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Summary

The goal in personalized medicine is to individualize treatment using patient char-
acteristics and improve health outcomes. Selection of optimal dose must balance the
effect of dose on both treatment efficacy and toxicity outcomes. We consider a set-
ting with one binary efficacy and and one binary toxicity outcome. The goal is to
find the optimal dose for each patient using clinical features and biomarkers from
available dataset. We propose to use flexible machine learning methods such as ran-
dom forest and Gaussian process models to build models for efficacy and toxicity
depending on dose and biomarkers. A copula is used to model the joint distribu-
tion of the two outcomes and the estimates are constrained to have non-decreasing
dose-efficacy and dose-toxicity relationships. Numerical utilities are elicited from
clinicians for each potential bivariate outcome. For each patient, the optimal dose
is chosen to maximize the posterior mean of the utility function. We also propose
alternative approaches to optimal dose selection by adding additional toxicity based
constraints and an approach taking into account the uncertainty in the estimation
of the utility function. The proposed methods are evaluated in a simulation study
to compare expected utility outcomes under various estimated optimal dose rules.
Gaussian process models tended to have better performance than Random Forest.
Enforcing monotonicity during modeling provided small benefits. Whether and how,
correlation between efficacy and toxicity, was modeled, had little effect on perfor-
mance. The proposedmethods are illustratedwith a study of patients with liver cancer
treated with stereotactic body radiation therapy (SBRT).

KEYWORDS:
Gaussian Process, Random forest, Utility matrix

1 INTRODUCTION

Precision medicine is an approach for the treatment of a disease that takes into account individual variability. In many situations,
the clinical decision is whether to give a particular treatment or a standard treatment to the patient, and the statistical goal is to
identify the subgroup of patients likely to derive benefit from the treatment compared to standard or population based treatment.
In other settings, the treatment choice is not binary and in particular consists of choosing the value of a continuous variable,
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such as the dose of radiation or a drug. The goal in this setting is to find the optimal dose for each patient to maximize the benefit
of treatment. With the development of biomarkers, the goal can be achieved by evaluating how the biomarkers moderate the
treatment effect on the outcome or outcomes. In statistical terms moderation of the treatment effect can be formulated as the
interaction between the biomarkers and dose in a model.
In this paper we consider the setting where there is an existing dataset from previously treated patients that contains treatment

dose, observed efficacy and toxicity outcomes and covariates possibly including biomarkers. The available dataset could be from
several clinical trials, cohort study, or real-worldevidence studies for which both the sample size is relatively large and there is
variation in the dose. The statistical goal is to analyze the data to learn an individualized dosing rule giving an optimal dose as
a function of patient level covariates.
Supervised learning in the form of regression (for continuous outputs) and classification (for discrete outputs) is an important

constituent of statistics and machine learning. Widely used parametric models such as linear regression and logistic regression
are simple, but can suffer from model mis-specification. Concerns about mis-specification can be reduced by including extra
features, such as interactions and splines, or there are many non-parametric methods that can be used instead. Because of their
greater flexibility, there is less concern about model mis-specification, but also increased potential for overfitting. Decision
Trees such as Classification And Regression Trees (CART) and random forest, built upon CART, are easy to understand and
have been used in determining the optimal treatment.1 Their tree structure handles the interaction well but also increases the
potential for overfitting. Methods based on kernel machines are also flexible and have good performance with high-dimensional
data. Examples of these are Support Vector Machines as used in the outcome weighted learning (OWL)2 method, and Gaussian
process.3 Modern Bayesian semiparametric and non-parametric models also provide posterior uncertainty quantification which
can be used to provide uncertainty estimates of patient specific treatment decisions. An example of this is using Bayesian
Additive Regression Trees (BART) to provide individual treatment rules (ITR). This approach provides the uncertainty of the
outcome associated with the optimal ITR.4
In early phase studies in oncology, it is typical to describe the patient outcome in terms of both toxicity (T) such as adverse

events and efficacy (E) such as overall response or progression free during specified timeframe. The benefit for each patient can be
defined based on combining these two binary outcomes. By maximizing the potential benefit for each patient, the individualized
optimal treatment or dose will be selected. Several strategies have been proposed for identifying an optimal treatment or dose
based on the trade-off between efficacy and toxicity. To achieve maximum efficacy with tolerable toxicity, a utility function
can be used as a weighted difference of probabilities of efficacy and toxicity.5 More generally, a utility matrix is elicited from
clinicians by assigning numerical utilities to each possible efficacy and toxicity outcome pair, which allows different preferences
for different outcomes and then the utility function, defined as the expected value of the utility, at different dose levels are
compared.6 Contours characterizing the trade-off between E and T is an alternative and flexible approach. For this, the set of
pairs for the probability of E and the probability of T on the same contour are equally desirable and the dose that maximizes the
desirability is selected.7
In oncology and other disease settings, it is frequently reasonable to assume that increasing dose leads to increased toxicity

and efficacy. However, the increase may not be strictly monotone over the whole range of possible doses. For example, FDA
guidance on cellular and gene therapy products mentions that indicators of potential benefit appear to plateau above a certain
dose.8 Thus, we will consider constraining the estimated dose-efficacy and dose-toxicity relationship to be non-decreasing for
all patients. The effect of this should be to reduce the estimation noise, improve efficiency and hence yield more reliable results.
In previous work we built separate models for E and T and did not explicitly consider correlation between E and T.5 In this

paper we relax the assumption of independence and use flexible machine learning methods to build the models for E and T
using dose and biomarkers, which differs from the the previously developed parametric models. Furthermore, in this paper,
we define optimal dose as the dose value that maximizes the expected utility where utility values are specified in matrix form
for the 4 possible bivariate binary outcomes instead of utility functions, which are equivalent to restricted utility matrices with
only a single degree of freedom (i.e. one value to specify). In section 2, we consider alternative uses of the utility function to
select an optimal dose, including the addition of constraints with clinical motivation as well as the uncertainty of the utility
function. In section 3, we propose the use of random forest and Gaussian process models to build marginal models and link them
with a Gaussian copula. We also build models on joint probabilities and use pool adjacent violators algorithm (PAVA) isotonic
transformation to give a non-decreasing dose-efficacy and dose-toxicity relationship. A simulation study to compare different
model building and optimal dose finding methods under several scenarios is summarized in Section 4. In Section 5, we illustrate
the proposed methods in a dataset of patients with liver cancer treated with stereotactic body radiation therapy (SBRT). We
close with discussion in Section 6.
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2 OPTIMAL DOSE SELECTION

2.1 Utility function and matrix
We assume the available data, i = (xi, di, Ei, Ti), i = 1, ...N , comprises N independent and identically distributed copies of
(x, d, E, T ), where x is a Q-dimensional vector of subject-specific features, d ∈ [−1, 1] denotes continuous dose of treatment,
E is the binary efficacy outcome, and T is the binary toxicity outcome. Denote pE(d, x) = Pr(E = 1|d, x) and pT (d, x) =
Pr(T = 1|d, x) as the marginal probabilities for the efficacy and toxicity outcomes. One way to combine the efficacy and
toxicity outcomes is through a utility function such as U (p(d, x), �) = pE(d, x) − �pT (d, x) with tradeoff parameter � > 0,
either pre-specified by physicians or calculated as a tuning parameter to meet a pre-specified level of toxicity in the population.5
Alternatively, a unique utility value can also be specified for each possible bi-variate patient outcome (E, T ) in a utility matrix,6
as shown in Table 1. We assign U10 the highest value to the best possible outcome (efficacy and no toxicity), and U01 the lowest
value to the worse possible outcome (toxicity and no efficacy). U00 and U11 have values in between and can be larger or smaller
or equal to each other. Denote the joint probability of E and T given d and x as pET (d, x) for E, T in {0,1}. We define a utility
function as the expectation of this utility matrix with respect to the joint probability of E and T at dose d and covariates x. The
goal is then to maximize the utility function, or the expectation of the utility matrix for fixed x at a grid of possible dose values.

