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Appendix A: Summary of Notation 
 
Notation used in main model setup and analysis: 
 

Notation Definition 
𝑝𝑝 Product innovation rate 
𝑞𝑞 Product imitation rate 
𝑚𝑚 Potential market size 
𝑇𝑇 Media planning horizon 

𝐹𝐹(𝑡𝑡) Fraction of cumulative adoptions (market share) by time 𝑡𝑡 
𝑥𝑥0 Fraction of adoptions (market share) at time 0 
𝑃𝑃 Product per unit price 
𝜃𝜃 Profit discount rate 
𝑅𝑅 Set of marketing channels 

𝑢𝑢𝑟𝑟(𝑡𝑡) The overall influence of marketing effort in channel 𝑟𝑟 on demand at time 𝑡𝑡 (can 
incorporate impact of current and past advertising expenditures) 

𝐸𝐸𝑟𝑟 Total per capita investment in channel 𝑟𝑟 over the media planning horizon, adding up 
to total investment of 𝑚𝑚𝐸𝐸𝑟𝑟 in channel 𝑟𝑟 

Φ𝑟𝑟(𝐸𝐸𝑟𝑟) Cumulative marketing effort in channel 𝑟𝑟 on demand over the media planning horizon 
(Φ𝑟𝑟 = ∫𝑇𝑇0 𝑢𝑢𝑟𝑟(𝑡𝑡)𝑑𝑑𝑑𝑑) given a total budget of 𝑚𝑚𝐸𝐸𝑟𝑟 to be spend in channel 𝑟𝑟. Also see 
equation 4. 

𝐾𝐾𝑟𝑟 Number of time-blocks that channel 𝑟𝑟 spending can be changed over the media 
planning horizon [0,𝑇𝑇] 

𝜏𝜏𝑟𝑟 Length of each time block over which spending in channel 𝑟𝑟 cannot be updated; 𝜏𝜏𝑟𝑟 =
𝑇𝑇/𝐾𝐾𝑟𝑟 

𝑎𝑎𝑟𝑟𝑟𝑟 Total advertising spend in channel 𝑟𝑟 over time block 𝑘𝑘 
𝑏𝑏𝑟𝑟 Maximum investing in channel 𝑟𝑟 over each time block 

𝜙𝜙𝑟𝑟𝑖𝑖(𝑎𝑎) The measure of how much the baseline purchase rate of a non-adopter improves 𝑖𝑖 
blocks ahead when an investment of 𝑎𝑎 is made over a given time block.  

𝑠𝑠𝑟𝑟 Investment in each channel 𝑟𝑟 can impact current sales as well as the sales up to 𝑠𝑠𝑟𝑟 
blocks into the future. 

𝛾𝛾𝑘𝑘 If the media planning horizon starts sometime after launch leading to some initial 
adoptions (𝑥𝑥0 > 0) and initial advertising spending, 𝛾𝛾𝑘𝑘 measures the overall effect of 
advertising expenditures prior to time 0 on demand in block 𝑘𝑘. 

Φ0 Constant capturing the overall effect of any potential advertising expenditures prior to 
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time 0; Φ0 = 𝜏𝜏𝑟𝑟 ∑ 𝛾𝛾𝑘𝑘
min{𝑘𝑘,𝑠𝑠𝑟𝑟}
𝑘𝑘=1  

𝐹𝐹[𝑡𝑡, {𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟}] [Alternative to 𝐹𝐹(𝑡𝑡)] The market share captured by time 𝑡𝑡 when the piecewise-
constant advertising policy of 𝑎𝑎𝑟𝑟(𝑡𝑡) for 𝑡𝑡 ∈ [0,𝑇𝑇] and 𝑟𝑟 ∈ 𝑅𝑅 is used that sums up to 
𝐸𝐸𝑟𝑟 per capita for channel 𝑟𝑟 over the planning horizon 

Π𝐷𝐷{𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟} The discounted profit (from DMP-DISC problem) when the advertising policy 
{𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟} (as in definition of 𝐹𝐹[𝑡𝑡, {𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟}]) is employed. 

Π𝑈𝑈{𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟} The undiscounted profit (from DMP problem) when the advertising policy {𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟} 
(as in definition of 𝐹𝐹[𝑡𝑡, {𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟}]) is employed.  

𝐶𝐶0 Cumulative initial-investment marketing effort in all channels; 𝐶𝐶0 = ∑𝑟𝑟∈𝑅𝑅 Φ𝑟𝑟(𝐸𝐸𝑟𝑟0); 
𝐶𝐶−𝑠𝑠0  Cumulative initial-investment marketing effort in all channels except channel 𝑠𝑠 ∈ 𝑅𝑅; 

𝐶𝐶−𝑠𝑠0 = ∑𝑟𝑟∈𝑅𝑅−{𝑠𝑠} Φ𝑟𝑟(𝐸𝐸𝑟𝑟0) 
𝐸𝐸𝑟𝑟0 Minimum feasible or allocated per capita investment in channel 𝑟𝑟, i.e., 𝐸𝐸𝑟𝑟 ≥ 𝐸𝐸𝑟𝑟0 

𝐸𝐸𝑠𝑠∗(𝐶𝐶−𝑠𝑠0 ) The optimal investment in channel 𝑠𝑠 given cumulative effort in all other channels 
𝐶𝐶−𝑠𝑠0 ; this can be interpreted as the optimal “response” for channel 𝑠𝑠 to 𝐶𝐶−𝑠𝑠0  

𝐸𝐸𝑠𝑠𝑈𝑈 Upper bound on optimal investment in channel 𝑠𝑠 
𝐺𝐺𝑠𝑠1 ,𝐺𝐺𝑠𝑠2 Lower and upper market penetration thresholds – see equations (6) and (7)  
𝑅𝑅𝐴𝐴 A subset of channels that are “active” so that investments beyond the initial allocation 

of 𝐸𝐸0 in them would be warranted 
𝑅𝑅𝐻𝐻/𝑀𝑀 Subset of channels from 𝑅𝑅𝐴𝐴 that have high leverage and medium momentum 
𝑅𝑅𝐻𝐻/𝐿𝐿 Subset of channels from 𝑅𝑅𝐴𝐴 that have high leverage and low momentum 
𝑅𝑅𝑀𝑀/𝑀𝑀 Subset of channels from 𝑅𝑅𝐴𝐴 that have medium leverage and medium momentum 
𝑅𝑅𝑀𝑀/𝐿𝐿 Subset of channels from 𝑅𝑅𝐴𝐴 that have medium leverage and low momentum 
𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Threshold on 𝐶𝐶−𝑠𝑠 when positive investment in channel 𝑠𝑠 becomes feasible; 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =

inf{𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠0  | 𝐸𝐸𝑠𝑠∗(𝐶𝐶−𝑠𝑠) > 𝐸𝐸𝑠𝑠0} 
𝐶𝐶−𝑠𝑠𝐿𝐿𝐿𝐿 Threshold on 𝐶𝐶−𝑠𝑠 when channel 𝑠𝑠 transitions to medium momentum from low 

momentum; 𝐶𝐶−𝑠𝑠𝐿𝐿𝐿𝐿 = inf{𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠0  | 𝐺𝐺[𝐸𝐸𝑠𝑠∗(𝐶𝐶−𝑠𝑠),𝐶𝐶−𝑠𝑠] ≥ 𝐺𝐺𝑠𝑠1} 
𝐶𝐶−𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Threshold on 𝐶𝐶−𝑠𝑠 when optimal channel 𝑠𝑠 investment peaks; 𝐶𝐶−𝑠𝑠

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = inf{𝐶𝐶−𝑠𝑠 ≥
𝐶𝐶−𝑠𝑠0  | 𝐺𝐺(𝐶𝐶−𝑠𝑠 + Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑈𝑈)) ≥ 1

2
(1 − 𝑝𝑝

𝑞𝑞
)} 

𝐶𝐶−𝑠𝑠max Threshold on 𝐶𝐶−𝑠𝑠 when channel 𝑠𝑠 transitions to high momentum and no further 
investment in that channel is warranted; 𝐶𝐶−𝑠𝑠max = inf{𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠0  | 𝐺𝐺(𝐶𝐶−𝑠𝑠 +
Φ𝑠𝑠(𝐸𝐸𝑠𝑠0)) ≥ 𝐺𝐺𝑠𝑠2} 

 
 
Additional notation used in empirical estimation and analysis of Camera case: 
 

Notation Definition 
𝑆𝑆𝑟𝑟(𝑘𝑘) [Exponentially decaying impact of past advertising expenses:] Stock of 

advertising goodwill in channel 𝑟𝑟 by time block 𝑘𝑘: 𝑢𝑢𝑟𝑟(𝑡𝑡) =  𝑆𝑆𝑟𝑟(𝑘𝑘) for 𝑡𝑡 ∈ [(𝑘𝑘 −
1)𝜏𝜏𝑟𝑟 , 𝑘𝑘𝜏𝜏𝑟𝑟) 

𝛼𝛼𝑟𝑟 Channel 𝑟𝑟 base effectiveness level 
𝛿𝛿𝑟𝑟 Remembering rate of advertising goodwill after each time block 
𝜌𝜌𝑟𝑟 Advertising effectiveness exponent in order to impose diminishing return to 

advertising 
Φ𝑟𝑟(𝐸𝐸𝑟𝑟) ,𝛽𝛽𝑟𝑟 Cumulative marketing effort in channel 𝑟𝑟 on demand over the media planning 

horizon. Using exponentially decaying impact of past advertising, Section 3.4 
derives this function as Φ𝑟𝑟(𝐸𝐸𝑟𝑟) = 𝛽𝛽𝑟𝑟𝐸𝐸𝑟𝑟

𝜌𝜌𝑟𝑟 + Φ𝑟𝑟
0 . 
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Appendix B: Theorems & Proofs 
 
Theorem 1 (Section 3.2): Assume that Er dollars per target customer are pre-allocated to channel r for each 
r ∈ R. Then the optimal temporal plan of investing Er in channel r in the DMP problem is obtained by 
maximizing the cumulative marketing effort in that channel over the horizon, which is independent of the plan 
for all the other channels and the word-of-mouth process. Therefore, the Tactical Planning Problem (TPP) can 
be stated as follows:  
 
𝛷𝛷𝑟𝑟(𝐸𝐸𝑟𝑟) = 𝑚𝑚𝑚𝑚𝑚𝑚

0≤𝑎𝑎𝑟𝑟𝑟𝑟≤𝑏𝑏𝑟𝑟
𝑘𝑘=1,...,𝐾𝐾𝑟𝑟

𝜏𝜏𝑟𝑟 ∑
𝐾𝐾𝑟𝑟
𝑘𝑘=1 ∑

min{𝑘𝑘−1,𝑠𝑠𝑟𝑟}
𝑖𝑖=0 𝜙𝜙𝑟𝑟𝑖𝑖�𝑎𝑎𝑟𝑟,𝑘𝑘−𝑖𝑖� + Φr

0               𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡 ∑𝐾𝐾𝑟𝑟𝑘𝑘=0 𝑎𝑎𝑟𝑟𝑟𝑟 ≤ 𝑚𝑚𝐸𝐸𝑟𝑟 .          (TPP) 

 
The resulting optimal cumulative effort, Φr(Er), is concave and non-decreasing in Er. In addition, the optimal 
plan of investing in channel r would be non-increasing over time, i.e. ark∗  is non-increasing in k. 

Proof: First note that the differential equation in DMP problem has a closed form solution as follows:  

 𝐹𝐹(𝑇𝑇) = 𝐺𝐺 �∑𝑟𝑟∈𝑅𝑅 𝜏𝜏𝑟𝑟 �∑
𝐾𝐾𝑟𝑟
𝑘𝑘=1 ∑

min{𝑘𝑘−1,𝑠𝑠𝑟𝑟}
𝑖𝑖=0 𝜙𝜙𝑟𝑟𝑖𝑖(𝑎𝑎𝑟𝑟,𝑘𝑘−𝑖𝑖)� + Φr

0�. 

Now assume that the total budget allocated to each channel per target customer, 𝐸𝐸𝑟𝑟 for all 𝑟𝑟 ∈ 𝑅𝑅, is already 
decided. Then the objective function of the DMP problem can be written as  

 max
𝑎𝑎𝑟𝑟𝑟𝑟,𝑟𝑟∈𝑅𝑅,𝑘𝑘=1,...,𝐾𝐾𝑟𝑟

𝑚𝑚𝑚𝑚 �𝐺𝐺 �∑𝑟𝑟∈𝑅𝑅 𝜏𝜏𝑟𝑟 �∑
𝐾𝐾𝑟𝑟
𝑘𝑘=1 ∑

min{𝑘𝑘−1,𝑠𝑠𝑟𝑟}
𝑖𝑖=0 𝜙𝜙𝑟𝑟𝑖𝑖(𝑎𝑎𝑟𝑟,𝑘𝑘−𝑖𝑖)� + Φr

0� − 𝑥𝑥0� − 𝑚𝑚∑𝑟𝑟∈𝑅𝑅 𝐸𝐸𝑟𝑟 . 

Since 𝐸𝐸𝑟𝑟 values are pre-specified and 𝐺𝐺(. ) is an increasing function of its argument, the DMP problem is 
equivalent to the following: 

 max
0≤𝑎𝑎𝑟𝑟𝑟𝑟≤𝑏𝑏𝑟𝑟,

𝑟𝑟∈𝑅𝑅,𝑘𝑘=1,...,𝐾𝐾𝑟𝑟

∑𝑟𝑟∈𝑅𝑅 𝜏𝜏𝑟𝑟 �∑
𝐾𝐾𝑟𝑟
𝑘𝑘=1 ∑

min{𝑘𝑘−1,𝑠𝑠𝑟𝑟}
𝑖𝑖=0 𝜙𝜙𝑟𝑟𝑖𝑖(𝑎𝑎𝑟𝑟,𝑘𝑘−𝑖𝑖)� + Φr

0        subject to:  𝑚𝑚 𝐸𝐸𝑟𝑟 = ∑𝐾𝐾𝑟𝑟𝑘𝑘=1 𝑎𝑎𝑟𝑟𝑟𝑟 for all 𝑟𝑟 ∈ 𝑅𝑅. 

However, note that the objective function and the constraints in this problem are separable in terms of each of 
the channels, meaning that it is enough to maximize with respect to the marketing expenses in each of the 
channels separately. Further, since all of the 𝜙𝜙𝑟𝑟𝑖𝑖 ’s are increasing functions, it is optimal to spend the whole budget 
𝑚𝑚𝐸𝐸𝑟𝑟 in each channel 𝑟𝑟 even if we set the constraint as ∑𝐾𝐾𝑟𝑟𝑘𝑘=1 𝑎𝑎𝑟𝑟𝑟𝑟 ≤ 𝑚𝑚𝑚𝑚𝑟𝑟. Therefore, solving the TPP problem 
for all channels provide the optimal solution for the DMP problem when the budget in each channel is pre-
determined. 

To establish the properties of the TPP problem, we first rewrite the objective function, making the substitution 
that 𝜓𝜓𝑟𝑟

𝑗𝑗(𝑎𝑎) = ∑min{𝑠𝑠𝑟𝑟,𝑘𝑘𝑟𝑟−𝑗𝑗}
𝑖𝑖=0 𝜙𝜙𝑟𝑟𝑖𝑖(𝑎𝑎):  

�
𝐾𝐾𝑟𝑟

𝑘𝑘=1

�
min{𝑘𝑘−1,𝑠𝑠𝑟𝑟}

𝑖𝑖=0

𝜙𝜙𝑟𝑟𝑖𝑖�𝑎𝑎𝑟𝑟,𝑘𝑘−𝑖𝑖�  + Φr
0 = 

�
𝐾𝐾𝑟𝑟

𝑘𝑘=1

�
𝑘𝑘

𝑗𝑗=max{𝑘𝑘−𝑠𝑠𝑟𝑟,1}

𝜙𝜙𝑟𝑟
𝑘𝑘−𝑗𝑗�𝑎𝑎𝑟𝑟𝑟𝑟� + Φr

0  =  �
𝐾𝐾𝑟𝑟

𝑗𝑗=1

�
min{𝑗𝑗+𝑠𝑠𝑟𝑟,𝐾𝐾𝑟𝑟}

𝑘𝑘=𝑗𝑗

𝜙𝜙𝑟𝑟
𝑘𝑘−𝑗𝑗�𝑎𝑎𝑟𝑟𝑟𝑟�  + Φr

0 =  �
𝐾𝐾𝑟𝑟

𝑗𝑗=1

𝜓𝜓𝑟𝑟
𝑗𝑗�𝑎𝑎𝑟𝑟𝑟𝑟� + Φr

0. 

