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Abstract
New product and service introductions require careful joint planning of production and
marketing campaigns. Consequently, they typically utilize multiple information chan-
nels to stimulate customer awareness and resultant word-of-mouth (WOM), availing
of standard budget allocation tools. By contrast, when enacting strategic allocation
decisions—which must align with other management imperatives—dividing expendi-
tures across channels is far more complex. To this end, we formulate a multichan-
nel demand model for new products (or services), amenable to analysis of inter- and
intrachannel interaction patterns and with the WOM process, without building such
interactions directly into the modeling framework. To address the notorious complexity
of media planning over time, we propose a novel decomposition of the multichannel
dynamic programming problem into two distinct “tiers”: the strategic tier addresses
how to allocate total expenditure across channels, while the tactical tier studies how
to allocate the channel-specific budgets (determined in the strategic tier) over time
periods. This decomposition enables optimal media strategies to sidestep the curse of
dimensionality and renders the model pragmatically estimable. Strategic tier analysis
suggests a variety of novel insights, primarily that funds should not be allocated based
on (relative) channel effectiveness alone but also systematically aligned with WOM
generation. Specifically, each channel can face a “chasm-crossing” threshold, abruptly
transitioning the adoption process from lead-users to mass-market penetration. More-
over, the model provides actionable managerial insights into when, and which, channel
interactions are synergistic versus substitutive. Specifically, a channel’s interactions are
governed primarily by its own “leverage” (potential demand impact) and the WOM-
based demand “momentum” (market penetration) it can generate, affording a novel
basis for channel typography and firm action. The modeling framework is illustrated
by examining camera sales for two media channels (free-standing inserts and radio)
and their effects over 28 months. We use Bayesian machinery to estimate a highly flex-
ible diffusion-based model, along with forecasts, media plans, and both theoretical and
empirically-based qualitative insights.

K E Y W O R D S
channel strategy, channel substitution and synergy, demand diffusion of new products, integrated marketing
communications, marketing mix, resource allocation

1 INTRODUCTION

Businesses continually assess the performance of market-
ing mix variables, media outlets, and channels, often appor-
tioning funds as if their effects were essentially additive.
Despite the prevalence and simplicity of this so-called “swim-
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lane analysis” (e.g., Nichols, 2013), academic studies have
long questioned whether its roughly proportionate alloca-
tion is justified. For example, empirical studies in mar-
keting and operations have verified synergies among mix
variables (Carpenter & Lehmann, 1985; Naik et al., 2005;
Prasad & Ring, 1976), with salesforce spending (Narayanan
et al., 2004), online and offline advertising (Naik & Peters,
2009; Naik & Raman, 2003), and that the strengths of such
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synergies are moderated by consumer-specific variables like
brand familiarity (Pauwels et al., 2016).

Because ads in one medium can influence or assist those in
another, failing to account for mix synergies can lead to inef-
fective allocation or over-/underinvestment. Nichols (2013),
calling for better analytics, recalls a company that presumed
its ads—e.g., a TV spot and subsequent online search that
leads to a clickthrough—seldom interact appreciably. Such
assumptions are problematic enough for (relatively) stable
established products but are especially so for new products
and services where media seek to stimulate social influence
(Iyengar et al., 2011).

Successful media plans judiciously allocate the marketing
budget across available communication channels and deter-
mine their intensities over time. Here, “channels” can include
various media classes (TV, radio, online, etc.), venues within
them (particular radio stations, social media placements), or
subchannels (e.g., a consistent ad time slot on a cable net-
work). In practice, media planning decisions often span cor-
porate tiers and are made in a loosely coordinated fashion
(Joshi & Giménez, 2014). Critically, at the “strategic” tier,
marketing goals are aligned with other business imperatives,
and both overall marketing spend and its allocation across
channels are determined. These decisions lie at the seams
between marketing and other C-suite functions it “competes”
with for budget, such as IT, sales, finance, and new ventures.

Despite their practical importance, formal analyses of
such strategic decisions remain relatively siloed, restricted to
product subclasses with idiosyncratic characteristics. For
example, several models (discussed later in detail) apply pri-
marily to commodities, whose sales dynamics hardly typ-
ify new products in general. Analogously, the literature on
new product sales models has rarely extended to “strate-
gic” media planning, focusing mainly on pragmatic planning
decisions like temporal expenditure patterns. For tractability
and data availability reasons, such models typically analyze
a single (aggregate) marketing channel and rarely address
interchannel interactions. By contrast, managerial insight and
pragmatic strategies for new product media planning require
alignment between the strategic and tactical stages.

Strategic media planning would be challenging enough if
it merely needed to determine the channel(s) with the greatest
(marginal) bang-for-the-buck. Its notorious complexity stems
from needing to also manage how channels interact, both with
one another and with the process of consumer-to-consumer
information transfer—that is, word-of-mouth (WOM)—so as
to stimulate and guide demand over the product’s lifecycle.
Empirical research supports the common real-world media
planning belief that two elements are critical to a sound plan:
substitution and synergy between different channels (e.g.,
Goldfarb & Tucker, 2011a, 2011b; Naik & Raman, 2003).
Channels “substitute” for one another when, roughly speak-
ing, the more that is invested in one channel, the lower the
incremental benefit of spending in another. For example, con-
sider a firm advertising through both a TV commercial and
a Facebook campaign; additional resources invested in TV
ads may increase the frequency and/or reach, in turn enhanc-
ing customer awareness, thereby rendering investments in

Facebook ads less impactful. On the other hand, several
channels acting in concert may enhance demand in a way not
possible were these same channels employed separately,
resulting in “synergy.” Consider the perpetually multitask-
ing modern consumer: because over 20% of TV viewers
appear to be chatting on Facebook or Twitter while watching
(Dredge, 2012), a firm might benefit by reuniting customers’
divided attention, that is, by advertising on TV and Facebook
simultaneously.

Substitution and synergy are often presumed to work in
opposing directions. Yet little is known about why some
channels behave substitutively in one setting, but synergisti-
cally in another. This is among the primary issues we address:
under what conditions does either effect—substitution or
synergy—prevail? To answer this and related questions
requires an analysis of the interplay between channels and
customer WOM. To that end, we formulate a multichan-
nel demand model of new product adoption, one in which
a potential customer’s purchase decision results from either
innovation-seeking behavior (purchasing ‘independently’ of
other customers) or imitation-seeking behavior (being “influ-
enced” by others who have already purchased). These behav-
iors are, in turn, jointly influenced by the firm’s marketing
activities.

Our account of demand dynamics builds upon and expands
the Generalized Bass model (GBM) framework (Bass et al.,
1994). The GBM not only provides an excellent fit to sales
data for a wide range of product and service categories
(Krishnan & Jain, 2006) and modeling marketing mix effects
(Bass et al., 2000) but has been used to study the dynamics
of new product development in operations (Carrillo, 2005;
Wu et al., 2017). We extend the domain of applicability of
the GBM framework by incorporating the impact of multi-
ple channels on demand, via a general formulation account-
ing for the influence of both contemporaneous and past mar-
keting activities. The resulting model, despite its generality,
allows the derivation of strategic-level insights into (opti-
mal) media planning, while taking account of its linkage
with critical tactical details, for example, how ad spending
should be allocated over time with respect to memorability
or stickiness. Importantly, “synergy” is not baked into the
model (e.g., via explicit interaction terms), but arises natu-
rally from the GBM setting, in a way not anticipated by prior
literature.

Our model applies to media planning over near-to-
moderate timeframes—consistent with accelerating tech-
nological clock speed (Carrillo, 2005)—and where the
product’s or service’s features enable a dedicated consumer
base (or local monopoly); for example, in “situations in
which the firm enjoys patent protection, a proprietary tech-
nology, or a dominant market share” (Mesak & Clark,
1998). Consistent with the GBM framework, each customer’s
(“purchase”) decision is to adopt or not, in the sense of
a conversion. Such scenarios are common: durables with
long interpurchase times, where repeat purchases are unlikely
(e.g., experiential media like books or films), or businesses
fostering customer retention for a consistent revenue stream
(i.e., a “contractual” adoption setting; Fader & Hardie, 2010).
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Deriving optimal allocation plans is notoriously thorny,
as it requires searching large spaces of (temporal)
allocations across multiple channels, often falling into the
class of nonseparable, nonconvex, NP-hard optimization
problems (Horst et al., 1995); solving them “exactly” can-
not be done faster, loosely speaking, than searching through
all possibilities across all channels and time periods. There-
fore, as our first step, we provide a novel decomposition
enabling optimal media strategies to be examined in two sep-
arate strategic and tactical tiers. This allows the media plan-
ning task to be apportioned into optimal strategic decisions
(heuristically optimal when time discounting is present), and
optimal tactical ones, while capturing both instantaneous and
lagged marketing impacts. The optimal tactical plan is char-
acterized for any given decision at the strategic level, greatly
simplifying the problem at the strategic tier while avoiding
multichannel dynamic programming and the curse of dimen-
sionality due to the time dimension.

Owing to the reduced dimensionality of the strategic
problem, commercial solvers can find optimal media plans
when the number of channels under consideration is mod-
est. For practical purposes, however, the ever-growing num-
ber of social media and internet advertising channels requires
analyst foresight to prune the set of channels under con-
sideration before applying such algorithms. Yet a more
fundamental issue—qualitative as opposed to quantitative—
concerns gleaning managerial insight: algorithmically deter-
mined media plans emerge from a black box, providing
allocations without any sense of substantive context. In
actual applications, strategic media planning requires a holis-
tic managerial view, allowing fine-tuned coordination with
other high-level organizational functions. Our explicit focus
is precisely these sorts of insights: those that provide a
structured, qualitative overview to strategic media plan-
ning, rather than a purely algorithmic approach (although
many of our results can be useful for algorithmic devel-
opment as well, despite not being generated for that
purpose).

The ensuing analysis takes as its starting point the sort of
swim-lane analysis common in the media planning industry
(Nichols, 2013), entailing an allocated level of spending in
each of the channels under consideration. Such levels can
take many forms: they can be zero; represent the firm’s cur-
rent allocation practice; be obtained via an (aforementioned)
algorithmic approach; denote a minimum channel spending
level (e.g., one that ensures a desired level of ultimate mar-
ket penetration); etc. We first evaluate the prudency of this
allocated investment and then analyze the nature of channel
interactions, among themselves and with the WOM process.

The ensuing analysis sheds light on a number of issues
in managerial practice only partially resolved by extant
approaches. Five novel insights, in particular, stand out:

1. Leverage. Managers commonly allocate budget to a chan-
nel relative to its own ability to influence demand—
referred to as channel’s “leverage.” By contrast, our anal-
ysis suggests that channel spending should also be aligned

with how much “free advertising help” is generated from
customer WOM.

2. Channel typography. We show how both leverage and
momentum can be used to profile channels: momen-
tum quantifies the “mass-market penetration” the chan-
nel can generate and its “chasm-crossing ability”
(Chandrasekaran & Tellis, 2011; Moore, 2014); drops
in leverage lower both chasm-crossing ability and mass-
market adoption, in turn weakening the channel’s prof-
itability.

3. Channel deletion. A proportional allocation rule suggests
dropping a channel only when it is completely inef-
fective. Yet our analysis suggests eliminating channels
whose effectiveness is “dominated” by others or have
exhausted their momentum-generation capability, alleviat-
ing the curse of dimensionality and simplifying the media
planning task.

4. Channel interactions. The interaction of one channel with
others is either synergistic (enhances others) or substitu-
tive (detracts or no influence). Optimizing channel portfo-
lios, therefore, requires determining which effect emerges,
and how both leverage and momentum affect such inter-
actions. We find complex but explicit guidelines govern-
ing these factors: medium-leverage channels (tend to) act
synergistically under low-momentum conditions and sub-
stitutively otherwise; while high-leverage channels can-
not benefit from synergy at all, making them uniformly
and dominantly substitutive. Importantly, a channel can
behave synergistically in one setting while substitutively
in another.

5. Costs. Media planning is essentially a trade-off between
expenditures and effectiveness. We find that a higher-cost
channel is associated with reduced maximal profitable
expenditure, tightened conditions for increasing spend
beyond its allocated level, and increases the “boost” it
needs from other channels before it can interact substi-
tutively with them.

Our overarching goal is to understand how multiple chan-
nels interact, among themselves and with customer WOM,
and how to manage these interactions via media planning
for a new product or service introduction. As echoed by
Nichols (2013), such “…insight represents the holy grail in
marketing—knowing precisely how all the moving parts of
a campaign collectively drive sales and what happens when
you adjust them.” To that end, the reminder of the paper is
organized as follows. After reviewing relevant literature in
Section 2, we discuss decomposing the media planning prob-
lem into strategic and tactical tiers in both the discounted and
undiscounted cases in Section 3, along with a detailed empir-
ical example of media planning for camera sales via Bayesian
estimation. The strategic level problem—including the inter-
action of channels with one another and with WOM—
which informs our managerial insights, appears in Section 4.
Specifically, we start by analyzing the impact of channel
leverage and demand momentum in Section 4.1, including
results allowing a reduction in the number of channels under
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consideration. A two-way channel typology is developed in
Section 4.2, characterizing interchannel interactions based on
both leverage and momentum; and illustrated numerically in
Section 4.3 (sensitivity analyses appear in Supporting Infor-
mation Appendix E). Lastly, our overall findings are summa-
rized in Section 5 along with suggestions for future research.

