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Abstract — This paper utilizes Bayesian network structure searching and scoring algorithms to 

identify critical nodes and investigate their reliability interdependencies for a power system under great 

converter penetration. As more converters are integrated into the system, reliability interactions among 

various converters will frequently emerge and consequently introduce system reliability concerns. 

However, reliability causal relations have rarely been explored and demonstrated in a clear manner. 

Therefore, we apply Bayesian network structure searching and scoring algorithms to visualize the 

proposed converter-based BN structure. Moreover, reliability interactions among different nodes are 

quantified through information entropy theory. Numerical case studies illustrate the causal reliability 

relationship among various nodes while considering the reliability of all integrated converters. Critical 

nodes are identified such that system operators can improve the converter maintenance scheduling.   

Nomenclature 

Variables 

   State of  th transmission line 

     Number of observations in the data set 

   Reliability of     converter 
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        Parent set of     converter 

   Number of possible configurations of the 

parent set         of    

   Number of states of the variable    

   Conditional probability distributions of the 

converter reliability    

     Likelihood conditional probability 

     Failure rate of device   at time   

 

Parameters 

   The optimal BN structure of all feasible DAGs 

  Shannon entropy 

  Number of variables in the DAG 

   Total number of devices in the PV converter 

   Total number of devices in the WT converter 

   Component down state probability 

   Component up state probability 

 

Abbreviation 

BN Bayesian network 

BSS Battery storage system 

DAG Directed acyclic graph 

FOR Forced outage rate 

LOLE Loss of load expectation 

MMHC Max-min hill climbing algorithm 

MTTF Mean time to failure 

MTTR Mean time to repair 

PMSG Permanent magnet synchronous generator 
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PV Photovoltaic 

RES Renewable energy sources 

RFPV Rooftop photovoltaic 

WT Wind turbine 

 

Introduction 

With the deepening integration of renewable energy sources (RES), the complexity of evaluating a 

power system’s reliability has been increasing progressively in recent years. Compared to traditional 

power generation, for example, RESs are easily influenced by ambient conditions. Intermittency of 

an RES may cause uncertainty issues in system operation and weaken the system’s reliability [1]-[5]. 

On the other hand, the power electronic converter is essentially integrated and performs the 

underpinning role of realizing power conversions between RES/battery storage and the main power 

grid. Moving toward one hundred percent RES integration has further intensified the significance 

and importance of analyzing the reliability performance of power systems under great converter 

penetration. 

Table 1 provides a brief literature summary on both component and system level reliability 

analysis. From the component perspective, identifying critical components in a power system has 

raised much research attention [6]-[11]. Various components, including transmission lines [6], 

transformers [7]-[8], energy storage systems [9] and load points [10], have been considered most 

critical when conducting system reliability evaluation. However, converter reliability has rarely been 

considered as one of the potential causes of system failures in the existing literature. Converter 

reliability impacts on the overall system reliability have spurred only limited research attention [16]-

[17]. The authors in [16] considered the power converter one of the most frequently failed 

components in various applications and thus that increasing converter implementation will have 

great impact on system reliability performance. A DC-DC converter reliability model was formulated 

in [9] in evaluating the reliability of an energy storage system, but its impact on other components’ 

reliability was not investigated and different types of converters were not considered. The authors in 

[17] provided a reliability ranking for multiple converters based on their impacts on system 

reliability, but the reliability effects/relations among different converters were not explored.  

From the system-level perspective, illustrating a system network through a graph that is 

composed of many nodes with various mutual relations [13] can clearly demonstrate the risk points 

such that the system reliability can be improved. Today’s power system network is clearly amenable 

to such description. Reference [12] utilized complex network theory to conduct node clustering and 

visualized the system network augmentation. The authors in [14] investigated various scenarios of 

system cascading failure, with all failed load points graphically presented. In terms of the system 

reliability correlation, the authors in [13] claimed that there is a clear reliability interdependency 

between the power system and the information and communication technology (ICT) systems. 

However, the other type of interaction, namely, the causal relation/connectivity between 
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components has rarely been investigated in the existing literature. A signal directed graph was used 

in [18] to describe a system with a graphical representation of causal relations amongst variables 

that can be applied to find fault propagation paths and explain the causes of a fault. However, this 

method was greatly dependent on human effort and only suitable for linear models. Complex 

network theory was used in [19] for detecting variable correlations, but its electrical explanation of 

each node was not straightforward. A more universal approach should be utilized if those 

interactions and the system itself have strong nonlinearity.   

