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Abstract

This paper utilizes Bayesian network (BN) structure searching and scoring algorithms to
identify critical nodes and investigate their reliability interdependencies for a power sys-
tem under great converter penetration. As more converters are integrated into the system,
reliability interactions among various converters will frequently emerge and consequently
introduce system reliability concerns. However, reliability causal relations have rarely been
explored and demonstrated in a clear manner. Therefore, the authors apply BN struc-
ture searching and scoring algorithms to visualize the proposed converter-based BN struc-
ture. Moreover, reliability interactions among different nodes are quantified through infor-
mation entropy theory. Numerical case studies illustrate the causal reliability relationship
among various nodes while considering the reliability of all integrated converters. Critical
nodes are identified such that system operators can improve the converter maintenance
scheduling.

1 INTRODUCTION

With the deepening integration of renewable energy sources
(RES), the complexity of evaluating a power system’s reliabil-
ity has been increasing progressively in recent years. Compared
with traditional power generation, for example, RESs are easily
influenced by ambient conditions. Intermittency of an RES may
cause uncertainty issues in system operation and weaken the sys-
tem’s reliability [1–5]. On the other hand, the power electronic
converter is essentially integrated and performs the underpin-
ning role of realizing power conversions between RES/battery
storage and the main power grid. Moving towards 100% RES
integration has further intensified the significance and impor-
tance of analyzing the reliability performance of power systems
under great converter penetration.

Table 1 provides a brief literature summary on both compo-
nent and system level reliability analysis. From the component
perspective, identifying critical components in a power system
has raised much research attention [6–11]. Various components,
including transmission lines [6], transformers [7, 8], energy stor-
age systems [9], and load points [10], have been considered most
critical when conducting system reliability evaluation. However,
converter reliability has rarely been considered as one of the
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potential causes of system failures in the existing literature. Con-
verter reliability impacts on the overall system reliability have
spurred only limited research attention [16, 17]. The authors in
[16] considered the power converter one of the most frequently
failed components in various applications and thus that increas-
ing converter implementation will have great impact on system
reliability performance. A DC–DC converter reliability model
was formulated in [9] in evaluating the reliability of an energy
storage system, but its impact on other components’ reliability
was not investigated and different types of converters were not
considered. The authors in [17] provided a reliability ranking for
multiple converters based on their impacts on system reliability,
but the reliability effects/relations among different converters
were not explored.

From the system-level perspective, illustrating a system
network through a graph that is composed of many nodes with
various mutual relations [13] can clearly demonstrate the risk
points such that the system reliability can be improved. Today’s
power system network is clearly amenable to such description.
Reference [12] utilized complex network theory to conduct
node clustering and visualized the system network augmen-
tation. The authors in [14] investigated various scenarios of
system cascading failure, with all failed load points graphically
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TABLE 1 Literature summary of component and system level reliability analysis

Research areas Ref. Research focus Consider converter reliability? Reliability quantification

Component [6] Transmission lines No Customer interruption cost

[7, 8] Transformer No EENS

[9] Battery systems Yes (DC–DC converter only) Failure rate

[10] Critical loads No Cumulative service time

[11] RES No Cost of energy

System [12] Structural improvement No Node clusters

[13] Electric/information system interdependency No Node coupling rate

[14, 15] Cascading failure No Failure probability

FIGURE 1 An overview of the proposed reliability evaluation framework

presented. In terms of the system reliability correlation, the
authors in [13] claimed that there is a clear reliability interde-
pendency between the power system and the information and
communication technology (ICT) systems. However, the other
type of interaction, namely, the causal relation/connectivity
between components has rarely been investigated in the existing
literature. A signal directed graph was used in [18] to describe
a system with a graphical representation of causal relations
amongst variables that can be applied to find fault propagation
paths and explain the causes of a fault. However, this method
was greatly dependent on human effort and only suitable for
linear models. Complex network theory was used in [19] for
detecting variable correlations, but its electrical explanation of
each node was not straightforward. A more universal approach
should be utilized if those interactions and the system itself
have strong non-linearity.