2 LITERATURE REVIEW: SYNERGIES,
INTERACTIONS, AND MEDIA PLANNING

Synergies have long been recognized as critical in empir-
ical marketing. Prasad & Ring’s (1976) field experi-
ment revealed interactions among mix variables—price,
promotion, TV advertising—as key determinants of brand
share. Scanner panel data allowed explicit modeling of mix
interactions based on household choices, for example, Car-
penter & Lehmann (1985) incorporated effects of advertis-
ing, price, brand name, and form, reporting consistent evi-
dence of price interactions. Narayanan et al. (2004) verified
the impact of mix variables, sales force expenditures, and
their interactions for three antihistamine medications, finding
synergistic demand effects and emphasizing “the importance
of investigating firms’ optimal budget allocation.” Similarly,
Naik et al. (2005) documented the need to account for inter-
actions among advertising and promotion in planning mix
strategies.

Detailed data on media types allowed similar econometric
analyses to be applied to far more granular, channel-specific
information. For example, Naik & Peters (2009) examine
both online (television, print, and radio) and offline (banners
and search) advertising, focusing on synergies both within
and across media types, and studying (as we do here) opti-
mal overall budget and proportional allocation. (Readers are
directed to their paper for a detailed review and effects sum-
maries for the literature on both media synergies and multi-
media allocation.) Pauwels et al. (2016) take synergies—both
online and cross-channel—as a marketing fact, and further
study how brand familiarity affects their strength, verifying
that within-online synergies are stronger than online–offline
ones for familiar brands, but not for unfamiliar ones. Syner-
gies have been implicated for key metrics besides demand:
Srinivasan et al. (2009) document relations between stock
market valuation and interactions between marketing vari-
ables (e.g., advertising, promotions, quality) and measures
of product innovativeness. In alignment with these empir-
ical findings, our model allows for synergistic interactions
between channels, but we do not build synergy directly into
the model (e.g., via explicit interaction terms), rather explor-
ing synergy that arises naturally from the structure of the
demand model, in a manner distinct from prior literature.

2.1 Media planning with multiple channels

Literature on optimal resource allocation among multiple
marketing channels, especially at the strategic level, is rela-
tively limited, focusing mainly on frequently purchased prod-

ucts, for example, for which panel data may be available. This
stands in contrast to new products, whereby a diffusion pro-
cess describes “adoption” rather than “consumption,” with an
upper bound on market saturation (Meade & Islam, 2006).
Because such products are, by their nature, relatively unfa-
miliar to customers, their sales over time rely on the buildup
of social influences, such as customer WOM, in conjunction
with marketing activities, which in turn aids operations (Cui
et al., 2018). Thus, core concepts like adoption, market sat-
uration, and WOM are less relevant for existing (henceforth,
“commodity”) products, while being crucial for new ones.

Media planning models for such commodity products date
back many decades. Gensch (1968), for example, distin-
guished among non/linear programming, marginal analysis,
and dynamic programming approaches, while Basu & Batra
(1988) formulated ADSPLIT, which interactively allocates
a prespecified promotional budget. Yet tractability dictated
fairly stringent assumptions, particularly so regarding media
synergies: for example, (demand) response to advertising in
each channel was ordinarily assumed linear or concave; no
interaction was allowed among the various channels or with
sales, and data limitations required precluding such impor-
tant impacts as those of past advertising spend (on sales) and
customer WOM.

Some of these early restrictions have been since alleviated.
With respect to channel interactions, specifically, a number
of studies empirically show or implicitly assume that chan-
nels (at least partially) substitute for one another in influenc-
ing demand (e.g., Bergemann & Bonatti, 2011; Goldfarb &
Tucker, 2011a, 2011b). By contrast, Naik & Raman (2003)
show empirically that two advertising channels can interact
synergistically to enhance sales of a commodity product and
test this via a model that includes an explicit multiplicative
interaction term for marketing efforts in two channels. Raman
& Naik (2004) further accommodate the impact of uncer-
tainty, while Naik & Peters (2009) consider a hierarchical
extension to study the interaction between online and offline
channels.

These models helped analysts understand channel inter-
actions, including those with sales (Prasad & Sethi, 2009).
Although they validate substitution and synergy effects in
the context of commodity (i.e., not new-to-market) products,
their collective results remain difficult to reconcile, for exam-
ple, why a particular effect is observed in one study but not
another. Although many (e.g., Prasad & Sethi, 2009) focus
on temporal allocation through specific dynamic or stochastic
programming problems and ingenious, model-specific analy-
ses, here we provide a decomposition of strategic and tempo-
ral allocations and then focus on the strategic tier: chronicling
the nature of multichannel policies for classes of response
functions that obviate the need for the full arsenal of such
techniques.

2.2 Media planning for new products

That previous research has focused nearly exclusively on
commodities limits its use for new product media planning,
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for several reasons. First, new product markets are charac-
terized by saturation, and “the basic diffusion process is ter-
minated by a decay of the number of new adopters” (Peres
et al., 2010). Extant models for commodities do not (need
to) capture saturation effects typifying new product trajecto-
ries. Second, saturation, along with WOM, leads to S-shaped
demand (Feinberg, 2001; Little, 1979), as opposed to the con-
cave response for products past their “ramp-up” phase. Lastly,
combined demand response to advertising in these models
(i.e., those that incorporate channel interactions) entails the
curse of dimensionality, requiring 2n − 1 estimated quanti-
ties for n channels, a particular impediment for new products,
given their scant data histories.

Allocation of marketing funds for new products has been
studied mainly at the tactical level to describe the customer
adoption process driven by social influences and the firm’s
current and past marketing efforts. This literature, which
spans a range of activities and goals, is vast; excellent reviews
are provided by Chandrasekaran & Tellis (2007), Mahajan
et al. (1990), Meade & Islam (2006), and Peres et al. (2010).
The impact of marketing efforts in diffusion models is ordi-
narily modeled for a single advertising channel, where price
may or may not be controlled for; see, for example, Dockner
& Jorgensen (1988), Horsky & Simon (1983), Mesak & Clark
(1998), as well as the dedicated review of Peres et al. (2010).
In essence, this approach aggregates the effects of all rele-
vant advertising channels into a single one, providing guid-
ance on total expenditure for this single (aggregated) channel
over time; how to optimally allocate across multiple channels
needs to be tackled by the analyst post hoc.

The only models that, to our knowledge, address multi-
ple advertising channels for new product introductions are
those of Swami & Khairnar (2006) and Abedi et al. (2014).
The former considers the impact of two advertising channels
on demand (one for awareness, one for availability), deriv-
ing optimal advertising policies under a specific logarithmic
demand form. The latter analyzes a multimarket, multichan-
nel setting with a general form of demand diffusion, but the
resulting optimal control problem is too analytically complex
to afford managerial insight on optimal resource allocation or
channel interactions.

None of these models considers the “customer journey”
(see Tueanrat et al., 2021, and Lemon & Verhoef, 2016,
for recent reviews), wherein consumers progressively pass
from awareness through purchase to potential advocacy. This
lacuna in the new products literature may arise because early
stages of new product adoption correspond to initial phases of
the customer journey, with greater media emphasis on infor-
mational content pre-consumption (Demmers et al., 2020).
Indeed, Lemon & Verhoef (2016) lament that aggregate sales
models (like GBM) “can account for traditional media, but
they do not model the individual customer journey,” a topic
to which we return later in Sections 3.1 and 5.

The tactical-level granular view in the diffusion literature
needs to enact strong assumptions (e.g., number of channels;
form of sales response) so that the resulting resource allo-
cation control problem is amenable to deriving a full media

plan, as is required for strategic decision making. Here, we
seek this sort of “high level” managerial insight on media
planning synergies, without severe limitations on the chan-
nels or the nature of their interactions among themselves and
with other critical marketing elements. To achieve this, as dis-
cussed earlier, we build a general account of multiple chan-
nels’ demand impact into the GBM framework, specifically,
one incorporating past advertising spending. This extension
alleviates a number of shortcomings (as discussed later; see
also Fruchter & Van den Bulte, 2011) while allowing for
interactions among channels and with customer WOM. As
illustrated in Section 3.1, certain properties of this framework
make it particularly useful in strategic media planning, while
maintaining the all-important linkage with tactical objectives.
We note that the Bass model’s flexibility has afforded various
distinct extensions to specific operational scenarios, includ-
ing for short lifecycle products (Chung et al., 2012) and the
interplay between new and remanufactured products (Debo
et al., 2006).

To reiterate, among our main goals is to unify the con-
trasting observations in previous research regarding under
which conditions mainly substitutive, versus synergistic,
interactions between channels might arise. To that end, we
next develop the GBM-based model for multichannel media
planning.

3 MODEL DEVELOPMENT
AND DECOMPOSITION

Here, we extend the GBM framework to account for sales
dynamics over time. The GBM relates the purchase decision
of a potential customer at any time to two factors: purchas-
ing independently of other customers at the “innovation” rate,
p ≥ 0, or being influenced by those who have already pur-
chased (e.g., by WOM) at a rate of qF(t), with q ≥ 0 the
“imitation” rate and F(t) the fraction of cumulative adoptions
by t; F(⋅) can also be interpreted as market penetration or
share. These two effects combine to yield the purchase rate
for a prospective customer, p + qF(t), which is in turn influ-
enced by the firm’s marketing activities (Bass et al., 1994)
and which we instantiate for channel planning purposes.

To enable media decision-making, the firm must plan over
a given time horizon, T . This horizon typically ranges from
a few days to a few months in most media planning applica-
tions; it can cover part of the product lifecycle but could be
extended to the full cycle, for example, for fast-paced, techno-
logically innovative products. Because the horizon can start
after product launch, a fraction x0 ∈ [0, 1) of customers may
have already adopted at time 0. During this media planning
period, this initial share grows to a fraction F(T) of the poten-
tial market of size m, resulting in m(F(T) − x0) total addi-
tional sales over the horizon.

The firm can influence channel-specific levels of marketing
effort over a set of potential channels, denoted by R. These
levels, for each channel r ∈ R and time t, are given by func-
tions ur(t) ≥ 0, which can incorporate the impacts of current
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or past marketing expenditures, as elaborated in Section 3.1.
The dependence of ur on r allows for investments in distinct
marketing channels to influence demand with different struc-
tures or with varying degrees of effectiveness.

Consistent with the GBM framework, the firm’s overall
marketing effort at time t is the sum of the efforts in each
channel, that is,

∑
r∈R ur(t). This “separable” form agrees

with that of Bass et al. (1994) (to combine the effects of a sin-
gle advertising channel and price promotions) and of Swami
& Khairnar (2006) (to combine the effects of the two adver-
tising channels). Also consistent with GBM, marketing effort
modifies the baseline purchase rate of a new customer mul-
tiplicatively, resulting in the “instantaneous” purchase rate
[p + qF(t)](1 +

∑
r∈R ur(t)). The fraction of total customers

adopting the product by time t is therefore described by the
following differential equation1 for “demand diffusion”:

dF (t)
dt

= (1 − F (t))
[
p + qF (t)

] [
1 +

∑
r∈R

ur (t)
]

;

F (0) = x0. (1)

Note that (1) reduces to the standard Bass model when
there is no investment in marketing (so that ur(t) ≡ 0), and
results in the following closed-form solution (as per Bass
et al., 1994):

F (T) = G
(∑

r∈R
Φr

)
,

where

G (U) =

(
1 + x0

q

p

)
− (1 − x0) e−(p+q)(T+U)(

1 + x0
q

p

)
+ (1 − x0)

q

p
e−(p+q)(T+U)

and

Φr = ∫
T

0
ur (t) dt. (2)

The expression U =
∑

r∈R Φr captures cumulative market-
ing effort over the horizon, itself composed of cumulative
efforts across investments in the available channels. G(U) is
increasing and S-shaped in U, that is, it is convex before its

inflection point
1

2
(1 −

p

q
) and concave after. Thus, increases in

cumulative marketing effort accelerate sales only when mar-
ket penetration is relatively low.

It is important to note that (1) is linear in {ur(t)}, that
is, there are no explicit interaction terms of the sort often
adopted in studies of media channels (e.g., Equations 3 and 6
in the seminal article by Naik & Raman, 2003) and opera-
tions (e.g., Kovach et al., 2018) to account for synergies. By
contrast, in our framework synergies arise from the “native”
GBM setting; moreover, as demonstrated shortly, if spend-
ing is altered in one channel, optimal investments in other
channels can increase or decrease, a feature that is not “hard-
wired” into the model via interaction terms, although these
can be incorporated by the analyst, as illustrated in Support-
ing Information Appendix D.

