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Abstract
Learning analytics research presents challenges for 
researchers embracing the principles of open science. 
Protecting student privacy is paramount, but progress 
in increasing scientific understanding and improving 
educational outcomes depends upon open, scalable 
and replicable research. Findings have repeatedly been 
shown to be contextually dependent on personal and de-
mographic variables, so how can we use this data in a 
manner that is ethical and secure for all involved? This 
paper presents ongoing work on the MOOC Replication 
Framework (MORF), a big data repository and analy-
sis environment for Massive Open Online Courses 
(MOOCs). We discuss MORF's approach to protecting 
student privacy, which allows researchers to use data 
without having direct access. Through an open API, doc-
umentation and tightly controlled outputs, this framework 
provides researchers with the opportunity to perform 
secure, scalable research and facilitates collaboration, 
replication, and novel research. We also highlight ways 
in which MORF represents a solution template to issues 
surrounding privacy and security in the age of big data in 
education and key challenges still to be tackled.
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INTRODUCTION

All too often, positive values conflict with each other. A debate of this nature has emerged in 
the recent years in the discourse around learning analytics. On the one side of this debate 
is the value of beneficence (Prinsloo & Slade, 2017), the idea that learning analytics can en-
able interventions that improve the chance that students will succeed or complete a course, 
ultimately benefiting their lives. Models and algorithms in this area can be enhanced through 
open science (van der Zee & Reich, 2018). Open science makes it possible to replicate and 
verify models (Echtler & Häußler, 2018), debate around how they function (Chakraborty 
et al., 2018; Chatzimparmpas et al., 2020), and compete to see which approaches are most 
effective (Foster & Deardorff, 2017).

On the other side of this debate is the value of non- maleficence (Corrin et al., 2019)— in 
this context, the idea that the pursuit of learning analytics should not harm learners. One 
major non- maleficence concern is around privacy. Learners trust platforms with highly per-
sonal data, the disclosure of which can cause harm. This has led to several developments 
guiding the use of educational data, varying in different countries, and tracking develop-
ments in privacy in society and policy more broadly. For instance, in the European Union, it 
has led to the right to be forgotten, mandating that organizations be required to delete indi-
vidual data upon request (Politou et al., 2018). In the United States, it has led to increasing 
pressure on commercial organizations handling learner data to delete all identifying infor-
mation at the end of every year (Consortium & others, 2018). In general, this trend has led to 
greater concern about how educational data is handled and a strong emphasis on avoiding 
disclosure of personally identifying information.

This challenge can be particularly difficult for learning data from online courses, including 
massive online open courses (MOOCs). It is not sufficient for these courses to simply re-
move user names from the data and declare the data de- identified. Data from these courses 
can often contain personal details about a student, from their demographics and IP address, 
to forum posts, responses and essays that sometimes contain subtly identifying information 

Practitioner notes

What is already known about this topic
• Personal Identifying Information (PII) has many valid and important research uses 

in education.
• The ability to replicate or build on analyses is important to modern educational 

research, and is usually enabled through sharing data.
• Data sharing generally does not involve PII in order to protect student privacy.
• MOOCs present a rich data source for education researchers to better understand 

online learning.
What this paper adds
• The MOOC replication framework (MORF) 2.1 is a new infrastructure that enables 

researchers to conduct analyses on student data without having direct access to 
the data, thus protecting student privacy.

• Detail of the MORF 2.1 structure and workflow.
Implications for practice and/or policy
• MORF 2.1 is available for use by practitioners and research with policy implications.
• The infrastructure and approach in MORF could be applied to other types of edu-

cational data.
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(see, for example, Frankowski et al., 2006). Extensive usage data can be used for several 
beneficent purposes— improving the quality of algorithms (Gardner & Brooks, 2018), check-
ing for and removing algorithmic bias (Kizilcec & Lee, 2020)— but is hard to fully de- identify.

In this paper, we present a potential solution to address both the goals of beneficence 
(through open science) and non- maleficence (through privacy protection) in a research ar-
chitecture for massive online open course data. The goal is to respect privacy but promote 
open, scalable, replicable research that can stand up to scrutiny, and ultimately benefit 
learners. In what follows, we detail the ongoing development of the MOOC Replication 
Framework (MORF), a framework to promote ethical and trustworthy learning analytics that 
supports the goals of learners and researchers alike. MORF allows researchers to perform 
computation on a growing dataset without ever having direct access to the data, protecting 
student privacy. Our continuing development aims to address current challenges in learning 
analytics whilst making data more accessible to the research community.

The trouble with personal identifying information

Personal identifying information (PII) is defined as “Any representation of information that 
permits the identity of an individual to whom the information applies to be reasonably in-
ferred by either direct or indirect means” (U.S. Department of Labor, n.d.). In education, PII 
can take several forms. Classic examples such as name, date of birth and email address 
are immediately obviously PII. However, PII can also be contained in data such as dis-
cussion forum responses, where a learner may use their name or nickname, discuss their 
hometown or job, or identify themselves in other ways that can be mapped back to them 
as an individual (“Hi! My name is Ryan. I live in Pennsylvania and I'm a professor at the 
University of Pennsylvania! I work on learning analytics, and I'm a huge fan of ten- pin bowl-
ing.”). Even variables that we might typically aggregate across, such as gender or race, can 
become identifying in certain circumstances (eg, a student's identity is underrepresented in 
the class/group).

