weighted average of 30% (85 g CO,/mile). This also results in
a change in cost, Tahging from a 61% decrease to a 10% increase, with a demand-weighted average of
18% decrease (0.37 cents/mile) (Figure 4d).
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When using a=0 weighting, changing the optimization frequency to decadal or daily is much less
impactful. Upgrading from decadal to annual optimization decreases demand-weighted costs and
emissions by just 0.6% (Figure 4¢). Upgrading from annual to daily optimization decreases demand-
Weighte“missions by just 3% and 0.6%, respectively (Figure 4f). This reflects the fact that

there is mu ariation in cost optimized start times (see Figure 3).
3.2.3 Limit e Charging

Deliver¥ic S/pamies may be constrained by consumer preferences for delivery timing (e.g., no
deliveries ishe middle of the night), which would limit the effectiveness of time-of-day based
optimization, However, the reduced noise of electric vehicles may eliminate one obstacle to non-
standard d@urs, and within overnight charging windows there remain opportunities for
optimizing

With charginhg €0nStrained to nighttime, annually emissions optimized (a=1) emissions range from
183 to 427 ile with a demand-weighted average of 344 g CO,/mile, with emissions increases

of 0% to 44; 6% demand-weighted average compared to the unrestricted charging scenario. If
are optigii

iming. Here we limit the charging window to between 8pm and 8am.

emissions zed daily, emissions range from 124 to 341 g CO,/mile with a demand-weighted
average of »/mile, with emissions increases of 4% to 84% with a demand-weighted average of
16% comp e unrestricted charging scenario (Figure 5a).

Nighttime has a much smaller impact on cost-optimized charging, as nighttime charging is
already oft st expensive time to charge (Figure 5b). For both annual and daily cost-optimized
(a=0) char@ching from unrestricted hours to nighttime hours increases cost by less than 5% in
each scenario. ever, there are certain regions that see cost increases above 50%. Results for each

balanciEe seen in Supporting Information S3.

3.3 Pareto Frontier Analysis

The shape s the Pareto frontier offers valuable information about tradeoffs in individual years and

trends ove th more nuance than exploring just the extreme (¢ = 0 and a = 1) scenarios. We

show severaig@®R@mples in Figure 6 (full results in Supporting Information S4). Each example in

Figure 10 ihe 20 largest BAs. In BA 58, which covers most of Louisiana, the Pareto frontier
aBIc through 2030. BA 101, in Florida, shows a rightward shift through 2030. In BA

ost of Michigan, there is a clear leftward shift in the Pareto frontier through 2030,

is relatively
103, whic
showing th&8potential for improved emissions and cost outcomes. Finally, BA 127, covering most of
New York,shows go clear trend through 2030. Among the 20 largest BAs through 2030, 10 shift

leftwarth, 2 are stable, and 3 show no clear trend. Additionally, as seen in BAs 101 and

127, the P:ier is often represented by a single point. This shows that the emissions

minimizing (¢ = B and cost minimizing (¢ = 0) charging start times are in fact the same time, and

all other points are dominated. The single point frontier shows no tradeoff between cost and emissions
optimizati

4. DISCUSSION

This article is protected by copyright. All rights reserved.



Using MEFs that capture future changes in the electricity system, we show the spatial and temporal
variability i electsic vehicle charging emissions and costs, using electric delivery vehicles as a case
study duictable, schedulable, and repeatable nature of their route characteristics and
operating pfocedimgs. In addition to time and space, emissions also vary with optimization weighting
and freque n;ﬁ 0ss 134 BAs spanning the contiguous U.S. through 2030, we show charging
ernissiorﬁs ranging from 136 to 485 g CO,/mile depending on charging location and optimization
weighting ﬁ sﬂow a 19%-62% reduction in emissions by optimizing charge timing more frequently.
This inforrles important insights for the deployment and operation of electric delivery
vehicles.

4.1 Cost vs. issions Optimization Tradeoffs

Switching fronffanfiual emissions-optimized (e = 1) charge timing to annual cost-optimized (@ = 0)
charge timi ses emissions by 18% and decreases costs by 27% in terms of demand-weighted
averages o hicle’s 10-year lifetime. There is significant regional variation, with emissions
increases as little a§)0% or as high as 37%, and cost savings as little as 0% or as high as 55%.