This paper mainly focuses on learning the skeleton struc-
ture and investigating the causal reliability relations among the
integrated converters of a converter-penetrated power system
where each converter reliability model is considered. Figure 1
illustrates an overview of the reliability evaluation framework.

The proposed electric power system is implemented with mul-
tiple renewable energy generators such as wind energy and
solar power sources. Specific power converters are integrated
with each RES to properly convert the generated renewable
power and transfer it to the main grid. As more RESs and
converters penetrate the system, it is technically difficult and
less efficient to observe the state of every component when
evaluating/analyzing the system reliability. However, convert-
ers are greatly distributed across the system and as men-
tioned before, are one of the most vulnerable components/sub-
systems in a power system. Therefore, we utilize both Bayesian
network (BN) [20] structure learning algorithms and informa-
tion entropy theory [25] to construct a converter-based BN
structure where

∙ Each node considers the reliability of multiple components,
including the generator, transformer and especially, the reli-
ability of the converter connected on it. Probabilistic data
of each converter’s reliability are collected, and we apply
Shannon entropy H to quantify the uncertainty of each
node.
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∙ Each oriented edge refers to the causal reliability relation
between two nodes. The existence of each edge is addressed
by calculating mutual information and we determine the edge
orientation by calculating transfer entropy such that each
causal reliability relation between two nodes can be quanti-
fied.

∙ Those nodes that have high uncertainty and wide influ-
ential relations on other nodes are identified as critical to
help the system operator optimize schedule prior mainte-
nance/inspections.

It is worth noting that an increasing integration of RES will
bring a deep penetration/implementation of power converters
in a power system and it is more appropriate to dynamically con-
sider the reliability effect introduced by various types of convert-
ers. The generated converter-based BN structure is unique from
the original physical power system network. Information such
as the level of uncertainty on each node, the quantified causal
relations among multiple nodes can only be revealed under the
generated BN structure instead of the original physical network.
We aim to enhance the importance of considering power con-
verters reliability effects and causal interactions when evaluat-
ing the reliability of today’s power system. The proposed BN
structure demonstrates these focuses and can perform as an
evaluation enrichment compared with existing system reliabil-
ity assessment.

The main contributions of this paper are three-fold

1. This paper proposes a converter-based BN that performs
as the skeleton structure of a converter-penetrated power
system and utilizes BN structure learning to visualize iden-
tified causal relations among different nodes. The relia-
bility of each power converter is enhanced during the
learning procedure. As more RESs and energy storage
systems are integrated into the system, power converters
are heavily distributed and play a very important role in
today’s power system. Their importance should be further
enhanced.

2. This paper for the first time integrates information entropy
theory to quantify the uncertainty of each node and each
causal relation such that the criticality/vulnerability of all
nodes can be provided for system operators to better sched-
ule operations and maintenance.

3. This paper utilizes BN structure learning and transfer
entropy estimation methods collaboratively to illustrate com-
prehensively the causality among various nodes. The reliabil-
ity interdependency and failure propagation are clearly illus-
trated to enrich the understanding of the reliability perfor-
mance of a converter-penetrated power system.

The rest of this paper is organized as follows. First, the con-
cept of BN structure learning and information entropy con-
cepts are presented in Section 2. Section 3 provides the relia-
bility modelling of wind turbines/five photovoltaic (WT/PV)
converters and an overview of the proposed system reliability
evaluation framework. In Section 4, several case studies are con-
ducted on a modified IEEE 24-bus RTS to demonstrate the

effectiveness of the proposed methodology. Conclusions and
future works are summarized in Section 5.

2 TRANSFER
ENTROPY-INTEGRATED BN
STRUCTURE LEARNING

In this work, BN structure learning and transfer entropy are
collaboratively applied to the proposed converter-penetrated
power system for investigating the causal relationships among
different converter reliability performance. Basic concepts and
the proposed transfer entropy-integrated BN structure learning
are introduced in this section.