Important uses of PII in educational research and practice

A student's identity is critical to their learning experiences, and can influence how and when 
the student succeeds, as well as what supports most benefit them. Culturally responsive 
pedagogy has increasingly provided evidence that instructional methods are more effec-
tive if they take students' identity and individual lived experiences into account (Howard & 
Terry Sr, 2011). As a range of studies have now shown, specific online interventions may 
have different effectiveness for different groups of students (Arroyo et al., 2013; Finkelstein 
et al., 2013; Kizilcec et al., 2017). Identity has many dimensions, including (but not limited 
to) race, class, gender expression, sexual orientation, ethnicity, religion, nationality, age, 
language, and ability— all considered PII. In addition, the intersectional relationships be-
tween these variables play a major role in how identity manifests and influences learning 
(Ro & Loya, 2015). We cannot determine which interventions work for which students— or be 
confident that an intervention works for the full diversity of students— without the use of PII.

Another key use for PII is in the study and evaluation of algorithmic bias— the concept that 
algorithms often encode the biases of their developers or the surrounding society, producing 
predictions or inferences that are clearly discriminatory towards specific groups (Baker & 
Hawn, 2021). These problems have been consistently documented in education, with bias 
in testing, for example, being discussed since the 1960s. In order to assess and attempt 
to remove this bias, it is necessary to have access to data that identifies each student's 
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group memberships. This data is invariably PII. As Baker and Hawn (2021) argue, we cannot 
achieve fairness without knowing whether an algorithm is biased, and we cannot determine 
that without PII. Identifying and fixing algorithmic biases hinges upon the use of PII and 
cannot be completed without it.

Data sharing and researcher ecosystem

In education research, data sharing often poses challenges. Data are typically collected 
in partnership with educators, administrators and students, who authorize the collection of 
data for a specific study/set of research questions and often actively prohibit the distribution 
of data to third parties. Data can be de- identified, but given how intrinsically personal edu-
cational data can be, this task can be labour- intensive. Worse, some of the easier forms of 
de- identification (such as removing all forum post data prior to sharing - EdX, 2020) lead to 
data no longer being useable for a wide range of research and development goals. Sharing 
data on a by- request basis (eg, Wolins, 1962) and carefully crafting data agreements has 
long been a potential solution, but is often ineffective. For example, Wicherts et al. (2006), 
contacted owners of 249 datasets, only receiving a response from 25.7%, a response rate 
similar to that noted in Wolins (1962) following requesting data from 37 APA papers (though 
many years earlier and prior to email). The task of sharing data requires a time investment 
from researchers, typically with no incentive. Moreover, the process can be stalled by email 
address or institution changes.

Restrictions on data sharing pose particular issues in terms of the increasing move to-
wards Open Education Science (van der Zee & Reich, 2018), a subfield of Open Science 
(see Fecher & Friesike, 2014). This movement seeks to address problems of transparency 
and access, specifically in education research, addressing issues of publication bias, lack 
of access to original published research and the failure to replicate. The practices proposed 
by Open Education Science fall into four categories, each related to a phase in the process 
of educational research: (1) open design, (2) open data, (3) open analysis and (4) open 
publication.

Of most relevance to the current work are Open Data and Open Analysis. The principle of 
Open Data aims to make data and other research materials freely accessible on public re-
positories for the purposes of replication, evaluation and scrutiny. As noted above, this goal 
often presents challenges for educational data in cases where it was originally agreed that 
data not be shared, or where PII issues limit what can be shared. Open Analysis poses that 
analysis and methods should be able to be systematically reproduced, a goal often accom-
plished through code sharing. In these cases, source code used for analysis is often made 
publicly available through online repositories such as GitHub or preregistration sites. The 
challenge here is that, beyond initial examination, this code is typically not useful without 
the data needed to conduct the analysis, meaning that without Open Data, Open Analysis is 
typically not possible. In addition, issues of code rot and dependency hell (Boettiger, 2015) 
often make it impossible to run code once the libraries the code depends on have changed.

Our approach

Our approach is an infrastructure that protects student privacy while recognizing the value 
of PII to education research and the importance of open, replicable analysis. MORF gives 
users access to extensive learner data from MOOCs, allowing researchers to conduct 
analysis on unrestricted, complete data, while preventing them from directly viewing the 
data. MORF is currently installed on remote cloud servers rented by the University of 
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Pennsylvania and the University of Michigan (version 2.0) and is designed so that any 
institution wishing to have its own implementation can relatively straightforwardly install it 
on their own servers. Though the MORF infrastructure could be used with other forms of 
data, the infrastructure has focused on MOOC data, to begin with, and currently, all data 
ingestion is focused on MOOC platforms such as EdX and Coursera. MOOC data presents 
a convenient starting point as we establish this privacy- protecting framework. MOOCs are 
self- contained courses, with large volumes of data, and already defined data structures. 
There is also a growing body of MOOC scholarship, with increasing concerns about repli-
cability, which MORF can support.

MORF gives users the freedom to dictate a study's overall design— from feature ex-
traction to model evaluation. In order to protect the data available, users are provided with a 
sample dataset and a minimum working job example. Both resources give users the ability 
to design their study and ensure that it will run on MORF. Once a job is submitted to MORF 
(via a public URL), the user's code is executed against the framework's database to extract 
features, which are then used to train and test predictive models according to the user's 
research design. All intermediate outputs used in these processes are outputted and stored 
privately on remote Amazon Web Services (AWS) servers. Finally, once the job is complete, 
the model's evaluation metrics are sent to the user's email. By preventing viewing of per-
sonally identifying information, and offering access to a restricted set of evaluation metrics, 
MORF allows extensive analysis but protects student privacy.

PRIOR WORK

In this section, we review past work relevant to the open science challenges that MORF at-
tempts to address. Due to the expanding interest in this space, we focus our review on work 
conducted in educational domain, for brevity.