As the 𝜓𝜓𝑟𝑟
𝑗𝑗(. ) functions are concave, the TPP problem is an instance of a concave Knapsack problem. Therefore, 
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based on Zipkin (1980), the optimal solution of this problem (Φ𝑟𝑟(𝐸𝐸𝑟𝑟)) is concave increasing in the level of the 
total budget 𝐸𝐸𝑟𝑟. 

Now we establish the non-increasing property of the optimal temporal investment plan. First note that all the 𝜓𝜓𝑟𝑟
𝑗𝑗 

are the same when 𝑗𝑗 ≤ 𝐾𝐾𝑟𝑟 − 𝑠𝑠𝑟𝑟, and involves less and less terms in the summation as 𝑗𝑗 increases for 𝑗𝑗 > 𝐾𝐾𝑟𝑟 −
𝑠𝑠𝑟𝑟. Therefore, the derivative of 𝜓𝜓𝑟𝑟

𝑗𝑗(𝑎𝑎), 𝐷𝐷𝜓𝜓𝑟𝑟
𝑗𝑗(𝑎𝑎), is non-increasing in 𝑗𝑗 for any value of 𝑎𝑎 ∈ [0, 𝑏𝑏𝑟𝑟], in addition 

to being decreasing in 𝑎𝑎 based on their concavity. Based on the KKT conditions and Zipkin (1980), there exists 
a number 𝑀𝑀∗ that uniquely specifies the optimal solution 𝑎𝑎𝑟𝑟𝑟𝑟∗  to the TPP problem as follows:  

 𝐷𝐷𝜓𝜓𝑟𝑟
𝑗𝑗�𝑎𝑎𝑟𝑟𝑟𝑟∗ � > 𝑀𝑀∗  iff  𝑎𝑎𝑟𝑟𝑟𝑟∗ = 𝑏𝑏𝑟𝑟 

 𝐷𝐷𝜓𝜓𝑟𝑟
𝑗𝑗�𝑎𝑎𝑟𝑟𝑟𝑟∗ � = 𝑀𝑀∗  iff  𝑎𝑎𝑟𝑟𝑟𝑟∗ ∈ (0, 𝑏𝑏𝑟𝑟) 

 𝐷𝐷𝜓𝜓𝑟𝑟
𝑗𝑗�𝑎𝑎𝑟𝑟𝑟𝑟∗ � < 𝑀𝑀∗  iff  𝑎𝑎𝑟𝑟𝑟𝑟∗ = 0. 

Given that each 𝐷𝐷𝜓𝜓𝑟𝑟
𝑗𝑗(. ) is strictly decreasing, we should have 𝑎𝑎𝑟𝑟𝑟𝑟∗ > 0 if and only if 𝐷𝐷𝜓𝜓𝑟𝑟

𝑗𝑗(0) > 𝑀𝑀∗. With the 
decreasing property of 𝐷𝐷𝜓𝜓𝑟𝑟

𝑗𝑗 in 𝑗𝑗, this means that there should be an integer 𝑘𝑘0∗ such that if 𝑗𝑗 ≤ 𝑘𝑘0∗, the optimal 
spending is positive (𝑎𝑎𝑟𝑟𝑟𝑟∗ > 0), but the optimal spending drops to 0 for 𝑗𝑗 > 𝑘𝑘0∗. In addition, note that 𝑎𝑎𝑟𝑟𝑟𝑟∗ = 𝑏𝑏𝑟𝑟 if 
and only if 𝐷𝐷𝜓𝜓𝑟𝑟

𝑗𝑗(0) > 𝐷𝐷𝜓𝜓𝑟𝑟
𝑗𝑗(𝑏𝑏𝑟𝑟) > 𝑀𝑀∗. Since this condition is a much stronger condition than 𝐷𝐷𝜓𝜓𝑟𝑟

𝑗𝑗(0) > 𝑀𝑀∗, it 
can only hold for some of 𝑗𝑗 ≤ 𝑘𝑘0∗. As 𝐷𝐷𝜓𝜓𝑟𝑟

𝑗𝑗(𝑏𝑏𝑟𝑟) is decreasing in 𝑗𝑗, there should be 𝑘𝑘1∗ ≤ 𝑘𝑘0∗ such that for 𝑗𝑗 ≤ 𝑘𝑘1∗, 
the optimal spend is at the maximum level (𝑎𝑎𝑟𝑟𝑟𝑟∗ = 𝑏𝑏𝑟𝑟), while for 𝑘𝑘1∗ < 𝑗𝑗 ≤ 𝑘𝑘0∗, we should have 𝐷𝐷𝜓𝜓𝑟𝑟

𝑗𝑗(𝑎𝑎𝑟𝑟𝑟𝑟∗ ) = 𝑀𝑀∗. 
In addition, for 𝑘𝑘1∗ < 𝑗𝑗 ≤ 𝑘𝑘0∗, the property that 𝐷𝐷𝜓𝜓𝑟𝑟

𝑗𝑗(𝑎𝑎𝑟𝑟𝑟𝑟∗ ) = 𝑀𝑀∗ translates to 𝑎𝑎𝑟𝑟𝑟𝑟∗  to be strictly decreasing in 𝑗𝑗. 
Putting it all together, this means that the optimal spending over time would be at the maximum level for 𝑗𝑗 ≤ 𝑘𝑘1∗, 
gradually drops toward 0 when 𝑘𝑘1∗ < 𝑗𝑗 ≤ 𝑘𝑘0∗, and remains at 0 for 𝑗𝑗 > 𝑘𝑘0∗, establishing the non-increasing 
property of optimal spend. ∎  

Theorem 2 (Section 3.3): The following error bounds can be obtained on discounted profit and total discounted 
sales of the discounted problem: 

0 ≤ Π𝐷𝐷{𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟𝐷𝐷} − Π𝐷𝐷{𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟𝑈𝑈} ≤ Π𝐷𝐷{𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟𝐷𝐷} − Π𝐷𝐷{𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟𝑈𝑈} 

                               ≤ 𝑚𝑚𝑚𝑚 ��1 − 𝑒𝑒−𝜃𝜃𝜃𝜃�(𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟𝑈𝑈}] − 𝑥𝑥0) − 𝜃𝜃 ∫ (𝐹𝐹[𝑡𝑡, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟𝑈𝑈}] − 𝑥𝑥0)𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑𝑇𝑇
0 �, 

0 ≤ � �
𝑑𝑑𝑑𝑑[𝑡𝑡, {𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟𝑈𝑈}]

𝑑𝑑𝑑𝑑
−
𝑑𝑑𝑑𝑑[𝑡𝑡, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟𝑈𝑈}]

𝑑𝑑𝑑𝑑
� 𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑

𝑇𝑇

0
≤

≤ �1 − 𝑒𝑒−𝜃𝜃𝜃𝜃�(𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟𝑈𝑈}] − 𝑥𝑥0) − 𝜃𝜃� (𝐹𝐹[𝑡𝑡, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟𝑈𝑈}] − 𝑥𝑥0)𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑
𝑇𝑇

0
. 

Proof: First note that for a given investment plan {𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟}, Π𝐷𝐷{𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟} can be written as follows after applying 
integration by parts: 

Π𝐷𝐷{𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟} = �� �𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑[𝑡𝑡, {𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟}]

𝑑𝑑𝑑𝑑
𝑒𝑒−𝜃𝜃𝜃𝜃 −�𝑎𝑎𝑟𝑟(𝑡𝑡)

𝑟𝑟∈𝑅𝑅

� 𝑑𝑑𝑑𝑑
𝑇𝑇

0
�

= 𝑚𝑚𝑚𝑚 �𝑒𝑒−𝜃𝜃𝜃𝜃(𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟}] − 𝑥𝑥0) + 𝜃𝜃� (𝐹𝐹[𝑡𝑡, {𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟}] − 𝑥𝑥0)𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑
𝑇𝑇

0
� − 𝑚𝑚�𝐸𝐸𝑟𝑟

𝑟𝑟∈𝑅𝑅

 

In the above expression, the profit depends on the cumulative adoption at any point of time rather than the 
derivative. A couple of notes are in place. First, cumulative adoptions can be written in closed form (i.e., 
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𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟|𝐸𝐸𝑟𝑟}] = 𝐺𝐺(∑𝑟𝑟∈𝑅𝑅 Φ𝑟𝑟)), and therefore, the total market share adopted depends on the cumulative 
marketing effort up to that time. Second, the undiscounted tactical problem maximizes the cumulative marketing 
effort over the whole horizon based on the TPP, which means that the final market share adopted at time 𝑇𝑇 based 
on the undiscounted policy would be no less than that of the discounted one if the same total budget is spent, 
i.e., 𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟}] ≥ 𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟}] ≥ 𝐹𝐹[𝑡𝑡, {𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟}]. Therefore we have: 

Π𝐷𝐷{𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟} ≤ 𝑚𝑚𝑚𝑚 �𝑒𝑒−𝜃𝜃𝜃𝜃(𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟}] − 𝑥𝑥0) + 𝜃𝜃� (𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟}] − 𝑥𝑥0)𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑
𝑇𝑇

0
� − 𝑚𝑚�𝐸𝐸𝑟𝑟

𝑟𝑟∈𝑅𝑅

= 𝑚𝑚𝑚𝑚(𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟}] − 𝑥𝑥0) −𝑚𝑚�𝐸𝐸𝑟𝑟
𝑟𝑟∈𝑅𝑅

= Π𝑈𝑈{𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟} ≤ Π𝑈𝑈{𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟}          (𝐼𝐼1) 

Consequently, for a given strategic budget allocation {𝐸𝐸𝑟𝑟}, if we implement the undiscounted optimal tactical 
plan instead of the optimal tactical plan for the discounted problem, we would have the following bounds: 

0 ≤ Π𝐷𝐷{𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟} − Π𝐷𝐷{𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟} 

≤ Π𝑈𝑈{𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟} −𝑚𝑚𝑚𝑚��
𝑑𝑑𝑑𝑑[𝑡𝑡, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟}]

𝑑𝑑𝑑𝑑
𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑

𝑇𝑇

0
� + 𝑚𝑚�𝐸𝐸𝑟𝑟

𝑟𝑟∈𝑅𝑅

 

≤ Π𝑈𝑈{𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟} −𝑚𝑚𝑚𝑚 �𝑒𝑒−𝜃𝜃𝜃𝜃(𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟}] − 𝑥𝑥0) + 𝜃𝜃� (𝐹𝐹[𝑡𝑡, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟}] − 𝑥𝑥0)𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑
𝑇𝑇

0
� + 𝑚𝑚�𝐸𝐸𝑟𝑟

𝑟𝑟∈𝑅𝑅

=  𝑚𝑚𝑚𝑚 ��1 − 𝑒𝑒−𝜃𝜃𝜃𝜃�(𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟}] − 𝑥𝑥0) − 𝜃𝜃� (𝐹𝐹[𝑡𝑡, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟}] − 𝑥𝑥0)𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑
𝑇𝑇

0
� .    (𝐼𝐼2) 

The above relationship then leads to the following regarding the difference in discounted sales if 𝑎𝑎𝑟𝑟𝐷𝐷 or 𝑎𝑎𝑟𝑟𝑈𝑈 are 
used at the tactical level given the strategic budget allocation {𝐸𝐸𝑟𝑟}:  

0 ≤ � �
𝑑𝑑𝑑𝑑[𝑡𝑡, {𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟}]

𝑑𝑑𝑑𝑑
−
𝑑𝑑𝑑𝑑[𝑡𝑡, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟}]

𝑑𝑑𝑑𝑑
� 𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑

𝑇𝑇

0

≤ �1 − 𝑒𝑒−𝜃𝜃𝜃𝜃�(𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟}] − 𝑥𝑥0) − 𝜃𝜃� (𝐹𝐹[𝑡𝑡, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟}] − 𝑥𝑥0)𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑
𝑇𝑇

0
. 

Now we would like to incorporate the effect of optimal strategic budget allocation rather than using a 
predetermined set of values. Using budget allocation {𝐸𝐸𝑟𝑟𝐷𝐷} in the set of inequalities of (I1) and noting that budget 
allocation {𝐸𝐸𝑟𝑟𝑈𝑈} optimizes the profit of the undiscounted DMP problem, we would get: 

Π𝐷𝐷{𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟𝐷𝐷} ≤ Π𝑈𝑈{𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟𝐷𝐷} ≤ Π𝑈𝑈{𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟𝐷𝐷} ≤ Π𝑈𝑈{𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟𝑈𝑈}. 

If now the strategic budget allocation is done on the basis of undiscounted problem (either when only strategic 
undiscounted policy is used, or when both tactical and strategic discounted policies are used), the loss in profit 
would be as follows when (I2) is applied: 

0 ≤ Π𝐷𝐷{𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟𝐷𝐷} − Π𝐷𝐷{𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟𝑈𝑈} ≤ Π𝐷𝐷{𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟𝐷𝐷} − Π𝐷𝐷{𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟𝑈𝑈} ≤ Π𝐷𝐷{𝑎𝑎𝑟𝑟𝐷𝐷|𝐸𝐸𝑟𝑟𝑈𝑈} − Π𝐷𝐷{𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟𝑈𝑈}

≤ 𝑚𝑚𝑚𝑚 ��1 − 𝑒𝑒−𝜃𝜃𝜃𝜃�(𝐹𝐹[𝑇𝑇, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟𝑈𝑈}] − 𝑥𝑥0) − 𝜃𝜃� (𝐹𝐹[𝑡𝑡, {𝑎𝑎𝑟𝑟𝑈𝑈|𝐸𝐸𝑟𝑟𝑈𝑈}] − 𝑥𝑥0)𝑒𝑒−𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑
𝑇𝑇

0
� .∎ 
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Theorem 3 (Section 4.1.1): The optimal investment in channel s is bounded from above by 𝐸𝐸𝑠𝑠𝑈𝑈:   

 𝐸𝐸𝑠𝑠𝑈𝑈 = �
𝐸𝐸𝑠𝑠0 if 𝛷𝛷𝑠𝑠′(𝐸𝐸𝑠𝑠0) < 4𝑞𝑞

𝑃𝑃(𝑞𝑞+𝑝𝑝)2 ,

𝑠𝑠𝑠𝑠𝑝𝑝𝐸𝐸𝑠𝑠≥𝐸𝐸𝑠𝑠0 �𝛷𝛷𝑠𝑠
′(𝐸𝐸𝑠𝑠) ≥ 4𝑞𝑞

𝑃𝑃(𝑞𝑞+𝑝𝑝)2� otherwise
. 

Proof: By the definition of 𝐸𝐸𝑠𝑠𝑈𝑈, for any investment in channel 𝑠𝑠 in the interval (𝐸𝐸𝑠𝑠𝑈𝑈,∞), we should have 
Φ𝑠𝑠
′ (𝐸𝐸𝑠𝑠) < 4𝑞𝑞

𝑃𝑃(𝑞𝑞+𝑝𝑝)2. Then the following inequalities hold, where 𝐺𝐺 = 𝐺𝐺(Φ𝑠𝑠(𝐸𝐸𝑠𝑠) + 𝐶𝐶−𝑠𝑠) and 𝐶𝐶−𝑠𝑠 is the cumulative 

effort from expenditures in all channels except 𝑠𝑠:  

 ∂Π
∂𝐸𝐸𝑠𝑠

([𝐸𝐸𝑠𝑠,𝐶𝐶−𝑠𝑠]) = 𝑚𝑚[𝑃𝑃(1 − 𝐺𝐺)(𝑝𝑝 + 𝑞𝑞𝑞𝑞)Φ𝑠𝑠
′ (𝐸𝐸𝑠𝑠) − 1] 

 < 𝑚𝑚 �𝑃𝑃(1 − 𝐺𝐺)(𝑝𝑝 + 𝑞𝑞𝑞𝑞) 4𝑞𝑞
𝑃𝑃(𝑞𝑞+𝑝𝑝)2 − 1� = −𝑚𝑚

(𝑞𝑞+𝑝𝑝)2
[−4𝑞𝑞(1 − 𝐺𝐺)(𝑝𝑝 + 𝑞𝑞𝑞𝑞) + (𝑞𝑞 + 𝑝𝑝)2] 

 = −𝑚𝑚
(𝑞𝑞+𝑝𝑝)2

[4𝑞𝑞2𝐺𝐺2 − 4𝑞𝑞(𝑞𝑞 − 𝑝𝑝)𝐺𝐺 + (𝑞𝑞 − 𝑝𝑝)2] = −𝑚𝑚
(𝑞𝑞+𝑝𝑝)2 �2𝑞𝑞𝑞𝑞 − (𝑞𝑞 − 𝑝𝑝)�

2 ≤ 0. 