2.1 Bayesian network structure learning

The BN has been proven to be a versatile tool in various fields
[20, 21]. It has been considered one of the most effective and
classic graphical models in power system reliability studies as
well as providing probabilistic information and inferences via a
directed acyclic graph (DAG). The proposed BN structure con-
sists of three components: (V , E , Θ), where a set of nodes
V = {X1,X2, … ,XN } represent N power converters’ reliabil-
ity, and we can assess the reliability of each converter from sys-
tem Monte Carlo simulation and observe the physical/thermal
behaviour of each converter. As more power converters are inte-
grated into the power system, the scale of V will increase; E

denotes the set of edges. Each element ei j in E represents an
edge directed from Xi to Xj , which represents the causal rela-
tion between two converters’ reliability performance; Each ele-
ment 𝜃i ∈ Θ denotes the conditional probability distributions
of the converter reliability Xi .

2.2 Search and score functions

Currently, search and score-based methods are usually applied
to construct BN structures [22, 23]. Search algorithms together
with several scoring functions are applied to evaluate the good-
ness of each explored feasible BN structure. The objective of
utilizing this method is to find a DAG that maximizes the
selected scoring function. The search algorithm determines the
structure learning efficiency while the scoring function affects
the learning accuracy.

With a given data set D, the problem of BN structure learning
from D can be described as follows: finding a DAG (G) which
is the best fit for the data set D in some senses. The scoring
function is applied to evaluate the fitness of a candidate DAG
to D. The scoring criteria are shown in Equation (1) where the
value of score(D) can be determined by the data set D.

score (G ,D) = score(G |D)score (D) (1)

G∗ = arg max
G∈G n

score(G |D) (2)
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Equation (2) states that the objective is to find the optimal
BN structure G∗ where G n is the set of all feasible DAGs.

The BIC scoring function was proposed based on an assump-
tion that samples are subject to independence and an identi-
cal distribution. In BIC, the fitness of a DAG for the given
data set D is evaluated based on log likelihood. The formula
of the BIC scoring function is shown in Equation (3), where
N is the number of variables in the DAG; Pi is the number
of possible configurations of the parent set PaG (Xi ) of Xi ; Si

is the number of states of the variable Xi ; mi jk is the num-
ber of observations in the data set D where the variable Xi is
under the state k and the parent set is in the j th configuration;
𝜃i jk =

mi jk

mi j

(0 ≤ 𝜃i jk ≤ 1,
∑

k
𝜃i jk = 1, mi j =

∑ri

k=1 mi jk ) is

the likelihood conditional probability; m is the number of sam-
ples in D. The first item of this BIC scoring is the log likelihood
and the second item performs as a penalty function to avoid
overfitting.

BIC (G |D) =
XN∑
i=1

Pi∑
j=1

Si∑
k=1

mi jk log 𝜃i jk −
1
2

XN∑
i = 1

Pi (Si − 1) log m

(3)
Another scoring function named BDe is proposed based on

Bayesian statistics and is shown in Equation (4), where 𝛼i j =∑Si

k=1 𝛼i jk and 𝛼i jk describes the prior distribution. The main
principle of BDe is to find a DAG that can maximize the poste-
rior probability considering both data characteristics and prior
knowledge.

BDe (G |D)

=

XN∑
i=1

Pi∑
j=1

[
log

Γ
(
𝛼i j

)
Γ
(
𝛼i j + mi j

) + Si∑
k=1

log
Γ
(
𝛼i jk + mi jk

)
Γ
(
𝛼i jk

) ]
(4)

In terms of the search algorithm, however, searching the opti-
mal network structure is a non-deterministic polynomial-hard
problem. Thus, widely used score-based algorithms, namely K2
and max-min hill-climbing (MMHC) algorithms, are selected as
the search strategy.