Section 3.1 presents a fairly general form of ur(⋅) that
encompasses many common in the literature and also illus-
trates that the Φr resulting from a given pattern of temporal
investing would be a concave increasing function of the total
spending in channel r. These preliminaries in place, in Sec-
tion 3.2 we formulate an (undiscounted) optimization prob-
lem for Detailed Media Planning (DMP), jointly addressing
the two types of decisions: how much should be invested
in each channel at each point in time. This represents the
best a marketer can reasonably achieve through careful media
planning. We demonstrate that the optimal marketing strategy
decomposes into two parts when the effect of time discount-
ing is not large (as in most practical applications with rel-
atively short media planning horizons): finding the optimal
strategic plan and finding the optimal tactical plan (specify-
ing optimal spending in each channel over time) when the
total budget for each channel is determined at the strategic
level.

We show that the optimal tactical plan follows typically
observed patterns of advertising spending over time. It also
results in the cumulative effectiveness Φr to be concave
increasing in the total (per capita) expenditure in that chan-
nel (and hence referred to as Φr(Er)), not only under a
predetermined investment plan but also when temporal
spending is made optimally at the tactical level. In other
words, although marketing decisions are made at two sep-
arate tiers, they are fundamentally coordinated so long as
the optimal strategy is sought in each. We further show in
Section 3.3 that, even under explicit time discounting, imple-
menting the above policy (as is typically approached in prac-
tice) is very close to optimal. A summary of all notation used
in this section and the remainder also appears in Supporting
Information Appendix A.

3.1 Specification of advertising impact
over time

We first provide a specification for ur(t) under relatively
mild conditions, then describe the structure of cumula-
tive marketing effort Φr as a function of total channel
spending.

As in real media planning, the advertising plan in each
channel r ∈ R is updated at certain time points; that is, the
time horizon is partitioned into Kr time blocks, of lengths 𝜏r
(i.e., T = Kr𝜏r). Depending on how frequently the firm can
update its investment plan in each channel, the blocking can
be relatively “crude,” for example, a week or longer, or more
granular (a day or even an hour). This results in a piecewise-
constant spending pattern in each channel and accords with
industry practice, where advertisers sell blocks guaranteeing
a certain number of impressions to be delivered, without spec-
ifying the way they are delivered within the block. Further-
more, empirical estimation of demand response to advertising
is typically carried out in discrete time, reflecting how adver-
tising and sales data are often made available. Therefore, we
denote the advertising spend in channel r ∈ R over the block
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of time [(k − 1)𝜏r, k𝜏r) to be ark, with k = 1, … ,Kr, so total

spending on channel r over the horizon is
∑Kr

k=1 ark.
The investments in different marketing channels can influ-

ence not only the current demand, known as the “instant
effect” of advertising, but also demand in the future, typ-
ically referred to as the “carry-over effect.” Therefore, we
consider a generalization of the Distributed Lagged model
of Koyck (1954), where investment in each channel r can
impact current sales as well as sales up to sr ≥ 0 blocks
into the future. More formally, the effectiveness of expen-
diture ark in channel r ∈ R during block k is given by
𝜙0

r (ark),… ,𝜙sr

r (ark) for demand during blocks k, … , k + sr,
where 𝜙i

r(⋅) (i = 0, … , sr) is a nonnegative and smoothly
differentiable function; 𝜙i

r(ark) measures how much a non-
adopter’s baseline purchase rate increases during block k + i
for investment ark made i blocks ago. In accord with empir-
ical research suggesting that demand response to advertising
is positive with diminishing returns (e.g., Chae et al., 2019;
Vakratsas, 2005), we take {𝜙i

r(⋅)} to be strictly increasing
and concave, but keep their structure general, to capture a
variety of advertising impact “shapes” and our model appli-
cable to disparate categories. If the media planning horizon
starts sometime after launch (i.e., there are initial adoptions,
x0 > 0, and prior advertising spending), the overall effect of
ad expenditures prior to t = 0 on demand in block k is set to
𝛾k, for k = 1, … , sr (and, if x0 = 0 and there is no prelaunch
advertising, 𝛾k = 0). Consequently, the total impact of cur-
rent and past marketing efforts in channel r during block k is
given by

ur (t) = 𝛾k1 (k ≤ sr) +
min{k−1,sr}∑

i=0

𝜙i
r
(
ar,k−i

)
for t ∈

[
(k − 1) 𝜏r, k𝜏r) and k = 1,⋯, kr. (3)

The structure of the marketing effort function ur(⋅) can cap-
ture a variety of forms to incorporate instant and carry-over
effects for each channel r, via specifying the functional form
of 𝜙i

r(⋅), for example,

∙ No carry-over effect: Set 𝜙i
r(⋅) ≡ 0 for i ≥ 1. This form is

similar to models in Dockner & Jorgensen (1988), Horsky
& Simon (1983), and Mesak & Clark (1998).

∙ Exponentially decaying impact of past advertising
expenses: Set 𝜙i

r(ark) = 𝛿ia𝜌rk, with 𝛿 > 0 and sr = ∞;
the exponent term (0 < 𝜌 ≤ 1) can capture dimin-
ishing returns to advertising. In this case, the total
impact of marketing effort in channel r up to block k is
often referred to as the “stock of advertising goodwill,”
ur(t) = Sr(k) for t ∈ [(k − 1)𝜏r, k𝜏r) (Nerlove & Arrow,
1962). The term Sr(0) may be nonzero, capturing the
impact of advertising spending prior to time 0, partic-
ularly if t = 0 is postlaunch. For k ≥ 1, we can write

Sr(k) = 𝛾k +
∑k−1

i=0 𝜙
i
r(ar,k−i) = 𝛿kSr(0) +

∑k−1
i=0 𝛿

ia𝜌r,k−i:
goodwill stock increases with new marketing effort,
but declines at the “forgetting rate” of 1 − 𝛿, that is,

Sr(k) − Sr(k − 1) = a𝜌rk − (1 − 𝛿)S(k − 1), reducing to the
model of Nerlove & Arrow (1962) when 𝜌 = 1.

∙ Advertising memorability causes effectiveness to decline,
not immediately, but afterz > 0 periods: Set sr = ∞

and consider 𝛿 > 0. Then set 𝜙i
r(ark) = a𝜌rk for i =

1, … z, but 𝜙i
r(ark) = 𝛿i−za𝜌rk for i ≥ z + 1 (again, 0 <

𝜌 ≤ 1 captures diminishing returns). The total impact
of marketing effort in channel r up to block k (i.e.,
over time interval [(k − 1)𝜏r, k𝜏r)) resembles the stock
of advertising goodwill ur(t) = Sr(k) = 𝛿max(k−z,0)Sr(0) +∑k−1

i=0 𝜙
i
r(ar,k−i) and has the property that S(k) − S(k − 1) =

a𝜌rk − (1 − 𝛿)S(k − z); that is, goodwill stock increases
immediately with new marketing effort, but declines at
the “forgetting rate” of 1 − 𝛿 after z periods. This model
reduces to that of Aravindakshan & Naik (2015) when
𝜌 = 0.5.

Despite the flexibility of the ur(⋅) function, it deviates
somewhat from the original form used in GBM in how
carry-over is captured. In GBM, the percentage change in
advertising at any point of time captures the impact of past
advertising, for which “a behavioral rationale has never been
articulated” and can lead to questionable optimal marketing
strategies (Fruchter & Van den, Bulte, 2011). Therefore, we
alter the form of carry-over in our tactical plan while retain-
ing the general structure of GBM in how sales evolve over
time, as expressed in (1).

To conclude, based on the definition of ur(t) above, cumu-
lative marketing effort Φr over the planning horizon can be
summarized as follows and as a function of the total expendi-

ture in channel r per capita, Er (with Φ0 = 𝜏r
∑min{k,sr}

k=1 𝛾k a
constant capturing the effect of advertising prior to time 0):

Φr (Er) = 𝜏r

Kr∑
k=1

min{k−1,sr}∑
i=0

𝜙i
r
(
ar,k−i

)
+ Φ0,

with Er =
1
m

Kr∑
k=1

ark. (4)

Note that, for ease of expression, ark represents dollar
spending in each channel over each block, while Er is dollar
spending per target customer, adding up to the total expendi-
ture of mEr in channel r.

When a predetermined temporal investment plan is pur-
sued, Φr(Er) becomes concave increasing and smoothly
differentiable in Er. Specifically, consider a tactical plan
{ârk}(k = 1, …Kr) to invest a total of $1 in chan-

nel r (i.e.,
∑Kr

k=1 ârk = 1). If the total budget mEr is
spent in this channel proportional to the given tacti-
cal plan (i.e., investing mErârk over block k), it is
easy to see that the cumulative effectiveness Φr(Er) =

𝜏r
∑Kr

k=1

∑min{k−1,sr}
i=0 𝜙i

r(mErâr,k−i) + Φ0 possesses the above
characteristics as a function of Er, based on the character-
istics of 𝜙i

r(.) functions. We will illustrate a similar result
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when the optimal tactical plan is derived and analyzed in
Section 3.2.

As will be seen later, the Φr functions link tactical and
strategic decisions, whereas the 𝜙i

r can be viewed as poten-
tial linkages between tactical allocation and customer experi-
ence management. Advancements in digital advertising allow
for a highly granular record of multiple customer touch-
points across the purchase funnel via multiple channels.
However firm-level budget allocation often utilizes more
aggregate measures to enable proper alignment with other
business functions. Attribution models, such as introduced
in Li & Kannan (2014) and Anderl et al. (2016), aggregate
the customer experience at multiple touchpoints in different
channels and measure the effectiveness of each channel in
generating sales (similar to 𝜙i

r), which can be used in tacti-
cal planning. Nevertheless, such models are mainly applied
to established commodities, as opposed to new products, as
discussed in Section 5.

3.2 Decomposing optimal strategic and
tactical decisions: The undiscounted case

In the DMP problem, the firm exerts full control over its
marketing strategy and maximizes net profit over the horizon
by deciding on expenditures in each marketing channel dur-
ing each block (i.e., ark, r ∈ R, k = 1, … ,Kr). Since the media
planning horizon in most applications is short relative to cur-
rency depreciation, the effect of discounting profits is usually
minimal. Therefore, in our first formulation, we suppress an
explicit discount factor, revisiting this case in Section 3.3. The
“base” unit price, net of non-marketing variable costs, is set
at P. Because the problem is net profit maximization, no fixed
budget needs to be prespecified, although relevant constraints
can be readily incorporated. The resulting optimization prob-
lem (“DMP”) can be stated as follows:

max
ark , r ∈ R

k = 1,⋯,Kr

mP (F (T) − x0) −
∑
r∈R

Kr∑
k=1

ark

Subject to:

dF (t)
dt

= (1 − F (t))
[
p + qF (t)

] [
1 + ur (t)

]
F (0) = x0

ur (t) = 𝛾k 1 (k ≤ sr) +
min{k−1,sr}∑

i=0

𝜙i
r
(
ar,k−i

)
for t ∈

[
(k − 1) 𝜏r, k𝜏r)& k = 1,⋯, kr

0 ≤ ark ≤ br ∀r ∈ R&k = 1,⋯,Kr. (DMP)

In practical marketing expenditure allocations, tactical
planners have first-hand knowledge of the upper bound br for
the spend on channel r; that is, they understand the available
inventory of effective and appropriately priced advertising

vehicles for a given channel. In the absence of upper bounds,
br’s can be set to ∞. Note that even though a fixed base price
is assumed, price promotions can still be incorporated as part
of the firm’s marketing activities, that is, as a separate mar-
keting channel with its own cost and effectiveness function.
Price P can also include the salvage value of the product at
the end of the horizon.2

DMP is a highly nonlinear NP-hard optimization: solving
it for more than a few time periods and channels with typical
nonlinear solvers would be prohibitive, and the results could
be strongly suboptimal. Solving DMP full-force for a large
number of channels and time periods is highly impractical.

However, a key property of (2) is that total market pen-
etration over the decision horizon depends on the efforts in
each channel only through the firm’s cumulative marketing
effort in that channel, Φr, and not on the specific trajec-
tory of effort, ur(t), t ∈ [0,T]. That is, any trajectory ur(t)
(for each channel r ∈ R) leading to total cumulative effort
Φr in that channel results in the same outcome, so long
as the cumulative effort in other channels does not change.
This affords a decomposition of the DMP problem into two
tiers: (a) the strategic problem of how to achieve the best
cumulative marketing effort in each channel (and in turn the
best profit), and (b) the tactical problem of using available
resources to achieve the required level of cumulative mar-
keting effort for that channel. This decomposition property
of the GBM-type models makes them particularly tractable
and transparent for strategic media planning, a quality lacking
for a wide spectrum of other frameworks in the new products
literature.