Therefore profit Π decreases in 𝐸𝐸𝑠𝑠 or remains the same for 𝐸𝐸𝑠𝑠 ∈ (𝐸𝐸𝑠𝑠𝑈𝑈,∞) and an investment larger than 𝐸𝐸𝑠𝑠𝑈𝑈 cannot 
provide higher profit.∎ 

Theorem 4 (Section 4.1.2):  Assume that channel s is not a low-leverage channel, i.e. EsU > Es0. Then the 
threshold level Gs

2 is an upper bound on the market penetration level that can be achieved with investment 
vector [Es∗(C−s0 ), C−s0 ], in which an optimal investment is made in channel s while keeping the expenditures in 
all other channels at their initial levels. In addition, one of the following cases must hold for the optimal 
investment Es∗(C−s0 ) in channel s: 
 
“High Momentum”: when G(C0) ≥ Gs

2, demand adoption with current expenditure E0 is sufficiently high and 
any further investment in channel s is not profitable, i.e. Es∗(C−s0 ) = Es0. 
 
“Medium Momentum”: when Gs1 < G(C0) < Gs

2, it is always optimal to increase the investment in channel s, 
i.e. Es∗(C−s0 ) ∈ (Es0, EsU]. 
 
“Low Momentum”: when G(C0) ≤ Gs

1, a small increase in expenditure in channel s results in a profit loss, i.e., 
there exists Esmin > Es0 such that Π[Es, E−s0 ] < Π[Es0, E−s0 ] for all Es ∈ (Es0, Esmin]. However, a larger 
investment Es∗ ∈ (Esmin, EsU] may be profitable.  
 
Proof: Consider an investment vector 𝐸𝐸 = [𝐸𝐸𝑠𝑠,𝐶𝐶−𝑠𝑠] that spends 𝐸𝐸𝑠𝑠 in channel 𝑠𝑠 and achieves a cumulative 
marketing effort of 𝐶𝐶−𝑠𝑠 from all the other channels. Then the derivative of profit with respect to 𝐸𝐸𝑠𝑠 can be written 
as: 

 ∂Π
∂𝐸𝐸𝑠𝑠

[𝐸𝐸𝑠𝑠,𝐶𝐶−𝑠𝑠] = 𝑚𝑚(𝑃𝑃𝐺𝐺′(Φ𝑠𝑠(𝐸𝐸𝑠𝑠) + 𝐶𝐶−𝑠𝑠)Φ𝑠𝑠
′ (𝐸𝐸𝑠𝑠) − 1) (A1) 

  = 𝑚𝑚�𝑃𝑃�1 − 𝐺𝐺(Φ𝑠𝑠(𝐸𝐸𝑠𝑠) + 𝐶𝐶−𝑠𝑠)�(𝑝𝑝 + 𝑞𝑞𝑞𝑞(Φ𝑠𝑠(𝐸𝐸𝑠𝑠) + 𝐶𝐶−𝑠𝑠))Φ𝑠𝑠
′ (𝐸𝐸𝑠𝑠) − 1� 

  = −𝑚𝑚𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠)𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠), 

 where the two functions 𝐻𝐻𝑠𝑠1 and 𝐻𝐻𝑠𝑠2 are defined as follows: 
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⎩
⎨

⎧𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠) = 𝐺𝐺(Φ𝑠𝑠(𝐸𝐸𝑠𝑠) + 𝐶𝐶−𝑠𝑠) − �1
2

(1 − 𝑝𝑝
𝑞𝑞

) − 1
2𝑞𝑞 �(𝑞𝑞 + 𝑝𝑝)2 − 4𝑞𝑞 1

𝑃𝑃Φ𝑠𝑠
′(𝐸𝐸𝑠𝑠)�

𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠) = 𝐺𝐺(Φ𝑠𝑠(𝐸𝐸𝑠𝑠) + 𝐶𝐶−𝑠𝑠) − �1
2

(1 − 𝑝𝑝
𝑞𝑞

) + 1
2𝑞𝑞 �(𝑞𝑞 + 𝑝𝑝)2 − 4𝑞𝑞 1

𝑃𝑃Φ𝑠𝑠
′(𝐸𝐸𝑠𝑠)�

 . (A2) 

Note that the functions 𝐻𝐻𝑠𝑠1 and 𝐻𝐻𝑠𝑠2 are well-defined, as channel 𝑠𝑠 is not a low-leverage channel. Also, the last 
equality in (A1) is obtained by observing that ∂Π

∂𝐸𝐸𝑠𝑠
 is a quadratic equation with respect to 𝐺𝐺(Φ𝑠𝑠(𝐸𝐸𝑠𝑠) + 𝐶𝐶−𝑠𝑠). These 

definitions also imply that, when 𝐸𝐸 = 𝐸𝐸0, ∂Π
∂𝐸𝐸𝑠𝑠

(𝐸𝐸0) reduces to: 

 ∂Π
∂𝐸𝐸𝑠𝑠

(𝐸𝐸0) = −𝑚𝑚(𝐺𝐺(𝐶𝐶0) − 𝐺𝐺𝑠𝑠1)(𝐺𝐺(𝐶𝐶0) − 𝐺𝐺𝑠𝑠2). (A3) 

Now, assume that the allocated investment vector 𝐸𝐸0 is made. Then the optimal response of channel 𝑠𝑠, 𝐸𝐸𝑠𝑠∗(𝐶𝐶−𝑠𝑠0 ), 
is either to maintain the current investment 𝐸𝐸𝑠𝑠0 or increase it to a finite interior local maximizer, 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 ∈ (𝐸𝐸𝑠𝑠0,𝐸𝐸𝑠𝑠𝑈𝑈]. 
If 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 exists, it should set ∂Π

∂𝐸𝐸𝑠𝑠
[𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐶𝐶−𝑠𝑠] to 0, meaning that at least one of 𝐻𝐻𝑠𝑠1 or 𝐻𝐻𝑠𝑠2 should be zero at 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 as 

well. 

First, we establish that 𝐺𝐺𝑠𝑠2 is an upper bound on the optimal demand fraction that can optimally be adopted. To 
do this, note that if 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 exists and is a root of 𝐻𝐻𝑠𝑠2, it results in a higher level of demand adoption than when it is 
a root of 𝐻𝐻𝑠𝑠1 based on the definition of 𝐻𝐻𝑠𝑠1 and 𝐻𝐻𝑠𝑠2 functions. Therefore, we show the claim for when 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 is a 
root of 𝐻𝐻𝑠𝑠2. As Φ𝑠𝑠

′ (𝐸𝐸𝑠𝑠0) ≥ Φ𝑠𝑠
′ (𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖), we should have 𝐺𝐺𝑠𝑠2 ≥ 𝐺𝐺�𝐶𝐶−𝑠𝑠0 + Φ𝑠𝑠

′ (𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖)�, establishing the claim. 

We now proceed with the investigation of each case, while bearing in mind that ∂Π
∂𝐸𝐸𝑠𝑠

(𝐸𝐸0) is a quadratic equation 

with respect to 𝐺𝐺(𝐶𝐶0) (based on (A3)), having two possible roots, 𝐺𝐺𝑠𝑠1 and 𝐺𝐺𝑠𝑠2. 

Case 1 (High Momentum): The condition 𝐺𝐺(𝐶𝐶0) ≥ 𝐺𝐺𝑠𝑠2 implies that ∂Π
∂𝐸𝐸𝑠𝑠

(𝐸𝐸0) ≤ 0 and therefore profit is non-

increasing at the point 𝐸𝐸𝑠𝑠 = 𝐸𝐸𝑠𝑠0. If no interior local maximizer (𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 > 𝐸𝐸𝑠𝑠0) exists, no local minimum would exist 
as well, especially as lim𝐸𝐸𝑠𝑠→∞Π = −∞. Therefore, ∂Π

∂𝐸𝐸𝑠𝑠
(𝐸𝐸0) remains to be non-positive for any level of 𝐸𝐸𝑠𝑠 ≥ 0, 

and Π is non-increasing in 𝐸𝐸𝑠𝑠. This implies that not investing further in channel 𝑠𝑠 is optimal. If 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 > 𝐸𝐸𝑠𝑠0 exists, 
we have 𝐺𝐺(𝐶𝐶0) ≥ 𝐺𝐺𝑠𝑠2 ≥ 𝐺𝐺�Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖) + 𝐶𝐶−𝑠𝑠0 � based on the upper bounding property of 𝐺𝐺𝑠𝑠2 for the optimal demand 
fraction adopted. Since 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 > 𝐸𝐸𝑠𝑠0, additional marketing cost has been incurred but lower or equal market 
penetration is obtained. Therefore Π[𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐶𝐶−𝑠𝑠0 ] ≤ Π[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠0 ] and not investing further in channel 𝑠𝑠 is optimal. 

Case 2 (Medium Momentum): The condition 𝐺𝐺𝑠𝑠1 < 𝐺𝐺(𝐶𝐶0) < 𝐺𝐺𝑠𝑠2 implies that ∂Π
∂𝐸𝐸𝑠𝑠

(𝐸𝐸0) > 0 which means that 

profit can be increased by at least infinitesimally investing more in channel 𝑠𝑠. Therefore maintaining the initial 
investment of 𝐸𝐸𝑠𝑠0 is not optimal. In addition, as lim𝐸𝐸𝑠𝑠→∞Π = −∞, it should be the case that 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 exists and 
𝐸𝐸𝑠𝑠∗(𝐸𝐸0) = 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖. 

Case 3 (Low Momentum): When 𝐺𝐺(𝐶𝐶0) ≤ 𝐺𝐺𝑠𝑠1, we have ∂Π
∂𝐸𝐸𝑠𝑠

(𝐸𝐸0) ≤ 0; so increasing channel 𝑠𝑠 investment by 

an arbitrarily small level would hinder profitability. If 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 > 𝐸𝐸𝑠𝑠0 does not exist, no local minimum exists as well 
(because lim𝐸𝐸𝑠𝑠→∞Π = −∞) and the profit function is decreasing in 𝐸𝐸𝑠𝑠. Therefore, offering no additional channel 
𝑠𝑠 investment is optimal. If 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 exists, the profitability of offering 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 is dependent on whether it provides 
higher profit in comparison to maintaining the current investment 𝐸𝐸𝑠𝑠0, that is, 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 is the optimal investment in 
channel 𝑠𝑠 if 𝑃𝑃(𝐺𝐺(𝐶𝐶0) − x0) − 𝐸𝐸𝑠𝑠0 < 𝑃𝑃�𝐺𝐺�Φ𝑠𝑠�𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖� + 𝐶𝐶−𝑠𝑠0 � − x0� − 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖.∎  
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Theorem 5 (Section 4.1.4): If there is a channel r ∈ R such that its effectiveness always dominates that of 
channel s (that is, Φs

′(Es) < Φr
′(Er) for all Es ∈ [Es0, EsU] and all Er ∈ [Er0, ErU]) then it is never optimal to invest 

in channel s beyond Es0. 

Proof: Let 𝐸𝐸𝑠𝑠∗,𝐸𝐸𝑟𝑟∗ be the investments in channel 𝑠𝑠 and 𝑟𝑟 in the optimal marketing resource allocation 𝐸𝐸∗ resulting 
in cumulative marketing effort 𝐶𝐶∗. Based on the optimality of channel 𝑟𝑟 investment, we should have ∂Π

∂𝐸𝐸𝑟𝑟
(𝐸𝐸∗) ≤

0 (If optimal channel 𝑟𝑟 investment is non-zero, we have ∂Π
∂𝐸𝐸𝑟𝑟

(𝐸𝐸∗) = 0 and if it is zero, ∂Π
∂𝐸𝐸𝑟𝑟

(𝐸𝐸∗) ≤ 0). Assume 

the contrary, that it is optimal to invest higher than 𝐸𝐸𝑠𝑠0 in channel 𝑠𝑠, i.e., 𝐸𝐸𝑠𝑠∗ > 𝐸𝐸𝑠𝑠0. Then, using the expression 
∂Π
∂𝐸𝐸𝑟𝑟

(𝐸𝐸∗) = 𝑚𝑚[𝑃𝑃𝐺𝐺′(𝐶𝐶∗)Φ𝑟𝑟
′ (𝐸𝐸𝑟𝑟∗) − 1], we have:  

 ∂Π
∂𝐸𝐸𝑠𝑠

(𝐸𝐸∗) = 𝑚𝑚[𝑃𝑃𝐺𝐺′(𝐶𝐶∗)Φ𝑠𝑠
′ (𝐸𝐸𝑠𝑠∗) − 1] = �∂Π

∂𝐸𝐸𝑟𝑟
(𝐸𝐸∗) + 𝑚𝑚� Φ𝑠𝑠

′(𝐸𝐸𝑠𝑠∗)
Φ𝑟𝑟
′ �𝐸𝐸𝑡𝑡∗�

− 𝑚𝑚 

  = ∂Π
∂𝐸𝐸𝑟𝑟

(𝐸𝐸∗) Φ𝑠𝑠
′(𝐸𝐸𝑠𝑠∗)

Φ𝑟𝑟
′ (𝐸𝐸𝑟𝑟∗) + 𝑚𝑚�Φ𝑠𝑠

′(𝐸𝐸𝑠𝑠∗)
Φ𝑟𝑟
′ (𝐸𝐸𝑟𝑟∗) − 1� ≤ 𝑚𝑚 �Φ𝑠𝑠

′(𝐸𝐸𝑠𝑠∗)
Φ𝑟𝑟
′ (𝐸𝐸𝑟𝑟∗) − 1� < 0. 

The last inequality follows from the fact that the effectiveness of channel 𝑟𝑟 dominates that of channel 𝑠𝑠. As 𝐸𝐸𝑠𝑠∗ >
𝐸𝐸𝑠𝑠0, ∂Π

∂𝐸𝐸𝑠𝑠
(𝐸𝐸∗) < 0 means that we can strictly increase the total profit by decreasing the level of channel 𝑠𝑠 

investment, which is in contradiction with optimality of 𝐸𝐸∗.∎ 

Theorem 6 (Section 4.2): If (Φs
−1(x))′ is convex in x for all x ≥ 0 and s ∈ RA, then PG(x + z) −Φs

−1(x) is 
concave or S-shaped in x. 

Proof: The function 𝑃𝑃𝑃𝑃(𝑥𝑥 + 𝑧𝑧) −Φ𝑠𝑠
−1(𝑥𝑥) is concave or S-shaped when its derivative is either always 

decreasing, always increasing, or it increases up to some point and then decreases. This property is equivalent 
to the derivative being quasi-concave (as the derivative is defined over real numbers). The derivative can be 
written as follows:  

 𝜋𝜋(𝑥𝑥)  =  𝑃𝑃𝐺𝐺′(𝑥𝑥 + 𝑧𝑧) − 1

Φ𝑠𝑠
′�Φ𝑠𝑠

−1(𝑥𝑥)�
 =  𝑃𝑃(𝑝𝑝+𝑞𝑞)2

𝑝𝑝
𝑒𝑒−(𝑝𝑝+𝑞𝑞)(𝑥𝑥+𝑧𝑧)

(1+(𝑞𝑞/𝑝𝑝) 𝑒𝑒−(𝑝𝑝+𝑞𝑞)(𝑥𝑥+𝑧𝑧))2
− (Φ𝑠𝑠

−1(𝑥𝑥))′. 