Post hoc analysis platforms

The first large source of publicly available educational interaction data was the Pittsburgh 
Science of Learning Center Datashop, now called Learnsphere (Koedinger et al., 2010; 
Stamper et al., 2016). DataShop contains (and contained) data from hundreds of thousands 
of students using dozens of different learning platforms, with a particular focus on intelligent 
tutoring system data. The data in DataShop was primarily in the form of interaction logs— 
semantically meaningful actions made by the student within the learning system such as 
entering an answer or requesting a hint. Other data, such as test data, typically is included 
as separate data files available for download.

DataShop was originally conceived with a model where a small number of analyses 
would occur online— this functionality was designed primarily for educational researchers 
without a data science background. For more advanced analyses involving data mining and 
machine learning, DataShop enabled researchers to download a version of the data with 
all student identifiers removed. DataShop data has been used in this fashion by hundreds 
of data mining researchers. Later work with the Tigris infrastructure enables researchers 
to specify and run more complex analyses online, using a drag- and- drop graphical user 
interface (Liu et al., 2017). Researchers can add models and modelling tools to Tigris, and a 
small number of tools have been added by external researchers (eg, Paquette et al., 2018).

The MOOCdb database schema was proposed and developed to standardize the vast 
amounts of data generated by multiple MOOC platforms. It has received considerable 
discussion within MOOC scholarship as a way of making data compatible across MOOC 



    | 761CONTROLLED OUTPUTS, FULL DATA

platforms (eg, Baker & Inventado, 2014; Pournaras, 2017; Sun et al., 2019), but was rarely 
used except in studies involving its developers (Han et al., 2013). Its last published use was 
in 2014 (Han, 2014).

moocRP is an analytics tool that was developed with a goal of supporting replicable re-
search using MOOC data (Pardos & Kao, 2015). moocRP allows for the implementation of 
several analytic models, with the goal of facilitating the re- use and replication of an analysis 
in a new MOOC. One of its key features was its ability to display visualizations. For example, 
in its first published case study, moocRP was used to employ Bayesian Knowledge Tracing 
(Pardos & Heffernan, 2010) to assess current and previous knowledge among learners in 
a MOOC (Pardos & Kao, 2015), producing visualizations which an instructor could use to 
determine who in their class is lacking the requisite prior knowledge to succeed. However, 
moocRP did not scale beyond analyses of single MOOCs, thus not facilitating the types of 
broad, cross- contextual research that are needed to get MOOC research past its own rep-
lication crisis. moocRP did not achieve widespread use, and its source code and documen-
tation have not been updated since 2016.

One educational platform that has been active in sharing its data is ASSISTments 
(Heffernan & Heffernan, 2014), which has released data sets publicly on its webpage1 for 
download since 2010 (eg, [Selent et al., 2016]). ASSISTments is an online grant- funded 
mathematics learning platform, provided to teachers and students around the world as a 
free public service of Worcester Polytechnic Institute (Ostrow & Heffernan, 2016). Today, 
researchers can gain access to data either via the ASSISTments website or for specific 
studies, through the Assessment of Learning Infrastructure (ALI). ALI provides automated 
reports that provide basic analyses and pre- processed CSV files featuring the raw data 
logged by ASSISTments as students work through an experimental assignment (Ostrow & 
Heffernan, 2016). These data sets, similar to the DataShop data, are primarily in the form of 
interaction logs. Other data, such as test data, longitudinal outcome data and affect obser-
vation data, are also included as separate data files available for download. ASSISTments 
data sets have been used by hundreds of external researchers, including in a longitudinal 
data competition (Patikorn et al., 2018). ASSISTments attempts to fully de- identify data, 
removing both student identifiers and student responses that reveal PII. Researchers are 
also required to agree (through terms of service) not to re- identify students. Should the re-
searcher require more in depth access, individual data agreements must be completed with 
the ASSISTments foundation. Thus, this data and experimentation infrastructure provides 
a very rich (and far reaching) insight into student learning, but does not on its own facilitate 
certain research questions. For example, researchers can examine the effect of a question 
or feedback mechanism, but not individual differences (that rely on demographics) without 
additional data agreements and access.

In aggregate, these platforms provide access to data for secondary analysis, but they 
face challenges in resolving the dilemma of balancing between privacy/security and the 
ability to conduct the full range of analyses that could be conducted with this data. While 
in general these platforms share data openly they do so by removing identifiers in order to 
reduce privacy risks. By sharing limited data, many important analyses (such as longitudinal 
analyses and algorithmic bias analyses) cannot be conducted using this data. At the same 
time, by sharing data openly, it is impossible to prevent all possible re- identification attacks 
(see, for instance, Yacobson et al., 2021).

Experimentation platforms

In addition to infrastructures for data analysis, there has also been work providing 
an infrastructure for large scale data collection. For example, Ed- Tech Research 
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Infrastructure to Advance Learning Science (E- TRIALS— an additional layer to the 
ASSISTments system described above) facilitates randomized control trials and 
A/B testing with real student populations. Researchers then have access to this 
data through the mechanisms described above. By leveraging the user base of the 
ASSISTments platform, E- TRIALS allows researchers to access larger volumes of 
data than may be collected otherwise, while still protecting student privacy. As with 
general ASSISTments data, demographic and individual differences data is not shared 
unless additional agreements are in place.

E- TRIALS incorporates open access content from ASSISTments and wraps this with an 
experimental platform, the Teracotta framework,2 which is provided as an open- source IMS 
LTI plugin suitable for embedding within traditional learning management systems. The goal 
of Teracotta is to support context- driven experimentation both through large- scale multi- 
institution experiments (eg, Fyfe et al., 2021) as well as experiments within a single course. 
While the framework is still under development, it aims to ease much of the logistical burden 
of running robust and ethical experiments in education, including assignment of learners to 
different conditions (which may include crossover designs), collection of and blinding to the 
instructor informed consent and connection between institutional units.