We show in Theorem 1 in Supporting Information
Appendix B that the tactical expenditure plan for each chan-
nel over time can be represented in a much simpler form
once the total expenditure in each of the channels is decided.
Consequently, if Er dollars are pre-allocated to channel r ∈ R
per capita, the optimal temporal investment plan for DMP
maximizes cumulative marketing effort in channel r over the
horizon, and this is independent of the plan for all the other
channels and the WOM process. So, the Tactical Planning
Problem (TPP) can be stated as follows:

Φr (Er) = max
0 ≤ ark ≤ br
k = 1, … ,Kr

𝜏r

Kr∑
k=1

min{k−1,sr}∑
i=0

𝜙i
r
(
ar,k−i

)
+ Φ0

r

Subject to
Kr∑

k=0

ark ≤ mEr. (TPP)

If Φr(Er) is determined by TPP, the DMP problem reduces
to the following strategic Marketing Expenditure Allocation
(MEA) problem, whose resolution is a primary focus in this
paper:

max
Er

˙ = m

[
P G

(∑
r∈R

flr (Er) − x0

)
−

∑
r∈R

Er

]
Subject to Er ∈ [E0

r , Ēr]r ∈ R, (MEA)
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where Ēr = Krbr∕m, and 0 ≤ E0
r < Ēr represents the mini-

mum “feasible” investment in channel r ∈ R over the time
horizon. Because there are often long-term minimal spend
agreements in place for specific channels to ensure some
advertising capacity is reserved, estimates of E0

r are avail-
able to the media planner (in their absence, the lower bound
can be set to 0). Any budget constraint added to DMP would
carry over directly to MEA. This two-tiered problem struc-
ture effectively “disentangles” the decisions at the strategic
and tactical levels.

Theorem 1 in Supporting Information Appendix B further
shows that the resulting optimal cumulative effort, Φr(Er),
from solving TPP is concave and nondecreasing in Er, and
can be specified independently of the other channels and the
WOM process. In addition, the optimal plan of investing in
channel r is nonincreasing over time, that is, a∗rk is nonin-
creasing in k. This pattern (for DMP and TPP) agrees with
Fruchter & Van den Bulte’s (2011) empirical analysis that
“strongly suggests that the optimal strategy in real markets is
likely to involve decreasing advertising over time, especially
late in the diffusion process.”

3.3 Decomposing optimal strategic and
tactical decisions: The discounted case

Even though media planning horizons are typically brief, if a
firm urgently desires sales earlier on, a version of the DMP
problem with discount rate 𝜃 can be formulated as follows:

max
Er,r∈R

max
ark , r ∈ R

k = 1,⋯,Kr

m
⎡⎢⎢⎣P

T

∫
0

dF (t)
dt

e−𝜃tdt −
∑
r∈R

Er

⎤⎥⎥⎦
Subject to :

dF (t)
dt

= (1 − F (t))
[
p + qF (t)

] [
1 + ur (t)

]
F (0) = x0

ur (t) = 𝛾k 1 (k ≤ sr) +
min{k−1,sr}∑

i=0

𝜙i
r
(
ar,k−i

)
for t ∈

[
(k − 1) 𝜏r, k𝜏r) & k = 1,⋯, kr

Kr∑
k=0

ark = mEr ∀r ∈ R

0 ≤ ark ≤ br ∀r ∈ R&k = 1,⋯,Kr. (DMP-DISC)

In the discounted profit maximization, not only is the vol-
ume of sales important to the firm but how they are obtained
over time. Thus, the disentanglement of strategic and tactical
decisions of Section 3.2 is no longer practically achievable,
so that strategic budgeting and interaction between chan-
nels (and tactical implementation of the media plan) are
interlinked at each point of time, and a division of tasks

between organizational tiers is no longer possible. Because
this greatly complicates media plan implementation, firms
typically resort to a “rule-of-thumb” or “heuristic” approach.
This is important because strategic decisions need to align
with other business imperatives, such as finance, operations,
IT, etc., that cannot be readily captured in the firm’s media
plan optimization. Given that the optimal advertising spend-
ing in the undiscounted DMP problem in Section 3.2 pos-
sesses this modularity characteristic, we show that employ-
ing the optimal strategic policy from the undiscounted case
would generate sales patterns that are very close to optimal
even when sales are discounted over time.

In doing so, a few formalities are in order. With a little
abuse of notation, let F[t, {ar|Er}] represent the market pene-
tration by time t when the piecewise-constant advertising pol-
icy of ar(t) for t ∈ [0,T] and r ∈ R is used, which sums up to
Er per capita for channel r over the planning horizon. Also,
let ΠD{ar|Er} and ΠU{ar|Er} represent the discounted profit
(from DMP-DISC) and the undiscounted profit (from DMP),
respectively, when the above advertising policy is employed.
In these definitions, note that the tactical spending plan of
{ar} is conditional on the budget allocated to each channel

{Er}, so that ∫ T

0
ar(t)dt = mEr. Therefore, if the budget allo-

cated to a channel changes, the policy ar(.) would need to be
adjusted to match the total budget. Further, let {aD

r |Er} and
{aU

r |Er} represent the optimal spending plan in each of the
channels over time based on the discounted (DMP-DISC) and
undiscounted (DMP) problems, when the total budget spend-
ing in each channel r is constrained to be Er. Lastly, {ED

r }
and {EU

r } represent the optimal budget allocation for the dis-
counted and undiscounted problems, respectively.

With the above definitions, the goal of the firm is to set both
strategic and tactical plans to maximize profit, ΠD{aD

r |ED
r }.

To facilitate this, the firm can follow two “rule-of-thumb”
strategies. One is to fully utilize the strategic and tactical deci-
sions derived from the undiscounted problem that yields a
profit of ΠD{aU

r |EU
r }. Second, the firm could do somewhat

better, and try to allocate the total budget in each channel
(which is a more complex part of the DMP-DISC problem)
based on the undiscounted problem, but to carry out the tac-
tical plan based on the best strategy from DMP-DISC when
the allocated budgets are taken as given. This second strategy
would obtain a profit of ΠD{aD

r |EU
r }.

Even though optimizing the tactical plan of investment
based on the discounted problem ({aD

r |EU
r }) is more prof-

itable, it is less practical since the tactical plan of investments
across channels is interlinked. We show in Supporting Infor-
mation Appendix B (Theorem 2) that the profit obtained from
using these two strategies is close to that of the optimal one,
with the following worst-case error bound on profit:

0 ≤ ΠD
{

aD
r |ED

r

}
−ΠD

{
aD

r |EU
r

}≤ΠD
{

aD
r |ED

r

}
−ΠD

{
aU

r |EU
r

}
≤ mP

[ (
1 − e−𝜃T

) (
F

[
T ,

{
aU

r |EU
r

}]
− x0

)
− 𝜃 ∫ T

0

(
F

[
t,

{
aU

r |EU
r

}]
− x0

)
e−𝜃tdt

]
.

(5)
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The total discounted share for the undiscounted policy has
a similar worst-case error bound:

0 ≤ ∫
T

0

(
dF

[
t,

{
aD

r |EU
r

}]
dt

−
dF

[
t,

{
aU

r |EU
r

}]
dt

)
e−𝜃tdt

≤ (
1 − e−𝜃T

) (
F

[
T ,

{
aU

r |EU
r

}]
− x0

)
− 𝜃 ∫

T

0

(
F

[
t,

{
aU

r |EU
r

}]
− x0

)
e−𝜃tdt. (6)

The above error bounds can be easily computed (numeri-
cally) from the trajectory of ad spending based on the undis-
counted policy. Also note that these bounds govern the “theo-
retical” worst-case scenario, but as illustrated in Section 3.4,
the loss in profitability and discounted market share is much
smaller “practically.” The existence of such error bounds is
particularly useful, as guarantees for many similar optimiza-
tion problems are not available. In short, the firm can imple-
ment the undiscounted optimal strategic plan as described by
MEA, confident about sacrificing neither profit nor total dis-
counted sales.

3.4 Empirical estimation and illustration

We illustrate our model and method using real-world data
on camera sales. The data stem from Gray’s Photography,3

which at the time of collection had a new store with a “local
monopoly” in a major North American city, but closed its
brick-and-mortar operations in the mid-2000s. Both sales
and ad expenditure data were available over 28 months,
from which model parameters are estimated and subsequently
used for media planning over a 12-month horizon. Using
these results, we first illustrate how the functional form of
the cumulative effectiveness function, Φr(⋅), can be obtained
from past data and investigate the effect of discounting on
both tactical and strategic decisions. We revisit this case later
in Section 4.3 for further illustration of media planning and
managerial implications.

3.4.1 Data description and estimation

The data cover the period September 2003 to December 2005
and include total retail sales, as well as advertising spend-
ing in two channels. Because adoption data comprise dollar
sales rather than units purchased, we set normalized unit price
to P = $1. Advertising data for the first channel are dollars
spent on free-standing inserts (FSI) in flyers, while the sec-
ond pertains to aggregate expenditure on the radio. Because
advertising and sales data are provided monthly, we set
𝜏r = 1 month. Throughout, monetary figures are in units of
$1000.

We capture the form of influence of advertising spend-
ing ark on demand for each channel r = 1, 2 (over time
k = 1, 2, …) via the Nerlove–Arrow goodwill stock dis-
cussed in Section 3.1. In summary, we consider that adver-
tising over each month can influence both current and
(all) future sales and set 𝜙i

r(a) = 𝛼r𝛿
i
ra
𝜌r for i = 0, 1, …

and r = 1, 2. This results in goodwill stock ur(t) = Sr(k) =

𝛼r(𝛿
k
r Sr(0) +

∑k−1
i=0 𝛿

i
ra
𝜌r
r,k−i) over time block (month) k, coin-

ciding with t ∈ [k − 1, k).
The model’s many parameters are estimated using

Bayesian techniques, laid out fully in Supporting Information
Appendix C: Bass-specific parameters p, q and m; channel-
specific ad effectiveness (𝛼r), diminishing returns exponent
(𝜌r), and ad remembering rate (𝛿r) for both channels; and,
because sales and ad data are made available starting a few
months after the initial product offering, we also estimate
x0, S1(0) and S2(0). Supporting Information Appendix C
also specifies: all estimated values, Highest Density Regions,
and posterior statistics; all (diffuse) priors; all one- and
two-dimensional “slices” of the joint 12-parameter poste-
rior (showing all marginal densities were nearly unimodal
and parameters were estimated relatively independently of
one another); that all squared parameter correlations were
well below 0.2; and the log-SE histogram was essentially
bell-shaped. Moreover, multiple diagnostics indicated con-
vergence, with all parameters having an effective sample size
of over 4000. For convenience, parameter means are given by

Parameter Mean Parameter Mean Parameter Mean

p 0.0391 𝛼1 0.0124 𝛿1 0.4038

q 0.5445 𝛼2 0.0081 𝛿2 0.3602

m 6738.9 𝜌1 0.3777 S1(0) 1.5781

x0 0.0808 𝜌2 0.2722 S2(0) 1.4068

3.4.2 Post-estimation media planning
decisions

Subsequent to the 28-month observation period, we consider
a 12-month window (“periods 29 to 40”) for new media
planning decisions. Starting at the estimated initial market
penetration of x0 = 8.08%, the company has achieved a share
of F(28) = 44.22% after the 28-month period. Also, given
the ad spend in each channel over the 28 months, the good-
will stock has reached S1(28) = 2.742 and S2(28) = 2.911.
The initial values of market penetration and goodwill for
the media planning horizon are taken as the corresponding
values after month 28; however, innovation and imitation
rates, market potential, and channel-specific parameters
remain at their estimated values. We still consider the pos-
sibility of updating the advertising plan once every month
(indicating a piecewise-constant advertising plan), leading to
𝜏r = 1 month and Kr = 12 for r = 1, 2. We consider the firm
to commit to a minimum spending of E0

1 = E2
1 = 0.0002 per
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F I G U R E 1 Comparison of spending patterns in each channel under different scenarios [Color figure can be viewed at wileyonlinelibrary.com]

TA B L E 1 Summary of optimal and heuristic media planning strategies

Advertising plan

Total
discounted
profit (𝚷D)

Total spend
in Channel 1
(mE1)

Total spend
in Channel 2
(mE2)

Optimal DISC-DMP plan {aD
r |ED

r } $ 1,505,493 $ 195,480 $ 42,472

Optimal tactical plan given Undiscounted allocation {aD
r |EU

r } $ 1,504,774 $ 214,318 $ 45,970

Using Optimal undiscounted DMP plan {aU
r |EU

r } $ 1,504,345 $ 214,318 $ 45,970

target customer, which leads to total allocated spending of
m E0

1 = m E0
2 = $1348. This allocated spend level would be

equivalent to average spending of $112 per month in each
channel, considerably lower than the average monthly spend
of $2387 in each channel over the 28-month initial sales
period. In our analysis, we use a moderately high annual
discount rate of 𝜃 = 15%.

The best a media planner can do can be found by solv-
ing DMP-DISC (Section 3.3). This requires finding the opti-
mal level of ad spending in each channel and each month—a
dynamic optimization with 24 decision variables. We solve
this problem in Matlab; the optimal tactical advertising
strategy over time is depicted in Figure 1; total spend in
each channel and total discounted profit are summarized in
Table 1.

Even though the size of the undiscounted problem is not
very large, high-grade commercial solvers, such as in Mat-
lab, still struggle to locate a stable optimum. Because the
problem is highly nonlinear, the optimization needs to be
repeated many times with different sets of initial solutions
(the approach taken here), which is time consuming even
with only two channels. This makes sensitivity analysis or
adjustment based on other unforeseeable factors very diffi-
cult, which in turn highlights the importance of structural
results such as those derived earlier and subsequently in
Section 4.