The K2 algorithm can reduce computational by requiring a
prior ordering of nodes as input. The potential parent set of
converter Xi can include only those converters that precede it
in the given ordering. In the K2 algorithm, the candidate par-
ent nodes set 𝜋 for Xi are initially set as empty. The algorithm
searches 𝜋 for each Xi according to the specified sequence in
the node ordering. The principle of K2 search is to assume that
each node is not connected to any parent node at first and then
to add parent nodes repeatedly with a given node ordering.

The MMHC algorithm is classified as a combined method,
applying concepts and techniques from local learning, search-
and-score and constraint-based methods. MMHC first learns
the skeleton of a BN structure, namely, the edges without their
orientation, using a local discovery algorithm called max-min
parents and children (MMPC). MMPC is conducted on all vari-
able pairs and provides a way to identify the existence of each
edge. All network edges can be identified by invoking MMPC
with each Xi .

2.3 Transfer entropy

Information entropy is a well-known signal-processing tech-
nique, and it has recently proved its suitability for evaluat-
ing complex system reliability such as fault detection [24, 27]
and uncertainty quantification [25]. The concept of information
entropy was proposed as a measure of information and uncer-
tainty of a variable [26, 28]. Suppose there are two variables...‘
and B and their states (at

j , b
t
k

) are observed at each hour t . An
entropy rate h1 is defined as the amount of additional infor-
mation required to represent the value of the next observation
of A

hI = −

S j∑
j = 1

Sk∑
k = 1

P
(

at+1
j
, at

j
, bt

k

)
log P (at+1

j
|at

j
, bt

k
) (5)

On the other hand, if at+1
j is independent of the cur-

rent observation bt
k
, the entropy rate is calculated as in

Equation (6):

hII = −

S j∑
j = 1

Sk∑
k = 1

P
(

at+1
j , at

j , b
t
k

)
log P (at+1

j |at
j ) (6)

In general, the quantity of hI represents the entropy rate when
the current state of B can affect the future state of A, while h2
assumes the future state of A is independent of the current state
of B.

Thus, the transfer entropy is defined as the deviation from
independence of the state transition of an information desti-
nation B from the previous state of an information source A.
When the observation delay is 1 h, the transfer entropy can be
calculated by (7):

TA→B ( j , k) = hII − hI =

S j∑
j=1

Sk∑
k=1

P
(

at+1
j , at

j , b
t
k

) |

× log

(
P (at+1

j |at
j , b

t
k

)

P (at+1
j |at

j )

)
(7)

where t is the time index, at
j and bt

k
indicate the j th and kth

states of variables A and B at time t , respectively.
It is assumed in both hI and hII that at+1

j can be influenced
by at

j
(i.e. the future state of A is influenced by its current

state). The value of TA→B quantifies the information difference
between ‘assume bt

k
can affect at+1

j ’ and ‘bt
k

is independent from

at+1
j ’. In this way, TA→B indicates the causal relation between A

and B. This formulation is a directional and dynamic measure of
information transfer from A to B. It shows that the uncertainty
changes of at+1

j between given conditions of bt
k

and unknown
bt

k
can be described using transfer entropy. In other words, the

information transferred from bt
k

to at+1
j can be represented

by transfer entropy. The transfer entropy formulation is a
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FIGURE 2 A typical converter in a WT power system

generalization of the entropy rate to more than one variable. It
is worth noting that transfer entropy remains a measure of the
observed correlation rather than of the direct effect between
variables.

2.4 Transfer entropy-integrated scoring
function

The causal relations among multiple converters can be compli-
cated since the reliability of each converter can be correlated by
many other converters’ performance and vice versa. For exam-
ple, A WT converter failure would terminate the power conver-
sion and the power generated from this WT cannot be trans-
ferred into the main grid and also the load side. To supplement
power for the affected area, either the battery storage system
(BSS) or other available power generations will be required to
provide more power compared with their regular power contri-
butions. As a result, this kind of burden will affect the reliability
performance of those converters connected with BSS and other
renewable generators.