Public datasets

Beyond the infrastructures and platforms described above, there have also been efforts to 
provide datasets for public download. For example, the Open University Learning Analytics 
Dataset (OULAD)3 was published in 2015 through the UC Irvine Machine Learning Repository. 
The dataset contains de- identified data from seven online courses and accompanying docu-
mentation for the explanation of variables. The data does contain data for some individual 
differences (gender, age, etc.) and can be used for a number of machine learning analysis 
for online courses. Several data competitions, such as the 2010 KDD Cup,4 the NAEP Data 
Mining Competition (2019), and the NeurIPS (Wang et al., 2020) Education Challenge, have 
also made data available. These datasets vary in content and context, and are typically one- 
off datasets as opposed to a commitment of continuously updated data. As with the more 
comprehensive solutions to data sharing seen in the PSLC DataShop and ASSISTments 
system, these datasets typically offer partially redacted data (less so with OULAD than other 
data sets) and may still present some limited privacy risk— with the degree of data redaction 
corresponding inversely to the degree of privacy risk.

OUR SOLUTION— THE MOOC REPLICATION FRAMEWORK

MORF 1.0

In its first iteration (Andres et al., 2018), MORF ran on a dedicated server and was intended 
to replicate findings that could be posed as human- understandable if- then rules such as “If 
a student who is <attribute> does <operator>, then <outcome: completes or does not com-
plete>”, where an attribute is a piece of information about a student and an operator is an 
action within a given MOOC. MORF returned whether a finding was statistically significant 
in a new course (or set of courses), and the effect size of the relationship. In MORF 1.0, 
the only outcome that could be assessed was MOOC completion. This initial implementa-
tion was developed using a production- system framework (Jess). While this allowed for the 
examination of many published findings (Andres et al., 2017, 2018), it represented a limited 
subset of MOOC scholarship.
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MORF 2.0

The second iteration of MORF (MORF 2.0) built upon the success of 1.0 for replication 
studies and added increased functionality for studies and findings that could not be distilled 
to if- then rules. Through updates to the framework, we developed a new predictive model-
ling module and easier access to MOOC data, enabling more direct forms of replication 
research. Using the predictive modelling research cycle (extract, train, test and evaluate), 
users could first program their own feature extraction scripts and specify the outcome of in-
terest (completion or dropout). Users could also provide high- level experimental workflows, 
such as how model training and testing should occur and whether cross- validation or a 
holdout set should be used. The remaining steps of the cycle were then handled by MORF, 
with a pre- programmed set of classification and evaluation algorithms.

MORF 2.0 ran on a dedicated server and consisted of two main components: an open- 
source Python API for specifying the workflow of an experiment (the “MORF API”), and a 
Platform- as- a- Service, which was a running instance of MORF's backend infrastructure 
coupled with computational resources and a large MOOC dataset. In order to use this ver-
sion of MORF, users needed to create and submit configuration files to MORF, either using 
an HTTP request or using a MORF API function. These configuration files contained human- 
readable job metadata, including a pointer to an executable Docker image which contained 
all code, software, and dependencies for the experiment. Once the job was done executing 
on MORF, the analysis results were then emailed to the user.

MORF 2.1

The latest version of MORF (MORF 2.1, henceforth referred to just as MORF) offers ad-
ditional flexibility in study design. In addition to programming their own feature extraction 
scripts, users are now able to implement their own analyses beyond just predictive model-
ling, and output using a range of pre- approved libraries. In this version of MORF, research 
artefacts (eg, docker file, extraction code, analysis code, etc.) are still sent to the platform 
using the MORF API. As with MORF 2.0, the job is conducted within the MORF platform, 
and all final outputs are sent to the user via email.

Beyond these changes, the latest version of MORF has been redesigned to address 
issues regarding usability, scalability and security. In earlier versions, MOOC course 
data was stored in flat database dumps that were not easily accessible by users without 
considerable expertise. Users still did not have direct access to files, thus in order to 
use the data, users had to design their job to first manipulate the data into a usable form 
before conducting analysis. Each MORF job would typically establish a temporary data-
base and load data into it for use. These databases would then be destroyed when the 
job was complete. While many users may be adept at querying a database, establishing 
a database with the appropriate relationships can be challenging, especially without di-
rect access to data for debugging purposes. This necessity also led to significant CPU 
and memory overhead on the MORF sever that needed to be repeated in projects using 
the same data. This approach did not scale efficiently as the number of jobs submitted 
by users increased. To address these issues and take advantage of the security and 
scalability features provided by cloud services, MORF is now deployed on AWS Cloud. 
AWS is an on- demand cloud computing service that allows for varying computation and 
storage requirements.

MORF 2.1 is currently installed and maintained by a team of MORF administrators (fur-
ther described below) at the University of Pennsylvania. This team maintains the data stor-
age and broader MORF infrastructure (more detail below). Only members of the MORF 
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administrators team have direct access to the data used in the MORF infrastructure. Users 
of MORF do not need to be affiliated with the University of Pennsylvania, but must register 
in order to obtain appropriate credentials (an API Key, more detail below).

MORF architecture

The MORF backend provides users an indirect, unrestricted and read- only access to MOOC 
data for predictive modelling. However, the information users can directly access from 
MORF is restricted. That is, a user's code may access the data only through running code 
on MORF. All code is run in an isolated environment. The benefits of this are twofold: First, 
environments can be built with no restriction on programming language or software used 
for analysis. Second, access to resources such as networking, databases, and file systems 
can be restricted when running user code in an isolated environment. Output from the iso-
lated environment is then passed to an output pipeline that evaluates model performance. 
Functions permitted within this approved pipeline are the only output that users have access 
to.

