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T

AbstracQ

New Eo uct and service introductions require careful joint planning of production and

marketing igns. Consequently, they typically utilize multiple information channels to
stimulate custo awareness and resultant word-of-mouth (WOM), availing of standard budget
allocation f©ols. contrast, when enacting strategic allocation decisions — which must align
with other m: ment imperatives — dividing expenditures across channels is far more complex.
To this en; rmulate a multi-channel demand model for new products (or services),
amenable s of inter- and intra-channel interaction patterns and with the word-of-mouth
process, wi ilding such interactions directly into the modeling framework.

To address notorious complexity of media planning over time, we propose a novel
decomposition of the multi-channel dynamic programming problem into two distinct “tiers”: the
Strategic tj'ﬂa resses how to allocate total expenditure across channels, while the tactical tier

studies ho ate the channel-specific budgets (determined in the strategic tier) over time
periods. Thi mposition enables optimal media strategies to sidestep the curse of
dimensionalit renders the model pragmatically estimable. Strategic tier analysis suggests a
variety of naye ghts, primarily that funds should not be allocated based on (relative) channel
effectiv, but also systematically aligned with WOM generation. Specifically, each
channel ¢ a “chasm-crossing” threshold, abruptly transitioning the adoption process from
lead-users t -market penetration. Moreover, the model provides actionable managerial
insight nd which, channel interactions are synergistic vs. substitutive. Specifically, a

channel’s interactions are governed primarily by its own “leverage” (potential demand impact)
and the WOM-based demand “momentum” (market penetration) it can generate, affording a

novel basi nel typography and firm action.
The framework is illustrated by examining camera sales for two media channels
(FSIs and \d their effects over 28 months. We use Bayesian machinery to estimate a

highly-flexible“ditfusion-based model, along with forecasts, media plans, and both theoretical

and em[fed qualitative insights.
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1 Introduction

uSinesses continually assess the performance of marketing mix variables, media outlets, and

channels, ¢ prtioning funds as if their effects were essentially additive. Despite the prevalence

and simpli o0-called “swim-lane analysis” (e.g., Nichols 2013), academic studies have long

question-edmm roughly proportionate allocation is justified. For example, empirical studies in

marketing L

Carpenter @nn 1985, Naik et al. 2005); with salesforce spending (Narayanan et al. 2004);
advertising (Naik & Raman 2003, Naik & Peters 2009); and that the strengths of

such synermmoderated by consumer-specific variables like brand familiarity (Pauwels et al.

2016).

rations have verified synergies among mix variables (Prasad & Ring 1976,

online and

Because ; in one medium can influence or assist those in another, failing to account for mix
synergies ¢ to ineffective allocation or over- / under-investment. Nichols (2013), calling for

better anal§tics, recalls a company that presumed its ads — e.g., a TV spot and subsequent online

search that 1

ads tg a clickthrough — seldom interact appreciably. Such assumptions are problematic

enough fo y) stable established products, but are especially so for new products and services

where media seek to stimulate social influence (Iyengar et al. 2011).

Success media plans judiciously allocate the marketing budget across available
commu nnels and determine their intensities over time. Here, “channels” can include
various media classes (TV, radio, online, etc.), venues within them (particular radio stations, social
media placgents), or sub-channels (e.g., a consistent ad time slot on a cable network). In practice,
media planning decisions often span corporate tiers and are made in a loosely coordinated fashion

(Joshi & ¢ @

business imperatives, and both overall marketing spend and its allocation across channels are
determinejs These decisions lie at the seams between marketing and other C-suite functions it
“comp budget, such as IT, sales, finance, and new ventures.

Deﬁir practical importance, formal analyses of such strategic decisions remain

relatively siloed, g@stricted to product subclasses with idiosyncratic characteristics. For example,

P014). Critically, at the “strategic” tier, marketing goals are aligned with other

several models

hardly

iscussed later in detail) apply primarily to commodities, whose sales dynamics

w products in general. Analogously, the literature on new product sales models has

(13

rarely exten strategic” media planning, focusing mainly on pragmatic planning decisions like

temporal expenditure patterns. For tractability and data availability reasons, such models typically
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analyze a single (aggregate) marketing channel, and rarely address inter-channel interactions. By

contrast, managerial insight and pragmatic strategies for new product media planning require

alignment Ftwee’he strategic and tactical stages.
Sty @ edia planning would be challenging enough if it merely needed to determine the
channel(s) g (marginal) bang-for-the-buck. Its notorious complexity stems from needing to

also mﬂaEhannels interact, both with one another and with the process of consumer-to-

consumer on transfer — that is, word-of-mouth (WOM) — so as to stimulate and guide
demand oyff thSproduct’s lifecycle. Empirical research supports the common real-world media
planning bl t two elements are critical to a sound plan: substitution and synergy between

different cm.g., Naik & Raman 2003; Goldfarb & Tucker 2011a,b). Channels “substitute” for
one anoth hef, roughly speaking, the more that’s invested in one channel, the lower the
incrementa of spending in another. For example, consider a firm advertising through both a