To investigate the two heuristics of Section 3.3, we solve
the undiscounted MEA problem, finding total undiscounted
profit to be ΠU[{aU

r |EU
r }] = $1, 633, 607, which translates

to discounted profit ΠD[{aU
r |EU

r }] (naturally lower than its
undiscounted counterpart), and total channel spending listed

in the third row of Table 1. In the second row of Table 1,
the tactical discounted spending plan is optimized according
to DMP-DISC, assuming the undiscounted budget allocation
EU

1 and EU
2 as given.

Table 1 reveals that the discounted profit for optimal dis-
counted solution ({aD

r |ED
r }) and the two undiscounted heuris-

tics ({aD
r |EU

r } and {aU
r |EU

r }) are very close, resulting in
only $719 (0.048%) and $1, 148(0.076%) drops in discounted
profit, respectively. In contrast, the profit error bound (5) is
computed numerically to be $11, 256(0.748%): even though
the guaranteed error bound is relatively small, the practical
profit loss between discounted and undiscounted policies turn
out dramatically smaller than the theoretical one. The optimal
total spend in each of the channels is comparable as well, with
the undiscounted case suggesting 9.39% higher expenditure;
allocation of these total spends are also carried out quite sim-
ilarly in the optimal discounted and the {aD

r |EU
r } heuristic, as

depicted in Figure 1. These spending patterns follow a declin-
ing pattern in advertising, as predicted in Section 3.2.

The above analysis suggests that not much is lost if dis-
counting is ignored at both the strategic and tactical lev-
els (especially in terms of profitability), despite having a
fairly high (15%) discount rate as in this example. However,
ignoring discounting remarkably simplifies the complexity
of the problem and allows more focused decision-making
at each tier while maintaining the linkage between strategic
and tactical decisions. This linkage is established through the
cumulative effectiveness function Φr(Er) for each channel.
With the exponentially decaying form of 𝜙i

r(⋅) functions, the
tactical plan from the TPP problem can be solved in closed
form, as follows, for given levels of the budget Er for each
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channel:

a∗rk =

(
1 − 𝛿

Kr+1−k
r

) 1

1−𝜌r

∑Kr
j=1

(
1 − 𝛿

j
r
) 1

1−𝜌r

Er and Φr(Er) = 𝛽rE
𝜌r
r + Φ0

r ,

with

𝛽r =
𝜏r𝛼r

1 − 𝛿r

⎡⎢⎢⎢⎣
Kr∑
j=1

(
1 − 𝛿

j
r

) 1

1−𝜌r
⎤⎥⎥⎥⎦

1−𝜌r

and

Φ0
r = 𝜏r𝛼r

𝛿r − 𝛿
Kr+1
r

1 − 𝛿r
Sr (0) . (7)

The above expressions confirm that the Φr(⋅) function has
a power form when the 𝜙i

r(⋅) also do. For this empirical
example, the constants corresponding to the 12-month media
planning period would turn out to be 𝛽1 = 0.0926, 𝛽2 =

0.0738, Φ0
1 = 0.0230, and Φ0

2 = 0.0133.

3.5 Summary of model decomposition and
next steps in strategic decision-making

We note that the derivations in this section allow us to trans-
form and simplify the DMP problem optimally, or simplify
the DMP-DISC problem near-optimally, into the strategic
MEA problem. As detailed in their review of methodology
specific to TV advertising, Singh et al. (2018) highlight the
computational difficulties in solving media planning prob-
lems. In contrast, MEA is squarely focused on the strategic
aspect of marketing allocation, which requires only determin-
ing how much should be allocated to each individual channel
(Er). Therefore, solving this problem is notably simpler (with|R| decision variables), compared to either of the optimal
control problems DMP or DMP-DISC (with

∑
r∈R Kr deci-

sion variables), which focus on extracting specific time paths
to address tactical details. Therefore, most nonlinear solvers
would find the MEA problem far easier to solve quickly and
accurately than either DMP or DMP-DISC.

The MEA problem can be regarded as strategic budget
allocation across channels, incorporating how channels inter-
act with one another and with the WOM process while fore-
seeing that the budget allocated to each channel would be
optimally spent. This structure further aligns with the prac-
tical implementation of media planning decisions (as referred
to in Section 1). At the “strategic” tier, C-suite executive(s)
align marketing with other business goals and decide on both
overall marketing spend and its allocation across channels.
The decomposition of strategic and tactical decisions essen-
tially means that the interaction of channels with one another
and WOM needs to be captured mainly at the strategic level,
without direct/constant involvement of lower-tier marketing

managers who cannot assess how their efforts may impact
overall firm profitability. Nevertheless, their feedback would
be critical to assist C-level executives in properly capturing
and measuring the effectiveness of each channel (i.e., Φr(⋅)
functions).

The impact of lower-tier managerial effort is typically
assessed through various observable metrics (other than
profit), such as the number of impressions, click-through
rates, etc., which can more readily be tactically accounted
for by maximizing the overall effectiveness function, given
an available budget. This practice highlights that multiple
decision-makers are involved in the overall implementation
of a media plan who potentially pursue different objectives.
However, the decomposed structure shows that the incentives
of the different decision-makers are still aligned to enhance
profitability for the firm as a whole, so long as channel inter-
actions (with one another and with WOM) is properly man-
aged at the strategic level, and the tactical planners optimally
spend the allocated budget.

The main factor linking the strategic and tactical tiers
are the functions {Φr(Er)}. In practice, each such function
reflects the cumulative effort in channel r when the total bud-
get Er is spent either according to a “predetermined mar-
keting strategy” or “optimally” (based on TPP). The spe-
cific functional form of Φr(⋅) would of course depend on
how advertising impacts current and future sales at any point
of time. For a given application and as illustrated in Sec-
tion 3.4.1, the sales model from (1) and (3) can be fitted to
data on past sales and advertising expenditures over time to
estimate the functional form of the 𝜙i

r(⋅). Depending on using
a predetermined temporal marketing strategy or the optimal
one, the Φr(⋅) functions can be derived/computed accord-
ingly. The functionΦr(Er) from the TPP problem cannot gen-
erally be characterized in closed form unless more is known
about the functional form of {𝜙i

r} (as seen for instance in
Section 3.4.2). Nevertheless, TPP is an instance of a concave
Knapsack problem, and if no closed-form solution is avail-
able, many algorithmic routines are available to quickly cal-
culate Φr(⋅) and its numerical derivative, Φ

′

r(⋅), with guaran-
teed optimality (e.g., Moré & Vavasis, 1990; Zipkin, 1980).

Despite not requiring the full arsenal of dynamic program-
ming methods, the MEA problem does present a number
of technical hurdles. Specifically, it is a nonseparable, non-
convex nonlinear program, an NP-hard global optimization
(Horst et al., 1995). In practical terms, this means any
algorithm optimizing media schedules in MEA would have
computation time increasing exponentially in the number
of channels (decision variables) and be feasible only if the
dimensionality of MEA is kept small. In such cases, manage-
rial guidelines narrowing down the set of relevant channels
a priori are valuable in obtaining a good solution quickly
enough to be useful in pragmatic media planning. While a
world with such limited channel choice was once the norm, it
no longer is: the number of available digital channels is both
large and growing. Even if the “optimal” media plan can be
realistically extracted from MEA, it must still make sense to
marketing managers: strategic media decisions often involve
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large resource commitments unlikely to be delegated entirely
to some algorithmic “black box.” For these reasons, we focus
on obtaining managerial insights beyond solely developing a
new algorithmic approach to the MEA problem.

In the remainder of this paper, we derive guidelines regard-
ing the role of each channel in the strategic media plan and
their interactions with both other channels and WOM. Some
of the results help reduce the number of channels under con-
sideration a priori, enhancing the usability of existing algo-
rithms. We also outline conditions ensuring substitutive or
synergistic channels interactions that help demystify these
algorithmic black-box outputs and enable informed adjust-
ments as needed, based on managerial considerations beyond
the scope of the optimization problem.

4 CHANNEL INTERACTION
TYPOLOGIES BASED ON LEVERAGE
AND MOMENTUM

In this section, we study how channels impact demand adop-
tion and the WOM process, as well as how they interact with
one another. As discussed earlier, we assume throughout that
the firm has allocated (or committed to spend) E0

s ≥ 0 on each
channel s ∈ R (of course, E0

s can be 0 as well).
In Section 4.1, we determine the extent to which each

channel can individually influence sales and classify chan-
nels based on their “leverage” (i.e., potential for impact-
ing demand). We find that leverage is not the sole deter-
mining factor in how successfully a channel can impact
sales; rather, leverage needs to be assessed in comparison
to demand “momentum”: the degree of market penetration
ensured by the allocated expenditures, a primary driver of
WOM’s effects. The channel typology derived in this sec-
tion also provides a number of high-level managerial insights.
First, it allows us to identify low-leverage channels, in which
any expenditures beyond their allocated levels are subopti-
mal, eliminating them from further consideration. Second, for
the remaining channels, we identify those in which further
expenditures may be reasonably considered, versus those in
which the (previously allocated) expenditures have already
exhausted their momentum-generation capability so that no
further expenditures are necessary. This also allows us to
reduce the set of channels considered, simplifying the media
planning task.

In Section 4.2, we turn our focus on interchannel interac-
tions, which are revealed when the allocated investment in
one or multiple channels is changed (potentially in response
to unforeseen changes in business strategy or to fine-tune the
media plan) and its impact on optimal investment in oth-
ers is studied. Using the two-way (leverage and momen-
tum) channel classification developed in Section 4.1, we
show that channels in each class have different patterns
of interaction with others, as well as identifying regions
where a given channel’s interactions are driven primarily
by synergy versus substitution. In Section 4.3, we continue
analyzing the camera sales data (Section 3.4) to illustrate

the applicability of our results. To streamline exposition,
detailed proofs of all results appear in Supporting Informa-
tion Appendix B, and in Supporting Information Appendix E
we further discuss how insights in this section are impacted
when marketing resources become scarce as a result of
total budget limitations or limited availability of advertising
inventory.

4.1 The structure of influence of individual
channels on demand adoption

Recall that the firm has already allocated a spend E0
s ≥ 0 on

each channel s ∈ R, resulting in a nonnegative profit Π[E0] >
0, where E0 is the vector of allocated expenditures, and that
E0 = 0 corresponds to no prior allocation. Total cumulative
marketing effort from the initial investment in all channels
is given by C0 =

∑
r∈R Φr(E

0
r ); it is convenient to notate

cumulative initial-investment marketing effort in all chan-
nels except channel s ∈ R using the usual “−s” subscript as
C0
−s =

∑
r∈R−{s} Φr(E

0
r ).

We begin by investigating whether any further investment
beyond E0

s in a given channel s ∈ R can profitably influence
demand. We define E∗

s (C0
−s) as the optimal level of investment

in channel s given cumulative effort in all other channels C0
−s;

this can be interpreted as the optimal “response” for channel
s to C0

−s. Since we assume that amount E0
s has already been

allocated, we constrain E∗
s (C0

−s) ≥ E0
s . When the value of C−s

is clear from context, we may drop the explicit dependence of
E∗

s on C−s.

4.1.1 Channel classification based on leverage

It will be helpful for the ensuing analysis to derive an upper
bound on the optimal investment in a given channel. Specif-
ically, Theorem 3 in Supporting Information Appendix B
shows that the optimal investment in channel s is bounded
from above by EU

s , defined as follows:

EU
s =

⎧⎪⎨⎪⎩
E0

s if Φ
′

s

(
E0

s

)
<

4q

P(q+p)2 ,

supEs≥E0
s

[
Φ

′

s (Es) ≥ 4q

P(q+p)2

]
otherwise

. (8)

As will be illustrated in Section 4.2, when EU
s is finite, this

upper bound is “tight” in the sense that, for certain allocated
spend levels, it is optimal to invest EU

s in channel s. Note that
the value of EU

s is independent of the spends or effectiveness
of all other channels: it is driven only by the ability of chan-
nel s to influence demand. For this reason, EU

s can serve as
a measure of leverage or effectiveness for channel s and we
subsequently refer to it as such.

The expression for EU
s , along with the concavity of Φs,

affords a useful typology regarding its permissible values.
Specifically, notating E = [E0

s ,C−s] as a spend vector with
the same allocated spend on channel s as E0

s and total effort
on all other channels C−s, then one of the following cases
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occur—depending on whether EU
s takes some internal value

on [E0
s ,∞]:

∙ “Low leverage,” EU
s = E0

s . In this case E∗
s (C−s) = E0

s , that
is, it would never be optimal to allocate any additional
expenditure in channel s, no matter how much spend is
allocated to other channels.

∙ “Medium leverage,” E0
s < EU

s < ∞ and satisfies

Φ
′

s(E
U
s ) =

4q

P(q+p)2 . In this case E∗
s (C−s) ∈ [E0

s ,E
U
s ],

that is, it may be optimal to increase the investment in
channel s to a level not exceeding EU

s .
∙ “High leverage,” EU

s = ∞, that is, limEs→∞Φ
′

s(Es) >
4q

P(q+p)2 , implying that the channel remains effective even

when it is highly invested. In this case E∗
s (C−s) ∈ [E0

s ,∞),
that is, further positive investment in channel s may be
warranted.