Note that we can write 𝜋𝜋(𝑥𝑥) as a composition of two functions, that is, 𝜋𝜋(𝑥𝑥) = 𝜋𝜋� ∘ 𝑦𝑦(𝑥𝑥) where 𝜋𝜋�(𝑢𝑢) =
𝑃𝑃(𝑝𝑝+𝑞𝑞)2

𝑝𝑝
𝑢𝑢

(1+𝑞𝑞/𝑝𝑝 𝑢𝑢)2
− (Φ𝑠𝑠

−1(𝑥𝑥))′|
𝑥𝑥=−ln(𝑢𝑢)

𝑝𝑝+𝑞𝑞 −𝑧𝑧 for 𝑢𝑢 ∈ (0,1] and 𝑦𝑦(𝑥𝑥) = 𝑒𝑒−(𝑝𝑝+𝑞𝑞)(𝑥𝑥+𝑧𝑧). Now we claim that the 

composition of a real-valued quasiconcave function with a real-valued decreasing function remains 
quasiconcave; as a result if 𝜋𝜋�(𝑢𝑢) is quasiconcave, 𝜋𝜋(𝑥𝑥) would be quasiconcave as well, noting that 𝑦𝑦(. ) is a 
monotone decreasing function. To show this, note that if 𝜋𝜋�(𝑢𝑢) is quasiconcave, one of the following holds: Either 
𝜋𝜋�(𝑢𝑢) is monotone increasing or monotone decreasing over the range of the function 𝑦𝑦(. ), in which case the 
function 𝜋𝜋(𝑥𝑥) = 𝜋𝜋� ∘ 𝑦𝑦(𝑥𝑥) would be monotone decreasing or monotone increasing respectively. Otherwise, if 
𝜋𝜋�(𝑢𝑢) increases and then decreases over the range of 𝑢𝑢 in the range of function 𝑦𝑦(. ), it has a unique maximizer 
𝑢𝑢∗ = 𝑦𝑦(𝑥𝑥∗) such that for 𝑢𝑢 < 𝑢𝑢∗ we have 𝜋𝜋�(𝑢𝑢) increasing, and for 𝑢𝑢 > 𝑢𝑢∗ it is decreasing. Therefore, for two 
levels of 𝑥𝑥1 < 𝑥𝑥2 in the domain of 𝑦𝑦(. ) we can make the following deductions which shows that 𝜋𝜋(𝑥𝑥) would 
have an increasing-decreasing pattern: 

 𝑥𝑥1 < 𝑥𝑥2 < 𝑥𝑥∗   ⇒     𝑦𝑦(𝑥𝑥1) > 𝑦𝑦(𝑥𝑥2) > 𝑢𝑢∗   ⇒     𝜋𝜋� ∘ 𝑦𝑦(𝑥𝑥1) < 𝜋𝜋� ∘ 𝑦𝑦(𝑥𝑥2)   ⇒   𝜋𝜋 is increasing 

 𝑥𝑥∗ < 𝑥𝑥1 < 𝑥𝑥2   ⇒     𝑢𝑢∗ > 𝑦𝑦(𝑥𝑥1) > 𝑦𝑦(𝑥𝑥2)   ⇒     𝜋𝜋� ∘ 𝑦𝑦(𝑥𝑥1) > 𝜋𝜋� ∘ 𝑦𝑦(𝑥𝑥2)   ⇒   𝜋𝜋 is decreasing 

Now the only issue remaining is to setup conditions that guarantee quasiconcavity of 𝜋𝜋�(𝑢𝑢), with one such 
condition being 𝜋𝜋�(𝑢𝑢) to be concave. Note that the first term of 𝜋𝜋�(𝑢𝑢) is concave as its derivative 
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𝑃𝑃(𝑝𝑝+𝑞𝑞)2

𝑝𝑝(1+𝑞𝑞/𝑝𝑝𝑝𝑝)4
�1 − (𝑞𝑞

𝑝𝑝
𝑢𝑢)2� is decreasing in 𝑢𝑢. Consequently, 𝜋𝜋�(𝑢𝑢) is concave (and hence quasi-concave) if 

(Φ𝑠𝑠
−1(𝑥𝑥))′|

𝑥𝑥=−ln(𝑢𝑢)
𝑝𝑝+𝑞𝑞 −𝑧𝑧 is convex. As −ln(𝑢𝑢)

𝑝𝑝+𝑞𝑞
− 𝑧𝑧 is convex in 𝑢𝑢 and (Φ𝑠𝑠

−1(𝑥𝑥))′ is increasing, this function would 

be convex if (Φ𝑠𝑠
−1(𝑥𝑥))′ is convex in 𝑥𝑥. ∎ 

Lemma 1 Assume that channel 𝑠𝑠 has either medium leverage (𝐸𝐸𝑠𝑠0 < 𝐸𝐸𝑠𝑠𝑈𝑈 < ∞) or high leverage (𝐸𝐸𝑠𝑠𝑈𝑈 = ∞). 
Also let the functions 𝐻𝐻𝑠𝑠1 and 𝐻𝐻𝑠𝑠2 be defined as in (A2), and the investment level 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 be denoted as follows: 

𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠0 )

=

⎩
⎪
⎨

⎪
⎧

The single root of 𝐻𝐻𝑠𝑠2(. ;𝐶𝐶−𝑠𝑠0 )
If 𝐸𝐸𝑠𝑠𝑈𝑈 = ∞ or

𝐺𝐺�𝐶𝐶−𝑠𝑠0 + Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑈𝑈)� ≥
1
2
�1 −

𝑝𝑝
𝑞𝑞
� , i. e. ,𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠0 ) ≥ 0

The larger of the two possible roots of 𝐻𝐻𝑠𝑠1(. ;𝐶𝐶−𝑠𝑠0 ) Otherwise

 

If 𝐺𝐺𝑠𝑠1 < 𝐺𝐺(𝐶𝐶0) < 𝐺𝐺𝑠𝑠2 (medium momentum channel), 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 ∈ (𝐸𝐸𝑠𝑠0,𝐸𝐸𝑠𝑠𝑈𝑈] is well defined and represents the optimal 
investment of magnitude at least 𝐸𝐸𝑠𝑠0. But if 𝐺𝐺(𝐶𝐶0) ≤ 𝐺𝐺𝑠𝑠1 (low momentum channel) and 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 ∈ (𝐸𝐸𝑠𝑠0,𝐸𝐸𝑠𝑠𝑈𝑈] exists, 
it represents the optimal investment in channel 𝑠𝑠 provided that it generates a larger profit than the current 
investment 𝐸𝐸𝑠𝑠0.  

Proof: We would like to find the optimal expenditure in channel 𝑠𝑠 from one of the following two (equivalent) 
optimization problems: 

 max
𝐸𝐸𝑠𝑠≥0

 Π = 𝑚𝑚(𝑃𝑃𝑃𝑃(Φ𝑠𝑠(𝐸𝐸𝑠𝑠) + 𝐶𝐶−𝑠𝑠0 ) − 𝐸𝐸𝑠𝑠)      max 
𝑥𝑥≥0

Π� = 𝑚𝑚(𝑃𝑃𝑃𝑃(𝑥𝑥 + 𝐶𝐶−𝑠𝑠0 ) −Φ𝑠𝑠
−1(𝑥𝑥)). 

These two problems are equivalent, as the objective of the second one is the composition of the first objective 
with the monotone increasing function Φ𝑠𝑠

−1(𝑥𝑥). Because of the assumptions of Section 4.2 , either Π or Π� is S-
shaped with respect to its argument and can have at most two local minima and maxima, with at most one of 
them being a local maximum. If there is only one such point, then it should be a local maximum because 
increasingly large solutions would result in negative profit. As the two optimization problems are equivalent, if 
only Π� is S-shaped, it would imply that Π would have at most one local maximum as well. Therefore, from now 
on we focus on the objective function Π having at most one local maximum and one local minimum. Also note 
that, as shown in the proof of the categorization of Section 4.1.2, ∂Π

∂𝐸𝐸𝑠𝑠
�𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐸𝐸−𝑠𝑠0 � =

−𝑚𝑚𝐻𝐻𝑠𝑠1�𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖;𝐶𝐶−𝑠𝑠0 �𝐻𝐻𝑠𝑠2�𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖;𝐶𝐶−𝑠𝑠0 �, with the local maximizer 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 setting at least one of 𝐻𝐻𝑠𝑠1 or 𝐻𝐻𝑠𝑠2 to zero. 

Consider the case that 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 is a root of 𝐻𝐻𝑠𝑠2. Based on the definition of 𝐻𝐻𝑠𝑠2, we should have 𝐺𝐺�Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖) + 𝐶𝐶−𝑠𝑠0 � ≥
1
2

(1 − 𝑝𝑝
𝑞𝑞

) which is the range of demand adoption for which 𝐺𝐺, and consequently Π is concave. Therefore, if 𝐻𝐻𝑠𝑠2 

has a root, it is the local maximum. In addition, 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠0 ) is increasing in 𝐸𝐸𝑠𝑠 based on concavity and 
monotonicity of Φ𝑠𝑠, so it can have at most one root. Further, note that 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠0;𝐶𝐶−𝑠𝑠0 ) = 𝐺𝐺(𝐶𝐶0) − 𝐺𝐺𝑠𝑠2 < 0 and 𝐻𝐻𝑠𝑠2 
is an increasing function of 𝐸𝐸𝑠𝑠. As the optimal solution can be no greater than 𝐸𝐸𝑠𝑠𝑈𝑈, the existence of a root for 
𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠0 ) depends on the sign of 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈;𝐶𝐶−𝑠𝑠0 ), that is, 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈;𝐶𝐶−𝑠𝑠0 ) has a root if and only if it is non-negative. 

When 𝐸𝐸𝑠𝑠𝑈𝑈 = ∞, we need to evaluate lim𝐸𝐸𝑠𝑠→∞𝐻𝐻𝑠𝑠
2(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠0 ) to see whether 𝐻𝐻𝑠𝑠2 has a root or not. To do this, note 

that when 𝐸𝐸𝑠𝑠𝑈𝑈 = ∞, lim𝐸𝐸𝑠𝑠→∞Φ𝑠𝑠 ′(𝐸𝐸𝑠𝑠) > 4𝑞𝑞
𝑃𝑃(𝑞𝑞+𝑝𝑝)2, which means that lim𝐸𝐸𝑠𝑠→∞Φ𝑠𝑠(𝐸𝐸𝑠𝑠) = ∞. Substituting these 

quantities into lim𝐸𝐸𝑠𝑠→∞𝐻𝐻𝑠𝑠
2(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠0 ) we have: 
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 lim
𝐸𝐸𝑠𝑠→∞

𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠0 )  =  𝐺𝐺 �𝐶𝐶−𝑠𝑠0 + lim
𝐸𝐸𝑠𝑠→∞

Φ𝑠𝑠(𝐸𝐸𝑠𝑠)� − �1
2

(1 − 𝑝𝑝
𝑞𝑞

) + 1
2𝑞𝑞 �(𝑞𝑞 + 𝑝𝑝)2 − 4𝑞𝑞 1

𝑃𝑃 lim
𝐸𝐸𝑠𝑠→∞

Φ𝑠𝑠
′(𝐸𝐸𝑠𝑠)� 

   ≥  1 − �1
2
�1 − 𝑝𝑝

𝑞𝑞
� + 1

2𝑞𝑞 �(𝑞𝑞 + 𝑝𝑝)2 − 4𝑞𝑞 1
𝑃𝑃 Φ𝑠𝑠

′�𝐸𝐸𝑠𝑠0�
�   =   1 − 𝐺𝐺𝑠𝑠2  ≥  0 

Therefore we can conclude that, when 𝐸𝐸𝑠𝑠𝑈𝑈 = ∞, 𝐻𝐻𝑠𝑠2 always has a root determining the optimal channel 𝑠𝑠 
investment. But when 𝐸𝐸𝑠𝑠𝑈𝑈 < ∞, we have Φ𝑠𝑠

′ (𝐸𝐸𝑠𝑠𝑈𝑈) = 4𝑞𝑞
𝑃𝑃(𝑞𝑞+𝑝𝑝)2, which allows us to simplify 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈;𝐶𝐶−𝑠𝑠0 ) =

𝐺𝐺(𝐶𝐶−𝑠𝑠0 + Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑈𝑈)) − 1
2

(1 − 𝑝𝑝
𝑞𝑞

). Therefore 𝐻𝐻𝑠𝑠2 has a root if and only if 𝐺𝐺(𝐶𝐶−𝑠𝑠0 + Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑈𝑈)) ≥ 1
2

(1 − 𝑝𝑝
𝑞𝑞

). 

Alternatively if 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 is not a root of 𝐻𝐻𝑠𝑠2, we should have 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈;𝐶𝐶−𝑠𝑠0 ) < 0, and a local maximizer should be the 
root of 𝐻𝐻𝑠𝑠1(. ;𝐶𝐶−𝑠𝑠0 ) if it exists (which we know it does for medium momentum channel). As 𝐻𝐻𝑠𝑠2 does not have a 
root, 𝐻𝐻𝑠𝑠1 can have at most two roots. Note that we cannot have two local maximizers without having a local 
minimum. Therefore, one of the roots of 𝐻𝐻𝑠𝑠1 should be a local maximum which should happen at the concave 
portion of Π, and the other should be a local minimum located where Π is convex. The S-shaped property of the 
objective function forces the convex portion of Π to locate for smaller values of 𝐸𝐸𝑠𝑠 than for the concave portion, 
meaning that the interior maximizer should be the larger of the possible two roots of 𝐻𝐻𝑠𝑠1, and it represents the 
optimal solution if it provides larger profit than investing 𝐸𝐸𝑠𝑠0. ∎ 

Lemma 2 If channel 𝑠𝑠 has low momentum, along with medium or high leverage, with respect to the initial 
spend vector 𝐸𝐸0, there is a level of 𝐶𝐶−𝑠𝑠,𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, such that if 𝐶𝐶−𝑠𝑠 < 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, it is optimal to maintain the current 
channel 𝑠𝑠 investment 𝐸𝐸𝑠𝑠0, but when 𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, while the channel remains low momentum, it is optimal to 
increase the level of channel s investment beyond Es

0.  

Proof: Let the interval [𝐶𝐶−𝑠𝑠0 ,𝐶𝐶−̅𝑠𝑠] represent the largest interval of 𝐶𝐶−𝑠𝑠 levels over which channel 𝑠𝑠 maintains its 
low-momentum category. Therefore, for all 𝐶𝐶−𝑠𝑠 ∈ [𝐶𝐶−𝑠𝑠0 ,𝐶𝐶−̅𝑠𝑠], we have 𝐺𝐺([𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠]) ≤ 𝐺𝐺([𝐸𝐸𝑠𝑠∗(𝐶𝐶−𝑠𝑠),𝐶𝐶−𝑠𝑠]) ≤ 𝐺𝐺𝑠𝑠1, 
which means that, based on low momentum categorization, it is optimal to increase the level of channel 𝑠𝑠 
investment when two conditions hold: (1) an interior maximizer for channel 𝑠𝑠 investment larger than 𝐸𝐸𝑠𝑠0 exists; 
and (2) this interior maximizer provides greater profit than maintaining the current investment 𝐸𝐸𝑠𝑠0. As a result, 
we first investigate over which part of the interval [𝐶𝐶−𝑠𝑠0 ,𝐶𝐶−̅𝑠𝑠] an interior solution exists; then over this part, we 
check whether it is profitable to increase channel 𝑠𝑠 investment compared to the current investment 𝐸𝐸𝑠𝑠0. 

We first build the 𝐶𝐶−𝑠𝑠 level, 𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, such that for 𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 an interior maximizer exists, but none exists for 
𝐶𝐶−𝑠𝑠 < 𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. If 𝐸𝐸𝑠𝑠𝑈𝑈 = ∞, an interior maximizer always exists and is obtained from a root of 𝐻𝐻𝑠𝑠2 based on Lemma 
1; therefore, we set 𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶−𝑠𝑠0 . But now focus on the case that 𝐸𝐸𝑠𝑠0 ≤ 𝐸𝐸𝑠𝑠𝑈𝑈 < ∞, in which case 𝐸𝐸𝑠𝑠𝑈𝑈 is independent 
of 𝐶𝐶−𝑠𝑠 and would remain unchanged as 𝐶𝐶−𝑠𝑠 changes. Also recall that the interior maximizer (if it exists) is either 
a root of 𝐻𝐻𝑠𝑠1 or 𝐻𝐻𝑠𝑠2. Lemma 1 establishes that in this case, if 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠) ≥ 0, then 𝐻𝐻𝑠𝑠2 would have a root that 
coincides with the single interior maximizer of profit. However, note that 𝐻𝐻𝑠𝑠2 is increasing in 𝐶𝐶−𝑠𝑠, and as a result, 
a level of 𝐶𝐶−𝑠𝑠 called 𝐶𝐶−𝑠𝑠1 ∈ [𝐶𝐶−𝑠𝑠0 ,𝐶𝐶−̅𝑠𝑠] exists such that 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠) < 0 for 𝐶𝐶−𝑠𝑠 ∈ [𝐶𝐶−𝑠𝑠0 ,𝐶𝐶−𝑠𝑠1 ), but 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠) ≥
0 for [𝐶𝐶−𝑠𝑠1 ,𝐶𝐶−̅𝑠𝑠], in which case an interior maximizer exists. 