MORF is implemented in AWS as a service that utilizes several cloud services. The 
MORF backend is a RESTFul web service that runs inside an EC2 virtual machine in-
stance that is accessible through a load balancer. The load balancer is a single point of 
entry for incoming traffic that distributes requests to multiple instances of MORF based 
on metrics such as memory and CPU usage. The load balancer also serves as a firewall 
by restricting access to the MORF backend according to security rules, such as restrict-
ing access to certain IP addresses. Using a load balancer is one of the common ways to 
automatically scale resources and adjust to demand. Rather than requiring each job to 
load data into a database, MOOC data is pre- imported and stored in RDS MySQL data-
bases. These databases are accessible through a proxy that MORF jobs can only access 
from within the isolated environment. MORF also uses a queueing service in AWS to 
queue and process jobs. After a job is processed, results are sent to the user via email 
through an email service provided by AWS. Figure 1 shows the MORF architecture and 
the AWS services it utilizes.

Secure access to MORF on AWS is provided through firewall security rules that pre-
vent direct access to the data. The server that runs MORF on AWS can only be accessed 
through a load balancer and does not accept direct requests from the internet. Moreover, 
user jobs are run in an environment that does not allow outbound connections to the inter-
net. Additional security layers are provided by IT Administrators (in our case, the University 
of Pennsylvania IT department), who manage the AWS Account and provide regular security 
audits of our infrastructure.

In the current design, this architecture would be repeated for each university that wished 
to run an installation of MORF. In discussions with university leadership and IT teams, we 
learned that it is important for universities to be able to control their own separate cloud 
servers rather than sending it to a single server that controls all universities' data. Each uni-
versity controlling their own server makes it possible for their IT department to exercise due 
diligence over their own security, as well as their students' data.

MORF workflow

The MORF workflow starts with users utilizing the MORF API to submit a job to the 
MORF backend. A job request includes an API key (linking a user to the job), a URL to 
the MORF backend, and a job payload. The payload contains instructions on how the 
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MORF backend should initialize the isolated environment and any associated files to be 
copied and executed in the isolation environment. Concretely, this isolation environment 
is a Docker container, preserving library versions and the runnable environment as well 
as the code.

After a job is successfully submitted to the MORF backend, it is placed in a queue. MORF 
then retrieves the job from the queue and builds the specified image which is then used to 
launch the isolated environment (a container). It then runs the user code within that con-
tainer. MORF users are instructed to write output to a volume that is attached to the con-
tainer for processing as described above.

Job execution is logged by MORF. If there are any errors executing a job, the user re-
ceives an automated email that informs them that the job was not successful. The MORF 
technical team will also receive an automated email with detailed error messages that can 
be provided to the user so long as there is no leaked PII within the error messages. We 
use the Simple Email Service (SES) provided by AWS to email users the outcome of their 
job submissions, such as successful completion and if the job was not completed due to 
an error. If a job completes successfully, the email also contains the outputs of the model's 
performance. Figure 2 shows an overview of a MORF job workflow.

Any and all jobs that have access to the MORF database must follow this workflow. 
However, this can prove to be challenging for the initial development of code and debug-
ging (see limitations). For this purpose, we have some examples of both SQL queries and 
sample placeholder data for users to test/debug their code offline. Sample data is available 
upon request— when a new type of sample data is needed, it is created by the MORF 
administrators.

MORF users

The MORF infrastructure has three broad groups of users: (1) users (2) MORF ad-
ministrators, and (3) IT administrators. We refer to Users as those running analysis 
within MORF. They must authenticate their interaction with an API key (for both sup-
port and security purposes), submit jobs via the MORF Job Submission API, and ulti-
mately receive their results via email. MORF users have no direct access to data; their 

F I G U R E  1  Diagram of the MORF architecture 
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access is via the API. MORF administrators are the team that processes data received 
from MOOC providers (eg, Coursera) and imports such data into the MORF databases. 
MORF administrators also handle the distribution of API keys and general user man-
agement. They are also on hand for any support needs for users (eg, code debug-
ging, or assessing data needs). IT administrators (in our case, the IT department at the 
University) manage the AWS account and billing as well as provide security audits and 
recommendations.

Users of the MOOCs, such as instructors, or students enrolled in courses, are not con-
sidered MORF users as they do not have any interaction with the system; their data are 
simply imported into MORF. In some cases, instructors may wish to use MORF for analysis, 
in which case they would need to register as a MORF user.

MORF data

MORF 2.1 is currently used to give users execute- only access to MOOC data from 45 
courses offered in English by the University of Pennsylvania from 2012 to 2015. We are 
currently expanding the data contained within MORF 2.1 to include data from 2016 to the 
present. At this time, version 2.1 of MORF is only used by a single university, the University 
of Pennsylvania; other universities continue to use 2.0. Of these courses, 27 had multiple 
sessions, resulting in a total of 98 sessions' worth of data. For each session, the following 
types of data are available:

1. Discussion forum posts: this SQL file contains all the data related to the threads, 
posts and comments on the session's discussion forum.

2. Course data: this SQL file contains semantic- level data on every other part of the MOOC 
beyond discussion forum posts, such as data and metadata on student access to lecture 
videos and hand- in of assignments, grades, etc.

3. Clickstream: this data file contains all learner clicks within the system, where each click is 
logged as a JSON object.

F I G U R E  2  Diagram showing MORF job workflow 
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The data imported is provided in the same format used by the MOOC provider (eg, Coursera, 
EdX). Both EdX and Coursera provide scripts to import data exported from their platforms into 
other databases. Using these scripts preserves existing data structure, meaning that research-
ers may leverage existing database documentation.