TABLE 1 Utility matrix

E=0 E=1
T=0 U00 U10
T=1 U01 U11

The utility function above, U (p(d, x), �) = pE(d, x)−�pT (d, x), corresponds to one with (U00, U10, U01, U11) = (0, 1,−�, 1−
�). Without loss of generality, we can assign the highest utility as 1 and lowest utility as 0.9 Then we consider the utility matrix
with 0 < !1 < 1, 0 < !2 < 1 that are pre-specified, as shown in Table 2.

TABLE 2 utility matrix with two parameters

E=0 E=1
T=0 !1 1
T=1 0 !2

We define the Utility function Ū (p(d, x),!) as the expectation of the utility matrix in Table 2,

Ū (p(d, x),!) = !1p00(d, x) + p10(d, x) + !2p11(d, x)
= !1 + (1 − !1)pE(d, x) − !1pT (d, x) + (!1 + !2 − 1)p11(d, x)

(1)

When !1 +!2 = 1, the gain in utility when moving from E = 0 to E = 1 is the same for both levels of T (1 −!1 = !2), and
Ū (p(d, x) = !1 + (1 −!1)pE(d, x) −!1pT (d, x), which yields equivalent solution to U (p(d, x), �) = pE(d, x) − �pT (d, x). For
this special case the models for E & T can be built separately,5 and no assumption concerning independence or dependence of
E and T is needed. However, when !1 + !2 ≠ 1, this is not the case and the utility function does depend on the correlation
between efficacy and toxicity.
For a subject with covariates x, we can directly calculate the optimal dose when the true probabilities p(d, x) are known, by

maximizing the utility function across possible dose values. That is

dopt(x) = argmax
d

Ū (p(d, x),!) (2)
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2.2 Modified utility functions
In many settings including oncology, both efficacy and toxicity increase with increasing dose and clinicians may be unwilling
to give treatments associated with high rates of toxicity, even if they are also highly efficacious. To address this concern in dose
selection, we can modify the utility function by increasing the penalty on higher values of pT (d, x). As an illustration we will
modify the utility function such that if pT (d, x) ≥ 0.3, we subtract 2!1pT (d, x) from the utility function, which corresponds to
a tripling of the weight for toxicity higher than 0.3 and gives a utility function of

Ū1(p(d, x),!) = Ū (p(d, x),!) − 2!1pT (d, x)I
[

pT (d, x) ≥ 0.3
]

. (3)

In some settings, it may be desirable to limit the between patient variance in selected optimal dose and/or to avoid extreme
doses. This can be accommodated by adding penalty for extreme doses to the utility function. Let dfix be a population fixed dose
that could be pre-specified as a standard value, or estimated by fitting a dose-only model without covariates x in it. Then the
modified utility function is

Ū2(p(d, x),!) = Ū (p(d, x),!) − �(d − dfix)2 (4)
where � is the penalty parameter and dfix is the population fixed dose.
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FIGURE 1 Comparison of utility function contours. (a) Ū with !1 = !2 = 0.5, (b) Ū1 with !1 = !2 = 0.5, (c) Ū2 with
!1 = !2 = 0.5, � = 0.1, (d) Ū with !1 = 0.3, !2 = 0.5 and independent E and T, (e) Ū with !1 = 0.5, !2 = 0.3 and
independent E and T, (f) Ū with !1 = 0.5, !2 = 0.3 and cor(E,T)=0.8, (g) Ū with !1 = 0.5, !2 = 0.3 and cor(E,T)=-0.8.

Figure 1 shows the trade-off contours over the two-dimensional space with different utility functions. The pairs of (pE , pT )
on each contour are considered to be equally desirable (i.e. have the same utility function value), as denoted by the solid lines.
For a given patient with covariates x, the pE(d, x) and pE(d, x) among the possible dose range is shown as a dashed line, and
the dose that maximize the utility function is selected, as shown by the solid dot. When !1 + !2 = 1, the utility function is a
weighted difference of pE and pT and results in straight line contours. The other utility functions have curved or piecewise linear
contours. For Ū1, the utility function decreases rapidly when pT (d, x) is above the pre-specified toxicity limit of 0.3. Ū2 has l2-
penalty for dose and when the dose is too high, the contours could have negative slopes. When !1 + !2 ≠ 1, the four plots (d)
to (g) indicate the influence of different !1, !2 values and the correlations of E and T. The lines are curved with p11(d, x), and
the joint distribution of E and T plays a role. These plots shows different choices of optimal dose as the utility function changes.
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For (e) to (g), the correlations are 0, 0.8 and -0.8 with the same set of !1, !2 and marginal probabilities for a given patient, the
utilities differs a lot, but the optimal doses are similar.

2.3 Posterior distribution of utility function
Given the dataN , the point estimate of the probabilities for the possible doses, denoted by p̂(d, x), can be plugged into equation
(2). Then the individual optimal dose for subject with covariates x is the dose that maximizes the weighted sum of the utility
values using the joint probability estimates. When using Bayesian estimation, we will get the posterior distribution of the joint
probabilities p(d, x) for the possible doses, and thus the posterior distribution of Ū (p(d, x),!). The optimal dose for subject
with covariates x is selected as the dose that maximize the posterior mean of Ū (p(d, x),!) given the data N .

dopt(x) = argmax
d

E(Ū (p(d, x),!)|N ) (5)

To assess the uncertainty of the estimation, we can consider the posterior distribution of the utility function. Then an alternative
way to define the optimal dose for subject with covariates x is as the dose that maximizes the posterior probability that the
utility function is higher than the utility function at some fixed dose which is the same for everyone. With this approach, doses
associated with small increases in expected utility will not be selected if they also greatly increase the variance of the expected
utility.

dopt(x) = argmax
d

P (Ū (p(d, x),!) > Ū (p(dfix, x),!)|N ) (6)

3 MODEL BUILDING

There are various approaches to model the joint distribution of E and T of which we consider three: model the marginal dis-
tributions for E and T and then assume independence, or use a copula to link them as the joint distribution, or directly model
the 4 level categorical outcome (E, T ) on d and x. Instead of using parametric models, we will consider using non-parametric
approaches (e.g. random forest) and kernel machines (e.g. Gaussian process) to model the joint distribution of E and T .