Intuitively, the leverage classification suggests that low-
leverage channels cannot influence demand effectively, so
any marginal investment (beyond the allocated amount E0

s )
is not justified. For medium- and high-leverage channels, fur-
ther investment in channel s may be effective, but is not solely
guaranteed by the given degree of channel leverage. As will
be shown below, the suitability of the additional investment in
this channel depends on C−s, that is, how much has been allo-
cated to all other channels under spend vector E and conse-
quently how much boost in WOM they can collectively create
to “help” channel s.

4.1.2 Channel classification based
on demand momentum

Here we explore how much “help” WOM can provide to
a channel’s ability to generate sales. In addition to channel
leverage, this second key factor has to do with the level of
market penetration assured by allocated spend E0—namely,
G(C0), where again G is as in the Bass formulation (2)
and total cumulative marketing effort is C0 =

∑
r∈R Φr(E

0
r )

is. This level can be interpreted as the (pre-assured) mar-
ket “momentum,” the primary driver of the WOM effect, on
which further expenditures in channel s can build.

Since we already know that no further expenditures in
channel s can be justified for low-leverage channels, we
assume that E0

s < EU
s , that is, that the leverage of channel

s is medium or high. Then it is well-defined and useful to
specify the following lower and upper market penetration
thresholds:

G1
s :=

1
2

(
1 −

p
q

)
−

1
2q

√
(q + p)2

−
4q

PΦ
′

s
(
E0

s
) , (9)

G2
s :=

1
2

(
1 −

p
q

)
+

1
2q

√
(q + p)2

−
4q

PΦ
′

s
(
E0

s
) . (10)

Observe that {G1
s ,G

2
s } depend only on the parameters of

the demand curve (innovation and imitation rates p, q), the
base per-unit profit P and the initial expenditure E0

s on chan-
nel s, but not on expenditures in all other channels; and also
that the two thresholds are symmetric around the inflection
point 0.5(1 − p∕q) of the demand penetration curve. Theo-
rem 4 in Supporting Information Appendix B shows that the
threshold level G2

s is an upper bound on the market pen-
etration level that can be achieved with investment vector
[E∗

s (C0
−s),C

0
−s]—in which an optimal investment is made in

channel s while keeping the expenditures in all other chan-
nels at their initial levels—and moreover that a three-way
typology of channels (not of the low-leverage type) regarding
the level of demand momentum a channel experiences is as
follows:

∙ “Low momentum,” G(C0) ≤ G1
s : a small increase in

expenditure in channel s results in a profit loss, that is,
there exists Emin

s > E0
s such that Π[Es,E

0
−s] < Π[E0

s ,E
0
−s]

for all Es ∈ (E0
s ,E

min
s ]. However, a larger investment E∗

s ∈

(Emin
s ,EU

s ] may be profitable.
∙ “Medium momentum,” G1

s < G(C0) < G2
s : it is always

beneficial to increase investment in channel s, that is,
E∗

s (C0
−s) ∈ (E0

s ,E
U
s ].

∙ “High momentum,” G(C0) ≥ G2
s : demand adoption with

current expenditure E0 is sufficiently high and further
investment in channel s is not profitable, that is, E∗

s (C0
−s) =

E0
s .

As mentioned at the outset, this typology characterizes how
much “help” is available from the guaranteed WOM process
for channel s to be further successful in generating sales, and
how much capability channel s has to generate additional
momentum with this help. Therefore, the threshold levels of
demand momentum G1

s and G2
s depend on the current effec-

tiveness of channel s as well.

4.1.3 Dual typologies, crossing the chasm,
and mass-market penetration

The two typologies derived earlier are summarized in
Table 2, which illustrates that neither leverage nor momen-
tum can individually classify a channel, thus requiring a dual
typology.

The “high momentum” case occurs when (the already-
assured) demand penetration G(C0) is above the upper thresh-
old G2

s , so the allocated spend levels position the product’s
ultimate market share in the flatter branch of the S-shaped
penetration curve. This could be either because of high allo-
cated investment levels and/or because of partial buildup of
WOM prior to and during the media planning horizon. As
demand momentum is already quite high (compared to what
channel s needs, measured by G2

s ), increasing the penetration
level further requires prohibitive effort, leading to E∗

s = E0
s .

At a first glance, it may seem surprising, as per Table 2,
that channels facing high momentum behave similarly to the
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TA B L E 2 Structure of influence of individual channels on demand

Guaranteed demand momentum by allocated spending, G(C0)

Low Medium High

Leverage

Low No further channel spending

Medium Further spending may
be needed

Increase channel
spending

No further channel
spendingHigh

low-leverage channels: neither one warrants any expenditure
beyond the already-allocated amount E0

s . However, the rea-
sons behind this outcome are very different. In the high-
momentum case, channel s can in a sense now “free-ride”
on customer WOM and allocated investments, so does not
require further support. This would, of course, change if the
allocated investments in other channels were lower, causing
G(C0) to drop. This contrasts with a low-leverage channel
unable to sufficiently influence demand cost-effectively inde-
pendent of investments in other channels. Thus, no expendi-
ture beyond E0

s is warranted even if investment in other chan-
nels in E0 were to be reduced.

The medium momentum case occurs for demand momen-
tum in the “sweet spot” range between G2

s and G1
s : WOM can

well accompany increased investment in channel s, and thus it
is optimal to increase channel s spending, that is, E∗

s > E0
s . By

contrast, in the low-momentum case, the allocated spend lev-
els put the product’s ultimate market share in its initial slow-
growth region when WOM is not well developed, requiring a
relatively large exertion (in the form of additional investment
in channel s) to properly influence demand; indeed such exer-
tion may be cost-prohibitive, especially if it is not supported
by investment in other channels to raise demand momentum.
Thus E∗

s = E0
s cannot be ruled out. However, when a cost-

efficient expenditure level exists, substantial further invest-
ments in channel s may be warranted to ensure that ultimate
demand penetration is increased to a more desirable level. We
also note that it follows from the definition of G1

s that G1
s < 0

when Φ
′

s(E
0
s ) >

1

Pp
, so the low-momentum case cannot occur

if the leverage of channel s is not too low. This suggests that
if the allocated investment in channel s has been sufficiently
effective, it has already created a substantial level of demand
momentum.

Based on the above discussion, the threshold G1
s can be

interpreted as the “chasm-crossing ability” of channel s, that
is, the ability of the channel in transitioning the ultimate fate
of the adoption process from selling only to “early adopters”
to reaching mass-market penetration (Moore, 2014; Van den
Bulte & Joshi 2007). As described by Chandrasekaran & Tel-
lis (2011), a chasm “separates the early adopters from the
early majority” who may “have different characteristics and
needs”; although we are agnostic here on whether the former
do not form a good WOM reference point for the latter, or
whether it leads to an explicit saddle (e.g., Goldenberg et al.,
2002). Such chasms have been implicated, for example, in the
sequential unfolding of consumer and developer segments in

software platform deployment (Mehra et al., 2014). Conse-
quently, it would be possible to cross the chasm if enough
marketing support is allocated initially so as to raise the mar-
ket share above mins∈RG1

s .
Analogously, the threshold G2

s can be interpreted as the
“mass-market penetration level” that can be achieved if chan-
nel s is best utilized. That is, the firm would be able to achieve
a market share of at most maxs∈RG2

s if proper marketing sup-
port is provided. Assuming s is not a low-leverage channel,

we further observe that, as Φ
′

s(E
0
s ) decreases to

4q

P(q+p)2 , the

difference G2
s − G1

s decreases to 0; that is, as the leverage of
the channel decreases to the low-level threshold, the “sweet
spot” region of the demand curve defining medium momen-
tum shrinks, thus reducing the region where channel s can
individually influence demand penetration. Indeed, the inter-
play between the channel’s leverage and demand momentum
is a key determinant of how channels interact with each other;
this will be further explored, and illustrated graphically, in
Section 4.2. However, we first exploit some of the conse-
quences of the previous result to further “prune” the set of
channels under consideration.

It is critical to note that the initial market share of the prod-
uct x0 (before the media planning horizon) does not influence
the thresholds in the typography of Table 2. This means that
if media planning decisions are done at different stages of the
product lifecycle, the same metrics of assessment still hold.
The main impact of the initial market share would, however,
be in the magnitude of G(C0), that is, the higher is the prior
adoption of customers before media planning decisions, the
higher is the chance that channel s would experience a higher
momentum.

4.1.4 Eliminating dominated channels from
the media planning problem

Reducing the set of channels needing to be considered by
the media planner is important not only from a computa-
tional perspective—nonlinear optimization for MEA entails
the curse of dimensionality—but a managerial one: there are
nontrivial cognitive, accounting, and time costs to continu-
ally consider ineffective channels. Table 2 suggests that two
types of channels can be eliminated from further consider-
ation: low leverage or high momentum. While these gen-
eral prescriptions are useful, it is possible to go further by
considering channels pairwise, eliminating any channel that
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“dominates” another. Put more rigorously, if there is a chan-
nel r ∈ R whose effectiveness always dominates that of chan-
nel s (that is, Φ

′

s(Es) < Φ
′

r(Er) for all Es ∈ [E0
s ,E

U
s ] and all

Er ∈ [E0
r ,E

U
r ]) then it is never optimal to invest in channel s

beyond the initial level, E0
s (Theorem 5 in Supporting Infor-

mation Appendix B). Practically speaking, this means that for
each additional dollar invested in channel r and s, the former
generates higher “bang for the buck.” Moreover, this con-
dition is easily verifiable: the concavity of both Φs and Φr

makes it equivalent to Φ
′

s(E
0
s ) < Φ

′

r(E
U
r ). Despite its simplic-

ity, this observation has an important and nonobvious impli-
cation: it is never optimal to invest in a less effective channel
despite its potential synergistic interaction with others.

In terms of solving the media planning problem, we can
then narrow down R to a subset RA of “active” channels that
may warrant investments beyond the current vector of alloca-
tions E0:

RA =

⎧⎪⎨⎪⎩s∈R
||||||
s has medium or high leverage
G(C0) < G2

s (low or medium momentum)
s not dominated by any other channel r∈R

⎫⎪⎬⎪⎭ .
(11)

4.2 Structure of channel interactions:
Substitution and synergy implications

In this section, we explore how channels mutually interact.
These interactions cannot be inferred by only looking stat-
ically at how influential each channel is for a given spend
vector like E0; rather, one must examine what happens when
allocated investments in some of the channels change and the
optimal response of others is characterized. The analysis is,
somewhat surprisingly, entirely tractable if, for any feasible
channel (i.e., s ∈ RA) and any positive offset, z ≥ 0, the mar-
keting effectiveness function Φs satisfies at least one of the
following conditions (where, as always, P is the base unit
price):

(a) G(Φs(Es) + z) is concave or S shaped in Es.

(b) P ⋅ G(x + z) − Φ−1
s (x) is concave or S shaped in x.

Intuitively, both conditions guarantee uniqueness: that if
it is optimal to increase the investment in channel s (while
keeping the investment in all other channels fixed), the opti-
mal magnitude of the increase (i.e., the optimal response)
can be obtained uniquely. In conditions (a) and (b), z stands
in for the cumulative marketing effort of all channels other
than s, so it suffices to check either condition for internal val-
ues, that is, for 0 ≤ z ≤ Σr∈RA−{s}Φr(E

U
r ). While (a) and (b)

depend on both demand adoption and effectiveness structure
of channels s ∈ RA, they have a simple associated sufficient
condition, one based on channel effectiveness functions only;
specifically, they hold if(Φ−1

s (x))′ is convex inx for allx ≥ 0
ands ∈ RA (Theorem 6 in Supporting Information Appendix

B). Fortunately, this sufficient condition holds for the most
common forms of effectiveness functions in the literature, for
example, Φs(Es) = Es, ln(1 + Es) and

√
Es, among others.

With these preliminaries in place, channel interactions can
be analyzed. To do so efficiently, we focus on a single channel
s ∈ RA and study its interaction with potentially all remaining
channels R − {s}. Specifically, given that a spend of E0

s has
been allocated to channel s and combined cumulative effort
C0
−s =

∑
r∈R−{s} Φr(E

0
r ) to all other channels, we study how

the optimal spend E∗
s ≥ E0

s behaves as the cumulative effort
from other channels increases to C−s from its initial value,
C0
−s. Note that if C0

−s is increased by investing in only one
channel, the pairwise interaction of channel s with this chan-
nel can be inferred, but if the increase in C0

−s is achieved by
investing in multiple or all channels other than s, the collec-
tive interaction of channel s with those channels can still be
characterized.

As discussed in Section 2, several studies show that
channels interact mainly substitutively, while others find syn-
ergistic behavior between them. However, for a given allo-
cation of marketing resources (represented by spend vector
E), the key question is: Under what conditions is synergy
versus substitution observable (or dominant) as opposed to
the other? Recall that substitution means investing more in
one channel reduces the ability of another channel to (addi-
tionally) improve demand. Therefore, when the substitution
effect dominates, one expects that, when the level of invest-
ment in channels R − {s} is increased, it would be optimal
to reduce the investment in channel s. This intuition gener-
ally holds for models of substitutable products or resources
(e.g., Chapter 3 of Topkis, 1998). By contrast, synergy means
that channels work together better than the sum of each taken
separately. Thus, when synergy dominates, increased spend-
ing on channels R − {s} should trigger a spending increase in
channel s (from Theorem 2.8.5 of Topkis, 1998), a result that
also holds for the synergy model of Naik & Raman (2003).