As stated in subsection 2.2, PaG (Xi ) refers to the parent set
of Xi , which means each element in PaG (Xi ) can potentially
affect the reliability of Xi . Thus, multiple edges would exist and
all of them would be directed to Xi in the DAG. Moreover, since
transfer entropy quantifies the information exchange, it can be
utilized as a weighting index on each directed edge and describes
the degree of each causal relation. Thus, the total transfer
entropy from PaG (Xi ) to Xi is described in Equation (8), which
is used to quantify the reliability causality between each con-
verter Xi and its parent set PaG (Xi ).

TPaG (Xi )→Xi
( j , k) =

S j∑
j=1

Sk∑
k=1

P
(

xt+1
j , xt

j , PaG (Xi )
t

k

) |
× log

(
P (xt+1

j |xt
j , PaG (Xi )

t

k )

P (xt+1
j |xt

j )

)
(8)

In terms of the scoring function, as shown in Equation (3),

the log likelihood term (
∑N

i = 1

∑Pi

j = 1

∑Si

k = 1 mi jk log 𝜃i jk ) in
the BIC scoring function indicates the fitness between the
learned DAG and the given data set D, which can be rewritten

in Equation (9), where the term within the square bracket repre-
sents the entropy when PaG (Xi ) is given, and can be replaced by
hI in Equation (5). Thus, the log likelihood term in the scoring
function can be determined during the transfer entropy calcula-
tion

log likelihood (G |D) =
XN∑
i=1

Pi∑
j=1

Si∑
k=1

mi jk log 𝜃i jk

= m
XN∑

i = 1

Pi∑
j = 1

Si∑
k = 1

1
m

mi jk log

(
mi jk

mi j

)

= m
XN∑

i = 1

[
Pi∑

j = 1

Si∑
k = 1

P (Xi , PaG (Xi )) log P (Xi |PaG (Xi ))

]
= −mhI

In general, each transfer entropy value is calculated to quan-
tify the causal relation between each element of PaG (Xi ) and
Xi . The accumulated transfer entropy TPaG (Xi )→Xi

which helps
to determine the log likelihood function can be calculated
after exploring all elements in PaG (Xi ). The BIC scoring func-
tion is then utilized to evaluate the fitness of each feasible
structure.

3 CONVERTER RELIABILITY AND AN
OVERVIEW OF THE PROPOSED
FRAMEWORK

3.1 Reliability model of converters

As shown in Figure 2, a typical wind power system consists
of a permanent magnet synchronous generator (PMSG), a
generator-side inverter, a dc link, and a grid-side inverter. The
WT output power is estimated by a set of hourly-based wind
speed and angle data throughout a year. Power losses, including
switching and conduction loss, are then calculated to derive the
failure rate of each device (e.g. diode and IGBT) [17]. Finally,
the WT converter reliability RWTconv

can be expressed as in (10),
where 𝜆w,t represents the failure rate of device w at time t , Nw

is the total number of devices in the WT converter.

RWTconv
(t ) = e

−
(∑Nw

w=1 𝜆w,t

)
t

(10)
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FIGURE 3 A PV system with DC–DC boost and DC–AC inverter

Figure 3 presents a typical PV system considered in this paper
which consists of a PV array, a DC–DC boost converter, and a
DC–AC inverter. Similarly, hourly-based data, such as solar radi-
ance and ambient temperature, are collected to estimate the PV
output power and each device failure rate. Ultimately, the relia-
bility of PV converter RPVconv

can be calculated by (11), where
Np is the total number of devices in the PV converter.

RPVconv
(t ) = e

−
(∑Np

p=1 𝜆p,t

)
t

(11)

Since the failure rate is calculated through hourly based data,
each component has a failure rate 𝜆 at hour t. Meanwhile, the
repair rate 𝜇i is relatively stable and considered a constant. Each
component’s up and down state probability can be calculated
using (12) and (13).

PU (i, t ) =
𝜇i

𝜆i,t + 𝜇i

(12)

PD (i, t ) =
𝜆i,t

𝜆i,t + 𝜇i

(13)

3.2 Reliability of other components

We also consider the reliability of other components such as
generators, transformers, transmission lines, and load points.
For example, the forced outage rate (FOR), mean time to failure
(MTTF), and mean time to recovery (MTTR) are collected for
each generator. The detailed reliability data is provided in [32].