MORF security

MORF implements multiple security features to authorize access and shield data:

1. User communication with the MORF backend is encrypted with SSL.
2. Users must be issued 4096- bit RSA- encrypted API keys before they can submit jobs.
3. The MORF backend EC2 instance can only be accessed via a load balancer. It cannot be 

reached directly from the internet.
4. The MORF backend EC2 instance cannot make any outbound connections.
5. A user's job is isolated inside a Docker container. The docker container cannot make 

any outbound connections and can only communicate with the course database proxy 
container.

6. Course databases themselves are not directly accessible by users.
7. The RDS database system cannot be reached from the internet.
8. Course databases are read- only.
9. If an error occurs during job processing, users receive only basic error messages that 

indicate at what stage the error occurred. Users will not receive any error messages that 
may reveal sensitive information stored in the databases. For instance, users will receive 
an error message that may tell them the error occurred while unzipping the job payload or 
that will specifically tell them the error is in their code. However, the error message will not 
include the runtime error that occurred while executing their code. Such messages and 
other system- level errors are only sent to the MORF technical team.

Multi- institution analyses within MORF

As of this writing, MORF version 2.1 is currently only in active use by the University of 
Pennsylvania, with active plans to upgrade the University of Michigan's infrastructure from 
2.0 to 2.1. The general model for the use of MORF by multiple institutions is that each insti-
tution runs its own instance. Researchers outside the institution can run analyses accord-
ing to the same processes as researchers internal to the institution. MORF can be used in 
analyses of multiple institutions' data by running a job separately at each university and then 
exchanging intermediate values or models between institutions (but not data). For instance, 
a researcher could run the same research process predicting dropout in a single course at 
both universities, obtain metrics for each course at each university, and then combine or 
compare the metrics across universities. To give another example, a researcher could run 
an algorithm to predict student dropout in a course from one university, and then export the 
model (subject to verification that no fields involving PII were utilized in the model) from one 
university and re- import it through a Docker container to the other university.

What MORF currently does not support is the actual linking of data between institutions 
at the level of individual students. This means, for instance, that we cannot currently track 
students between MOOCs if they take some from the University of Pennsylvania and others 
from the University of Michigan. The use cases involving tracking students between different 
universities' MOOCs has not yet necessitated developing functionality for this, but this use case 
may become more relevant in the future if student information systems or learning management 
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systems used at the K- 12 level adopt MORF. If that happens, linking data between institutions 
would enable powerful longitudinal analyses. Such a step would involve not just technical chal-
lenges (setting up secure data tunnels between different institutions' installations of MORF) 
but also challenges involving developing legal agreements for data sharing and/or linkage that 
would not violate institutions' legal responsibilities around student data privacy.

User experience and technical requirements

MORF 2.1 has been designed to reduce the technical skills and manual operations required 
by users to set up and submit jobs (compared to 2.0). It is our intention that the technical 
knowledge be limited to a standard data scientist toolset. The following technical capabilities 
will help users utilize MORF effectively:

1. Elementary knowledge of JSON and Python to use the MORF job submission API.
2. Basic to moderate knowledge of Docker to create the job set up and running instructions 

that MORF will use to run their code.
3. Intermediate knowledge of SQL and, in some cases, specific MySQL syntaxes, to execute 

SELECT operations on course data stored in MySQL databases.
4. Sufficient knowledge of a programming language to conduct analysis. Because jobs are 

run inside a Docker container, MORF is agnostic to the programming language or any 
software package that is used within the container.

By using a publicly available python library for job submission, getting set up to use MORF 
uses existing installation protocols (such as pip or anaconda) that users may already be familiar 
with and which have extensive support. Currently, MORF jobs are primarily submitted through 
the command line, but there is facility for graphical output, in the results emailed to the user. 
Users can also use IDEs and notebook environments (eg, Jupyter) to develop their jobs.

In order to help users with the setup and submission of jobs, the MORF repository con-
tains documentation and a minimum working example (MWE) that users can build upon. 
The MWE details two parts of MORF analysis, (1) designing an analysis, and (2) submitting 
the job to MORF. Once the MWE has been successfully completed, users are then able to 
design an analysis that is as simple or as complex as they choose.

RESEARCH ENABLED

Though version 2.1 has only recently launched, previous iterations of MORF (1.0 and 2.0) 
have enabled a number of research studies. These can be split broadly into two categories, 
replication and novel research. As the name suggests, MORF was initially designed to pro-
vide a data sharing platform to enable replication studies. For example, MORF was used to 
conduct a replication analysis in MOOCS, investigating 21 previously published findings on 
learner attributes (as self- reported on pre- course surveys) and course interaction, discus-
sion forum posting behaviour, and discussion forum post sophistication (Andres et al., 2017). 
The study found that nine of these findings replicated successfully when applied to an alter-
nate course environment. These findings suggest that spending more time in various course 
pages, posting more sophisticated forum posts or posting more frequently in the forums, and 
being willing to follow the pace set by the instructor made a learner more likely to complete 
the course regardless of course topic and design. Interestingly, two findings contradicted 
previously published results. A further study (Andres et al., 2018) extended this work and 
tested a subset of these findings (the findings not requiring survey data not available in 
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most courses) across 29 sessions of 17 MOOCs, finding that 12 of the 15 findings relevant 
to MOOC completion replicated when applied to this larger dataset. By collecting this data 
and sharing it through the MORF platform with its privacy protections, MORF enabled large 
scale replication and validation of past scientific work without individual data agreements.