Now we focus on the interval [𝐶𝐶−𝑠𝑠0 ,𝐶𝐶−𝑠𝑠1 ) to see in which subinterval an interior maximizer does not exist. Again 
based on Lemma 1, if an interior maximizer exists over this interval, it should be a root of 𝐻𝐻𝑠𝑠1. We claim that 
there is a 𝐶𝐶−𝑠𝑠 level called 𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∈ [𝐶𝐶−𝑠𝑠0 ,𝐶𝐶−𝑠𝑠1 ) such that for 𝐶𝐶−𝑠𝑠 ∈ [𝐶𝐶−𝑠𝑠0 ,𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) , 𝐻𝐻𝑠𝑠1 does not have a root (and 
hence no interior maximizer exists), but for 𝐶𝐶−𝑠𝑠 ∈ [𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶−𝑠𝑠1 ), 𝐻𝐻𝑠𝑠1 has at least one root and an interior 
maximizer exists. To see this, let 𝐸𝐸�𝑠𝑠(𝐶𝐶−𝑠𝑠) be the smallest root of 𝐻𝐻𝑠𝑠1(. ;𝐶𝐶−𝑠𝑠) if it exists (resulting in 
𝐻𝐻𝑠𝑠1(𝐸𝐸�𝑠𝑠(𝐶𝐶−𝑠𝑠);𝐶𝐶−𝑠𝑠) = 0). Note that 𝐻𝐻𝑠𝑠1 is increasing in 𝐶𝐶−𝑠𝑠, and as the channel has low momentum, 𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠) =
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𝐺𝐺(𝐶𝐶0) − 𝐺𝐺𝑠𝑠1 ≤ 0. If for a given 𝐶𝐶−𝑠𝑠 level 𝑐𝑐 ∈ [𝐶𝐶−𝑠𝑠0 ,𝐶𝐶−𝑠𝑠1 ) a root for 𝐻𝐻𝑠𝑠1 exists (i.e., 𝐸𝐸�𝑠𝑠(𝑐𝑐) exists), then for all 𝐶𝐶−𝑠𝑠 ∈
[𝑐𝑐,𝐶𝐶−𝑠𝑠1 ) we should have 𝐻𝐻𝑠𝑠1(𝐸𝐸�𝑠𝑠(𝑐𝑐),𝐶𝐶−𝑠𝑠) ≥ 0 while 𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠) ≤ 0. Therefore, a root for 𝐻𝐻𝑠𝑠1(. ,𝐶𝐶−𝑠𝑠) should 
exist such that 𝐸𝐸�𝑠𝑠(𝐶𝐶−𝑠𝑠) ∈ [𝐸𝐸𝑠𝑠0,𝐸𝐸�𝑠𝑠(𝑐𝑐)] which is either the interior maximizer or another larger root for 𝐻𝐻𝑠𝑠1 exists 
that locally maximizes profit. The continuity of 𝐻𝐻𝑠𝑠1 implies that a level of 𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∈ [𝐶𝐶−𝑠𝑠0 ,𝐶𝐶−𝑠𝑠1 ] should exist to be 
the infimum of all 𝐶𝐶−𝑠𝑠 levels for which a root for 𝐻𝐻𝑠𝑠1 exists. 

When 𝐶𝐶−𝑠𝑠 ∈ [𝐶𝐶−𝑠𝑠0 ,𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), neither of 𝐻𝐻𝑠𝑠1 and 𝐻𝐻𝑠𝑠2 has a root, so the profit function should be decreasing and the 
optimal channel 𝑠𝑠 investment would be 𝐸𝐸𝑠𝑠0. However, for 𝐶𝐶−𝑠𝑠 ∈ [𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶−̅𝑠𝑠], for which an interior maximizer 
exists, we need to look at when the profit of increasing channel 𝑠𝑠 investment to the interior maximizer, 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠), 
exceeds that of maintaining the initial investment 𝐸𝐸𝑠𝑠0 in that channel. Define the difference of these two profits 
per capita as  

 ℎ(𝐶𝐶−𝑠𝑠)  =  1
𝑚𝑚
�Π�𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠),𝐶𝐶−𝑠𝑠)� − Π(𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠)� 

  =  𝑃𝑃𝑃𝑃(Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠)) + 𝐶𝐶−𝑠𝑠) − 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠) − 𝑃𝑃𝑃𝑃(Φ𝑠𝑠(𝐸𝐸𝑠𝑠0) + 𝐶𝐶−𝑠𝑠) + 𝐸𝐸𝑠𝑠0, 

where with a little abuse of notation Π(𝐸𝐸𝑠𝑠,𝐶𝐶−𝑠𝑠) is the profit obtained by investing 𝐸𝐸𝑠𝑠 in channel 𝑠𝑠 and a vector 
of 𝐸𝐸−𝑠𝑠 in all channels except 𝑠𝑠 resulting in cumulative marketing effort of 𝐶𝐶−𝑠𝑠 from all channels except 𝑠𝑠. We 
claim that ℎ(𝐶𝐶−𝑠𝑠) is increasing in 𝐶𝐶−𝑠𝑠 over [𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝐶𝐶−̅𝑠𝑠], which would imply that there is a level of 𝐶𝐶−𝑠𝑠 called 
𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ [𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶−̅𝑠𝑠] such that for 𝐶𝐶−𝑠𝑠 ∈ [𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡] offering the interior maximizer is never optimal, but 
it remains to be optimal for all 𝐶𝐶−𝑠𝑠 levels in [𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐶𝐶−̅𝑠𝑠]. To see this, note that Π is twice continuously 
differentiable and therefore 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠), for 𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, is continuously differentiable in 𝐶𝐶−𝑠𝑠 as well. Also, the 
derivatives of Π at the two points 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠) and 𝐸𝐸𝑠𝑠0 have the following properties by their definition and the fact 
that channel 𝑠𝑠 has low momentum: 

 𝐺𝐺′[𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠),𝐶𝐶−𝑠𝑠]Φ𝑠𝑠
′ �𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠)� = 1                𝑃𝑃𝐺𝐺′[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠]Φ𝑠𝑠

′ (𝐸𝐸𝑠𝑠0) − 1 < 0. 

Therefore, the derivative of ℎ(. ) is as follows: 

 ℎ ′(𝐶𝐶−𝑠𝑠)  =  𝑃𝑃𝐺𝐺′[𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠),𝐶𝐶−𝑠𝑠] �Φ𝑠𝑠
′ �𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠)� ∂𝐸𝐸𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠)
∂𝐶𝐶−𝑠𝑠

+ 1� − ∂𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠)
∂𝐶𝐶−𝑠𝑠

− 𝑃𝑃𝐺𝐺′[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠] 

 >  � 1
Φ𝑠𝑠
′�𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠)�

� �Φ𝑠𝑠
′ �𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠)� ∂𝐸𝐸𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠)
∂𝐶𝐶−𝑠𝑠

+ 1� − ∂𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠)
∂𝐶𝐶−𝑠𝑠

− 1
Φ𝑠𝑠
′(𝐸𝐸𝑠𝑠0)

 

 =  1
Φ𝑠𝑠
′�𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠)�

− 1
Φ𝑠𝑠
′�𝐸𝐸𝑠𝑠0�

 ≥  0, 

with the last inequality following from the concavity of Φ𝑠𝑠
′ . As a result, ℎ(. ) is strictly increasing, which 

establishes the claim. ∎ 

Lemma 3 For a given spend vector [𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠1 ], let channel 𝑠𝑠 have medium or high leverage such that 
𝐺𝐺[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠1 ] < 𝐺𝐺𝑠𝑠2  (low or medium momentum). Then, if it is optimal to increase channel 𝑠𝑠 investment, and 

a) the optimal expenditure is obtained from the root of 𝐻𝐻𝑠𝑠2, an arbitrarily small increase in 𝐶𝐶−𝑠𝑠 results in 
reduction in the optimal channel 𝑠𝑠 investment. 

b) the optimal expenditure is obtained from a root of 𝐻𝐻𝑠𝑠1, an arbitrarily small increase in 𝐶𝐶−𝑠𝑠 results in an 
increase in the optimal channel 𝑠𝑠 investment.  

Proof: a) In this case, we should have 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠1 ) ≥ 0. As 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠) is increasing in 𝐶𝐶−𝑠𝑠, we can find an 
arbitrarily small increase in the level of cumulative marketing effort for all channels except 𝑠𝑠, 𝐶𝐶−𝑠𝑠2 > 𝐶𝐶−𝑠𝑠1 , such 
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that it would remain optimal to increase channel 𝑠𝑠 investment (by continuity of the profit function), 
𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠2 ) ≥ 0, and we still have 𝐺𝐺[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠2 ] < 𝐺𝐺𝑠𝑠2. Also let 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 ) and 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠2 ) be the corresponding 
roots of 𝐻𝐻𝑠𝑠2 (which correspond to the optimal channel 𝑠𝑠 investments) for cumulative marketing efforts of 𝐶𝐶−𝑠𝑠1  
and 𝐶𝐶−𝑠𝑠2  respectively. As 𝐻𝐻𝑠𝑠2 is increasing in 𝐸𝐸𝑠𝑠 and 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 ) is the root of 𝐻𝐻𝑠𝑠2(. ,𝐶𝐶−𝑠𝑠1 ), we should have 
𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠,𝐶𝐶−𝑠𝑠1 ) ≥ 0 for all 𝐸𝐸𝑠𝑠 ≥ 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 ). Therefore, for all 𝐸𝐸𝑠𝑠 ≥ 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 ) we should have 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠,𝐶𝐶−𝑠𝑠2 ) ≥
𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠,𝐶𝐶−𝑠𝑠1 ) ≥ 0, implying that 𝐻𝐻𝑠𝑠2(. ,𝐶𝐶−𝑠𝑠2 ) cannot have a root over the interval [𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 ),𝐸𝐸𝑠𝑠𝑈𝑈]. In other words, 
we should have the root of 𝐻𝐻𝑠𝑠2(. ,𝐶𝐶−𝑠𝑠2 ) such that 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠2 ) ≤ 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 ), establishing the decreasing property. 

b) In this case, since 𝐻𝐻𝑠𝑠1 has a root, 𝐻𝐻𝑠𝑠2 should not have a root as 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠1 ) < 0 by Lemma 1. Now we consider 
what happens in each of the two cases that 𝐺𝐺[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠1 ] is above or below 𝐺𝐺𝑠𝑠1. 

If 𝐺𝐺𝑠𝑠1 ≤ 𝐺𝐺[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠1 ] ≤ 𝐺𝐺𝑠𝑠2 (medium momentum channel), we know that profit increases as the level of channel 𝑠𝑠 
investment increases infinitesimally from 𝐸𝐸𝑠𝑠0 (i.e. ∂Π

∂𝐸𝐸𝑠𝑠
(𝐸𝐸𝑠𝑠0,𝐸𝐸−𝑠𝑠1 ) ≥ 0 where 𝐸𝐸−𝑠𝑠1  is the vector of expenditures in 

all channels except 𝑠𝑠 resulting in 𝐶𝐶−𝑠𝑠1 ). Therefore, as 𝐸𝐸𝑠𝑠 increases, the first point setting ∂Π
∂𝐸𝐸𝑠𝑠

(. ,𝐸𝐸−𝑠𝑠1 ) to zero should 

be a local maximizer. From the other hand, the assumptions in Section 4.2 guarantee that the profit function can 
have at most one local minimum in addition to the local maximum. However, if a local minimum exists (which 
should be after the local maximum), the property of the profit function to be such that lim𝐸𝐸𝑠𝑠→∞Π(𝐸𝐸𝑠𝑠,𝐸𝐸−𝑠𝑠1 ) = −∞ 
cannot be satisfied. Therefore, in this case, the profit function has a single critical point which is a local 
maximum. This consequently means that 𝐻𝐻𝑠𝑠1 has only one root as 𝐻𝐻𝑠𝑠2 does not have any root. In addition, since 
𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠0;𝐶𝐶−𝑠𝑠1 ) = 𝐺𝐺(𝐶𝐶1) − 𝐺𝐺𝑠𝑠1 > 0, 𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠1 ) > 0 for all 𝐸𝐸𝑠𝑠 ∈ [𝐸𝐸𝑠𝑠0,𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 )), where 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 ) is the root of 
𝐻𝐻𝑠𝑠1(. ,𝐶𝐶−𝑠𝑠1 ). Now consider an arbitrarily small increase in the level of cumulative marketing effort for all channels 
except 𝑠𝑠, 𝐶𝐶−𝑠𝑠2 > 𝐶𝐶−𝑠𝑠1 , such that with 𝐶𝐶−𝑠𝑠2  we still have 𝐺𝐺[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠2 ] ≤ 𝐺𝐺𝑠𝑠2 and 𝐻𝐻𝑠𝑠1 continues to have a single root 
denoted by 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠2 ) (achievable by continuity of the profit function and 𝐻𝐻𝑠𝑠1). As 𝐻𝐻𝑠𝑠1 is increasing in 𝐶𝐶−𝑠𝑠, we 
should have 𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠2 ) > 0 for all 𝐸𝐸𝑠𝑠 ∈ [𝐸𝐸𝑠𝑠0,𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 )). Therefore, the root of 𝐻𝐻𝑠𝑠1(. ;𝐶𝐶−𝑠𝑠2 ) cannot happen over 
the interval [𝐸𝐸𝑠𝑠0,𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 )), implying that 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠2 ) ≥ 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 ). 

But if 𝐺𝐺[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠1 ] < 𝐺𝐺𝑠𝑠1 (low momentum channel), we know that profit decreases as the level of channel 𝑠𝑠 
investment increases infinitesimally from 𝐸𝐸𝑠𝑠0 (i.e. ∂Π

∂𝐸𝐸𝑠𝑠
(𝐸𝐸𝑠𝑠0,𝐸𝐸−𝑠𝑠1 ) ≤ 0 where 𝐸𝐸−𝑠𝑠1  is the vector of expenditures in 

all channels except 𝑠𝑠 resulting in 𝐶𝐶−𝑠𝑠1 ). Therefore, as 𝐸𝐸𝑠𝑠 increases, the first point setting ∂Π
∂𝐸𝐸𝑠𝑠

(. ,𝐸𝐸−𝑠𝑠1 ) to zero should 

be a local minimizer. From the other hand, as lim𝐸𝐸𝑠𝑠→∞Π(𝐸𝐸𝑠𝑠,𝐸𝐸−𝑠𝑠1 ) = −∞ along with the two conditions laid out 
in Section 4.2, we can conclude that the profit function has exactly one local maximum and one local minimum. 
This consequently means that 𝐻𝐻𝑠𝑠1 has exactly two roots (as 𝐻𝐻𝑠𝑠2 does not have any) with the larger one representing 
the local maximizer 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 ). In addition, as 𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠0;𝐶𝐶−𝑠𝑠1 ) = 𝐺𝐺(𝐶𝐶1) − 𝐺𝐺𝑠𝑠1 ≤ 0, 𝐻𝐻𝑠𝑠1 is positive between its two 
roots. Now consider an arbitrarily small increase in the level of cumulative marketing effort for all channels 
except 𝑠𝑠, 𝐶𝐶−𝑠𝑠2 > 𝐶𝐶−𝑠𝑠1 , such that with 𝐶𝐶−𝑠𝑠2  we still have 𝐺𝐺[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠2 ] < 𝐺𝐺𝑠𝑠1 and 𝐻𝐻𝑠𝑠1 continues to have two roots with 
the larger one denoted by 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠2 ) again, achievable by continuity of the profit function and 𝐻𝐻𝑠𝑠1). Let 𝑒𝑒 be a 
level of channel 𝑠𝑠 investment that is less than both 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 ) and 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠2 ), which makes both 𝐻𝐻𝑠𝑠1(𝑒𝑒;𝐶𝐶−𝑠𝑠1 ) > 0 
and 𝐻𝐻𝑠𝑠1(𝑒𝑒;𝐶𝐶−𝑠𝑠2 ) > 0; this level of channel 𝑠𝑠 investment exists by continuity of 𝐻𝐻𝑠𝑠1 and the fact that 𝐶𝐶−𝑠𝑠2  is only 
infinitesimally larger than 𝐶𝐶−𝑠𝑠1 . With this construction, we would then have 𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠1 ) ≥ 0 for 𝐸𝐸𝑠𝑠 ∈
[𝑒𝑒,𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 )] and 𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠2 ) ≥ 0 for 𝐸𝐸𝑠𝑠 ∈ [𝑒𝑒,𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠2 )]. Now look at the interval [𝑒𝑒,𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 )]; as 𝐻𝐻𝑠𝑠1 is 
increasing in 𝐶𝐶−𝑠𝑠, we should have 0 ≤ 𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠1 ) < 𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠2 ) for all 𝐸𝐸𝑠𝑠 ∈ [𝑒𝑒,𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 )). Therefore, the 
root of 𝐻𝐻𝑠𝑠1(. ;𝐶𝐶−𝑠𝑠2 ) cannot happen over the interval [𝑒𝑒,𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 )), implying that 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠2 ) ≥ 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠1 ), 
establishing the increasing property. ∎ 

Recall definition of 𝐻𝐻𝑠𝑠1 and 𝐻𝐻𝑠𝑠2 functions as well as the critical quantities 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐶𝐶−𝑠𝑠𝐿𝐿𝐿𝐿,𝐶𝐶−𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐶𝐶−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚: 
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⎩
⎨

⎧𝐻𝐻𝑠𝑠1(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠) = 𝐺𝐺(Φ𝑠𝑠(𝐸𝐸𝑠𝑠) + 𝐶𝐶−𝑠𝑠) − �1
2

(1 − 𝑝𝑝
𝑞𝑞

) − 1
2𝑞𝑞 �(𝑞𝑞 + 𝑝𝑝)2 − 4𝑞𝑞 1

𝑃𝑃Φ𝑠𝑠
′(𝐸𝐸𝑠𝑠)�

𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠;𝐶𝐶−𝑠𝑠) = 𝐺𝐺(Φ𝑠𝑠(𝐸𝐸𝑠𝑠) + 𝐶𝐶−𝑠𝑠) − �1
2

(1 − 𝑝𝑝
𝑞𝑞

) + 1
2𝑞𝑞 �(𝑞𝑞 + 𝑝𝑝)2 − 4𝑞𝑞 1

𝑃𝑃Φ𝑠𝑠
′(𝐸𝐸𝑠𝑠)�

   

𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = inf{𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠0  | 𝐸𝐸𝑠𝑠∗(𝐶𝐶−𝑠𝑠) > 𝐸𝐸𝑠𝑠0} 

𝐶𝐶−𝑠𝑠𝐿𝐿𝐿𝐿 = inf{𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠0  | 𝐺𝐺(𝐶𝐶−𝑠𝑠 + Φ𝑠𝑠(𝐸𝐸𝑠𝑠0)) ≥ 𝐺𝐺𝑠𝑠1} 

𝐶𝐶−𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = inf{𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠0  | 𝐺𝐺(𝐶𝐶−𝑠𝑠 + Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑈𝑈)) ≥

1
2

(1 −
𝑝𝑝
𝑞𝑞

)} 

𝐶𝐶−𝑠𝑠max = inf{𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠0  | 𝐺𝐺(𝐶𝐶−𝑠𝑠 + Φ𝑠𝑠(𝐸𝐸𝑠𝑠0)) ≥ 𝐺𝐺𝑠𝑠2} 
 

Theorem 7 (Section 4.2.1): Suppose the classification of channel s corresponding to the initial spend vector 
E0 is RM/L. The quantities C−strans, C−sLM, C−s

peak and C−smax must exist with C−s0 ≤ C−strans ≤ C−s
peak < C−smax and 

𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≤ 𝐶𝐶−𝑠𝑠𝐿𝐿𝐿𝐿 < 𝐶𝐶−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚. As C−s increases to C−sLM, channel s transitions to medium momentum category, and as 
it further increases to C−smax, it transitions to the high momentum category. Moreover, 

1. Es∗(C−s) = Es0 for C−s ∈ [C−s0 , C−strans) 
2. Es∗(C−s) is increasing smoothly in C−s, for C−s ∈ C−strans, C−s

peak] reaching a maximum value of EsU at 
C−s
peak. Therefore in this range, the interaction of s with others is dominantly synergistic. 