3.3 An overview of the proposed framework

An overview of the proposed reliability evaluation framework
is illustrated in Figure 4. In the proposed reliability evaluation
framework, the first step is to construct an undirected struc-
ture, and a set of training data is required. The data set con-
sists of state vectors T = {Xi , … ,XN , L1, … ,Ltl , LOLE },
where Xi denotes the ith converter reliability. Li is the state
of ith transmission line, and its value equals one if it is under
a failed state; otherwise it is zero. LOLE represents the typi-

cal reliability indicator, namely, loss of load expectation in the
power system. N , tl are the number of integrated converters
and transmission lines, respectively. The hourly-based input data
such as wind angle, wind speed, ambient temperature, and solar
radiance are applied to calculate the reliability of WT/PV con-
verter while reliability data of other components are also col-
lected. State sampling of Monte Carlo simulation [22] is used to
determine the state of each component in the system. We sum-
marize the steps of generating the training data as follows: First,
the reliability state of each component is determined by gen-
erating uniformly distributed random numbers between 0 and
1, which is further compared with the component reliability or
FOR. If the sampled value is smaller than the FOR value, the
component is under an outage state. Otherwise, the component
is under a normal state. After all components’ states are deter-
mined, the overall system can be under a normal/contingency
state and the value of LOLE can be calculated. As introduced in
Section 2, BN structure searching algorithms and scoring func-
tions are applied to generate a BN from the original electrical
network.

Meanwhile, given the probability distribution of each con-
verter reliability, the Shannon entropy H (Xi ) can be calculated
to quantify the uncertainty level of each Xi . Based on the train-
ing data and expert knowledge, values of mutual information are
calculated to determine the existence of edges in the structure.

To investigate the causal relation between converter relia-
bilities, transfer entropy is further calculated on each edge. It
is worth noting that both TX→Y and TY→X should be calcu-
lated in terms of variables X and Y . In general, it is asymmetry
between TX→Y and TY→X . If TX→Y ≫ TY→X , then the causal
relation is considered as X → Y , which means that given the
information of X will greatly help predict the reliability perfor-
mance of Y at that moment, and vice versa. Even X and Y are
greatly coupled in reality and they affect each other throughout
a year. At a certain time t , however, the causal relation is con-
sidered uni-directional if the values of TX→Y and TY→X are not
equal.

Since H (X ) denotes the uncertainty of each converter and
TE explores all causal relations among all converters, a relia-
bility criticality of converters can be generated by comprehen-
sive comparison/analysis of these entropy values. The vulnera-
bility/criticality of each converter is then determined. Identified
critical converters should have priority to have maintenance or
get equipped with a reliability sensor such that their reliability
information can be fully observed/monitored. The overall sys-
tem entropy, i.e. the system uncertainty, is further reduced.

4 NUMERICAL ANALYSIS

In this section, the proposed reliability evaluation framework is
validated on the modified 24-bus IEEE reliability test system
(RTS). The computations, including MC simulations, are per-
formed in Matlab 2020a on an Intel Core at 2.90 GHz with 16
GB RAM. BN structure learning is realized through Bayes Net
Toolbox [29] and Python pgmpy [30]. A Matlab toolbox called
cTE [31] is modified for the transfer entropy estimations.
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FIGURE 4 An overview of the proposed framework

TABLE 2 Location and capacity information for WT converters

No. of WT Bus ID

Capacity

(MW)

1 1 148.3

2 21 217.5

3 15 155.0

4 7 191.1

4.1 The modified 24-bus IEEE RTS

Figure 5 presents the modified 24-bus IEEE RTS network. RTS
was first published in 1979 as a benchmark for testing vari-
ous reliability analysis methods. In all case studies, we use the
updated version of RTS data [32] where some conventional oil-
fueled generating units were replaced by RESs and energy stor-
age systems. Four WT, PV generators and seven rooftop PVs
(RFPV) have been added to the system. Tables 2, 3 and 4 pro-
vide all RES locations and capacity information.