3.1 Random forest
Random forest (RF) for classification constructs multiple trees using bootstrapped samples from the original data. The subject
left out in the construction of the k-th tree will go down the k-th tree to get a classification, which is the out-of-bag (oob)
classification. Then the proportion of classifications of each type across all the oob classifications for this subject will be used to
calculate the predicted probability. First, we use RF to build models for E and T separately to obtain estimates of p̂E(d, x) and
p̂T (d, x) for each subject. After obtaining estimated marginal probabilities, if we assume conditional independence of efficacy
and toxicity, then the joint distribution of (E, T ) is given by the product of the marginals. Alternatively, we can use a copula
to link the marginals as described in the appendix A. We can plug the p̂E(d, x) and p̂T (d, x) for each subject into the copula
function and maximize the loglikelihood across the dataset N to estimate �̂, the correlation parameter in the copula. Rborist
by Seligman was used to implement the random forest due to its computational efficiency.10
In random forest, the predicted probabilities of E or T may decrease over some range of dose for some patients. To prevent

this, we can apply constraints during the estimation of the random forest. Specifically, whenever a split on dose is selected, we
require the left node (lower dose) to be associated with lower probabilities of E or T than the right node (larger dose).10
Instead of modeling marginals and linking them to obtain the joint distribution, we can model the joint probabilities directly.

When doing this using methods such as random forests, we can’t add monotonicity directly in the model since the desired
monotonicity is in terms of each marginal and not in the four joint probabilities p00, p10, p01, p11. Thus in this setting we use a
post estimation procedure in which we adjust p̂00, p̂10, p̂01, p̂11 to obtain p̂∗00, p̂

∗
10, p̂

∗
01, p̂

∗
11 so that the corresponding pE and pT

are monotone in d for all x. Specifically, we use the Pool-Adjacent-Violators Algorithm (PAVA) isotonic transformation for
the marginal distribution,11 then we will find a set (p̂∗00, p̂

∗
10, p̂

∗
01, p̂

∗
11 ) which is close to (p̂00, p̂10, p̂01, p̂11) and also satisfies the

monotonicity constraint.
For every patient, using the model of categorical outcomes built on the dataset, we have predictions of (p̂00, p̂10, p̂01, p̂11) for

all the dose levels and thus p̂E and p̂T . Then we apply PAVA on p̂E and p̂T to get p̂∗E and p̂∗T which is non-decreasing in dose
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across the feasible dose range. At each dose, the joint probability p̂∗11 has a range of [max(0, p̂
∗
E + p̂

∗
T − 1), min(p̂

∗
E , p̂

∗
T )]. One

way to perform the adjustment is to minimize |p̂∗11 − p̂11| within the allowed range to get p̂
∗
11, then p̂

∗
10, p̂

∗
01, p̂

∗
00 can be calculated

sequentially from the known p̂∗11, p̂
∗
E , p̂

∗
T . Another way is to minimize |p̂∗11 − p̂11|+ |p̂∗10 − p̂10|+ |p̂∗01 − p̂01|+ |p̂∗00 − p̂00|, which

involves all the joint probabilities.

3.2 Gaussian process
As a second approach to estimating the marginal distributions, we use a Gaussian process (GP) approach. Specifically, we model
the outcome y as a distorted version of the process f , where f is a non-linear latent function which has a Gaussian distribution
prior with mean 0 and covariance functions K . For example, a continuous outcome might use a normal distribution around f ,
while a binary outcome would use a logistic link or probit link with f . With the Gaussian prior

f ∼ GP (0,K) = p(f ),

and likelihood

y ∼
n
∏

i=1
p(yi|fi),

the Gaussian posterior of p(f |y) is given by

p(f |y) ∝
n
∏

i=1
p(yi|fi)p(f ) =

n
∏

i=1
p(yi|fi)N(0,K).

whereK is a kernel function that represents the distance between subjects in the covariate space denoted by z = (d, x). Multiple
kernel functions could be used and we use a Gaussian kernel with each element in K defined by

k(zi, zj) = �2exp(−
1
2

Q+1
∑

q=1
�2q(z

(q)
i − z(q)j )

2)

for subjects i and j = 1, ..., N and dimension q = 1, ..., Q + 1. �2 is called the signal variance or the magnitude, and �q’s
are the characteristic length-scales of the input-space for each dimension of z. This covariance function implements automatic
relevance determination (ARD),12 since the length-scale �q determines how relevant an input is: if the length-scale is small, the
covariance will become almost independent of that input, effectively removing it from the inference. The ARD can be used in
selection of the dimension z related to the outcome, especially with high dimension data or sparse data. We assign priors to �, �q
and estimate the posterior distribution of them from the data.
In our setting, we assume fE ∼ N(0,KE),f T ∼ N(0,KT ) where KE ,KT are different Gaussian kernel functions for E, T .

For each subject, the marginal probabilities are,

Pr(E = 0) = 1 − pE = Φ(fE + a),Pr(T = 0) = 1 − pT = Φ(fT + b),

here we use a probit link to connect f to the outcome. Because f are centered around 0, intercepts a, b are used for the unbalanced
outcomes. Then the joint probability can be obtained by the Gaussian copula

p00(d, x) = Φ2[Φ−1(1 − pE),Φ−1(1 − pT )|�] = Φ2[fE + a, fT + b|�]

Alternatively, when assume independence of efficacy and toxicity,

p00(d, x) = Φ(fE + a)Φ(fT + b)

Then the joint probabilities are
p10(d, x) = Φ(fT + b) − p00(d, x)
p01(d, x) = Φ(fE + b) − p00(d, x)

and
p11(d, x) = p00(d, x) − Φ(fE + b) − Φ(fT + b) + 1

, respectively.
The outcome (E, T ) for each subject followsMultinomial(p00, p10, p01, p11), then the posterior is given by

p(fE , f T |E, T ) ∝
n
∏

i=1
p[Ei=0,Ti=0]00,i p[Ei=1,Ti=0]10,i p[Ei=0,Ti=1]01,i p[Ei=1,Ti=1]11,i N(fE|0,KE)N(f T |0,KT )
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.
We can use a Bayesian approach to estimate (�E , �qE , �T , �qT , a, b, �; q = 1, ..., Q + 1) jointly with some prior distribution.

rstan was used to implement the Bayesian analysis of Gaussian process since it is more efficient and explores complicated
posterior distributions better compared to rjags.13
For Gaussian process, there are no methods to ensure monotonicity of predictions with respect to dose across the entire

covariate space. Rather, virtual data points can be included and the derivative of the Gaussian process (with respect to dose) at
those points can be encouraged to be non-negative during estimation.14