This paper mainly focuses on learning the skeleton structure and investigating the causal reliability 

relations among the integrated converters of a converter-penetrated power system where each 

converter reliability model is considered . Fig. 1 illustrates an overview of the reliability evaluation 

framework. The proposed electric power system is implemented with multiple renewable energy 

generators such as wind  energy and 

Table 1 

Literature summary of component and system level reliability analysis 

Research Areas Ref. Research Focus 
Consider Converter 

Reliability? 
Reliability Quantification 

Component 

[6] Transmission lines No Customer Interruption Cost 

[7], [8] Transformer No EENS 

[9] Battery Systems Yes (DC-DC converter only) Failure rate 

[10] Critical loads No Cumulative service time 

[11] RES No Cost of Energy 

System 

[12] Structural improvement No Node clusters 

[13] 
Electric/Information system 

interdependency 
No Node couplingrate 

[14], [15] Cascading failure No Failure probability 
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Fig. 1. An overview of the proposed reliability evaluation frameworksolar power sources. Specific 

power converters are integrated with each RES to properly convert the generated renewable power 

and transfer it to the main grid. As more RESs and converters penetrate the system, it is technically 

difficult and less efficient to observe the state of every component when evaluating/analyzing the 

system reliability. However, converters are greatly distributed across the system and as mentioned 

before, are one of the most vulnerable components/sub-systems in a power system. Therefore, we 

utilize both Bayesian network (BN) [20] structure learning algorithms and information entropy 

theory [25] to construct a converter-based BN structure where: 

 Each node considers the reliability of multiple components, including the generator, transformer and 

especially, the reliability of the converter connected on it. Probabilistic data of each converter’s 

reliability are collected, and we apply Shannon entropy   to quantify the uncertainty of each node. 

 Each oriented edge refers to the causal reliability relation between two nodes. The existence of each 

edge is addressed by calculating mutual information and we determine the edge orientation by 

calculating transfer entropy such that each causal reliability relation between two nodes can be 

quantified.  

 Those nodes that have high uncertainty and wide influential relations on other nodes are identified as 

critical to help the system operator optimize schedule prior maintenance/inspections.     

It is worth noting that an increasing integration of RES will bring a deep 

penetration/implementation of power converters in a power system and it is more appropriate to 

dynamically consider the reliability effect introduced by various types of converters. The generated 

converter-based BN structure is unique from the original physical power system network. 

Information such as the level of uncertainty on each node, the quantified causal relations among 

multiple nodes can only be revealed under the generated BN structure instead of the original 

physical network. We aim to enhance the importance of considering power converters reliability 

effects and causal interactions when evaluating the reliability of today’s power system. The 
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proposed BN structure demonstrates these focuses and can perform as an evaluation enrichment 

compared to existing system reliability assessment.    

The main contributions of this paper are three-fold: 

1) This paper proposes a converter-based BN that performs as the skeleton structure of a 

converter-penetrated power system and utilizes BN structure learning to visualize identified causal 

relations among different nodes. The reliability of each power converter is enhanced during the 

learning procedure. As more RESs and energy storage systems are integrated into the system, power 

converters are heavily distributed and play a very important role in today’s power system. Their 

importance should be further enhanced.  

2) This paper for the first time integrates information entropy theory to quantify the uncertainty 

of each node and each causal relation such that the criticality/vulnerability of all nodes can be 

provided for system operators to better schedule operations and maintenance. 

3) This paper utilizes BN structure learning and transfer entropy estimation methods 

collaboratively to illustrate comprehensively the causality among various nodes. The reliability 

interdependency and failure propagation are clearly illustrated to enrich the understanding of the 

reliability performance of a converter-penetrated power system.   

 The rest of this paper is organized as follows. First, the concept of BN structure learning and 

information entropy concepts are presented in Section II. Section III provides the reliability modeling 

of WT/PV converters and an overview of the proposed system reliability evaluation framework. In 

Section IV, several case studies are conducted on a modified IEEE 24-bus RTS to demonstrate the 

effectiveness of the proposed methodology. Conclusions and future works are summarized in 

Section V. 