4.2 BN structure learning based on the
transfer entropy-integrated scoring function

As introduced in Sections 1 and 2, the Shannon entropy rep-
resents the level of uncertainty on each variable and trans-
fer entropy quantifies the information transferred between two

TABLE 3 Location and capacity information for PV converters

No. of PV Bus ID

Capacity

(MW)

1 23 51.6

2 14 51.6

3 13 92.7

4 24 49.7

5 22 51.7

TABLE 4 Location and capacity information for RFPV converters

No. of

RFPV Bus ID

Capacity

(MW)

1 4 27.0

2 5 28.2

3 6 9.7

4 8 11.2

5 19 10.3

6 18 27.2

7 3 9.4

variables. Since each converter reliability performs as a vari-
able, and any converter reliability performance can be pas-
sively affected by or can affect other converters, we not only
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FIGURE 5 The modified 24-bus IEEE RTS network

estimate the Shannon entropy but also calculate the value of
delivered and received transfer entropy of each converter to
comprehensively evaluate its importance/criticality. Once the
uncertainty of each node and information transferred between
two nodes are determined, critical nodes can be identified
afterwards.

For example, as shown in Figure 6, in a network with three
variables {A, B, C }, we consider the Shannon entropy of all
variables {H (A), H (B), H (C )} to quantify the level uncer-
tainty of each variable. Since each variable x will normally
deliver/receive some information to/from another variable y,
namely, both Tx→y and Ty→x will exist. But their values can be
significantly different, which helps quantify the amount of infor-
mation that x delivered and received. We also calculate these
two transfer entropy values to determine the orientation of each
causal relation. As shown in Figure 7, since the variable B deliv-
ers more information to A and does not receive much infor-
mation from A, we can conclude that the variable B tends to
affect A rather than gets influenced by it. Therefore, the edge
orientation between A and B is B → A.

In the proposed network, some causal relations (e.g. node
1 → 2, 6 → 10, 7 → 8 and 21 → 18) are obvious by apply-
ing prior knowledge. The learning results based on integrated
three scoring functions of these assumptions are listed in
Table 5. ‘Y’ indicates that the causal relation between two nodes
is correctly learned while ‘N’ indicates the causal relation is

FIGURE 6 Calculated entropy values of each variable

FIGURE 7 An example of determining the edge orientation

TABLE 5 Learning comparisons among different scoring functions

Causal relations 1 → 2 6 → 10 7 → 8 21 → 18

BDe Y N Y N

BIC Y Y Y N

Transfer entropy-integrated BIC Y Y Y Y

not learned/considered not significant. The proposed function
learned all four causal relations correctly while one or two rela-
tions were not detected by BIC and BDe, respectively.

Figure 8 presents the BN structure learned from the origi-
nal 24-bus electrical network, where each node represents the
bus reliability, considering the reliability of generator, integrated
converter, load and other components, and each directed edge
represents the reliability causal relation between two nodes. K2
and MMHC algorithm are applied as the searching strategies to
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FIGURE 8 The learned BN structure based on the proposed scoring function. (Left figure: Node—bus, edge—physical connection Right figure:
Node—reliability of each bus, edge—causal relation). (Note: It is not a one-to-one mapping between the original physical RTS network and the learned BN
structure. It is worth noting that this is a one-to-one mapping between the original physical network and the learned BN structure. For example, there exists a
physical connection between nodes 9 and 11, but in the learned BN structure, there is no causal relation between these two nodes.) BN, Bayesian network; RTS,
reliability test system

explore the BN structure. Prior knowledge such as bus gener-
ation and load information, converter FOR [32, 33], and MC
simulation data is used to help generate a set of node orders.
To avoid structure overfitting and remove weak connections,
the threshold value of mutual information is adjusted to 0.10. It
can be observed that most nodes have multiple causal relations
(edges). For example, node 5 has two edges which indicate its
reliability performance can potentially affect the performance
of node 10 and can be influenced by the reliability performance
of node 1.