These considerations lead to some terminological short-
hand that will prove useful. For a channel s ∈ RA, if the opti-
mal spend E∗

s is increasing in C−s for some range C−s ∈

[C1
−s,C

2
−s], where C0

−s ≤ C1
−s < C2

−s, then we say that the
interaction between s and all other channels is “dominantly
synergistic” in this range. If, on the other hand, E∗

s is decreas-
ing for C−s ∈ [C1

−s,C
2
−s], then the interaction between s and

the other channels is “dominantly substitutive” in this range.
Put simply, dominant synergy means that a channel’s opti-
mal investment goes up with the cumulative effort in other
channels (in a particular range), while dominant substitution
means the opposite.

The study of the dominant pattern of interaction of a
given channel s with all others requires considering both
its leverage-based and momentum-based categories. Focus-
ing only on channels in RA removes the low leverage and
high momentum groups, allowing us to partition RA into four
distinct classes: RH∕M ,RH∕L,RM∕M ,RM∕L, where the first let-
ter refers to the channel’s leverage and the second one to
its momentum. The next two sections detail the different
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interaction patterns of each class with other channels. To aid
in the ensuing analysis, we define the following critical quan-
tities for channel s ∈ RA:

Ctrans
−s = inf

{
C−s ≥ C0

−s|E∗
s (C−s) > E0

s
}

CLM
−s = inf

{
C−s ≥ C0

−s|G(C−s + fls(E
0
s )) ≥ G1

s
}

Cpeak
−s = inf

{
C−s ≥ C0

−s|G(C−s + fls(E
U
s ))≥ 1

2

(
1 −

p
q

)}
Cmax
−s = inf

{
C−s ≥ C0

−s|G(C−s + fls(E
0
s )) ≥ G2

s
}
. (12)

4.2.1 Medium leverage channels

Recall that for a medium leverage channel s ∈ RA, the upper
bound on its optimal expenditure, EU

s , is well defined and
finite. For such a channel, we start by analyzing the case
wherein it creates a low market momentum, that is, s ∈ RM∕L.
Later in this section, we will show that the results for the case
that channel s creates a medium momentum (i.e., s ∈ RM∕M)
can be viewed as a special case of the RM∕L results.

We next describe how the M∕L (medium-leverage, low-
momentum) channel s interacts with all other channels by
characterizing the behavior of E∗

s (C−s) as C−s is increased
from its initial level C0

−s. Recall that an increase in C−s can
be achieved by increasing the investment in one or mul-
tiple channels in R − {s}. Theorem 7 in Supporting Infor-
mation Appendix B states that for s ∈ RM∕L, the critical
quantities Ctrans

−s ,CLM
−s ,C

peak
−s and Cmax

−s exist and obey the
order restrictions C0

−s ≤ Ctrans
−s ≤ Cpeak

−s < Cmax
−s and Ctrans

−s ≤
CLM
−s < Cmax

−s . Moreover, we can characterize the behavior of
E∗

s (C−s) in each of the associated regions as follows:

Value of C−s Behavior of E∗
s (C−s) for s ∈ RM∕L

∈ [C0
−s,C

trans
−s ) E∗

s (C−s) = E0
s

∈ [Ctrans
−s ,Cpeak

−s ] E∗
s (C−s) increases smoothly in C−s, with maximum

EU
s at Cpeak

−s .
The interaction of s with others is dominantly
synergistic.

∈ [Cpeak
−s ,Cmax

−s ] E∗
s (C−s) decreases smoothly in C−s, with minimum
E0

s at Cmax
−s .

The interaction of s with others is dominantly
substitutive.

≥ Cmax
−s E∗

s (C−s) = E0
s

Proceeding downward through the ranges outlined above
illustrates how the interactions of channel s with other
channels change as investment in other channels is increased.
This pattern is also illustrated in Figure 2, where a typi-
cal curve, together with various regions of interactions, is

depicted. To begin with, cumulative effort from all channels
except s must reach a threshold Ctrans

−s for additional invest-
ment in channel s to be profitable. This makes intuitive sense:
since channel s does not have much leverage, it needs a cer-
tain minimum level of momentum (market penetration) to be
built up by the other channels before investments in s become
cost-effective.

When C−s rises above Ctrans
−s , two different interaction pat-

terns emerge. First when C−s ∈ [Ctrans
−s ,Cpeak

−s ], the interaction
of channel s with other channels is dominated by the syn-
ergy effect. In this range, the support of channel s is required
to complement the limited investments made in other chan-
nels in order to improve market momentum and WOM, but
channel s must work in concert with the other channels in
order to be effective. As a result, the firm is only moti-
vated to increase its channel s investment when it is sup-
ported by increased spending in at least one other chan-
nel. This increasing pattern continues until the peak spend
of EU

s is reached at Cpeak
−s , where the combined marketing

effort from all channels (including s) ensures that the inflec-

tion point
1

2
(1 −

p

q
) of the demand curve can ultimately be

reached.
The second pattern of interaction occurs once peak

expenditure level is reached at Cpeak
−s , at which point the

interaction between channel s and other channels is domi-
nated by the substitution effect. Here the cumulative effort
by all other channels is high enough to build a substan-
tial level of market momentum, and hence expenditures
on channel s are less and less economically justified as
cumulative marketing effort increases. Eventually once
C−s exceeds Cmax

−s , no further expenditures on s can be
justified.

As suggested in the preceding discussion (and indicated in
Figure 2), while channel s starts out as low-momentum, mar-
ket momentum “transitions” as the cumulative effort C−s is
increased; this means that channel s can generate a moder-
ate level of momentum when additionally supported by other
channels. Indeed, as C−s increases to above CLM

−s , channel s
transitions to the medium momentum category, which cannot
occur before the optimal spend level increases beyond E0

s ,
given that CLM

−s ≥ Ctrans
−s . The transition to medium momen-

tum can happen before or after Cpeak
−s ; however, in our numer-

ical experiments we observed CLM
−s ≤ Cpeak

−s , even though the
opposite cannot be ruled out. Also, as C−s further increases
beyond Cmax

−s , it transitions to the high-momentum region,
where no increase in channel s spending is justified. These
observations suggest that channels belonging to the initial
category RM∕M can be regarded as a special case of that for
RM∕L: their pattern of interactions with all other channels fol-
lows the one described in the tabular display for RM∕L when
initial cumulative effort C0

−s ≥ CLM
−s . This can be analogously

summarized for RM∕M as follows with the corresponding crit-
ical quantities of C0

−s = CLM
−s ≤ Cpeak

−s < Cmax
−s :
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F I G U R E 2 Typical pattern of interaction for a channel with the initial classification of “M/L” [Color figure can be viewed at wileyonlinelibrary.com]

Value of C−s Behavior of E∗
s (C−s) for s ∈ RM∕M

If C0
−s < Cpeak

−s

∈ [C0
−s,C

peak
−s ] E∗

s (C−s) increases smoothly in C−s, with maximum

EU
s at Cpeak

−s .
The interaction of s with other channels is
dominantly synergistic.

∈ [Cpeak
−s ,Cmax

−s ] E∗
s (C−s) decreases smoothly in C−s, from EU

s to its
minimum E0

s at Cmax
−s .

The interaction of s with others is dominantly
substitutive.

≥ Cmax
−s E∗

s (C−s) = E0
s

If C0
−s = Cpeak

−s

∈ [C0
−s,C

max
−s ] E∗

s (C−s) decreases smoothly in C−s, with minimum
E0

s at Cmax
−s .

The interaction of s with other channels is
dominantly substitutive.

≥ Cmax
−s E∗

s (C−s) = E0
s

To summarize, the results above show that medium-
leverage channels RM∕L ∪ RM∕M have two regimes of inter-
actions with other channels—one dominated by the synergy
effect, one by the substitution effect—and which regime is
dominant depends on the cumulative marketing effort of all
other channels. In the following section, we provide analo-
gous analyses for high-leverage channels, showing that their
patterns of channel interaction are notably distinct.

4.2.2 High-leverage channels

Recall that “high leverage” refers to channels for which
EU

s = ∞, that is, even large investments in the channel remain
effective on demand. We start the analysis by considering
channel s with the initial classification of high-leverage,
low-momentum, that is, s ∈ RH∕L. As before, we will see
that the results for high-leverage, medium-momentum (i.e.,
RH∕M) channels can be viewed as a special case of the RH∕L

results. For the RH∕L case, Theorem 8 in Supporting Informa-
tion Appendix B states that we have C0

−s ≤ Ctrans
−s = Cpeak

−s ≤

CLM
−s < Cmax

−s . Moreover, spending in channel s ∈ RH∕L can
be categorized as follows:

Value of C−s Behavior of E∗
s (C−s) for s ∈ RH∕L

∈ [C0
−s,C

trans
−s ) E∗

s (C−s) = E0
s

∈ [Ctrans
−s ,Cmax

−s ] E∗
s (C−s) decreases smoothly in C−s, from its
maximum at Ctrans

−s to the minimum E0
s at Cmax

−s .
The interaction of s with others is dominantly
substitutive.

≥ Cmax
−s E∗

s (C−s) = E0
s

Note that a H∕L channel behaves somewhat differently
from its medium-leverage counterpart (M∕L): while there
may exist an initial interval [C0

−s,C
trans
−s ) where no addi-

tional spend is cost effective, once C−s reaches the threshold
Ctrans
−s = Cpeak

−s , it faces a substantial enough level of market
momentum to jump-start investment in channel s up to its
maximum value. Due to high leverage in this channel, it can
impact the penetration curve on its own, that is, not requiring
“help” from the other channels. Thus, there is no “synergy”
interval. Marketing effort in other channels beyond Ctrans

−s
results in investment in channel s to be gradually reduced to
its minimum level, E0

s , so that interaction with other channels
is dominated by substitution throughout the whole positive
spend region.

As cumulative effort C−s increases to CLM
−s , channel s tran-

sitions to medium momentum; and, as it further increases to
Cmax
−s , it transitions to high momentum. If C0

−s is altered to be
larger than CLM

−s (i.e., transition threshold to medium momen-
tum), the interaction pattern of channel s with other channels
can be regarded as a special case of that observed in the RH∕L

case. Therefore, the initial “no-spend” region does not occur
as the channel faces a substantially higher level of market
momentum. Results for RH∕M channels can thus be summa-
rized as follows and depicted in Figure 3 with corresponding
critical quantities of C0

−s = CLM
−s = Cpeak

−s < Cmax
−s :
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F I G U R E 3 Pattern of interactions for a channel with the initial classification of “H/L” [Color figure can be viewed at wileyonlinelibrary.com]

Value of C−s Behavior of E∗
s (C−s) for s ∈ RH∕M

∈ [C0
−s,C

max
−s ] E∗

s (C−s) decreases smoothly in C−s from its maximum
at C0

−s to the minimum E0
s at Cmax

−s .
The interaction of s with others is dominantly
substitutive.

≥ Cmax
−s E∗

s (C−s) = E0
s

In summary, for high-leverage channels, the interaction
with other channels is dominantly substitutive until C−s
reaches Cmax

−s , at which point no further spend beyond the
allocated amount E0

s can be justified. Combining the results
of this section and the previous one, we conclude that if a
channel has limited leverage and spending maximally can-
not assure strong enough market momentum to ultimately
develop, it works dominantly synergistically with other chan-
nels to alleviate these limitations; otherwise, the dominant
interaction of the channel with others is substitutive.

4.3 Camera sales case: Empirical analysis
and implications

Equipped with the results of Sections 4.1 and 4.2, we com-
plete our analysis of the camera media planning case of Sec-
tion 3.4, along with all critical calculations and procedures.
Recall that, at the start of the 12-month media planning hori-
zon, the firm had already obtained F(28) = 44.22% market
share, having allocated at least $0.0002 per customer in each
channel ( E0

1 = E0
2 = 0.0002).

To investigate channel interactions at the strategic level,
one needs to specify the structure of the Φs(⋅) functions that
link the tactical and strategic decisions. At the tactical level
in Section 3.4, we take the sales impact of advertising to have
the commonly used “power form,” with customers recalling
a limited amount of past marketing effort. Recall from that
section that the resulting cumulative effectiveness function
Φs(Es), which allocates the budget Es optimally over time in
channel s, has a similar power form:

Φs (Es) = 𝛽sEs
𝜌s + Φ0

s for s = 1, 2 with 𝛽1, 𝛽2 > 0. (13)

Note that Φs(Es) is a concave increasing function of Es.
Based on the estimates and media planning setting of Sec-
tion 3.4, the constants were obtained as 𝛽1 = 0.0926, 𝛽2 =

0.0738, Φ0
1 = 0.0230, Φ0

2 = 0.0133. We see that 𝛽1 > 𝛽2 and
Φ0

1 > Φ0
2, indicating that Channel 1 is relatively more “effec-

tive” and that relatively more advertising goodwill is built in
this channel prior to the start of the media planning horizon.