Transfer entropy-integrated BN structure learning 

In this work, Bayesian network (BN) structure learning and transfer entropy are collaboratively 

applied to the proposed converter-penetrated power system for investigating the causal 

relationships among different converter reliability performance. Basic concepts and the proposed 

transfer entropy-integrated BN structure learning are introduced in this section. 

2.1 Bayesian Network Structure Learning 

The BN has been proven to be a versatile tool in various fields [20]. It has been considered one of 

the most effective and classic graphical models in power system reliability studies as well as 

providing probabilistic information and inferences via a directed acyclic graph (DAG). The proposed 

BN structure consists of three components:        , where a set of nodes                

represent   power converters’ reliability, and we can assess the reliability of each converter from 

system Monte Carlo simulation and observe the physical/thermal behavior of each converter. As 

more power converters are integrated into the power system, the scale of   will increase;   denotes 

the set of edges. Each element      in   represents an edge directed from    to   , which represents 
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the causal relation between two converters’ reliability performance; Each element      denotes 

the conditional probability distributions of the converter reliability   .  

2.2  Search & score functions 

Currently, search & score-based methods are usually applied to construct BN structures [22]-[23]. 

Search algorithms together with several scoring functions are applied to evaluate the goodness of 

each explored feasible BN structure. The objective of utilizing this method is to find a DAG which 

maximizes the selected scoring function. The search algorithm determines the structure learning 

efficiency while the scoring function affects the learning accuracy.  

With a given data set D, the problem of BN structure learning from D can be described as follows: 

finding a DAG (G) which is the best fit for the data set D in some senses. The scoring function is 

applied to evaluate the fitness of a candidate DAG to D. The scoring criteria is shown in equation (1) 

where the value of          can be determined by the data set D.  

                  |           (1) 

         
    

       |   (2) 

Equation (2) states that the objective is to find the optimal BN structure    where    is the set of all 

feasible DAGs.  

The BIC scoring function was proposed based on an assumption that samples are subject to 

independence and an identical distribution. In BIC, the fitness of a DAG for the given data set D is 

evaluated based on log likelihood. The formula of the BIC scoring function is shown in equation (3), 

where   is the number of variables in the DAG;    is the number of possible configurations of the 

parent set         of   ;    is the number of states of the variable   ;      is the number of 

observations in the data set D where the variable    is under the state   and the parent set is in the 

    configuration;      
    

   
           ∑             ∑     

  
     is the likelihood 

conditional probability;   is the number of samples in D. The first item of this BIC scoring is the log 

likelihood and the second item performs as a penalty function to avoid overfitting.  

     |   ∑∑ ∑            

  

   

  

   

  

   

 
 

 
∑            

  

   

 (3) 

Another scoring function named BDe is proposed based on Bayesian statistics and is shown in 

equation (4), where     ∑     
  
    and      describes the prior distribution. The main principle of 

BDe is to find a DAG that can maximize the posterior probability considering both data 

characteristics and prior knowledge.  

     |   ∑∑    
 (   )

 (       )
 ∑    
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In terms of the search algorithm, however, searching the optimal network structure is a non-

deterministic polynomial-hard problem. Thus, widely used score-based algorithms, namely K2 and 

max-min hill-climbing (MMHC) algorithms, are selected as the search strategy. 

The K2 algorithm can reduce computational by requiring a prior ordering of nodes as input. The 

potential parent set of converter    can include only those converters that precede it in the given 

ordering. In the K2 algorithm, the candidate parent nodes set   for    are initially set as empty. The 

algorithm searches   for each    according to the specified sequence in the node ordering. The 

principle of K2 search is to assume that each node is not connected to any parent node at first and 

then to add parent nodes repeatedly with a given node ordering. 

The MMHC algorithm is classified as a combined method, applying concepts and techniques from 

local learning, search-and-score, and constraint-based methods. MMHC first learns the skeleton of a 

BN structure, namely, the edges without their orientation, using a local discovery algorithm called 

max-min parents and children (MMPC). MMPC is conducted on all variable pairs and provides a way 

to identify the existence of each edge. All network edges can be identified by invoking MMPC with 

each   . 