3. Es∗(C−s) is decreasing smoothly in C−s for C−s ∈ C−s
peak, C−smax] reaching its minimum value of Es0 at 

C−smax. Therefore in this range, the interaction of s with others is dominantly substitutive. 
4. 𝐸𝐸𝑠𝑠∗(𝐶𝐶−𝑠𝑠) = 𝐸𝐸𝑠𝑠0 for 𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚.  

 
Proof: First note that as channel 𝑠𝑠 has a low momentum, we should have 𝐺𝐺[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠0 ] ≤ 𝐺𝐺𝑠𝑠1. As 𝐶𝐶−𝑠𝑠 increases, 
𝐺𝐺[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠] increases accordingly, while the two threshold levels 𝐺𝐺𝑠𝑠1 and 𝐺𝐺𝑠𝑠2 remain unchanged. Therefore, the 
two quantities 𝐶𝐶−𝑠𝑠0 ≤ 𝐶𝐶−𝑠𝑠𝐿𝐿𝐿𝐿 ≤ 𝐶𝐶−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 must exist by their definition and the increasing property of 𝐺𝐺(. ). Also, with 
increase in 𝐶𝐶−𝑠𝑠, channel 𝑠𝑠 transitions from low to medium momentum when 𝐶𝐶−𝑠𝑠 reaches 𝐶𝐶−𝑠𝑠𝐿𝐿𝐿𝐿, and to high 
momentum when 𝐶𝐶−𝑠𝑠 reaches 𝐶𝐶−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 by the definition of 𝐶𝐶−𝑠𝑠𝐿𝐿𝐿𝐿 and 𝐶𝐶−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚.  

Based on Lemma 2 and the initial low momentum category of channel 𝑠𝑠, 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 exists in range [𝐶𝐶−𝑠𝑠0 ,𝐶𝐶−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚], and 
it is optimal to increase investment in channel 𝑠𝑠 more than 𝐸𝐸𝑠𝑠0 for 𝐶𝐶−𝑠𝑠 ∈ (𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐶𝐶−𝑠𝑠max). Also, Lemma 1 (and its 
proof) specifies that the optimal level of increase in investment depends on the sign of 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠), specially as 
here we have 𝐸𝐸𝑠𝑠0 < 𝐸𝐸𝑠𝑠𝑈𝑈 < ∞; if 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠) ≥ 0, the optimal investment is found from the root of 𝐻𝐻𝑠𝑠2, but 
otherwise, it is obtained from the larger root of 𝐻𝐻𝑠𝑠1.  But note that 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠) is increasing in 𝐶𝐶−𝑠𝑠. Therefore, 
if for some level of 𝐶𝐶−𝑠𝑠, 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠) is non-negative, it would remain to be so for larger levels of 𝐶𝐶−𝑠𝑠. By 
definition, the level 𝐶𝐶−𝑠𝑠

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 essentially represents the level of 𝐶𝐶−𝑠𝑠 which determines when 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠) changes 
sign and sets 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠𝑈𝑈,𝐶𝐶−𝑠𝑠

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 𝐺𝐺�𝐶𝐶−𝑠𝑠
𝑝𝑝𝑝𝑝𝑎𝑎𝑘𝑘 + Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑈𝑈)� − 1

2
(1 − 𝑝𝑝

𝑞𝑞
) = 0. Based on the continuity of 𝐻𝐻𝑠𝑠2, 𝐶𝐶−𝑠𝑠

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

should exist in the range [𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐶𝐶−𝑠𝑠max]. Therefore when 𝐶𝐶−𝑠𝑠max > 𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, the optimal channel 𝑠𝑠 

investment is obtained from the root of 𝐻𝐻𝑠𝑠2 and based on Lemma 3(a), as the level of 𝐶𝐶−𝑠𝑠 increases, the optimal 
channel 𝑠𝑠 investment decreases. With increase in 𝐶𝐶−𝑠𝑠, 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠) = 𝐺𝐺(Φ𝑠𝑠(𝐸𝐸𝑠𝑠0) + 𝐶𝐶−𝑠𝑠) − 𝐺𝐺𝑠𝑠2 increases as well 
until 𝐻𝐻𝑠𝑠2(𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠) > 0 and 𝐻𝐻𝑠𝑠2 does not have a root any more which coincides with channel 𝑠𝑠 switching to high 
momentum making the offering of 𝐸𝐸𝑠𝑠0 optimal. However, when 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 𝐶𝐶−𝑠𝑠 < 𝐶𝐶−𝑠𝑠

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, the optimal channel 𝑠𝑠 
spend is obtained from a root of 𝐻𝐻𝑠𝑠1 and based on Lemma 3(b), the optimal spend is increasing in 𝐶𝐶−𝑠𝑠. 

Lastly, we need to show that 𝐶𝐶−𝑠𝑠𝐿𝐿𝐿𝐿 is in the range [𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐶𝐶−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚]. Note that 𝐶𝐶−𝑠𝑠𝐿𝐿𝐿𝐿 ≥ 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 since if channel 𝑠𝑠 has 
medium momentum for a level of 𝐶𝐶−𝑠𝑠, it is optimal to increase investment in channel 𝑠𝑠 to more than 𝐸𝐸𝑠𝑠0, and the 
existence of such an interior optimal solution means that it should exist in the first place, establishing that the 
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transition to medium momentum has to happen on or after the case that the interior optimal solution exists. Also 
this transition has to happen before the channel switches to medium momentum category by the continuity of 
𝐺𝐺[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠] in 𝐶𝐶−𝑠𝑠, which establishes the claim. ∎ 

Theorem 8 (Section 4.2.2): Suppose the classification of channel s corresponding to the initial spend vector 
E0 is RH/L. Let C−strans, C−sLM, and C−smax be defined as in Theorem 11. These quantities must exist with C−s0 ≤
C−strans = C−s

peak ≤ C−sLM < C−smax. As C−s increases to C−strans, channel s transitions to medium momentum 
category, and as it further increases to C−smax, it transitions to the high momentum category. Moreover, 
    1.  Es∗(C−s) = Es0 for C−s ∈ [C−s0 , C−strans). 
    2.  Es∗(C−s) is maximized at C−strans, and decreases smoothly for C−s ∈ [C−strans, C−smax] until reaching its 

minimum value of Es0 at C−smax. 
    3.  Es∗(C−s) = Es0 for C−s ≥ C−smax.  
 
Proof: Similar to the proof above for Medium-Leverage Channels, with increase in 𝐶𝐶−𝑠𝑠, channel 𝑠𝑠 transitions 
from low to medium to high momentum, with the transitions happening at 𝐶𝐶−𝑠𝑠𝐿𝐿𝐿𝐿 and 𝐶𝐶−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 by their definition. 
Now based on Lemma 2 and the momentum-based categorization, the level of 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 exists and it is optimal to 
increase investment in channel 𝑠𝑠 for 𝐶𝐶−𝑠𝑠 ∈ (𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐶𝐶−𝑠𝑠max) but not before. However, for 𝐶𝐶−𝑠𝑠 in the range 
(𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐶𝐶−𝑠𝑠max), we know that according to Lemma 2, especially that 𝐸𝐸𝑠𝑠𝑈𝑈 = ∞, an interior maximizer exists and 
is obtained from the root of 𝐻𝐻𝑠𝑠2. Based on Lemma 3(a), we can conclude that until when 𝐶𝐶−𝑠𝑠 ∈ (𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐶𝐶−𝑠𝑠max), 
the optimal channel 𝑠𝑠 investment is decreasing in 𝐶𝐶−𝑠𝑠, but for 𝐶𝐶−𝑠𝑠 > 𝐶𝐶−𝑠𝑠max it is optimal to suffice to the initial 
investment level 𝐸𝐸𝑠𝑠0 given that in that range the channel has high momentum. Given that over this range, the 
maximum channel 𝑠𝑠 spending happens at 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, by the definition of 𝐶𝐶−𝑠𝑠

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 we should have 𝐶𝐶−𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

Next, we investigate how the channel transitions between momentum categories. Similar to the proof for medium 
leverage channels above and by the continuity of 𝐺𝐺[𝐸𝐸𝑠𝑠0,𝐶𝐶−𝑠𝑠] in 𝐶𝐶−𝑠𝑠, the transition from medium to high 
momentum happens at 𝐶𝐶−𝑠𝑠max, and the transition from low to medium momentum occurs on or after 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
(𝐶𝐶−𝑠𝑠𝐿𝐿𝐿𝐿 ≥ 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). ∎ 
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Appendix C: Bayesian Estimation for Camera Data Application & Results  

Here we present the method for extracting the full posterior distribution of the 12 parameters of the 
model in our empirical application to camera sales. Channel 1 is expenditures via free-standing inserts (FSI) 
in flyers; Channel 2 is radio. Specifically, we have 𝜙𝜙𝑟𝑟𝑖𝑖(𝑎𝑎) = 𝛼𝛼𝑟𝑟 𝛿𝛿𝑟𝑟𝑖𝑖  𝑎𝑎𝜌𝜌𝑟𝑟  for months 𝑖𝑖 = 0,1, …, channels 𝑟𝑟 =
1,2, leading to six parameters for relative channel effectiveness 𝛼𝛼𝑟𝑟, exponent 𝜌𝜌𝑟𝑟, and advertising remembering 
rate 𝛿𝛿𝑟𝑟. We also must estimate the diffusion parameters 𝑝𝑝, 𝑞𝑞 and 𝑚𝑚. Lastly, because advertising data start several 
months after the initial product offering, we estimate three additional parameters: 𝑥𝑥0 (initial adoption 
proportion), and {𝑆𝑆1(0), 𝑆𝑆2(0)} (initial advertising goodwill levels). 

Estimation results will be presented in the following order for the 12 estimated quantities: 

Parameter Definition 
𝑝𝑝 Product innovation rate 
𝑞𝑞 Product imitation rate 
𝑚𝑚 Potential market size 

{𝛼𝛼1,𝛼𝛼2} Effectiveness in Channel {1,2} 
�𝜌𝜌1, 𝜌𝜌2� Exponent in Advertising function for Channel {1,2} 
{𝛿𝛿1, 𝛿𝛿2}  Remember rate for Channel {1,2} 
𝑥𝑥0 Fraction of adoptions (market share) at time 0 

{𝑆𝑆1(0), 𝑆𝑆2(0)} Initial Ad level for Channel {1,2} 
 

The model described in Section 3.4 for Sales gives rise to a (log-)likelihood function for the 12 
parameters listed above. A target posterior is obtained by adding in log-priors. Because we do not wish to impose 
conjugacy, we choose relatively flexible priors that conform to the domains of each of the parameters, e.g., Beta 
for those bounded on the unit interval, gamma for non-negative parameters, etc. In all cases, we aim for relatively 
non-informative priors, avoiding those that place too much posterior mass either in the center or edges for (half-
)bounded parameters, and whose first moments do not stray too far from the empirical values reported in Van 
den Bulte & Stremersch (2004). We empirically tune the priors to ensure that the measure of model fit, the 
posterior standard deviation – which is calculated in the Bayesian fashion at each pass of the sampler – is 
minimized. The results we present, with lowest posterior standard deviation, corresponded to the least 
informative prior settings of approximately 20 sets run. 

The sampler was set to use a M-H proposal based on the given log-posterior, with each likelihood 
evaluation coded into MATLAB to compute quickly. All model results are based on 1 million draws burn-in and 
1 million draws for inference, thinned by 50, with a random walk Metropolis-Hastings proposal and pre-tuned 
stepsizes that were held constant across all models. Specific prior settings and stepsizes were as follows, and we 
note in passing that estimation results were not especially sensitive to the latter: 

Parameter Prior Step Size for M-H 
{𝑝𝑝, 𝑞𝑞} Beta(1.5, 1.5) 0.001 
𝑚𝑚 Gamma(14.0, 500) 50 

{𝛼𝛼1,𝛼𝛼2} Gamma(1.5, 1.5) 0.001 
{𝜌𝜌1,𝜌𝜌2} Beta(1.5, 1.5) 0.010 
{𝛿𝛿1, 𝛿𝛿2}  Beta(1.5, 1.5) 0.010 
𝑥𝑥0 Beta(1.5, 3.0) 0.010 

{𝑆𝑆1(0), 𝑆𝑆2(0)} Gamma(2.0, 0.1) 0.010 
 



 
- A16 - 

We note in passing that the prior for 𝑚𝑚 is set to have a data-specific mean of 7,000, but high variance, so is 
relatively noninformative across the possible range of values of 𝑚𝑚. 

 

Estimation Results 

The sampler appeared to converge well, with Effective Sample Sizes above 4000 for all parameters, nearly equal 
summary statistics for the first and second half of the draws used for inference, and split chain Gelman-Rubin 
statistics near 1. Moreover, as shown (far) below, empirical correlation between parameter pairs were not 
extreme, with all squared correlations well below 0.2, nearly unimodal marginal densities, and an essentially 
bell-shaped log-SE histogram. 

Summary statistics for the parameters themselves were given as follows, with mean, standard error, effective 
sample size, lower (0.025) median (0.500), and upper (0.975) quantiles for the posterior credible intervals: 

 

Parameter  Mean    StdErr   ESS   Lower   Median  Upper 
𝑝𝑝 0.0391 0.0172 4037 0.0118 0.0362 0.0738 
𝑞𝑞 0.5445 0.0489 4004 0.4782 0.5376 0.6471 
𝑚𝑚 6738.9 1963.7 4007 3593.3 6918.9 10225.9 
α1 0.0124 0.0081 4122 0.0030 0.0103 0.0371 
α2 0.0081 0.0058 4228 0.0010 0.0069 0.0223 
𝜌𝜌1 0.3777 0.1493 4048 0.0990 0.3816 0.6507 
𝜌𝜌2 0.2722 0.1684 4036 0.0545 0.2330 0.6952 
𝛿𝛿1 0.4038 0.1497 4050 0.1232 0.4068 0.7065 
𝛿𝛿2 0.3602 0.1632 4041 0.0745 0.3697 0.6354 
𝑥𝑥0 0.0808 0.0458 4297 0.0119 0.0758 0.1837 

𝑆𝑆1(0) 1.5781 0.5436 4004 0.6735 1.6771 2.3481 
𝑆𝑆2(0) 1.4068 0.3332 4010 0.6309 1.5054 1.8763 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 16.0890 2.5794 5615 12.1743 15.8109 21.7919 
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Correlation Plot for 12 estimated parameters and model StdErr 

 

 

Reference 

Van den Bulte, C., S. Stremersch. (2004). Social contagion and income heterogeneity in new product diffusion: 
A meta-analytic test. Marketing Science, 23(4), 530-544. 
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Appendix D: Impact of Changes in Demand Response to Advertising on 
Channel Interactions – The Case of Camera Sales 
In this section, we return to the case studied in Sections 3.4 and 4.3, and explore the dependence of nature of 
channel interaction on the nature of demand response to advertising. Specifically, we explore sensitivity of 
channel interactions with respect to two factors: the exponent term 𝜌𝜌2 representing how easily Channel 2 can 
substitute investment in the remaining Channel 1, and inclusion of explicit interaction term in demand response 
to advertising to explicitly enforce substitution or synergy (as has been done in some existing research such as 
Naik & Raman (2003)) in addition to the natural arising of these factors in our setup.   