Implementi on price could lead to cost and emissions optimization aligning at the same time
of day. By finding the difference in cost and emissions between the « = 1 and @ = 0 optimization
weightings etermine a price of carbon needed to shift from cost-optimized times to
emissions-Qptimmiget] times. This represents the value needed to shift from the least expensive
charging timleast emitting charging time. The cost ranges from 0 $/ton CO,, in BAs in which
emissions- and -optimized charging already occur at the same time, to over 900 $/ton CO,. To
shift fr ized charging hours to emissions-optimized charging hours in the regions that
collectively 50% of the US energy demand would cost 127 $/ton CO,, and to shift to
emissio zed charging hours in the regions that collectively make up 75% of US energy
deman 166 $/ton CO, (Figure 7).

Even if a company optimizes for cost, this can have a positive impact on emissions if the cost savings
are used tom the fleet more rapidly. The carbon prices needed to shift from cost-optimized
(a=0) to emissiens-optimized (a=1) charging are generally higher than what has been proposed in the
Maloney, 2019; Whitehouse, 2019), but smaller values could still lead to

ng to an intermediate a value, and charging at a cleaner (but not the cleanest) time.

onvex Pareto frontier, this may be a more cost-effective method to reduce
emissions. §o take an extreme example (BA 22 in 2030), shifting from a=0 to a=1 achieves a 25%
ns with a 149% increase in cost. This 25% reduction in emissions could be
incentiv\“carbon price of 173 $/ton CO,. However, shifting from a=0 to a=0.57 achieves a
20% reductigmsi issions with an 18% increase in cost. This 20% reduction in emissions could be
incentivized with aicarbon price of only 26 $/ton CO,. For both fleet operators and policy makers,
using regi 1c and year-specific Pareto frontiers, and considering each point rather than only
the extremes isgifit€eral to determining the most cost-effective emissions reduction strategies.

4.2 Vehi oyment and Operations
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While previous studies have investigated EV emissions using MEFs at the NERC region level, using
data for geographically smaller BAs allows for improved decision making about the most
environmentally beneficial deployment locations. There is important variation within NERC regions
that is then using emissions data aggregated by NERC region. For example, annual
emissions-opgmmzed (a=1) charging emission within the TRE NERC region vary greatly. In BA 63,
which inclnd Ft. Worth, charging an additional electric delivery vehicle would result in
238 g CO, SAIBM 61, which covers much of Western Texas, charging an additional vehicle
would résulisiFmmBBig CO,/mile. This can occur with cost optimized (a=0) charging as well. Charging

g CO,/mile in BA 23 in Northeast Wyoming. As a rule, one should use the
ich data are available and reliable.

which dep ntfis favorable and emissions reductions are most cost-effective. In Figure 8, Texas
and New Efglandffemain the least emitting locations to deploy a vehicle, regardless of the
optimizati igiting. With o=1 weighting, Colorado has similar emissions as much of the
Midwest, but accomplishes those emissions at a much higher cost.

Comparing em1Sf:0ns and cost results with a=1 and a=0 weighting can be used to identify regions in

Many of th resented here are extreme situations: finding the least emitting time to charge,
finding thefleast expensive time to charge, and optimizing times daily. In practice, these objectives
will be wei inst operational constraints, such as delivery schedules (Goeke & Schneider,

2015), cha ilability, power constraints at the fleet depot (Jahic et al., 2019), driver scheduling,
and battewﬁon (Schoch et al., 2018), and may be modified by new capabilities such as
vehicle to grid s€tvices (Zhao et al., 2016) and vehicle automation (Luo et al., 2020). Furthermore,
our cos n only accounts for the energy used by a single vehicle. A commercial fleet with
multiple vehic y be subject to demand charges based on peak power requirements of the

n addition to energy consumption charges. Scaling up this model to the fleet level

may int offs between charging at times when energy is the least expensive and limiting the

peak power consumption of the fleet depot. This would also impact the tradeoffs between private and
environmefal costs, potentially increasing the cost to charge at low emitting times. However, if some
of these op constraints can be managed, new operating procedures such as nighttime

deliveries during the day) can yield significant emissions reductions in many regions.
S

Even with
by avoidingt costly and highest emitting hours. Critically, this should be done using the most
spatially an temporally specific data available for both cost and MEFs. The time-of-day optimization
should equently as is possible, with as wide of a charging window as possible,
conside“aﬁonal constraints of the fleet. Seasonal, monthly, or weekly optimizations would
lower cost issions over annually optimizing charge time-of-day, particularly when emissions

are weighted heavilly in the optimization. This may be accomplished through advances in smart
charging ( al., 2018).