MORF was also used for replication study in Gardner et al. (2018), which investigated 
findings from Xing et al. (2016). This work found that when applied to the broader range of 
MOOC data available in MORF, only some of Xing et al's findings replicated. In specific, find-
ings from the initial paper that stacked ensemble classifiers performed better than single- 
algorithm classifiers failed to replicate in a majority of cases, and the paper found evidence 
suggesting that another analysis around appending week- by- week features only replicated 
in 2 of 9 comparisons. This work also articulated some challenges to replication of research 
where authors both fail to provide open materials and have published limited details of their 
work making it impossible to reproduce.

The framework's large data repository and open capabilities has also allowed for novel re-
search. By leveraging the data repository researchers can also ask novel research questions 
and robustly test new hypotheses. One example of this is recent work studying how well pre-
diction models of MOOC completion generalize across countries, in terms of the cultural and 
demographic variables (Andres- Bray et al., under review). This investigation examined model 
performance across learners from 81 countries and over 1.9 million learners. Models were de-
veloped to predict student dropout in each country in the dataset, and then were tested on every 
other country in the dataset. The researchers initially hypothesized that cultural factors would 
predict a model's degree of transfer between countries (using a popular model of national- level 
culture), and the results indeed suggested that a mismatch between the training and test country 
cultural features were associated with poorer model transfer. In specific, differences in power 
distance, individualism/collectivism, and long- term/short- term orientation were predictive.

DISCUSSION AND CONCLUSIONS

In this paper, we have presented ongoing work surrounding the development and implementa-
tion of the MOOC Replication Framework (MORF). MORF is a research architecture that sup-
ports scalable, replicable research, whilst respecting the privacy of learners. This is achieved 
through a platform that allows researchers to utilize large and comprehensive database of 
MOOC learners, including PII data, without ever directly accessing the data. MORF's approach 
achieves a different balance of risks and benefits than previous approaches to sharing data 
in education. Past approaches such as the PSLC DataShop, the ASSISTments data- sharing 
framework, and one- off data sharing in competitions made deidentified data sets available 
openly. This approach removes some key information that can be useful in analyses (such as 
demographic data and the ability to link students between data sets) while still presenting some 
reidentification risk. By offering restricted access on complete data, MORF enables a broader 
range of analyses and increases security, albeit at higher technical difficulty for users.

This work presents a blueprint for ethical data sharing in education. We recognize that PII 
can be critical in education research and in ensuring algorithmic fairness. Thus, research-
ers should have the ability to analyse their work with those fields included. Doing so must 
not compromise learner privacy. As noted in section 1.1, protecting student privacy can 
sometimes be a goal in conflict with goals of OpenScience and OpenData. Our approach 
attempts to satisfy all these objectives. MORF 2.1 supports OpenScience and replicability 
by providing researchers access to run complex analyses on learner data, but protects pri-
vacy by providing only indirect analysis. MORF 2.1 also has fewer limitations than previous 
iterations of MORF, resulting in a broader range of potential research questions that the 
framework can be used to investigate.
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By leveraging cloud computing resources, this approach is able to build upon existing 
technology to create a protected database that facilitates complex data analysis. Though 
users are currently restricted in the scope of outputs that can be exported, we are actively 
working with users to adapt the framework to meet the needs of the user base. By running 
all analyses in separate instances that cannot send out messages via the internet except 
through MORF's output functionality, we are able to protect student data and only provide 
access to the results of analysis rather than raw data files. By providing this kind of indirect 
access, we facilitate complex experiments that reflect the complexities of the data, without 
violating student privacy or risking re- identification.

Student privacy is further protected through the MORF API. All users must authenticate 
with a valid API key. Users must register in order to receive a key, and receive any and all 
results to the email address provided. This ensures that all users are documented within 
MORF with valid contact details. The email service also keeps members of the MORF ad-
ministrators team informed of any errors so that they can provide support where appropriate.

This paradigm is only as powerful as the data included. We started this process with MOOCs, 
which lend themselves to this approach. For example, learning within MOOCs primarily occurs 
directly within the platform, and all learner interactions are logged in a database. By starting 
with MOOCs, we also leverage existing database design and documentation. This limits the ad-
ditional contextual knowledge required for users already familiar with data from platforms such 
as edX and Coursera. Similarly, the data is self- contained. All activities are already recorded 
within the MOOC, and there is typically no need to merge multiple data sources (eg, linking 
interaction data to teacher notes, paper tests, classroom observations, etc.). As such, importing 
additional years of data is relatively limited in the programmer time needed.

MOOCs do have some limitations in terms of their data relative to other types of learning 
activities, however. The range of actions available to learners is often limited to watching 
videos, answering short- answer activities, or posting in the forum. Specific MOOCs may 
include more complex assignments and activities (Aleven et al., 2018; O'Malley et al., 2015), 
but these features are not common across the full spectrum of MOOCs. This in turn limits 
the depth of discovery possible from the data available within this platform. There is also 
not typically an underlying student knowledge model that student performance is tagged 
with (compare to Aleven & Koedinger, 2013), making it harder to explicitly evaluate student 
learning over time or to replicate findings observed in other educational environments. The 
MORF paradigm's applicability is not limited to MOOCs, however. As noted above, MOOC 
data was a convenient first context to develop this infrastructure for. This approach could 
be expanded to include data from for- credit university courses, or even K- 12 or professional 
training courses. The paradigm could even be extended further to consider data from intelli-
gent tutoring systems, learning management systems, courseware simulations, and games. 
As we consider new approaches to ethical data sharing in education and supporting the 
goals of open science, we must continue to innovate on the notions exemplified in MORF. 
Our methodology allows researchers full access to data, while controlling the type of output 
they receive. We intend to continue to develop MORF to increase its capability and useful-
ness for the research questions of MORFs userbase.