Sensitivity of Channel Interactions to 𝝆𝝆𝟐𝟐 

 Our cumulative marketing effort functions (8) resemble the well-known family of utility functions with 
constant elasticity of substitution (CES) in economics, where 𝜌𝜌𝑠𝑠 is used as the measure of how easily the 
investment in channel 𝑠𝑠 substitutes with others. In our context for Channel 2, 𝜌𝜌2 can be interpreted as the strength 
of the substitutive interaction of Channel 2 with the remaining Channel 1: as 𝜌𝜌2 increases, the tendency for 
Channel 2 to substitute investment in Channel 1 becomes stronger; in fact, at 𝜌𝜌2 = 1 the function Φ2 becomes 
linear and the interaction of Channel 2 with Channel 1 becomes entirely substitutive. In Section 4.3, we 
illustrated the results based on the estimated value of 𝜌𝜌2 = 0.2722, but in this section, we explore how the 
change in the value of 𝜌𝜌2 impacts the nature of interaction between the two channels.  

In the sensitivity analysis, simply increasing 𝜌𝜌2 in (8) is not very informative, as it creates two counter-
effects: on the one hand, the strength of the substitution of Channel 2 with Channel 1 increases; but on the other, 
the marketing effectiveness of Channel 2 also increases, making comparisons across different 𝜌𝜌2 values 
problematic. In order to isolate the substitution effect, we re-scale the effectiveness coefficient 𝛽𝛽2 so that 
investing 1% of possible revenue per target customer in Channel 2 (i.e., setting 𝐸𝐸2 = 0.01) achieves the same 
level of effectiveness for any 𝜌𝜌2 compared to when it is set to its estimated value of 𝜌𝜌 = 0.2722. Note that the 
investment level of 𝐸𝐸2 = 0.01 is set to be higher than the typical level of investments in Channel 2 for various 
values of 𝜌𝜌2, and it is in fact a bit larger than maximum level of Channel 2 investment (𝐸𝐸2𝑈𝑈 = 0.0098) when 
𝜌𝜌 = 0.2722. The optimal expenditure 𝐸𝐸2∗(𝐸𝐸1) on Channel 2 with respect to 𝐸𝐸1 is depicted in Figure 6 for six 
representative values of 𝜌𝜌2 along with the estimated value. This figure shows the interaction pattern for two 
settings that was considered in Section 4.3: the regular setting in which the media planning horizon starts with 
ending conditions after 28 months, as well setting as if the media planning horizon had started 28 months ago.  

  
Figure 1: Interaction pattern of Channel 2 with Channel 1 for various values of 𝜌𝜌2 – with settings after the initial 28 

months (left panel), and from before the initial 28 months (right panel); * - corresponding optimal spend plan 

A number of key observations emerge as 𝜌𝜌2 increases from 0.1 to 0.95. In the left graph of Figure 6, 
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the interaction of the two channels is mainly substitutive for 𝜌𝜌2 = 0.2722 as observed in Section 4.3, and with 
stronger substitutive tendency of Channel 2, the main substitutive pattern is maintained for larger values of 𝜌𝜌2 
as well. In the right graph where both synergistic and substitutive interaction can be observed for 𝜌𝜌2 = 0.2722, 
both types of interaction can still be observed for lower values of 𝜌𝜌2, but with larger values of 𝜌𝜌2 (0.8 and 0.95), 
the synergy region disappears entirely as the substitutive strength of Channel 2 increases. Moreover, both graphs 
reveal that the optimal Channel 2 spend curves are flatter for lower values of 𝜌𝜌2 and become increasingly more 
peaked at higher values. Here flatter curves correspond to a larger region where it is optimal to spend above 
allocated amounts on both channels; in the right graph, the range where the spend curve is increasing (indicating 
a dominantly synergistic interaction) is also larger for smaller values of 𝜌𝜌2. This is quite intuitive: as 𝜌𝜌2 
decreases, it becomes harder for Channel 2 to substitute Channel 1, leading to more synergistic interactions.  

It is also interesting to observe the impact on the optimal spend plan with change in 𝜌𝜌2 (the * points on 
the graphs). In the left figure that the interaction is mainly substitutive, Channel 1 optimal spending (i.e., the 𝑥𝑥-
coordinate of the ∗ points) is decreasing in 𝜌𝜌2 and the optimal Channel 2 spending is increasing. This indicates 
that with when Channel 2 can more easily substitute Channel 1, it is beneficial to contribute more on this channel 
and cut back on the other. In the right graph, however, the change in the optimal spend plans is non-monotonic 
in 𝜌𝜌2, and for small values of 𝜌𝜌2 they fall on the synergistic region while for larger values they are mainly in the 
substitutive region of interaction. This suggests that factors determining the optimal spend level are relatively 
complex even in this case with only two channels.  

 

Inclusion of explicit interaction term in demand response to advertising 

As discussed earlier, our demand adoption model is relatively general and allows for both substitutive 
and synergistic interaction between channels. However, substitution and synergy, unlike prior literature, are not 
deliberatively “built into” the model, but arises naturally from the native GBM setting, in a way not anticipated 
by prior literature. In this section, we illustrate for the camera sales case of sections 3.4 and 4.3 as to who the 
explicit addition of substitution or synergy into the model would impact the nature of channel interactions. To 
capture this, we follow the form of inclusion of such effects in Naik & Raman (2003) and Naik & Peters (2009) 
through addition of an explicit interaction term in the form of demand response to advertising. Therefore, the 
total market adoption over the media planning horizon in (2) is replaced with the following: 

𝐹𝐹(𝑇𝑇) = 𝐺𝐺(Φ1(𝐸𝐸1) + Φ2(𝐸𝐸2) +  𝜔𝜔Φ1(𝐸𝐸1)Φ2(𝐸𝐸2) ). 

The above demand form reduces to the one considered in this paper when 𝜔𝜔 = 0, it explicitly enforces 
substitutive interaction between channels when 𝜔𝜔 < 0, and it explicitly induces synergy between channels when 
𝜔𝜔 > 0.  However, notice that addition of 𝜔𝜔 also influences the level of total cumulative marketing effort and 
demand adoption. To isolate the impact of explicit enforcement of substitution and synergy, we re-scale the 
effectiveness coefficients 𝛽𝛽1 and 𝛽𝛽2 so that investing 10% of per-target-customer revenue into each of the 
channels (i.e., setting 𝐸𝐸1 = 𝐸𝐸2 = 0.1) achieves the same level of effectiveness for any 𝜔𝜔 compared to when 𝜔𝜔 =
0. The optimal expenditure 𝐸𝐸2∗(𝐸𝐸1) on Channel 2 with respect to 𝐸𝐸1 is depicted in Figure 7 for various 
representative values of 𝜔𝜔 for two cases similar to above: the regular setting in which the media planning horizon 
starts with ending conditions after 28 months, as well setting as if the media planning horizon had started 28 
months ago.  
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Figure 2: Interaction pattern of Channel 2 with Channel 1 for various values of 𝜔𝜔 – with settings after the initial 28 
months (left panel), and from before the initial 28 months (right panel); * - corresponding optimal spend plan 

 

Figure 7 reveals that when an explicit substitutive or synergistic interaction is imposed on the nature of 
demand response to advertising, the optimal pattern of interaction between channels would turn out to be more 
biased towards that enforced pattern. In both right and left panels of this figure it can be seen that when 𝜔𝜔 > 0 
(building synergy into the model), the increasing trend of Channel 2 investment happens for a larger range of 
Channel 1 spending and the Channel 2 investment increases more rapidly. In contrast, when 𝜔𝜔 < 0 (building 
substitution into the model), the decline in Channel 2 spending happens more sharply and for a larger range of 
Channel 1 spending, until Channel 1 spending falls to the minimum allocated Channel 2 spending of 𝐸𝐸20 =
0.0002. Interestingly, even when either of the two forces are build into the model, the other type of interaction 
is not entirely eliminated. For example, when 𝜔𝜔 = 0.004 in the left panel, synergistic interaction is moderately 
built into the model, but still a declining pattern of optimal Channel 2 investment can be observed that is 
indicative of an overall substitutive interaction between channels in the media plan. In contrast, when 𝜔𝜔 =
−0.002 in the right panel, channels are forced to moderately substitute one another, but still for low values of 
Channel 1 spending, the optimal Channel 2 investment is increasing, suggesting a synergistic pattern of 
interaction. In summary, this analysis highlights that even when intrinsic substitutive or synergistic tendencies 
between channels are built into the model, the need for analyzing resulting “media planning interactions” 
between channels remain, as carried out in this paper. These media planning interactions in essence represents 
the overall outcome of various forces in play such as customer word of mouth, intrinsically assumed channel 
interactions, and allocated/prior advertising expenditures.  
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Appendix E: Sensitivity of Optimal Allocation to Relative Channel Cost 

The analysis in Section 4 provided typologies to guide judicious managerial action in different 
channel settings, but held aside the impact of changes in channel costs; here, we examine the role of such 
cost changes on the optimal allocation of marketing expenditures. Recall that the quantity 𝐸𝐸𝑠𝑠 represents the 
total expenditure on channel 𝑠𝑠 per target customer and Φ(𝐸𝐸𝑠𝑠) is the resulting cumulative effectiveness over 
the time horizon 𝑇𝑇. While we have used the same monetary yardstick for both and applied it across all 
channels, in practice marketers typically use channel-specific measures of “currency” when deciding on the 
level of usage of a particular channel. For example, the standard measure of currency for television is GRP 
(gross rating points); a marketing plan will usually specify the number of GRPs that should be purchased 
for a particular TV category (local, national, specialty, etc.) during a given time period. Of course, the cost 
of one GRP may be quite different depending on the channel and program type. Similarly, the common 
currency for online media is “impressions”, for print media it is the “subscriber base”, etc. Thus, to 
differentiate channel-specific currency unit from the actual dollar amount required to acquire it, we will 
introduce scaling coefficients 𝜀𝜀𝑠𝑠 for 𝑠𝑠 ∈ 𝑅𝑅, and assume that 𝜀𝜀𝑠𝑠𝐸𝐸𝑠𝑠 dollars are required per target customer to 
purchase 𝐸𝐸𝑠𝑠 units of channel-specific currency for channel 𝑠𝑠, which will result in the cumulative 
effectiveness of Φ(𝐸𝐸𝑠𝑠). A small (large) value of 𝜀𝜀𝑠𝑠 implies that channel 𝑠𝑠 is inexpensive (expensive) relative 
to the other channels. We thus treat 𝜀𝜀𝑠𝑠 as the “relative cost” of channel 𝑠𝑠. This leads to the following 
modification of the Marketing Effectiveness Allocation (MEA) problem:  

   max
𝐸𝐸𝑟𝑟,𝑟𝑟∈𝑅𝑅

Π = 𝑚𝑚𝑚𝑚�𝐺𝐺�∑𝑟𝑟∈𝑅𝑅 𝛷𝛷𝑟𝑟(𝐸𝐸𝑟𝑟)� − 𝑥𝑥0� − 𝑚𝑚∑𝑟𝑟∈𝑅𝑅 𝜀𝜀𝑟𝑟𝐸𝐸𝑟𝑟, s.t.   𝐸𝐸𝑟𝑟 ∈ [0, 𝑏𝑏𝑟𝑟𝑇𝑇], 𝑟𝑟 ∈ 𝑅𝑅  (Modified MEA) 

Obviously, when 𝜀𝜀𝑠𝑠 = 1 for all 𝑠𝑠 ∈ 𝑅𝑅, the problem above reduces to the original (MEA) problem. 
The above revised problem also resembles the Lagrangian relaxation of the original problem when 
budgetary constraints on the total spend of some or all channels are added to the model. Therefore, 𝜀𝜀𝑠𝑠 can 
alternatively be interpreted as the “shadow price” of the spend in channel 𝑠𝑠 when budgetary limitations are 
present. 

Replicating the analysis for the MEA problem, it is straightforward to revise the channel 
classifications and the definitions of the quantities 𝐸𝐸𝑠𝑠𝑈𝑈(𝜀𝜀𝑠𝑠), 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜀𝜀𝑠𝑠), 𝐶𝐶−𝑠𝑠

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜀𝜀𝑠𝑠), and 𝐶𝐶−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝜀𝜀𝑠𝑠) (which 
now depend on 𝜀𝜀𝑠𝑠) for the Modified MEA problem. We first analyze the effect of increasing the relative 
cost 𝜀𝜀𝑠𝑠 on these quantities to understand how it impacts the channel interactions. Theorem 9 below 
characterizes the solution of Modified MEA as follows:  

Cost Effects for Modified MEA: As 𝜀𝜀𝑠𝑠 increases, 𝐸𝐸𝑠𝑠𝑈𝑈(𝜀𝜀𝑠𝑠) and 𝐶𝐶−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝜀𝜀𝑠𝑠) cannot increase, while 
𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜀𝜀𝑠𝑠) cannot decrease. Moreover, if channel 𝑠𝑠 has medium-leverage for some value of 𝜀𝜀𝑠𝑠 and 
remains so for an increase in 𝜀𝜀𝑠𝑠, the value of 𝐶𝐶−𝑠𝑠

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜀𝜀𝑠𝑠) cannot decrease.  

This result states that, as channel 𝑠𝑠 becomes relatively more expensive, its maximal spend 𝐸𝐸𝑠𝑠𝑈𝑈 
cannot increase, and stronger support from all other channels is required for 𝑠𝑠 to reach its optimal spend. 
Moreover, the range [𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜀𝜀),𝐶𝐶−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝜀𝜀)], where the optimal spend for channel 𝑠𝑠 exceeds the allocated 
level 𝐸𝐸𝑠𝑠0, is shrinking in 𝜀𝜀𝑠𝑠, as it becomes more challenging for the firm to additionally spend in a more 
expensive channel. In addition, the interval where the interaction is dominantly substitutive is shrinking 
(for medium-leverage channels, this interval is [𝐶𝐶−𝑠𝑠

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝐶𝐶−𝑠𝑠max], while for high-leverage channels it is 
[𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝐶𝐶−𝑠𝑠max]). This means that the added cost burden of channel 𝑠𝑠 limits the appropriate development of 
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demand momentum, and leads the firm to rely more on the support from the other channels. 

The next result (see Theorem 10 below) considers the impact of an increase in the relative cost of 
channel 𝑠𝑠 on the optimal channel-level expenditures in the Modified MEA problem. We let the vector 𝐸𝐸∗, 
with components 𝐸𝐸𝑟𝑟∗ ≥ 𝐸𝐸𝑟𝑟0 for 𝑟𝑟 ∈ 𝑅𝑅, be an optimal solution to the MEA problem, and summarize the 
impact of an increase in the relative cost 𝜀𝜀𝑠𝑠 of channel 𝑠𝑠, while keeping all the other relative costs at their 
original level. 

Optimal Investment for Modified MEA: The optimal investment 𝐸𝐸𝑠𝑠∗ in channel 𝑠𝑠 and the optimal profit 
𝛱𝛱∗ are both non-increasing in 𝜀𝜀𝑠𝑠. If 𝑅𝑅∗ = {𝑟𝑟 ∈ 𝑅𝑅|  𝐸𝐸𝑟𝑟∗ > 𝐸𝐸𝑟𝑟0} is the set of channels for which the 
optimal spends exceed allocated levels, then, for channels 𝑠𝑠 ≠ 𝑟𝑟 ∈ 𝑅𝑅∗, optimal investments must 

satisfy the proportionality condition Φ𝑟𝑟
′ (𝐸𝐸𝑟𝑟∗)
𝜀𝜀𝑟𝑟

= Φ𝑠𝑠
′(𝐸𝐸𝑠𝑠∗)
𝜀𝜀𝑠𝑠

. 

Therefore, if 𝜀𝜀𝑠𝑠 increases so that the set 𝑅𝑅∗ does not change, the optimal investment in channel 𝑟𝑟 decreases 
if and only if this ratio increases in 𝜀𝜀𝑠𝑠.  