Critical nodes are marked with solid red such as {1, 13, 14,
15} in Figure 9 because all orientations of their edges target
towards other nodes, which indicate these nodes can deliver
more information to other nodes and their reliability can poten-
tially affect the reliability performance on their related nodes.
Another set of nodes with red diagonal stripes (e.g. nodes 10 and
16) only have edges pointing towards themselves, which indicate
that these nodes can be easily influenced. These nodes receive
more information than deliver it such that the reliability on these
nodes can be greatly affected by the reliability performance of
other nodes. Thus, they are considered as vulnerable compared
with the former solid red nodes.

Figure 10 illustrates the calculated entropy values of critical
nodes. The Shannon entropy H on nodes 1, 13, 14 and 15 is
relatively high which indicates the uncertainty on these nodes is
under a high level. The delivered transfer entropy indicates how
much information is delivered to other related nodes. There-

FIGURE 9 Illustrated critical nodes in the BN structure

fore, these nodes are considered more impactful/critical, and
moreover, all their edges direct towards other nodes, namely,
their reliability performance will probably impact multiple other
nodes.
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FIGURE 10 Calculated Shannon and transfer entropy (TE) on critical nodes

FIGURE 11 The failure propagation area when outage happened on nodes 1 and 13

4.3 Outages on critical nodes and their
propagation areas

Critical nodes such as 1, 13, 14, 15 are identified in the previous
subsection and they are more likely to impact the reliability of
other nodes. For example, if a converter failure happened on
node 1, the performance of nodes 2, 3 and 5 will probably be
influenced. However, this does not guarantee that the outage
area is limited to these four nodes since nodes {2, 3, 5} also
have causal relations with other nodes. Similarly, node 10, for
example, can be easily influenced but not limited to {5, 6, 13}
since cascading failure can possibly happen.

Node sensitivity refers to how the reliability degree of other
nodes is influenced if one node reliability has a small change.
The sensitivity analysis is conducted on each critical node and

the largest propagation area is presented in Figures 11 and 12.
The dotted square on the node indicates a small reliability
change is applied while the grey marks the influenced nodes.
For example, a small increase on the failure rate of node 13 will
increase the outage probability on nodes {10, 12, 23, 20, 19,
16}. It can be observed that the identified causal relations basi-
cally match with the failure propagation area and either node 10
or 16 is affected in all analyzed results.

It is worth noting that the learned BN structure is generated
and different from the original 24-bus electrical network. The
electrical network shows the physical connections while the BN
structure illustrates the reliability causal relations among nodes.
Since each node uncertainty is quantified by Shannon entropy
(the level of uncertainty) and each causal relation is evaluated by
transfer entropy, namely, the reliability information transferred
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FIGURE 12 The failure propagation area when outage happened on nodes 14 and 15

between nodes, the failure propagation includes events such as
cyber-attacks. Therefore, these analyzed propagation areas and
quantified uncertainty information cannot be revealed by the
original electrical network but are uniquely generated from the
BN structure.

5 CONCLUSIONS AND FUTURE
WORKS

This paper has presented a framework to enhance the reliability
analysis of a converter-penetrated power system. A BN struc-
ture is generated by utilizing BN structure search and scoring
algorithms, which can be beneficial for illustrating the causal
relations in complex system structures. Not only the uncertainty
of each converter, but also various reliability causal relations
among converters are explored and quantified through infor-
mation entropy. Numerical analysis has demonstrated the relia-
bility causal relations among different nodes and has evaluated
the criticality/vulnerability of all nodes for system operators to
improve the maintenance scheduling. Future research will focus
on improving computational costs of complex system BN struc-
ture learning. Moreover, the effect of practical node locations,
the quality of delivered/received information and their specific
impacts can be considered to comprehensively identify criti-
cal nodes in the system. An optimal placement or redundancy
maintenance strategy can be investigated given a limited num-
ber of reliability sensors.
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