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When deciding whether to translocate a species, it is important to know likely benefits 

and risks. Thus, Novak, Phelan & Weber’s (2021) analysis of past species translocations to 

assess their successes and unintended consequences is welcome. However, their conclusion that 

“The widespread benefits and paucity of negative impacts stemming from conservation 

translocations are a signal to regulators, decision-makers, and stakeholders that conservationists 

can be entrusted with the safe and timely use of translocations” is undermined by several 

problems that led them overstate the successes of translocations and minimize their negative 

impacts. 

Their conclusions about the overwhelming success of translocations (“Translocations 

have played and will play a vital and necessary role in conserving 70% of U.S. endangered 

species”, “conservation translocations routinely yielded their intended benefits”) are not 

supported by their data. The figure of 70% includes the 41% of listed or recovered species for 

which translocations have been performed, 16% for which translocations are planned, and 12% 

for which possible future translocations are implied by existing or planned captive propagation. 

For the 28% of species for which no translocation has yet been performed, it’s impossible to 

know whether translocations will benefit species conservation. Including possible future 

translocations in the 70% success figure is extremely optimistic because it is unsupported by 

actual successes. 

In addition, translocations played “a vital and necessary role” in species conservation for 

only a fraction of the 41% of species that were translocated. Table 1 summarizes the history and 

success of translocations for a sample of 20 species randomly drawn from Novak et al.’s data set 

that they identified as having been translocated. Three to five of these species appear not to have 

been translocated into nature at all. Ten to twelve of the species that were translocated failed to 
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establish translocated populations, were translocated in such small numbers that conservation 

impacts up to this point must have been small, and/or were translocated so recently that it is 

impossible to assess their long-term success. Novak et al. (2021) did not present any quantitative 

criteria by which translocations could be judged as “vital and necessary”, but a generous reading 

of Table 1 suggests that translocation has been vital to the conservation of perhaps 5 of the 20 

species (the Kootenai River population of Acipenser transmontanus, Amorpha crenulata, Gila 

purpurea, Mustela nigripes, Rana sevosa). Consequently, the number of listed and recovered 

species for which translocation has been “vital and necessary” is probably closer to 10% than 

70%. 

Novak et al. also minimized the negative impacts of translocations, writing that: “Of the 

1,014 total taxa we found with recorded conservation translocations spanning 125 years, we 

found only one restricted instance that caused a loss of biodiversity”; and (referring to biocontrol 

agents in the US) “only 3% (21) resulted in negative unintended consequences”. But the sources 

that Novak et al. searched for negative or unintended impacts (e.g., USFWS recovery plans and 

Schwarzländer, Hinz, Winston & Day (2018)) do not typically contain such information. None of 

the recovery plans or other USFWS documents used to compile Table 1 contained data on 

unintended impacts of translocations, although some species in Table 1 are known to have the 

potential to cause problems (e.g., Schiffman 1994; Gurney, Prugh & Brashares 2015). 

Schwarzländer et al. (2018) did not address non-target effects of biocontrols at all, and the 

compendium upon which it is based (Winston et al. 2014) mentioned only a few known non-

target effects in passing, rather than a complete list. Novak et al. found few negative impacts of 

translocations because they consulted sources that did not routinely report negative impacts, and 
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so did not provide a reliable estimate of the severity or frequency of possible negative impacts of 

translocation. 

Novak et al. further claimed that routine monitoring of game species should detect 

negative impacts of species translocations. This assumes that monitoring data are strong enough 

to support analyses of impacts and that someone did such analyses. The paucity and ambiguity of 

analyses of the effects of zebra mussels (a species with enormous impacts) on game fish 

populations (Strayer, Hattala & Kahnle 2004; Higgins & Vander Zanden 2010) illustrates how 

unwise it is to rely on detecting impacts using game species. 

Although unintended impacts of translocations have yet to be accurately assessed, I agree 

with Novak et al. that most past translocations probably had small unintended impacts. Rather 

than attributing this to the motivation of the translocation (conservation), I suggest that small 

unintended impacts have been a product of the kinds of translocations that have been most 

common: small to modest augmentations or reintroductions of specialized species whose 

populations are kept small by multiple factors. Based on the literature on non-native species 

(e.g., Ricciardi, Hoopes, Marchetti & Lockwood 2013), the impacts of species translocations 

may be predictable from (i) species traits, (ii) how radical the translocation is (augmentation of 

an existing population vs. re-establishment at a recently occupied site vs. introduction to a new 

site), (iii) and the rigor of planning and translocation protocols (as Novak et al. emphasized for 

biocontrol). To the extent that future conservation translocations differ from past efforts in the 

traits of the species (e.g., potentially widespread keystones like woolly mammoth and passenger 

pigeon hybrids vs. narrowly endemic specialists), in moving species outside of recent ranges 