2.3  Transfer Entropy 

Information entropy is a well-known signal processing technique, and it has recently proved its 

suitability for evaluating complex system reliability such as fault detection [24] and uncertainty 

quantification [25]. The concept of information entropy was proposed as a measure of information 

and uncertainty of a variable. Suppose there are two variables   and   and their states    
    

   are 

observed at each hour  . An entropy rate    is defined as the amount of additional information 

required to represent the value of the next observation of  : 

    ∑ ∑     
      

    
  

  

   

       
   |  

    
  

  

   

 

(5) 

 

On the other hand, if   
    is independent of the current observation   

 , the entropy rate is 

calculated as in equation (6): 

     ∑ ∑     
      

    
  

  

   

       
   |  

  

  

   

 

(6) 

 

In general, the quantity of    represents the entropy rate when the current state of   can affect 

the future state of  , while    assumes the future state of   is independent from the current state 

of  .  

Thus, the transfer entropy is defined as the deviation from independence of the state transition of 

an information destination   from the previous state of an information source  . When the 

observation delay is 1 hour, the transfer entropy can be calculated by (7): 
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                 ∑ ∑  (  
      

    
 )|     

    
   |  

    
  

    
   |  

  
 

  

   

  

   

 

(7) 

 

where   is the time index,   
  and   

  indicate the  th and  th state of variable   and   at time  , 

respectively.  

It is assumed in both    and     that   
    can be influenced by   

  (i.e., the future state of   is 

influenced by its current state). The value of      quantifies the information difference between 

“assume   
  can affect   

   ” and “  
  is independent from   

   ”. In this way,      indicates the 

causal relation between   and  . This formulation is a directional and dynamic measure of 

information transfer from   to  . It shows that the uncertainty changes of   
    between given 

conditions of   
  and unknown   

  can be described using transfer entropy. In other words, the 

information transferred from   
  to   

    can be represented by transfer entropy. The transfer 

entropy formulation is a generalization of the entropy rate to more than one variable. It is worth 

noting that transfer entropy remains a measure of the observed correlation rather than of the direct 

effect between variables. 

2.4  Transfer entropy integrated scoring function 

The causal relations among multiple converters can be complicated since the reliability of each 

converter can be corelated by many other converters’ performance and vice versa. For example, A 

WT converter failure would terminate the power conversion and the power generated from this WT 

cannot be transferred into the main grid and also the load side. To supplement power for the 

affected area, either the battery storage system (BSS) or other available power generations will be 

required to provide more power compared to their regular power contributions. As a result, this kind 

of burden will affect the reliability performance of those converters connected with BSS and other 

renewable generators.  

As stated in subsection A.2,         refers to the parent set of   , which means each element in 

        can potentially affect the reliability of   . Thus, multiple edges would exist and all of them 

would be directed to    in the DAG. Moreover, since transfer entropy quantifies the information 

exchange, it can be utilized as a weighting index on each directed edge and describes the degree of 

each causal relation. Thus, the total transfer entropy from         to    is described in equation (8), 

which is used to quantify the reliability causality between each converter    and its parent set 

       . 

           
      ∑ ∑  (  

      
          

 )|    (
 (  

   |  
          

 )

 (  
   |  

 )
)

  

   

  

   

 

(8) 

 

In terms of the scoring function, as shown in equation (3), the log likelihood term 

 ∑ ∑ ∑            
  
   

  
   

 
     in the BIC scoring function indicates the fitness between the learned 

DAG and the given data set D, which can be rewritten in equation (9), where the term within the 

square bracket represents the entropy when         is given, and can be replaced by    in equation 
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(5). Thus, the log likelihood term in the scoring function can be determined during the transfer 

entropy calculation.   

                |   ∑∑ ∑            

  

   

  

   

  

   

  ∑ ∑ ∑
 

 
        

    

   

 

  

   

  

   

  

   

  ∑ ∑ ∑                     |        

  

   

  

   

 

  

   

      

(9) 

In general, each transfer entropy value is calculated to quantify the causal relation between each 

element of         and   . The accumulated transfer entropy            
which helps determine 

the log likelihood function, can be calculated after exploring all elements in        . The BIC scoring 

function is then utilized to evaluate the fitness of each feasible structure. 

Converter reliability and an overview of the proposed framework 

3.1 Reliability model of converters 

As shown in Fig.2, a typical wind power system consists of a permanent magnet synchronous 

generator (PMSG), a generator-side inverter, a dc link, and a grid-side inverter. The WT output 

power is estimated by a set of hourly-based wind speed and angle data throughout a year. Power 

losses, including switching and conduction loss are then calculated to derive the failure rate of each 

device (e.g., diode and IGBT) [17]. Finally, the WT converter reliability        
 can be expressed as in 

(10), where      represents the failure rate of device   at time  ,    is the total number of devices 

in the WT converter.  