The Optimal Investment characterization for the modified MEA confirms the intuition that, when 
a channel becomes relatively more expensive, its usage cannot increase, resulting in a decline in the optimal 
profit. It then specifies that, when the firm (optimally) sticks to its media plan – that is, the choice of 
channels to further utilize does not change – the firm must balance marginal effectiveness of chosen 

channels proportional to their relative cost, measured by Φ𝑟𝑟
′ (𝐸𝐸𝑟𝑟∗)
𝜀𝜀𝑟𝑟

. Note that this simplified condition does not 

involve the dynamics of demand penetration, reflected in the function 𝐺𝐺(⋅) and product price: if this 
measure increases for channel 𝑠𝑠, the optimal spend for any other channel in 𝑅𝑅∗ must decrease (this follows 

from the concavity of Φ𝑟𝑟), assuming the set 𝑅𝑅∗ does not change. However, whether Φ𝑠𝑠
′(𝐸𝐸𝑠𝑠∗)
𝜀𝜀𝑠𝑠

 increases or 

decreases with 𝜀𝜀𝑠𝑠 is not certain, and depends on the properties of Φ𝑠𝑠 and the original optimal spend vector 
𝐸𝐸∗. Thus, the impact of increase in 𝜀𝜀𝑠𝑠 on the optimal spend of other channels in 𝑅𝑅∗ cannot be predicted in 
general. 

 

Theorems & Proofs of Appendix E: 

Theorem 9: As εs increases, EsU(εs) and C−smax(εs) cannot increase, while C−strans(εs) cannot decrease. Moreover, 
if channel s has medium-leverage for some value of εs and remain so for an increase in εs, the value of C−s

peak(εs) 
cannot decrease. 

Proof: Adding the parameter 𝜀𝜀𝑠𝑠 and following our analysis of Section 4.1, we redefine 𝐸𝐸𝑠𝑠𝑈𝑈 as follows which 
coincides with the ones in Section 4.1 when 𝜀𝜀𝑠𝑠 = 1.  

 𝐸𝐸𝑠𝑠𝑈𝑈(𝜀𝜀𝑠𝑠) = �
𝐸𝐸𝑠𝑠0 if Φ𝑠𝑠

′ (𝐸𝐸𝑠𝑠0) < 4𝑞𝑞𝜀𝜀𝑠𝑠
𝑃𝑃(𝑞𝑞+𝑝𝑝)2

𝑠𝑠𝑠𝑠𝑠𝑠 �𝐸𝐸𝑠𝑠 ≥ 0|Φ𝑠𝑠
′ (𝐸𝐸𝑠𝑠) ≥ 4𝑞𝑞𝜀𝜀𝑠𝑠

𝑃𝑃(𝑞𝑞+𝑝𝑝)2� otherwise
. 

Note that the proofs of all earlier claims hold true trivially with these new  definitions when 𝜀𝜀𝑠𝑠 is added to the 
optimization problem. From the above, it is easily verifiable that when 𝜀𝜀𝑠𝑠 increases, 𝐸𝐸𝑠𝑠𝑈𝑈 does not increase as the 
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set of 𝐸𝐸𝑠𝑠 values for which the inequality Φ𝑠𝑠
′ (𝐸𝐸𝑠𝑠) ≥ 4𝑞𝑞𝜀𝜀𝑠𝑠

𝑃𝑃(𝑞𝑞+𝑝𝑝)2 holds becomes smaller. 

Next, 𝐶𝐶−𝑠𝑠max(𝜀𝜀𝑠𝑠) = inf{𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠0   |  𝐺𝐺(𝐶𝐶−𝑠𝑠 + Φ𝑠𝑠(𝐸𝐸𝑠𝑠0)) ≥ 𝐺𝐺𝑠𝑠2(𝜀𝜀𝑠𝑠)} is non-increasing in 𝜀𝜀𝑠𝑠 as 𝐺𝐺𝑠𝑠2 is decreasing in 
𝜀𝜀𝑠𝑠. Also we show that 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜀𝜀𝑠𝑠) = inf{𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠0   |  𝐸𝐸𝑠𝑠∗(𝐶𝐶−𝑠𝑠) > 𝐸𝐸𝑠𝑠0} is non-decreasing in 𝜀𝜀𝑠𝑠. If with an increase 
in 𝜀𝜀𝑠𝑠, an interior maximizer continues to exist, we show that the feasibility of optimally increasing channel 𝑠𝑠 
investment decreases with an increase in 𝜀𝜀𝑠𝑠. To check this, recall the function ℎ(𝐶𝐶−𝑠𝑠) in the proof of Lemma 2 
which when positive (over the range of 𝐶𝐶−𝑠𝑠 values for which an interior maximizer exists) indicated that the 
interior local maximizer is optimal. With the addition of 𝜀𝜀𝑠𝑠, the function becomes: 

 ℎ(𝐶𝐶−𝑠𝑠) = 𝑃𝑃𝑃𝑃(Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠)) + 𝐶𝐶−𝑠𝑠) − 𝑃𝑃𝑃𝑃(Φ𝑠𝑠(𝐸𝐸𝑠𝑠0) + 𝐶𝐶−𝑠𝑠) − 𝜀𝜀𝑠𝑠�𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠) − 𝐸𝐸𝑠𝑠0�. 

Taking derivative of ℎ(𝐶𝐶−𝑠𝑠) with respect to 𝜀𝜀𝑠𝑠 we have: 

 ∂ℎ(𝐶𝐶−𝑠𝑠)
∂𝜀𝜀𝑠𝑠

= 𝑃𝑃𝐺𝐺′�Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖) + 𝐶𝐶−𝑠𝑠�Φ𝑠𝑠
′ �𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖�

∂𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖

∂𝜀𝜀𝑠𝑠
− �𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠) − 𝐸𝐸𝑠𝑠0� − 𝜀𝜀𝑠𝑠

∂𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖

∂𝜀𝜀𝑠𝑠
. 

Since 𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠) is the interior maximizer and sets ∂Π
∂𝐸𝐸𝑠𝑠

= 0, we have  

𝑃𝑃𝐺𝐺′�Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖) + 𝐶𝐶−𝑠𝑠�Φ𝑠𝑠
′ �𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖� = 𝜀𝜀𝑠𝑠. Putting these together, we find that ∂ℎ

∂𝜀𝜀𝑠𝑠
= −�𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶−𝑠𝑠) − 𝐸𝐸𝑠𝑠0� < 0. This 

derivation indicates that if for some level of 𝐶𝐶−𝑠𝑠, investing at the level of interior maximizer in channel 𝑠𝑠 is not 
optimal, then with an increase in 𝜀𝜀𝑠𝑠 it remains to be so as well and the optimal channel 𝑠𝑠 remains at 𝐸𝐸𝑠𝑠0. Therefore, 
the level of 𝐶𝐶−𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 cannot decrease. 

Lastly, if channel 𝑠𝑠 has medium-leverage for some value of 𝜀𝜀𝑠𝑠 and remains so for an increase in 𝜀𝜀𝑠𝑠, the value of 
𝐶𝐶−𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜀𝜀𝑠𝑠) = inf{𝐶𝐶−𝑠𝑠 ≥ 𝐶𝐶−𝑠𝑠0  | 𝐺𝐺(𝐶𝐶−𝑠𝑠 + Φ𝑠𝑠(𝐸𝐸𝑠𝑠𝑈𝑈(𝜀𝜀𝑠𝑠))) ≥ 1

2
(1 − 𝑝𝑝

𝑞𝑞
)} is well defined for both levels of 𝜀𝜀𝑠𝑠. Since 𝐸𝐸𝑠𝑠𝑈𝑈 

is non-increasing in 𝜀𝜀𝑠𝑠, the set of 𝐶𝐶−𝑠𝑠 values satisfying the condition inside the brackets shrinks, leading to 𝐶𝐶−𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

to potentially increase. ∎ 

Theorem 10: The optimal investment Es∗ in channel s and the optimal profit Π∗ are both non-increasing in εs. 
Also, let R∗ = {r ∈ R|  Er∗ > Er0} be the set of channels for which the optimal spends exceed the allocated 
levels. For channels s ≠ r ∈ R∗, optimal investments must satisfy  

Φr
′(Er∗)
εr

=
Φs
′(Es∗)
εs

. 

Therefore, if εs increases so that the set R∗ does not change, the optimal investment in channel r decreases if and 
only if this ratio increases in εs.  

Proof: Define 𝐸𝐸∗,𝜀𝜀 to be the vector of the optimal marketing spends when the relative cost of channel 𝑠𝑠 is 𝜀𝜀 and 
𝐶𝐶∗,𝜀𝜀 be the resulting cumulative marketing effort from spending 𝐸𝐸∗,𝜀𝜀 in all channels. In addition, define the total 
profit of strategy 𝐸𝐸∗,𝜀𝜀 as Π𝜀𝜀(𝐸𝐸∗,𝜀𝜀). 

The optimal profit decreases in 𝜀𝜀𝑠𝑠: Let 𝜀𝜀𝑠𝑠1 < 𝜀𝜀𝑠𝑠2 be two levels of 𝜀𝜀𝑠𝑠. By the optimality of 𝐸𝐸∗,𝜀𝜀𝑠𝑠1 and 𝐸𝐸∗,𝜀𝜀𝑠𝑠2 and the 
linearity of Π𝜀𝜀𝑠𝑠(. ) in 𝜀𝜀𝑠𝑠, we have Π𝜀𝜀𝑠𝑠1(𝐸𝐸∗,𝜀𝜀𝑠𝑠1) ≥ Π𝜀𝜀𝑠𝑠1(𝐸𝐸∗,𝜀𝜀𝑠𝑠2) ≥ Π𝜀𝜀𝑠𝑠2(𝐸𝐸∗,𝜀𝜀𝑠𝑠2), which establishes the claim. 

The optimal channel 𝑠𝑠 spend decreases in 𝜀𝜀𝑠𝑠: Note that ∂Π𝜀𝜀𝑠𝑠
∂𝐸𝐸𝑠𝑠

= 𝑚𝑚[𝑃𝑃𝐺𝐺′(Φ𝑠𝑠(𝐸𝐸𝑠𝑠) + 𝐶𝐶−𝑠𝑠)Φ𝑠𝑠
′ (𝐸𝐸𝑠𝑠) − 𝜀𝜀𝑠𝑠]. If ∂Π𝜀𝜀𝑠𝑠

∂𝐸𝐸𝑠𝑠
 is 

always negative (for 𝐸𝐸𝑠𝑠 ∈ [𝐸𝐸𝑠𝑠0,𝐸𝐸𝑠𝑠𝑈𝑈]), we know that it is not optimal to increase the level of investment of channel 
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𝑠𝑠 beyond 𝐸𝐸𝑠𝑠0. In this case, when 𝜀𝜀𝑠𝑠 increases, ∂Π𝜀𝜀𝑠𝑠
∂𝐸𝐸𝑠𝑠

 remains negative and therefore the same level of 𝐸𝐸𝑠𝑠0 remains 

optimal. Therefore, the claim is trivially valid. 

However, if for some range of 𝐸𝐸𝑠𝑠 values this derivative is positive, it should take the value of zero for some level 

𝐸𝐸𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 as we know that lim𝐸𝐸𝑠𝑠→∞
∂Π𝜀𝜀𝑠𝑠
∂𝐸𝐸𝑠𝑠

< 0. From the other hand, we know from the assumptions of Section 4.2 

(Structure of Channel Interactions) and the proof of Lemma 1 that ∂Π𝜀𝜀𝑠𝑠
∂𝐸𝐸𝑠𝑠

 can have at most two roots, with the 

larger of the possible two roots representing a (unique) local maximizer. We denote this local maximizer as 

𝐸𝐸𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖,𝜀𝜀𝑠𝑠 to show its dependence on 𝜀𝜀𝑠𝑠. Therefore, this local maximizer has the property that ∂Π𝜀𝜀𝑠𝑠(𝐸𝐸𝑠𝑠,𝐸𝐸−𝑠𝑠)

∂𝐸𝐸𝑠𝑠
< 0 for 

all 𝐸𝐸𝑠𝑠 > 𝐸𝐸𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖,𝜀𝜀𝑠𝑠. 

Now consider two levels of relative cost 𝜀𝜀𝑠𝑠1 < 𝜀𝜀𝑠𝑠2. By the above argument and the fact that ∂Π𝜀𝜀𝑠𝑠
∂𝐸𝐸𝑠𝑠

 is decreasing in 

𝜀𝜀𝑠𝑠 we have 
∂Π𝜀𝜀𝑠𝑠2(𝐸𝐸𝑠𝑠,𝐸𝐸−𝑠𝑠)

∂𝐸𝐸𝑠𝑠
<

∂Π𝜀𝜀𝑠𝑠1(𝐸𝐸𝑠𝑠,𝐸𝐸−𝑠𝑠)

∂𝐸𝐸𝑠𝑠
< 0 for all  𝐸𝐸𝑠𝑠 > 𝐸𝐸𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖,𝜀𝜀𝑠𝑠1 .This means that at the level 𝜀𝜀𝑠𝑠2, 
∂Π𝜀𝜀𝑠𝑠2(𝐸𝐸𝑠𝑠,𝐸𝐸−𝑠𝑠)

∂𝐸𝐸𝑠𝑠
 cannot 

have a root over the interval [𝐸𝐸𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖,𝜀𝜀𝑠𝑠1 ,∞), so the new local maximizer at level 𝜀𝜀𝑠𝑠2, 𝐸𝐸𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖,𝜀𝜀𝑠𝑠2 (which is the larger root 

of 
∂Π𝜀𝜀𝑠𝑠2(𝐸𝐸𝑠𝑠,𝐸𝐸−𝑠𝑠)

∂𝐸𝐸𝑠𝑠
), should be smaller than 𝐸𝐸𝑠𝑠

𝑖𝑖𝑖𝑖𝑖𝑖,𝜀𝜀𝑠𝑠1. Also as established in the proof of Cost Effects for Modified 

MEA, when 𝜀𝜀𝑠𝑠 increases, it takes a larger level of 𝐶𝐶−𝑠𝑠 for the local maximizer to be globally optimal. But as here 

we have fixed the level of investment in other channels, we can conclude that if at the level 𝜀𝜀𝑠𝑠1, 𝐸𝐸𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖,𝜀𝜀𝑠𝑠1 represents 

the optimal level of channel 𝑠𝑠 investment, at the level 𝜀𝜀𝑠𝑠2 either it is optimal to increase the level of channel 𝑠𝑠 

investment to 𝐸𝐸𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖,𝜀𝜀𝑠𝑠2 or maintain the current investment of 𝐸𝐸𝑠𝑠0; but if at the level 𝜀𝜀𝑠𝑠1, it is more profitable to offer 

𝐸𝐸𝑠𝑠0 over 𝐸𝐸𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖,𝜀𝜀𝑠𝑠1, the same would hold for the level 𝜀𝜀𝑠𝑠2. In either case, the optimal level of channel 𝑠𝑠 does not 

increase with an increase in 𝜀𝜀𝑠𝑠. 

Balancing the spends in the optimal solution: We know from the KKT necessary conditions that at the optimal 

solution, we should have ∂Π𝑒𝑒𝑠𝑠
∂𝐸𝐸𝑟𝑟

≤ 0 for all 𝑟𝑟 ∈ 𝑅𝑅, where the equality holds for all channels with positive additional 

spend, i.e. ∂Π𝑒𝑒𝑠𝑠
∂𝐸𝐸𝑟𝑟

= 0 for all 𝑟𝑟 ∈ 𝑅𝑅∗. Therefore, for each 𝑟𝑟 ∈ 𝑅𝑅∗ we have ∂Π𝑒𝑒𝑠𝑠
∂𝐸𝐸𝑠𝑠

(𝐸𝐸∗,𝜀𝜀𝑠𝑠) = 𝑃𝑃𝐺𝐺′(𝐶𝐶∗,𝜀𝜀𝑠𝑠)Φ𝑠𝑠
′�𝐸𝐸𝑠𝑠

∗,𝜀𝜀𝑠𝑠� −

𝜀𝜀𝑠𝑠 = 0 or equivalently 1
𝑃𝑃𝐺𝐺′(𝐶𝐶∗,𝜀𝜀𝑠𝑠) = Φ𝑟𝑟

′ �𝐸𝐸𝑟𝑟
∗,𝜀𝜀𝑠𝑠�

𝜀𝜀𝑟𝑟
 with the right hand side to be the same for all channels that belong to 

𝑅𝑅∗. Consequently, for any pair of channels 𝑠𝑠, 𝑟𝑟 ∈ 𝑅𝑅∗ we can write Φ𝑠𝑠
′�𝐸𝐸𝑠𝑠

∗,𝜀𝜀𝑠𝑠�
𝜀𝜀𝜀𝜀

= Φ𝑟𝑟
′ �𝐸𝐸𝑟𝑟

∗,𝜀𝜀𝑠𝑠�
𝜀𝜀𝑟𝑟

. ∎  
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