(assisted migration), or in protocols, past impacts may not reliably predict future risks. 
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I agree with Novak et al that translocations have yielded important benefits for 

conservation and other purposes, and will be essential in confronting climate change and other 

threats to biodiversity and ecosystem services. But translocations have often failed to reach their 

goals, diverting resources from other activities, and some have had harmful consequences. If we 

are to maximize the benefits of future translocations, we must fairly assess their benefits and 

their risks. Despite their admirable goals, Novak et al. added little to our understanding of how 

often translocations succeed, or how often they have harmful impacts. 
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Table 1. Summary of translocation efforts for selected species of conservation interest. Species were randomly chosen from 

“Currently Listed Species” scored in Table S1 of Novak et al. (2021) as having a translocation performed (see Supplementary Material 

for details).  

Species Translocation performed Sources 

Acipenser transmontanus (white 

sturgeon, Kootenai River 

population) 

Translocations done to augment sole extant population; 

successful to the point of reproduction and regarded as vital 

to population persistence 

Paragamian, Beamesderfer & 

Ireland (2005), USFWS (2019a) 

Alasmidonta atropurpurea 

(Cumberland elktoe) 

No record of any translocations Guyot (2005), USFWS (2004) 

Alectryon micrococcus (mahoe) Recently translocated into several sites, but no data given on 

success 

USFWS (1997, 2021a) 

Amorpha crenulata (crenulate 

lead-plant) 

Three of five extant populations are the result of 

translocations 

USFWS (1999, 2019b) 

Dipodomys ingens (giant 

kangaroo rat) 

Translocations successful in establishing new populations Loew, Williams, Ralls, Pilgrim & 

Fleischer (2005), Saslaw & 

Cypher (2020), USFWS (1998) 

Epioblasma capsaeformis 

(oyster mussel) 

Four translocations to sites in a river where the species 

already occurred; two failures, evidence for survival at two 

sites and reproduction at one 

Carey, Jones, Butler & Hallerman 

(2015), Carey, Jones, Butler, 

Kelly & Hallerman (2019), 

USFWS (2004) 



13 
 

Eremophila alpestris strigata 

(streaked horned lark) 

Twenty eggs moved into a population with evidence of 

inbreeding depression; at least one bird survived and had 

offspring; long-term success not yet clear 

Stinson (2016), USFWS (2019 c, 

d) 

Fusconaia cor (shiny pigtoe) No translocations done; erroneously recorded by Cummings 

& Cordeiro (2012) as translocated 

Cummings & Cordeiro (2012), 

USFWS (1983, 2021b) 

Gila purpurea (Yaqui chub) Translocations successful in establishing populations over 

the long term and regarded as vital to species survival 

Lohrengel (2014), USFWS 

(1994) 

Hylaeus anthracinus 

(anthracinian yellow-faced bee) 

A few translocations attempted; some failed, and some 

succeeded (survival, reproduction) over the short term (1 

year) 

Magnacca (2020), USFWS 

(2020a, 2021c) 

Kadua st-johnii (no common 

name) 

Unclear whether translocation has occurred. If it did, it was 

very limited (11 plants), with no data on success 

USFWS (2017a, 2021d) 

Mustela nigripes (black-footed 

ferret) 

All extant populations arose from translocations, which are 

regarded as vital to species survival, although translocations 

have not met their stated goals 

USFWS (1988, 2013, 2019e) 

Nothocestrum peltatum (‘aeia) One or two individuals were translocated, at least one of 

which died 

USFWS (2017b, 2021d) 

Opuntia treleasei (Bakersfield 

cactus) 

Translocations established several new populations Cypher et al. (2015), USFWS 

(1998, 2020b) 

Pritchardia hardyi (lo’ulu) Propagated in captivity, but not translocated into nature USFWS (2017c, 2021d) 

Pseudobahia peirsonii (San 

Joaquin adobe sunburst) 

One short-range translocation succeeded over the short 

term; long-term success uncertain; “[translocation] is not 

USFWS (2007) 
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considered a reliable option for saving the affected 

populations of P. peirsonii owing to the limited success of 

previous transplanting efforts” 

Ptilimnium nodosum (harperella) Some translocations succeeded (with reproduction) over 2-4 

year periods, but “the disadvantages of reintroduction may 

outweigh the advantages” 

Guerrant (2012), USFWS (1990), 

Wells (2012) 

Rana sevosa (dusky gopher frog) Several translocations, some at least partially successful 

over short time-periods. Too soon to judge long-term 

success, but will be needed to preserve species 

USFWS (2015) 

Scheidea jacobii (no common 

name) 

Propagated in captivity; unclear whether species has been 

translocated into nature 

USFWS (2019f) 

Scheidea pubescens (ma’oli’oli) Limited translocations made, no data on success USFWS (2019f) 
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