       
       ∑     

  
      (10) 

 

Fig. 2. A typical converter in a WT power system 

Fig.3 presents a typical PV system considered in this paper which consists of a PV array, a dc-dc 

boost converter, and a dc-ac inverter. Similarly, hourly-based data, such as solar radiance and 

ambient temperature are collected to estimate the PV output power and each device failure rate. 

Ultimately, the reliability of PV converter        
 can be calculated by (11), where    is the total 

number of devices in the PV converter. 

       
     

  ∑     
  
     

 
(11) 
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Fig. 3. A PV system with dc-dc boost and dc-ac inverter 

Since the failure rate is calculated through hourly based data, each component has a failure rate   

at hour t. Meanwhile, the repair rate    is relatively stable and considered as a constant. Each 

component’s up and down state probability can be calculated using (12) and (13).  

        
  

       

 (12) 

        
    

       

 
(13) 

3.2  Reliability of other components 

We also consider the reliability of other components such as generators, transformers, 

transmission lines and load points. For example, the forced outage rate (FOR), mean time to failure 

(MTTF) and mean time to recovery (MTTR) are collected for each generator. The detailed reliability 

data is provided in [32].  

3.3 An overview of the proposed framework 

An overview of the proposed reliability evaluation framework is illustrated in Fig.4. In the 

proposed reliability evaluation framework, the first step is to construct an undirected structure, and 

a set of training data is required. The data set consists of state vectors 

                         , where    denotes the  th converter reliability.    is the state of  th 

transmission line, and its value equals one if it is under a failed state; otherwise it is zero.      

represents the typical reliability indicator, namely, loss of load expectation in the power system. 

     are the number of integrated converters and transmission lines, respectively. The hourly-based 

input data such as wind angle, wind speed, ambient temperature and solar radiance are applied to 

calculate the reliability of WT/PV converter while reliability data of other components are also 

collected. State sampling of Monte Carlo simulation [22] is used to determine the state of each 

component in the system. We summarize the steps of generating the training data as follows: First, 

the reliability state of each component is determined by generating uniformly distributed random 

numbers between 0 and 1, which is further compared with the component reliability or forced 

outage rate (FOR). If the sampled value is smaller than the FOR value, the component is under an 

outage state. Otherwise, the component is under a normal state. After all components’ states are 

determined, the overall system can be under a normal/contingency state and the value of      can 

PV panels

Boost converter DC-AC converter

Grid
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be calculated. As introduced in Section II, BN structure searching algorithms and scoring functions 

are applied to generate a BN from the original electrical network.  

Meanwhile, given the probability distribution of each converter reliability, the Shannon entropy 

      can be calculated to quantify the uncertainty level of each   . Based on the training data and 

expert knowledge, values of mutual information are calculated to determine the existence of edges 

in the structure.  

 

Fig. 4. An overview of the proposed framework 

To investigate the causal relation between converter reliabilities, transfer entropy is further 

calculated on each edge. It is worth noting that both      and      should be calculated in terms of 

variable   and  . In general, it is asymmetry between      and     . If          , then the 

causal relation is considered as:    , which means that given the information of   will greatly 

help predict the reliability performance of   at that moment, and vice versa. Even   and   are 

greatly coupled in reality and they affect each other throughout a year. At a certain time  , however, 

the causal relation is considered uni-directional if the values of      and      are not equal.  

Since      denotes the uncertainty of each converter and    explores all causal relations among 

all converters, a reliability criticality of converters can be generated by comprehensive 

comparison/analysis of these entropy values. The vulnerability/criticality of each converter is then 

determined. Identified critical converters should have priority to have maintenance or get equipped 
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with a reliability sensor such that their reliability information can be fully observed/monitored. The 

overall system entropy, i.e., the system uncertainty, is further reduced. 

4. Numerical Analysis 

In this section, the proposed reliability evaluation framework is validated on the modified 24-bus 

IEEE reliability test system (RTS). The computations, including MC simulations, are performed in 

Matlab 2020a on an Intel Core at 2.90GHz with 16 GB RAM. BN structure learning is realized through 

Bayes Net Toolbox [29] and Python pgmpy [30]. A Matlab toolbox called cTE [31] is modified for the 

transfer entropy estimations.  