5. CONqs
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e constraints, there is room for improvement in both cost and emissions simply



Using predicted MEFs, charge timing can be optimized to meet various operational goals, including
emissions reductions and cost reductions. Using data at the BA level allows for greater insight into
regional emissions variation and using projected emissions accounts for ongoing grid decarbonization
efforts.

Of course, issions are not the only factor considered when determining optimal deployment
locations ai ractices. Other environmental benefits, such as reduced local air pollution and
noise p%lution should also be considered, which means dense urban areas are prime candidates for
deployme ﬁpoying in locations that are or have been most harmed by local air pollution from
diesel VChLO an important opportunity for environmental justice (Nguyen & Marshall, 2018).
Operating capabiligy is another critical factor. Though an electric van results in lower GHG emissions

than its dieel altelative, the advantages of EVs over diesel vehicles are most fully realized in

settings with average speeds and frequent stops and starts, so limiting deployment to settings with
those rout istics is beneficial. Finally, the availability of charging infrastructure, and the
capacity o to meet the increased electricity demand also need to be considered.

Optimizin, timing more frequently can further reduce cost and emissions. Regardless of the
optimizati ighifing or the optimization frequency, the variability of electric vehicle charging

emissions in ime and space creates an opportunity for significant reductions in emissions by
deploymenffof vehicles in strategic locations and charging vehicles at specific times. Delivery

companies count for regional variation and expected changes to the grid over time when
developing eduction policies and goals. These strategies can work alongside other
transportation onization efforts including improving material efficiency (Wolfram et al., 2021)
and reducin e miles traveled (Milovanoff et al., 2020). The opportunity for cost and emissions
savings|i o0 increase over time, as the hourly variation in cost and emissions throughout the
day are exp increase. However, there remain significant tradeoffs between cost and emissions

in many regi@m® Understanding these tradeoffs, as well as improvements in the specificity of
e and space, will help elucidate the benefits of electrification, yield cost-effective
carbon reduction strategies, and accelerate the decarbonization pathways for electric delivery vehicles.
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Figure 1. Overview of the NREL Cambium model, and the outputs that are used in the vehicle
charging model: marginal emissions factors (MEFs) and total marginal cost (TMC)
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Figure 3. Frequency of annually optimized charging start times from 2020 to 2030
across the 134 balancing areas, yielding 1,340 unique year-balancing authority data
points. Optimized by emissions (o = 1) or cost (o = 0). Underlying data available in
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Figure 4. Comparison of emissions and costs of charging for (a=1) and (a=0) weighting in a) all 134
balancing areas and b) the largest 20 balancing areas. Percentage change in emissions and cost for
each balancing area with c) and d) emissions optimized (o =1) charging, and e) and f) cost optimized
(a=0) chaginsi qn changing the optimization frequency from c) and e) using the 2021 optimized
time for theéfentire decade to the base case of optimizing annually, and d) and f) the base case of
optimizing g by to optimizing daily. The size of the point represents the cumulative load (2021-
2030) in ed . Underlying data available in Supporting Information S5.
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Figure 5. a) Emissions optimized emissions and b) cost optimized cost comparison when charging is
allowed at any time (unconstrained charging) and only at nighttime (between 8pm and 8am) for three
different optimization frequencies. Demand weighted average across 134 balancing areas. Underlying

data availal}e in S')porting Information S5.
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Figure 6. Parcto frontiers for four selected balancing areas from 2020-2030: a) balancing area 58, b)
balancing area 101, c) balancing area 103, and d) balancing area 127. Underlying data available in
Supporting Information S5.
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Figure 7. Harbon required to shift from cost optimized (0=0) charging times to emissions

optimized (gz rging times in each balancing area, arranged by cost and proportion of cumulative
electricity @emand. Underlying data available in Supporting Information S5.
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Figure 8. Annually optimized results in each balancing area for a) emissions-optimized emissions, b)
emissions-optimized cost, ¢) cost-optimized emissions, and d) cost-optimized cost. Underlying data

available in Supporting Information S5.
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