4 SIMULATION STUDIES

4.1 Settings and scenarios
To evaluate the performance of the different methods, we conducted a simulation study. We consider 11 scenarios by varying
the true parameter coefficients, the functional form (e.g. exponential or binary or linear), the number of biomarkers, and the
sample size. For each scenario and each method of analysis and definition of optimal dose, we fit the models using the training
dataset, and evaluated their performance under the true models which are known only in this simulation setting.
In scenario 1, we generatedN=200 observations in a training dataset by simulating 5 i.i.d covariates, x(1), ...x(5) from a standard

normal distribution, d from Uniform(-1,1), and binary outcomes E and T from the regression model described below with a
copula to link them. The marginal probabilities are defined by models with covariates x, dose d, and dose-covariate interactions
dx

pE(d, x) = Φ(�0,E + (x, d, dx)�E), pT (d, x) = Φ(�0,T + (x, d, dx)�T )
and � = 0.8 was used in the Gaussian copula to link the two marginal distributions. In scenario 1, (�0,E , �E) =
(0, 0.49,−1.11, 0.77, 1.51, 0, 1, 0.23, 0.61, 0, 1.69, 0.5), (�0,T , �T ) = (−1.386, 0, 1.14,−0.33, 0, 0, 1, 0.03, 0.6, 0,−0.42, 1.04). In
generating x’s, we also applied the constraints that x must satisfy 1 + 0.23x1 + 0.61x2 + 1.69x4 + 0.5x5 > 0 and 1 + 0.03x1 +
0.6x2 − 0.42x4 + 1.04x5 > 0 to reflect the non-decreasing dose-efficacy and dose-toxicity curves. This excludes up to 40% of
initially simulated observations.
The other scenarios considered are shown below in Table 3 . In all scenarios the true model coefficients were chosen so that

the proportion of observations with E = 1 was about 50 − 70% and with T = 1 was about 10 − 30%.

TABLE 3 List of scenarios

S0 The true E & T model has only d without covariates x
S1 The true E & T models have x, d, dx
S2 The true E & T models have x, d, no dose-covariate interactions
S3 S1 with x1, x2, x3 correlated with coefficient 0.6
S4 S1 with 15 noise covariates x6, ..., x20 added to the data
S5 S1 with 195 noise covariates x6, ..., x200 added to the data
S6 S1 with sample size = 400
S7 S1 with binary covariates x
S8 The true E & T model has x, d, dx, as well as covariate interactions xx
S9 The true models have exp(x4) as the covariate
S10 The true models have I(x4 > 0) as the covariate

The simulation consist of the following steps iterated 1000 times. 1) Generate a training dataset of the specified size (N=200
or 400). 2) Fit models for efficacy and toxicity on the training data. 3) Generate a validation dataset following the same approach
as for the training data. 4) Calculate the estimated optimal dose for each patient in the validation data using the models estimated
from the training data and a particular method for selecting optimal dose based on the models. Also calculate the true efficacy
and toxicity probabilities for each patient, conditional on the estimated optimal dose, using the true models. 5) Calculate the
average and standard deviation of the estimated optimal dose values, average probability of efficacy, average probability of
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toxicity, average value of the true utility function, and average improvement in utility defined as the fraction of the difference
between the expectation of the utility from the true model and the expectation of the utility from using a fixed dose. The metrics
in step (5) are then averaged over the 1000 simulations to provide a comparison of the various methods for model building and
optimal dose selection across various scenarios.
We consider several variations of random forest modeling. To allow for correlated efficacy and toxicity outcomes we take

three approaches consisting of using a copula method to link the marginal models (M2) , assuming conditional independence
(M3) and also directly modeling the 4 level bi-variate outcome (M8). We also implement a version of random forest in which the
dose effects on efficacy and toxicity are constrained to be non-negative for all patients and compare these results to unconstrained
estimation (M4, M5). When using random forest to model the 4 level categorical outcome, we also assess the impact of a
post-estimation use of a PAVA algorithm to enforce monotonicity (M9).
For the Gaussian process, we compared different priors for �q including inverse gamma prior, Laplace prior and horseshoe

prior. They have similar performance with low dimension of covariates, but the horseshoe prior is better with high dimension
as it allows variable selection. Specifically, �q ∼ N(0, �2q�

2) for q = 1, ..., Q, where �q ∼ caucℎy(0, 1), � ∼ caucℎy(0, 1). The
global parameter � pulls all the weights globally towards zero, while the thick half-Cauchy tails for the local scale �q allow some
of the weights to escape the shrinkage. With large �, all �’s have diffuse priors with very little shrinkage toward 0, but small �
will shrink all the �’s to 0. All the other parameters have a standard normal distribution as priors. For Gaussian process, we tried
both using copula and assuming independence to link the two marginals. The results were very similar so we only include those
corresponding to the independence assumption (M10, M11). Although we did investigate imposing monotonicity constraints in
Gaussian process modeling through the use of virtual data points, we did not include these methods in our simulation because
they are time consuming and in limited simulations appeared to have little effect on the results.
For comparison, a multinomial logistic regression with 4-level categorical outcome is built on dose only (M12), and the

selected optimal dose is adopted as dfix in M7 and M10. All the methods considered are summarized in Table 4.
The utility matrix plays an important role in optimal dose selection so for each scenario, we consider three utility matrices.

The first places higher utility on the outcome of both efficacy and toxicity compared to neither efficacy nor toxicity (!1 =
0.3, !2 = 0.5). The corresponding utility function is Ū (p(d, x),!) = 0.3+0.7pE(d, x) − 0.3pT (d, x) − 0.2p11(d, x). The second
utility matrix we consider, weights these two possible outcomes equally (!1 = !2 = 0.5). In this setting the correlation plays
no role as it cancels out of the utility function, as Ū (p(d, x),!) = 0.5 + 0.5pE(d, x) − 0.5pT (d, x). In the third utility matrix
we consider, the outcome of no efficacy and no toxicity is preferred to the outcome of both (!1 = 0.5, !2 = 0.3). The utility
function is Ū (p(d, x),!) = 0.5 + 0.5pE(d, x) − 0.5pT (d, x) − 0.2p11(d, x).

TABLE 4 List of methods. RF denotes random forest, GP denotes Gaussian process

Model building Optimal dose selection
M1 True model Ū (p(d, x),!)
M2 RF on marginals with copula Ū (p̂(d, x),!)
M3 RF on marginals with independence Ū (p̂(d, x),!)
M4 RF on marginals monotone on d with copula Ū (p̂(d, x),!)
M5 RF on marginals monotone on d with independence Ū (p̂(d, x),!)
M6 RF on marginals monotone on d with copula Ū (p̂(d, x),!) − 2!1p̂T (d, x)I

[

p̂T (d, x) ≥ 0.3
]