 

Fig. 5. The modified 24-bus IEEE RTS network 

4.1 The modified 24-bus IEEE RTS  

    Fig.5 presents the modified 24-bus IEEE RTS network. RTS was first published in 1979 as a 

benchmark for testing various reliability analysis methods. In all case studies, we use the updated 

version of RTS data [32] where some conventional oil-fueled generating units were replaced by RESs 

and energy storage systems. Four wind turbines (WT), five photovoltaic (PV) generators and seven 

rooftop PVs (RFPV) have been added to the system. Table 2, 3 and 4 provide all RES locations and 

capacity information.  
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4.2 BN structure learning based on the transfer-entropy integrated scoring 

function 

As introduced in Section I and II, the Shannon entropy represents the level of uncertainty on each 

variable and transfer entropy quantifies the information transferred between two variables. Since 

each converter reliability performs as a variable, and any converter reliability performance can be 

passively affected by or can affect other converters, we not only estimate the Shannon entropy but 

also calculate the value of delivered and received transfer entropy of each converter to 

comprehensively evaluate its importance/criticality. Once the uncertainty of each node and 

information transferred between two nodes are determined, critical nodes can be identified 

afterwards.  

For example, as shown in Fig.6, in a network with three variables {     }, we consider the 

Shannon entropy of all variables                  to quantify the level uncertainty of each 

variable. Since each variable   will normally deliver/receive some information to/from another 

variable  , namely, both      and      will exist. But their values can be significantly different, 

which helps quantify the amount of information that   delivered and received. We also calculate 

these two transfer entropy values to determine the orientation of each causal relation. As shown in 

Fig.7, since the variable   delivers more information to   and does not receive much information 

from  , we can conclude that the variable   tends to affect   rather than gets influenced by it. 

Therefore, the edge orientation between   and   is    .  

 

Fig. 6. Calculated entropy values of each variable 
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Table 2 

Location and capacity information for WT converters  

No. of WT Bus ID Capacity (MW) 

1 1 148.3 

2 21 217.5 

3 15 155.0 

4 7 191.1 

Table 3  

Location and capacity information for PV converters 

No. of PV Bus ID Capacity (MW) 

1 23 51.6 

2 14 51.6 

3 13 92.7 

4 24 49.7 

5 22 51.7 

Table 4  

Location and capacity information for RFPV converters 

No. of RFPV Bus ID Capacity (MW) 

1 4 27.0 

2 5 28.2 

3 6 9.7 

4 8 11.2 

5 19 10.3 

6 18 27.2 

7 3 9.4 
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Fig. 7. An example of determining the edge orientation 

Table 5 

Learning comparisons among different scoring functions 

Causal relations                    

BDe Y N Y N 

BIC Y Y Y N 

Transfer entropy-integrated BIC Y Y Y Y 

In the proposed network, some causal relations (e.g., node    ,          and      ) 

are obvious by applying prior knowledge. The learning results based on integrated three scoring 

functions of these assumptions are listed in Table V. “Y” indicates that the causal relation between 

two nodes is correctly learned while “N” indicates the causal relation is not learned/considered not 

significant. The proposed function learned all four causal relations correctly while one or two 

relation was not detected by BIC and BDe, respectively.  

Fig.8 presents the BN structure learned from the original 24-bus electrical network, where each 

node represents the bus reliability, considering the reliability of generator, integrated converter, 

load and other components, and each directed edge represents the reliability causal relation 

between two nodes. K2 and MMHC algorithm are applied as the searching strategies to explore the 

BN structure. Prior knowledge such as bus generation and load information, converter FOR [32]-[33], 

and MC simulation data is used to help generate a set of node orders. To avoid structure overfitting 

and remove weak connections, the threshold value of mutual information is adjusted to 0.10. It can 

be observed that most nodes have multiple causal relations (edges). For example, node 5 has two 

edges which indicate its reliability performance can potentially affect the performance of node 10 

and can be influenced by the reliability performance of node 1.  
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Fig. 8. The learned BN structure based on the proposed scoring function 

(Left figure: Node - bus, edge – physical connection Right figure: Node – reliability of each bus, edge 

– causal relation) 

(Note: It is not a one-to-one mapping between the original physical RTS network and the learned BN 

structure. It is worth noting that this is a one-to-one mapping between the original physical network 

and the learned BN structre. For example, there exists a physical connection between node 9 and 11, 

but in the learned BN structure, there is no causal relation between these two nodes.) 