Critical challenges that remain

Technical challenges

A major challenge we are currently addressing is how to allow MORF users to access 
clickstream data efficiently. Clickstream data that is generated in MOOC platforms such as 
Coursera is usually in the tens of Gigabytes. Loading such data into memory and running 
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operations such as parsing imply high time and space computational complexity. Depending 
on the data users seek to extract, it is sometimes practical to import clickstream data into a 
SQL database. However, some traditional operations are not suitable to run on clickstream 
data that has millions of rows. As is often the case when dealing with very large data sets, 
approaches such as MapReduce (Dean & Ghemawat, 2008) may be the most appropriate. 
We are currently exploring how to make use of this type of data processing models to make 
working with clickstream data more efficient for users and less costly for the platform.

A further technical challenge that we are working to resolve is in supporting users as 
they debug their code. Though we provide sample data for users to test their extraction and 
analysis programs, this sample data is not exhaustive in order to protect student privacy. As 
such, users may likely encounter errors when applying to the broader dataset resulting in a 
failed job. Currently only MORF technical team members get system- level error messages, 
and if the error requires code changes, the MORF team must work with the researcher. This 
approach does not scale to researchers debugging code individually. We are currently work-
ing to design a more extensive infrastructure for providing debugging detail without risking 
PII extraction.

Alongside these technical challenges, we intend to conduct more formal usability and 
security testing. This testing will take two forms. First, formal usability testing, working with 
users to evaluate how easy it is to use MORF to conduct analyses, in order to make it easier 
to use effectively. In this work, we will take authentic research tasks and investigate whether 
it is feasible for participants to correctly and efficiently conduct those analyses. As part 
of this evaluation, we will compare users conducting analyses using MORF to conducting 
those same analyses with full data access (but still using Docker containers and other rep-
licability best practices built into the environment). Such testing will provide a baseline for 
understanding the additional usability and time cost involved in using MORF, and we have 
already observed that typical exploratory data analysis is difficult to do if the user has no 
sample data. We anticipate that this testing will also involve user surveys and interviews to 
gain additional feedback on the process of using MORF. Second, we will conduct further 
security testing to ensure that users cannot extract any PII data, bringing in both security ex-
perts and regular users and asking them to find ways to extract PII when using MORF, with 
our regular security processes in place. This will go beyond the extensive security reviews 
we have already conducted with IT professionals; we will ask these users to actively attempt 
to defeat the platform's security. While we are confident in our framework, rigorous testing 
(and fixing any issues identified) will help further increase our confidence in the platform's 
security and reassure data partners.

Scientific and ethical challenges

A secondary area of critical challenge for enhancing MORF going forward is the need 
to support a broader span of the scientific process. In MORF version 2.1, any aggregate 
output is now possible (compared to limited functionality in 2.0); however, often research-
ers want to look at the content of specific data points to verify algorithm functioning or 
iterate an algorithm. For example, a researcher developing a linguistic algorithm (Crossley 
et al., 2017) may want to look at specific text strings to see how they are classified. Or a 
researcher may want to look at the details of specific students being poorly classified by 
a dropout prediction algorithm (Gardner et al., 2018), in order to support a next pass on 
iterative feature engineering. In version 2.1, this is not possible. Figuring out a better way 
to enable researchers to view some data while still maintaining full privacy will be a key 
challenge, not just for the MORF infrastructure, but for privacy- protecting research data 
infrastructures in general.
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Eventually, it may be desirable to develop functionality for researchers without a back-
ground in data science. Currently, researchers submit jobs via the command line (although 
they can use IDEs and notebooks to create their job). Extending MORF through a graphical 
user interface like Tigris— or perhaps integrating an existing graphical data science platform 
such as RapidMiner, Orange or Knime— could make MORF accessible to a much broader 
audience of researchers.

As we increase the scope of MORF and the possible research opportunities, there are 
increasing risks of introducing vulnerabilities to our paradigm. For instance, it may eventu-
ally become important to conduct analyses that involve linking multiple institutions' data to-
gether at the level of individual students. Creating data tunnels to enable this will create new 
challenges and risks to privacy that will demand careful work to ensure the maintenance of 
student privacy and institutions' legal obligations.

For the successful development of the MORF paradigm, we must be constantly evaluat-
ing the risks of data leak or data identification. In order to protect student privacy, there must 
be ongoing evaluation as functionality is added. Similarly, data encodings or structures may 
change as we add additional data to the repository, adding new risks. This again requires 
continual review and testing.

Future work

MORF is still an adapting platform, with development ongoing to enable more detailed re-
search analysis. In addition to addressing some of the challenges outlined above, we will 
continue to add additional data to the MORF repository from existing partnerships, and 
hope to forge new partnerships moving forward, both with institutions and researchers. We 
hope that this expansion can also include data collected by a diverse set of institutions who 
offer learning in unique contexts. Currently, all the data in the primary installation of MORF 
2.1 is from the University of Pennsylvania (with the University of Michigan planning an up-
grade from 2.0 to 2.1), and all of the content is taught in English. This U.S./English language 
focus may limit potential applications and research questions— even though our learners 
are worldwide, MOOC platforms and courses differ in design and content across countries. 
As MORF grows and the opportunity for new installations arises, it is our hope that this 
paradigm will be adopted at other universities. We welcome new collaborations, and work 
is ongoing to provide additional support and resources for research partners looking to use 
MORF and to provide increased functionality for researchers whilst preserving student and 
instructor privacy.

Another avenue of future work is to apply our paradigm to other data sources, such as 
educational games, and online learning environments for K- 12 and undergraduates. Multiple 
areas of education scholarship could benefit from increased access to data, but any such 
access must protect student privacy as MORF does. It is our hope that this framework may 
be applied to new domains within education. Though this will present challenges of how to 
unify data across platforms, it will provide increased opportunity and accessibility to educa-
tion research.
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