M7 RF on marginals monotone on d with copula Ū (p̂(d, x),!) − �(d − dfix)2

M8 RF on categorical outcome Ū (p̂(d, x),!)
M9 RF on categorical outcome and PAVA to minimize |p̂∗11 − p̂11| Ū (p̂∗(d, x),!)
M10 GP with independence assumption P (Ū (p(d, x),!) > Ū (p(dfix, x),!)|N )
M11 GP with independence assumption E(Ū (p(d, x),!)|N )
M12 Fixed dosing: multinomial logistic regression on dose Ū (p̂(d),!)
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4.2 Results
Figure 2 shows the scatter plot of the estimated optimal doses for one representative dataset with n = 200 under scenario 1
with !1 = 0.3, !2 = 0.5. The size of the point corresponds to the number of patients. Under the true model (M1), the optimal
dose would be the minimum or maximum possible value for many patients. Under the fixed dosing model (M12) which ignores
covariates, the estimated fixed optimal dose is 0.63 for all the patients in this dataset and is plugged into M7 and M10. The
optimal doses selected by different methods are compared with the true optimal dose, as denoted by the diagonal line. For the
random forest models on the marginals (M2, M3, M4, M5), the optimal doses for many patients are near the optimal fixed dose.
There is little difference between methods using copulas to allow for correlation and assuming independence (M2 vs M3, M4
vs M5), suggesting that use of the copula may affect the estimation of utilities as shown in Fig 1, but does not have a large
impact on the distribution of selected doses. As expected, method M6 tends to select lower doses than method M4 due to the
individual toxicity limit in the utility function. For method M7, the majority of the patients have optimal doses around the fixed
dose because of the dose penalty in the utility function. For the random forest with categorical outcomes (M8, M9), adding
PAVA to the predicted probabilities affects the selection of optimal dose. For method M10 which uses Gaussian process and
maximizes the probability of utility higher than the fixed dose, the majority of the patients have optimal doses around the fixed
dose. For method M11 which uses Gaussian process and maximizes the posterior mean of the utility function, the distribution
of the optimal dose is most similar to the distribution from the true model.
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FIGURE 2Distribution of optimal dose of n=200 patients for different methods under scenario 1 with utility 1 ( !1 = 0.3, !2 =
0.5 ). The size of the point corresponds to the number of patients.

Table 5 provides mean values for dose, efficacy, and toxicity across methods. It also provides the average (across simulated
datasets) standard deviation of dose and mean values (across simulated datasets) for the average utility (across patients within
dataset) under scenario 1. To compare the various methods on a common scale, we calculate the percent of possible increase in
expected utility relative to fixed dose, denoted by % IP Ū . Thus by definition the fixed dose approach has 0 percent improvement
and the true models have 100 percent improvement with other methods generally falling in between these values. When using
utility 1, !1 < !2, so on average the optimal dose is higher and as a result, average efficacy and average toxicity are both higher.
Under utility 3, !1 > !2, the average optimal dose is lower, and average Efficacy and average Toxicity are lower. Under this
scenario, within each utility function, use of the true models results in the highest average expected utility, and the fixed dose
results in the lowest average of expected utility. The Gaussian process methods (M10, M11) have the highest mean utility values
with the other methods having generally similar performance varying somewhat across utility matrices.
In practice, it is possible that none of the considered covariates (e.g. biomarker panel) have any true association with the

patient outcomes. To mimic this setting, we also consider a null scenario (S0) in which the true E and T models have only d
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TABLE 5 Comparison of all methods under scenario 1 with utility 1,2,3 ∗

True RF monotone RF RF & PAVA GP FD
Method M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

U1

mean dose 0.221 0.206 0.219 0.233 0.245 -0.017 0.379 0.266 0.28 0.337 0.303 0.464
sd dose 0.664 0.479 0.473 0.446 0.439 0.478 0.246 0.522 0.513 0.499 0.63 0
mean E 0.703 0.623 0.625 0.628 0.629 0.532 0.646 0.649 0.651 0.674 0.687 0.658
mean T 0.275 0.294 0.299 0.299 0.304 0.193 0.361 0.322 0.328 0.327 0.325 0.415
mean Ū 66.1 60.8 60.8 61 60.9 59.2 60 61.1 61 62.3 63.1 58.7
% IP Ū 100 27.8 27.0 30.0 28.6 5.3 17.0 32.0 30.8 48.4 59.5 0

U2

mean dose 0.017 0.027 0.027 0.03 0.029 -0.117 0.097 -0.009 -0.021 0.033 -0.001 0.142
sd dose 0.667 0.495 0.495 0.469 0.469 0.483 0.255 0.561 0.539 0.476 0.662 0
mean E 0.632 0.571 0.571 0.571 0.57 0.505 0.571 0.568 0.564 0.587 0.6 0.567
mean T 0.191 0.223 0.222 0.218 0.218 0.161 0.253 0.213 0.211 0.222 0.208 0.301
mean Ū 72.1 67.4 67.4 67.6 67.6 67.2 65.9 67.7 67.6 68.3 69.6 63.3
% IP Ū 100 46.3 46.3 48.4 48.4 43.3 29.4 49.7 48.6 56.2 70.7 0

U3

mean dose -0.162 -0.095 -0.084 -0.1 -0.086 -0.176 -0.072 -0.178 -0.174 -0.167 -0.215 -0.067
sd dose 0.646 0.478 0.476 0.455 0.451 0.468 0.253 0.532 0.521 0.389 0.601 0
mean E 0.556 0.526 0.529 0.524 0.526 0.489 0.516 0.499 0.499 0.508 0.516 0.5
mean T 0.124 0.179 0.184 0.173 0.178 0.146 0.194 0.155 0.157 0.162 0.136 0.229
mean Ū 69.6 65.1 65 65.4 65.3 65.5 64.1 65.2 65.2 65.3 67 61.6
% IP Ū 100 43.2 41.9 46.9 45.2 48.4 31.3 44.5 44.1 45.9 66.8 0

* Utility 1: !1 = 0.3, !2 = 0.5; Utility 2: !1 = !2 = 0.5; Utility 3: !1 = 0.5, !2 = 0.3.
** True: True model; RF: Random forest; GP: Gaussian process; FD: Fixed dosing. Methods with highest percentage
improvement of Utility (%IP Ū ) are highlighted in bold.

without covariates x in them. Thus the dose effects are the same across all patients. As shown in Figure 3, the dose-only model
has nearly as high of utility values as are possible using the true model. All other modeling approaches which consider other
covariates, generally have poorer utility values than fixed dosing in this setting.
The comparison of expected utility under all scenarios is shown in Figure 3 and figures in the appendix, Fig B1, Fig B2.