Critical nodes are marked with solid red such as {1, 13, 14, 15} in Fig.9 because all orientations of 

their edges target toward other nodes, which indicate these nodes can deliver more information to 

other nodes and their reliability can potentially affect the reliability performance on their related 

nodes. Another set of nodes with red diagonal stripes (e.g., node 10 and 16) only have edges 

pointing towards themselves, which indicate that these nodes can be easily influenced. These nodes 

receive more information than deliver it such that the reliability on these nodes can be greatly 

affected by the reliability performance of other nodes. Thus, they are considered as vulnerable 

compared to the former solid red nodes.  

Fig.10 illustrates the calculated entropy values of critical nodes. The Shannon entropy   on node 

1, 13, 14 and 15 is relatively high which indicates the uncertainty on these nodes is under a high 

level. The delivered transfer entropy indicates how much information is delivered to other related 

nodes. Therefore, these nodes are considered more impactful/critical, and moreover, all their edges 

direct towards other nodes, namely, their reliability performance will probably impact multiple other 

nodes.  
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Fig. 9. Illustrated critical nodes in the BN structure 

4.3 Outages on critical nodes and their propagation areas 

Critical nodes such as 1, 13, 14, 15 are identified in the previous subsection and they are more 

likely to impact the reliability of other nodes. For example, if a converter failure happened on node 

1, the performance of node 2, 3 and 5 will probably be influenced. However, this does not guarantee 

that the outage area is limited to these four nodes since nodes {2, 3, 5} also have causal relations 

with other nodes. Similarly, node 10, for example, can be easily influenced but not limited to {5, 6, 

13} since cascading failure can possibly happen.  

Node sensitivity refers to how the reliability degree of other nodes are influenced if one node 

reliability has a small change. The sensitivity analysis is conducted on each critical node and the 

largest propagation area is presented in fig. 11 and fig.12. The dotted square on the node indicates a 

small reliability change is applied while the grey marks the influenced nodes. For example, a small 

increase on the failure rate of node 13 will increase the outage probability on nodes {10, 12, 23, 20, 

19, 16}. It can be observed that the identified causal relations basically match with the failure 

propagation area and either node 10 or 16 is affected in all analyzed results.   

It is worth noting that the learned BN structure is generated and different from the original 24-bus 

electrical network. The electrical network shows the physical connections while the BN structure 

illustrates the reliability causal relations among nodes. Since each node uncertainty is quantified by 

Shannon entropy (the level of uncertainty) and each causal relation is evaluated by transfer entropy, 

namely, the reliability information transferred between nodes, the failure propagation includes 

events such as cyber-attacks. Therefore, these analyzed propagation areas and quantified 

uncertainty information cannot be revealed by the original electrical network but are uniquely 

generated from the BN structure. 

As the scale of the power system increases, it becomes more time consuming and complicated to 

conduct failure test on each node and estimate the affected area. The proposed BN structure 

identifies critical nodes by learning causal relations with entropy quantification, such that the failure 
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testing efficiency is improved, especially when the maintenance schedule is tight, or resource is 

limited. 

 

 

Fig. 10. Calculated Shannon and transfer entropy (TE) on critical nodes 

 

 

Fig. 11. The failure propagation area when outage happened on node 1 and 13 
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Fig. 12. The failure propagation area when outage happened on node 14 and 15 

 

Conclusions and future works 

This paper has presented a framework to enhance the reliability analysis of a converter-

penetrated power system. A BN structure is generated by utilizing BN structure search and scoring 

algorithms, which can be beneficial for illustrating the causal relations in complex system structures. 

Not only the uncertainty of each converter, but also various reliability causal relations among 

converters are explored and quantified through information entropy. Numerical analysis has 

demonstrated the reliability causal relations among different nodes and has evaluated the 

criticality/vulnerability of all nodes for system operators to improve the maintenance scheduling. 

Future research will focus on improving computational costs of complex system BN structure 

learning. Moreover, the effect of practical node locations, the quality of delivered/received 

information and their specific impacts can be considered to comprehensively identify critical nodes 

in the system. An optimal placement or redundancy maintenance strategy can be investigated given 

a limited number of reliability sensors. 
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