Solving the MEA problem, the optimal channel spends are
E∗

1 = 0.0318 and E∗
2 = 0.0068, equivalent to the levels on the

last row of Table 1 (when multiplied by m). These levels sug-
gest spending considerably more on the relatively more effec-
tive channel. However, in competitive response to other exter-
nal factors, these investments may need to be revised. For
example, if a competitor is heavily investing in Channel 2 and
large investment in Channel 1 is not considered compatible
with the brand’s image, a manager might wish to learn how
lowering investment in Channel 1 to a suboptimal level would
impact the marketing plan. S/he would be interested to know
if savings on Channel 1’s spending can create more budget
for Channel 2’s spending and create a better barrier to entry
or would lowering Channel 1’s spending make Channel 2’s
less effective? In such a scenario, understanding the pattern
of interaction between the two channels can help meaning-
fully adjust their investment levels, which we subsequently
explore in the context of this case, specifically, how optimal
spend in Channel 2 varies with changes in Channel 1 expen-
diture (the reverse argument being analogous).

The first step is to check the uniqueness of the optimal
increase condition in Section 4.2. It is readily verified that the
sufficient condition—that is, (Φ−1

s (x))
′

is convex in x for all
x ≥ 0 and s ∈ RA—only holds for 𝜌s ∈ (0, 0.5), which aligns
with estimated values of 𝜌1 and 𝜌2. However, numerical ver-
ification shows the condition does hold for all 𝜌s ∈ (0, 1].
Thus, the results of Section 4.2 apply to this example.

Next, we classify Channel 2 with respect to leverage
and the market momentum faced based on the results of
Section 4.1. Comparing the value of Φ

′

2(E0
2) = 108.9 with the

threshold level of
4q

P(p+q)2 = 6.39, we see that Channel 2 does

not have low leverage. We further find that the maximum
optimal spend is bounded by EU

2 = 0.0098 < ∞, indicating
that Channel 2 has “medium leverage.” To determine the
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F I G U R E 4 Optimal expenditure on Channel 2 and optimal corresponding profit with respect to changes in Channel 1 spend; *: optimal spend plan
[Color figure can be viewed at wileyonlinelibrary.com]

demand momentum of Channel 2 at the initial spend vector
E0 = [0.0002, 0.0002], we compute the two penetration
thresholds, G1

2 = −5.6% and G2
2 = 98.4%, as well as the ini-

tial penetration level G(E0) = 61.0%. Since G(E0) is between
G1

2 and G2
2, the channel’s momentum is “medium.” The neg-

ative value of G1
2 essentially indicates that Channel 2 would

never be a low-momentum channel for any spend level.
Consequently, the interaction of Channel 2 with Channel 1
is governed by the typology specified earlier for RM∕M class.
Figure 4 depicts the optimal Channel 2 spend E∗

2(E1) for
different levels of spending in Channel 1. Since there are only
two channels in this example, there is a one-to-one correspon-
dence between C−s = Φ(E1) and E1, and using E1 for the x-
axis instead of C−s results in a bijective rescaling of the axis.

From Figure 4, we see that the optimal spend in Chan-
nel 2 decreases with an increase in Channel 1 spend, indi-
cating a dominantly substitutive interaction for reasonable
ranges of Channel 1 spending. Given that G([E0

1,E
U
2 ]) =

G([0.0002, 0.0098]) = 64.9% is larger than the threshold of
1

2
(1 −

p

q
) = 46.4% (from the definition of Cpeak

−s ; that is, the

highest spending in Channel 2 can guarantee the ultimate
market share passing the demand inflection point), we have
Etrans

1 = ELM
1 = Epeak

1 = E0
1. Therefore, the decreasing pat-

tern of optimal Channel 2 spend starts at a lower level than
EU

2 , meaning that Figure 4 depicts the right portion of Fig-
ure 2 after the peak. The optimal Channel 2 spend stays
well above the allocated value of E0

2 = 0.0002, but when
Channel 1 spending reaches the inefficiently high value of
Emax

2 = 10.058, Channel 2 transitions to the high-momentum
category and optimal Channel 2 spend drops to the allocated
value. From the figure on optimized profit, we can see that
the highest profit coincides with the previously found optimal
spend plan of E∗ = [0.0318, 0.0068]. Interestingly, the opti-
mized profit is somewhat flat around the highest level so that
when Channel 1 spending is in the range [0.0116, 0.0636],
the optimal profit does not drop more than 3%. Returning
to the question initially raised, we can conclude that low-
ering the investment in Channel 1 from its optimal level
of E∗

1 = 0.0318 slightly reduces the total optimal profit, but
Channel 2 is interacting mainly substitutive with Channel 1,
so that reduction in Channel 1 spending opens up some bud-
get and would necessitate increased Channel 2 spending.

The interaction of Channel 2 with Channel 1 is mainly
substitutive in this case, which is partly dependent on the
media planning settings, for example, the demand boost
(from WOM and advertising) over the initial 28 months. To
illustrate, imagine that the 12-month media planning horizon
was to hypothetically start with initial settings of 28 months
ago, that is, with the initial market share of 8.08% and ini-
tial advertising goodwill of 1.578 and 1.407 for channels 1
and 2, respectively. Figure 5 illustrates the optimal Channel 2
spending with respect to Channel 1 expenditures.

Both synergistic and substitutive patterns can now be
observed in Figure 5. When E1 < Epeak

1 = 0.3982, the two
channels interact synergistically until Channel 2 spending
reaches its maximum value of EU

2 at Epeak
1 . For higher Chan-

nel 1 spend levels, the two channels interact substitutively.
The optimal spend plan (marked with *) falls in the syner-
gistic portion of interaction of the two channels, in contrast
to that observed in Figure 4. Therefore, if the firm were to
reduce the optimal spend in Channel 1 under these settings, it
would need to cut back on the spending in Channel 2 as well,
as Channel 2 is relatively less effective in ultimate demand
adoption.

The type of interaction between the two channels also
depends on the nature of demand response to advertising. For
example, we illustrate in Supporting Information Appendix D
how a change in 𝜌1, or potential inclusion of explicit interac-
tion term between the two channels (to force in substitution
or synergy) can influence the resulting interaction between
the two channels.

5 DISCUSSION AND FUTURE
RESEARCH

A great deal of managerial and academic attention has
focused on improving media budget allocation, a problem
exacerbated by dramatic recent proliferation of online media
venues. As underscored by Weinberg & Pehlivan (2011),
there remains “a fair degree of uncertainty with respect to
allocating marketing effort and budget.” Here, we analyzed
media planning decisions for multiple marketing channels
over time to support a new product or service introduction.
In contrast to a “swim-lane analysis,” where each channel



STRATEGIC NEW PRODUCT MEDIA PLANNING 2163
Production and Operations Management

F I G U R E 5 Optimal expenditure on Channel 2 when the initial media plan values are set to those from 28 months ago; *: the corresponding optimal
spend plan [Color figure can be viewed at wileyonlinelibrary.com]

operates more-or-less independently, our main focus has been
on interactions between channels and with the WOM pro-
cess typically driving new product sales. In such situations,
channels can enhance or detract from one another’s effective-
ness, leading, to synergy or substitution. Building upon the
marketing literature on new product diffusion, we extended
the GBM framework in a manner allowing high-level insight
without the complexities of explicit dynamic programming
or the specific assumptions and functional forms required for
tractability. We also showed how to apply the model empiri-
cally, specifically, to camera sales for a major metropolitan
retailer, via Bayesian estimation of a highly flexible, two-
channel setup for radio ads and flyers.

The ensuing analysis suggests several broad insights. Per-
haps most directly relevant for media planners is that patterns
of channel interactions are governed by two factors: each
channel’s leverage and the momentum built up by all remain-
ing channels; the latter, being the primary driver of WOM,
is especially critical for new product launches. The modeling
framework allows the derivation of specific conditions under
which channel interaction is dominantly synergistic versus
dominantly substitutive, irrespective of functional forms cho-
sen for various elements of market response. Specifically, if
a channel has limited leverage and faces insufficient support
(from other channels) to build market momentum, it works
dominantly synergistically with other channels to alleviate its
predicament; otherwise, the dominant interaction pattern for
the channel is substitutive. The framework thereby provides
a usable typology based on low/medium/high levels of lever-
age and momentum, including the identification of specific
points past which a channel’s adoption process can “cross the
chasm” from lead users to mass-market penetration.

In terms of practical media planning, extant literature sug-
gests how certain classes of channels might be categorized.
For example, Lemon & Verhoef (2016) describe how mobile
channels, which offer location-based, time-sensitive opportu-
nities to create touchpoints, can directly interfere and inter-
act with other channels, especially with the prevalence of

“showrooming.” Their high per-dollar effectiveness suggests
medium-to-high leverage; consequently, customers’ exodus
to mobile channels can incentivize increased substitution of
the expenditures from other channels. On the other hand,
content-separated online ads (i.e., having little relation to
the medium’s content) are found to be less effective than
content-integrated channels, resulting in lower leverage, pos-
sibly because they feel more intrusive (De Haan et al., 2016).
If expenditures in such channels are differentially utilized at
the early stages of product adoption (leading to low momen-
tum), they may require support from other channels, thereby
interacting more synergistically. Generally speaking, how-
ever, our results illustrate that channel leverage and momen-
tum are dependent on product and channel characteristics
as well as the product adoption stage. That is, a channel
can behave synergistically in one setting and substitutive in
another, making “global” categorization of channels along
leverage and momentum (or emergent substitution/synergy
patterns) potentially misleading.

A number of results facilitate computing optimal spend
allocations for a target firm. First, deriving optimal temporal
spend patterns allows the original optimal control problem
to be formulated as a nonlinear program, to which numer-
ical solvers can be readily applied. We also derive results
allowing some “dominated” channels to be eliminated from
the planning problem a priori, helping to alleviate the curse
of dimensionality in crowded media channel spaces. Notably,
the model allows the direct incorporation of relative chan-
nel marketing costs, leading to optimality conditions that
apply even when various channels are priced differently, as is
common in nearly all media planning platforms. Such con-
ditions enable enhanced allocation using identical numerical
methods, without adding computational overhead.

Several directions for future research present themselves.
Although our modeling framework greatly reduces the com-
plexities of dynamic programming, a critical subsequent
area of inquiry concerns (numerical) optimization, as the
MEA problem structure may hinder the use of nonlinear



2164 ABEDI ET AL.Production and Operations Management

programming solvers when dimensionality—the number of
media channels—is large, as it could be in practice. Special-
purpose algorithms exploiting the structural properties of
the model can be constructed; conversely, specific functional
forms amenable to direct analysis by optimal control, as
per Prasad & Sethi (2009), is a fertile area for exploration.
Similarly, the model can be extended to consider not only
competition among channels but among products. While
this is critical for mature (commodity) markets, firms cannot
assume that, just because their product is “new,” it will retain
its local monopoly power indefinitely.

Important avenues for expansion involve particular dis-
tinctions within the model or data sources. For example,
the GBM framework presumes “complete mixing” in that
all customers are equally likely to “innovate” and then
“imitate” from one another. One could therefore posit that
p and q be channel specific; while a seemingly straight-
forward generalization, GBM is an aggregate model, so
accommodating this would require additional information on
individual-level exposure. Similarly, “media,” while charac-
terized by associated channel-specific parameters, are not
treated as fundamentally different; the customer journey lit-
erature suggests that, even for new products, different media
may best be deployed at different junctures. And the Bass
and GBM frameworks address first, not repeat, purchases,
which depend on intermediate satisfaction; a model address-
ing channel interactions for follow-up (like Fader et al., 2005,
in the customer lifetime value literature) or continent pur-
chases (as in Abedi et al.’s, 2014, example of Nespresso
machines and capsules), would enrich the model’s purview.
Also, the effects of both firm-initiated touchpoints (for adver-
tising; Li & Kannan, 2014) and customer-initiated ones (for
social effects) could inform attribution modeling for new
products specifically. Lastly, although our flexibly parame-
terized model can capture a wider variety of effects/shapes
than many in the literature, it cannot “learn” these forms in
the sense of machine learning; we see great potential for the
application of non-parameterics (e.g., Gaussian processes;
Dew & Ansari, 2018), which have not appeared thus far in
the empirical diffusion literature, to large-scale media plan-
ning data, particularly as regards to channel interaction.
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E N D N O T E S
1 Seasonal fluctuations and/or other exogenous temporal effects can be

incorporated by introducing the function w(t), which captures relative
deviation from baseline (i.e., w(t) = 0.5 means adoption rate at t is
expected to be 50% of the average rate) and replacing the last term in
(1) with [w(t) +

∑
r∈R ur(t)]. Note that w(t) ≥ 0, and averages to 1 over

the horizon.
2 In the GBM framework, Frutcher & Van den Bulte (2011) consider two

specifications for product salvage value after horizon T. In the first, they
consider the new product to still be available after time T and calculate the

discounted value of remaining adoptions. In the second, they consider the
product to evolve into a second generation, and account for the discounted
profit if adopters form a potential market for that (second-gen) product
when launched at time T . In both cases, the authors show that the total
salvage value is linear in F(T). Here, the salvage value can be accounted
for in the parameter P multiplying F(T).

3 A pseudonym is used, as the actual firm, to whom we are indebted for
these data, did not wish to be named.
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