Table 6 shows the comparison of percentage of expected utility improvement under all scenarios with utility 1. In scenario 2,
when there are only dose main effects and no dose-covariate interactions, the main effects of the covariates still play a role in
optimal dose selection, and the Gaussian process which maximizes the posterior mean of utility function (M11) is better than
other methods. In scenario 3, when covariates are correlated, the Gaussian process methods (M11, M10) outperform the other
methods. In scenario 4 and 5, with the increased number of noise covariates, the ARD feature of the Gaussian process and
the horse-shoe priors help in model building and methods M12 and M13 have better performance than others, especially in
scenario 5 when random forest (M2-M9) shows no improvement of utility function. In scenario 6, with the larger sample size,
the magnitude of the improvement increases, and Gaussian process methods (M10, M11) still perform better than others. In
scenario 7 when the covariates are all binary, to our surprise, the random forest methods (M2-M9) all have poor performance,
while Gaussian process methods (M10, M11) still improve the utility function relative to fixed dosing (M12). In scenario 8,
9, 10, when the marginal models have covariate interactions or are mis-specified, all the methods have smaller magnitude of
improvement, but the Gaussian process methods (M11,M10) still perform better than random forest methods (M2-M9), showing
their robustness. Across all those scenarios, the copula makes no difference compared to assuming independence (M2 vs M3,
M4 vs M5). Including the monotonicity in random forest leads to a small improvement in the mean utility function (M4 vs
M2). However, adding monotonicity in categorical random forest afterwards does not help, as seen by comparing M9 vs M10.
As shown in Figure 2, the optimal dose distribution of Gaussian process which maximizes posterior mean of utility function
(M11) is most similar to the true model (M1), and also has the highest percent improvement in utility. Using Gaussian process
modeling and selecting dose to maximize the posterior probability of higher utility than associated with fixed dosing (M10),
tends to put a lot of patients near the fixed dose, but still improves the mean utility function compared to fixed dose. Besides the
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FIGURE 3 Simulation results for scenario 0, 1, 2, 3 under utility 1 (!1 = 0.3, !2 = 0.5). Boxplot of population average of
expected utility for 1,000 simulation trials.

above scenarios, we also considered smaller sample sizes and lower efficacy rate of about 20-30%, and simulation shows GP
maximizing expectation of utility (M11) is still the best (results not shown).

4.3 Parametric vs non-parametric models
In the above simulation, we compared different non-parametric methods and their performance in optimal dose selection. In
this section, we compare a subset of the non-parametric methods with parametric models such as logistic regression (M13),
LASSO (M14) and constrained LASSO (CLASSO, M15) proposed by Li et al. All the parametric models are built on dose
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TABLE 6 Comparison of percentage of utility function improvement under all scenarios with utility 1 (!1 = 0.3, !2 = 0.5)

True RF monotone RF RF & PAVA GP FD
Scenarios M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
S1 100 27.8 27.0 30.0 28.6 5.3 17.0 32.0 30.8 48.4 59.5 0
S2 100 15.5 16.2 24.7 25.1 32.4 12.3 16.3 15.1 24.7 47.1 0
S3 100 14.4 14.2 16.9 16.4 -0.3 15.2 17.5 16.1 35.0 46.4 0
S4 100 17.7 17.2 17.8 17.2 -1.9 9.7 22.0 21.3 45.1 53.6 0
S5 100 1.4 1.4 1.7 1.6 -11.4 0.8 -0.1 -0.4 30.8 29.0 0
S6 100 38.5 37.6 41.7 40.0 10.5 25.5 42.0 41.2 55.0 65.4 0
S7 100 -28.4 -28.0 -1.7 -2.8 -68.5 6.4 -40.5 -25.9 17.1 16.5 0
S8 100 21.5 21.2 24.2 23.5 10.1 15.5 22.3 21.2 41.1 52.5 0
S9 100 6.2 5.7 6.7 5.8 -54.7 10.3 18.5 19.4 26.8 43.7 0
S10 100 4.0 3.8 8.3 7.9 -42.9 13.4 10.2 10.7 25.9 38.4 0

* True: True model; RF: Random forest; GP: Gaussian process; FD: Fixed dosing. Methods with highest percentage
improvement of Utility (%IP Ū ) are highlighted in bold.

TABLE 7Comparison of percentage of utility function improvement under selected scenarios with utility 1 (!1 = 0.3, !2 = 0.5)
for selected non-parametric and parametric methods

True RF GP FD Parametric
Scenarios M1 M2 M4 M8 M10 M11 M12 M13 M14 M15 M16 M17
S1 100 27.8 30.0 32.0 48.4 59.5 0 75.9 80.4 84.6 65.5 63.8
S4 100 17.7 17.8 22.0 45.1 53.6 0 -14.0 67.9 70.5 -80.9 -93.7
S7 100 -28.4 -1.7 -40.5 17.1 16.5 0 49.0 66.3 65.7 22.1 20.9
S8 100 21.5 24.2 22.3 41.1 52.5 0 62.7 64.2 68.9 51.4 52.3
MS1 100 6.3 11.0 7.8 7.1 24.1 0 21.0 25.3 28.1 21.3 19.8
MS2 100 30.2 32.7 28.2 22.7 53.2 0 27.9 33.1 41.7 -19.9 -20.5
MS3 100 19.8 22.5 19.8 9.5 32.5 0 21.9 28.5 30.3 10.5 11.1
MS4 100 8.4 15.2 9.5 8.6 25.7 0 1.6 10.7 11.4 -1.0 -0.2

* True: True model; RF: Random forest; GP: Gaussian process; FD: Fixed dosing; Parametric: Parametric models. Methods
with highest percentage improvement of Utility (%IP Ū ) are highlighted in bold.

d, covariates x, and dose-covariate interactions dx for the marginals and we use copula to link them. We also explore the
multinomial logistic regression on 4 categorical outcomes with dose, covariates and interactions (M16), and add PAVA for the
non-decreasing relationship (M17). The results are shown in Table 7. When the parametric models are correctly specified, they
are more efficient and give higher utility values than the non-parametric models, as shown by S1, S4 and S7.
Furthermore, we considered more situations when the complexity of the true model increases and the estimation model is

mis-specified. The true efficacy and toxicity models can have more interactions such as covariate interactions xixj and dose-
covariate-covariate interactions dxixj . The dose effect is g(d)where g(.) is a non-linear function. The efficacy model has log(d+
1) instead of d, so the efficacy increases faster at lower doses and tends to level off. Similarly, the toxicity model has exp(d)
instead of d, so the toxicity increases faster at high doses. In the limited mis-specified scenarios with detailed description in Table
B1, parametric models are quite robust against unspecified interactions as under S8 and MS1, and non-parametric models have
comparable performance. On the other hand, with non-linear dose effects, non-parametric models outperform the parametric
models as shown by MS2-4..
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5 APPLICATION

In this section, we applied the proposed methods to a dataset of liver cancer patients treated with adaptive stereotactic body
radiotherapy (SBRT) from 2006 to 2016. The patients come from several clinical trials and observational studies with at least
1 year of potential follow-up. We utilize the standard measure of toxicity in this setting defined as the occurrence of a 2-point
increase in Child-Pugh (CP) score within 6 months of treatment. Our primary measure of efficacy is defined as the absence of
tumor progression within 1 year of treatment. A total of 188 patients were eligible for inclusion and had the toxicity outcome
recorded. Six patients had less than one year of follow-up for the tumor progression endpoint and were excluded, leaving 182
patients in the final analysis. Overall, 48 patients (26%) had toxicity. A total of 11 (6%) patients had tumor progression within
1 year and are defined as E = 0 while 123 patients with no tumor progression are defined as E = 1. Patients experiencing
the competing risks of death (N=39) or liver transplant (N=9) without prior tumor progression are scored as having no tumor
progression (E = 1). There were 46 patients who had both efficacy and toxicity observed. The baseline clinical features we
considered were pre-treatment ALBI (Albumin-Bilirubin) Grade, tumor size GTV, prior liver directed therapy, and pre-treatment
AFP (alpha-fetoprotein). Patients in this study received tumor doses ranging from 35.7 to 180 Gy, with variation partially due
to the clinical trial on which they were enrolled, varying preferences of the treating clinician, as well as patient factors such as
cancer stage, tumor location and performance status. In radiation oncology, the dose to the tumor site (most relevant dose for
predicting efficacy) is different from the dose received by the normal liver tissue (most relevant for predicting liver toxicity).
The ratio of these two doses can be assumed to be constant for an individual patient but varies between patients due to tumor
volume and location within the liver. We apply our methods to estimate the optimal tumor dose and calculate the implied normal
liver dose for each patient using this fixed ratio. Two patients are missing liver dose and 6 are missing pre-treatment AFP. Single
imputation was used to fill in these missing values using the other covariates and outcomes.
In this setting, achieving efficacy is less important than avoiding toxicity so for the utility matrix, we set!1 = 0.6 and!2 = 0.4,

considering an outcome of neither efficacy and toxicity (E = 0, T = 0) preferable to an outcome of both toxicity and efficacy
(E = 1, T = 1). For the random forest on the marginal distributions, we include tumor dose, tumor size GTV, and pre-treatment
AFP in the efficacy model, and liver dose, pre-treatment ALBI, tumor size GTV, and prior liver directed therapy in the toxicity
model. For the random forest on categorical outcomes and Gaussian process, we include tumor dose and the ratio of liver dose
to tumor dose as well as all clinical features. For the fixed dosing method, we build a multinomial logistic regression model on
tumor dose and the ratio of liver dose to tumor dose.
Due to variation in the ratio of liver dose to tumor dose, the dose only model (M12) estimates different optimal doses for each

patient. It also selects on average the highest individualized optimal tumor dose for each patient, as shown in Fig 4. Similarly,
M7 incorporates the dose penalty towards the median dose selected by M12 and exhibits the least variability in selected dose
values with a high dose selected for the majority of patients. There is little difference between the independence assumption or
using the copula to link the two marginals, as shown by M2 vs M3 and M4 vs M5. As expected, adding the individual level
toxicity penalty (M6) lowers the recommended doses. Use of the PAVAmonotonicity algorithm on predictions from the random
forest on the 4-category outcomes has some impact on the selected optimal dose (e.g. see medians for M8 vs M9). The Gaussian
process methods recommend a wide range of doses to different patients, as shown by M10 and M11.
To illustrate how the proposed utility calculations work we plot in Fig 5 the estimated probabilities of efficacy and toxicity

and the corresponding utility functions versus dose for 3 selected patients. In the top row (a) we show the predictions from
random forest models for efficacy and toxicity with copula to link them (M2), and the bottom plots (b) show the random forest
models for efficacy and toxicity constrained to be monotone in dose and linked with copula (M4). Without forcing monotonicity,
each of these 3 patients have regions of dose where, as dose increases, the estimated probability of efficacy decreases, which
is not biologically plausible. Imposing monotonicity results in believable estimates and also smooths the dose-efficacy curves
somewhat. The bottom panel (b) of the figure shows optimal doses for methods M4, M6, M7 which all utilize the same random
forest models but differ in how they define optimal dose from these models. For patients 1 and 2, imposing monotonicity on the
dose efficacy curve, results in a similar optimal dose. Patient 3 represents a patient with high baseline risk of toxicity exceeding
what would typically be expected from dose only toxicity models. Because the probability of toxicity is higher than 0.3 even at
the lowest dose, method M6 with the individual toxicity penalty recommends the minimal dose. A higher dose is recommended
from M7 however, as efficacy increases while toxicity plateaus. Plots showing other methods including M8, M9, M10, M11
on those three patients are included in the Appendix Fig. B3. The random forest for the categorical outcome results in non-
monotone dose-efficacy and dose-toxicity relationship, and the PAVA which adjust the curves results in a plateau. The Gaussian
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FIGURE 4 Boxplot of optimal doses by different methods for the 182 patients

process have smoother curves for dose-efficacy and dose-toxicity. Due to the limited sample size, the credible interval of the
estimates is wide as shown by the shadow around the posterior mean of utility.
The random forest method discretizes continuous variables and the prediction curves are not as smooth as standard regression

models. The trade-off however is that in contrast to a parametric model, they can approximate any arbitrary shaped smooth
function with sufficient data and number of splits.
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FIGURE 5Optimal dose selected by different methods for three patients. Dose-efficacy and dose-toxicity curves are denoted by
solid lines, expected utility values by different methods are denoted by dashed lines, optimal dose selected by different methods
are denoted by points.
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6 DISCUSSION

We have developed statistical methods to estimate individualized optimal dosing rules using utilities to make the trade-off
between efficacy and toxicity quantitative and explicit via input from clinicians. In addition to quantifying the utility of each
possible bivariate outcome, this approach requires models estimating the probability of each possible bivariate outcome as it
depends on patient covariates and treatment dose. We have proposed use of flexible machine learning methods such as random
forest and Gaussian process to build these models for efficacy and toxicity.
In our simulation studies, whether and how correlation between efficacy and toxicity was modeled, had little impact on the

selected dose or on patient outcomes. Constraining the estimated probabilities to be monotone in dose, did provide modest
improvements in outcome. Equally important, enforcing monotonicity results in believable results which is important for devel-
oping and maintaining trust with non-statistical collaborators. Monotonicity on a single covariate can be encouraged by using
virtual points in the Gaussian process approach,14 or as a splitting criteria in random forest and gradient boosting trees. But for
BART, current software implementations only allow for monotonicity on all covariates (or none),15 which is not appropriate for
our setting.
In practice, the utility matrix can be pre-specified by clinicians either directly or indirectly through a series of questions.

Simulations or hypothetical patient data may also be useful to illustrate estimation of optimal dose which may motivate the mod-
ification of utility values !1 and !2 in further discussion with clinicians. Methods to obtain consensus utilities by summarizing
questionnaires from a group of clinicians can also be used, such as the Delphi method.16 In future work, individual patient pref-
erence for the efficacy and toxicity outcomes can also be considered, to build an individualized utility matrix. One difficulty
with such an approach is that it may be difficult for patients to quantify a utility for outcomes they have never experienced. It is
also possible to add penalties to the utility function to take into consideration the financial cost of the treatment, which in some
situations will depend on dose.
The expectation of the utility matrix Ū (p(d, x),!) has been used to select the optimal dose for each patient. Given the observed

data N , frequentist estimation of p̂(d, x) can be plugged into the utility function for optimization. Alternatively, Bayesian
estimation will give the posterior distribution of p(d, x). The posterior mean of Ū (p(d, x),!), which is the average of utility
function over the posterior distribution, is used as the common Bayesian approach for optimal dose selection. However, the
posterior mean of the utility function ignores the variance of the posterior distribution, which reflects the uncertainty of the
estimation. In this paper, we also propose to maximize the posterior probability that the utility function is higher than the utility
function at a fixed dose. It is possible that the posterior mean of the utility function increases slightly with dose, but also has
a larger variance, so there is not much improvement of the posterior probability of an improvement in the utility function. The
posterior probability represents how confident we are about the improvement of the utility function, which can help clinicians
in decision making. In the simulations, it is shown that using the posterior probability can help to avoid assigning extreme doses
to patients, and shrink the individual optimal dose towards the population fixed dose.
We considered a number of different machine learning methods as a component of our procedure, when predictions were

required. Non-parametric machine learning methods are flexible, and make only weak assumptions about the underlying func-
tional form. But they generally require a large sample size to estimate the functions and may suffer from overfitting. Thus the
sample size as well as the number of covariates and the expected complexity of the function should play a role in determining
which method is appropriate in any setting. With smaller sample size, parametric machine learning methods such as neural net-
works can be considered as a powerful tool, or classical methods such as logistic regression could be appropriate. Other tree
based methods could also be considered, such as BART17 and gradient boosting trees.18 Using Bayesian estimation, Gaussian
process and BART result in smooth predictions and have good performance in terms of AUC and RMSE19 compared to ran-
dom forest and gradient boosting. An additional benefit, is the ability to quantify uncertainty through posterior distributions.
The nature of the tree structure in random forest, BART and gradient boosting trees means these methods should be well suited
to handle the interaction of dose and covariates. On the other hand, Gaussian process uses a Kernel function to describe the
relationship across dose and covariates and should work better with continuous variables such as dose.
The performance of the Gaussian Process method depends critically on the prior distributions. In particular when there are a

large number of covariates, we need to select an appropriate prior for �, the weight for each covariate in the kernel function. A
Laplace prior, which is a Bayesian version of robust Lasso regression, did not perform well in our simulation study when we had
a large number of covariates and sparsity. The spike-and-slab prior is appealing as it places a substantial point-mass on zero, but
can be computationally intensive with a large number of covariates. The horseshoe prior has been shown to have comparable
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performance to the spike-and-slab prior and is more computationally efficient because of its global parameter and local scales.20
We adopted the horseshoe prior in our simulations and found it had good performance, even with a low number of covariates.
There are many opportunities for extending the proposed methods. For example, the outcomes for defining the utility may be

more complex than a single binary efficacy and toxicity outcome as considered in this paper. Utility values can be assigned to
ordinal categorical efficacy and toxicity outcomes and the 2x2 utility matrix can be expanded. Survival outcomes can also be
broken down into time intervals and then used to assess the trade-offs between quality and quantity of life, as in quality adjusted
survival analysis.21
The setting we consider in this paper is where dose can be thought of as continuous, and the data has a large number of distinct

dose values. The proposed methods have great potential for application in selecting optimal dose in radiation oncology and also
more broadly in oncology to select an optimal dose of chemotherapy or immunotherapy. A continuous dose scheme minimizes
information loss, it can also be expanded to settings with sufficient finite and discrete dose levels and may yield similar results,22
and the pre-specified dose level that maximizes the utility can be selected. In other settings there may be a much smaller number
of potential doses, say 2 or 3. For this the utility framework is still useful, but different models for the probability of efficacy and
toxicity may be preferred.
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APPENDIX

A USING COPULAS TO LINK TWOMARGINAL DISTRIBUTIONS

The marginal cumulative distribution function for a binary outcome Y , which could be E or T , is F (0) = Pr(Y ≤ 0|d, x) =
1 − p, F (1) = Pr(Y ≤ 1|d, x) = 1, where p is the probability of Y = 1 given d and x.
The copula approach makes use of the property that (VE , VT ) = (F (E), F (T )) have uniformly distributed marginals. The

copula is defined as
c(vE , vT ) = Pr(VE ≤ vE , VT ≤ vT ) = Pr(E ≤ F −1(vE), T ≤ F −1(vT ))

So for the joint probability given d and x, Pr(E = 0, T = 0|d, x) = Pr(F (E) ≤ F (0), F (T ) ≤ F (0)) = Pr(F (E) ≤ 1 −
pE , F (T ) ≤ 1 − pT ), then

p00(d, x) = Pr(E ≤ F −1(1 − pE), T ≤ F −1(1 − pT )) = c(1 − pE , 1 − pT )

p10(d, x) = 1 − pT − c(1 − pE , 1 − pT )
p01(d, x) = 1 − pE − c(1 − pE , 1 − pT )

and
p11(d, x) = c(1 − pE , 1 − pT ) − pE − pT + 1.

Then for each subject, the outcome (E, T ) is from the multinomial distribution with probabilities p00, p10, p01, p11 and the
loglikelihood is

l = I(E = 0, T = 0)log(p00) + I(E = 1, T = 0)log(p10) + I(E = 0, T = 1)log(p01)
+I(E = 1, T = 1)log(p11).

Different copula functions can be used. For this paper a Gaussian copula is adopted

c(vE , vT ) = Φ2[Φ−1(vE),Φ−1(vT )|�],

where � is the correlation parameter ofΦ−1(vE) andΦ−1(vT ).23 Themarginal probabilities pE , pT can be specified by parametric
models and parameters can be estimated jointly in the loglikelihood together with �. Two step estimation methods can also be
used,24 where in the first step estimates are obtained for the parameters from the marginal models and are then held fixed in the
second step, which consists of maximizing the likelihood to estimate the association function parameter. Joe and Xu showed
that with the 2-step estimate for parameters is consistent and asymptotically normally distributed.

B ADDITIONAL RESULTS
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TABLE B1 List of scenarios to compare parametric vs non-parametric models

S1 The true E & T models have x, d, dx
S4 S1 with 15 noise covariates x6, ..., x20 added to the data
S7 S1 with binary covariates x

S8 The true models have x, xx, d, dx
Of the 5 covariates, coefficients are non-zero for 4 x, 1 xx, 4 dx

MS1 The true models have x, xx, d, dx, dxx
Of the 5 covariates, coefficients are non-zero for 1 x, 1 xx, 1 dx, 2 dxx

MS2 The true models have x, g(d), g(d)x
Of the 10 covariates, coefficients are non-zero for 10 x, 1 g(d)x

MS3 The true models have x, g(d), g(d)x, g(d)xx
Of the 5 covariates, coefficients are non-zero for 1 x, 1 g(d)x, 2 g(d)xx

MS4 The true models have x, xx, g(d), g(d)x, g(d)xx
Of the 5 covariates, coefficients are non-zero for 1 x, 1 xx, 1 g(d)x, 2 g(d)xx
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FIGURE B1 Simulation results for scenario 4-7 under utility 1. Boxplot of population average of expected utility for 1,000
simulation trials.
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FIGURE B2 Simulation results for scenario 8-10 under utility 1. Boxplot of population average of expected utility for 1,000
simulation trials.
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FIGURE B3 Optimal dose selected by different methods for three patients. Dose-efficacy and dose-toxicity curves are denoted
by solid lines, expected utility values by different methods are denoted by dashed lines, optimal dose selected by different
methods are denoted by points.
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