TV commenes d a Facebook campaign; additional resources invested in TV ads may increase

Facebook
demand in m‘t possible were these same channels employed separately, resulting in “synergy”.

frequency ach, in turn enhancing customer awareness, thereby rendering investments in

impactful. On the other hand, several channels acting in concert may enhance
Consider t ally multitasking modern consumer: because over 20% of TV viewers appear to
be chatti book or Twitter while watching (Dredge 2012), a firm might benefit by reuniting

customers’ ttention, advertising on TV and Facebook simultaneously.

and synergy are often presumed to work in opposing directions. Yet little is
known about why some channels behave substitutively in one setting, but synergistically in another.
This is amWrimary issues we address: under what conditions does either effect — substitution
or synerg};‘il? To answer this and related questions requires an analysis of the interplay

between ¢ hd customer WOM. To that end, we formulate a multi-channel demand model of
new produc ion, one in which a potential customer’s purchase decision results from either

innovationf§eeking behavior (purchasing ‘independently’ of other customers) or imitation-seeking

behavior (Eing ‘i'ﬂuenced’ by others who have already purchased). These behaviors are, in turn,

jointly infldenced by the firm’s marketing activities.
O\jt of demand dynamics builds upon and expands the Generalized Bass Model

(GBM) fram (Bass et al. 1994). The GBM not only provides excellent fit to sales data for a

roduct and service categories (Krishnan & Jain 2006) and modeling marketing mix
effects (Bass et
operations (Carrillo 2005, Wu et al. 2017). We extend the domain of applicability of the GBM

92000), but has been used to study the dynamics of new product development in
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framework by incorporating the impact of multiple channels on demand, via a general formulation
accounting for the influence of both contemporaneous and past marketing activities. The resulting
model, despite its@generality, allows the derivation of strafegic-level insights into (optimal) media

planning, whilegtaking account of its linkage with critical tactical details, e.g., how ad spending should

be allocate e with respect to memorability or stickiness. Importantly, “synergy” is not baked

into the-model ‘e'ﬁ" via explicit interaction terms), but arises naturally from the GBM setting, in a

way not anSipated by prior literature.

O od@l applies to media planning over near-to-moderate timeframes — consistent with
acceleratin ogical clock-speed (Carrillo 2005) — and where the product’s or service’s features
enable a dgffic onsumer base (or local monopoly); for example, in “situations in which the firm
enjoys a p tection, a proprietary technology, or a dominant market share” (Mesak & Clark
1998). Co ith the GBM framework, each customer’s (“purchase”) decision is to adopt or not,
in the sen nversion. Such scenarios are common: durables with long inter-purchase times;
where rep ases are unlikely (e.g., experiential media like books or films); or businesses
fostering ¢ retention for a consistent revenue stream (i.e., a “contractual” adoption setting;
Fader & Haugi 0).

Demtimal allocation plans is notoriously thorny, as it requires searching large spaces
of (tem allocations across multiple channels, often falling into the class of non-separable, non-
convex, NP- timization problems (Horst et al. 1995); solving them ‘exactly’ cannot be done
faster, 1 ing, than searching through all possibilities across all channels and time periods.

Therefore, as our first step, we provide a novel decomposition enabling optimal media strategies to be
examined meparate strategic and tactical tiers. This allows the media planning task to be
apportionedd pptimal strategic decisions (heuristically optimal when time discounting is present),

and optima @ I ones, while capturing both instantaneous and lagged marketing impacts. The

is characterized for any given decision at the strategic level, greatly simplifying

the probleriat the strategic tier while avoiding multi-channel dynamic programming and the curse of

dimensioniity duio the time dimension.

O e reduced dimensionality of the strategic problem, commercial solvers can find
optimal medi s when the number of channels under consideration is modest. For practical

purposes, ho > the ever-growing number of social media and internet advertising channels

foresight to prune the set of channels under consideration before applying such

algorithms. Yet a'More fundamental issue — qualitative as opposed to quantitative — concerns gleaning

managerial insight: algorithmically-determined media plans emerge from a Black Box, providing
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allocations without any sense of substantive context. In actual applications, strategic media planning
requires a holistic managerial view, allowing fine-tuned coordination with other high-level
organizatiqal qu’ions. Our explicit focus is precisely these sorts of insights: those that provide a
structured, quaditative overview to strategic media planning, rather than a purely algorithmic approach

our results can be useful for algorithmic development as well, despite not being

generate-d for that Burpose).

ThM analysis takes as its starting point the sort of swim-lane analysis common in the

media planfiing Mdustry (Nichols 2013), entailing an allocated level of spending in each of the
channels u sideration. Such levels can take many forms; they can: be zero; represent the

firm’s currmtion practice; be obtained via an (aforementioned) algorithmic approach; denote a

minimum spending level (e.g., one that ensures a desired level of ultimate market
penetration); ctc-@we first evaluate the prudency of this allocated investment, and then analyze the
nature of ¢ teractions, among themselves and with the WOM process.

Th! ensuing analysis sheds light on a number of issues in managerial practice only partially

resolved by extant approaches. Five novel insights, in particular, stand out:

1. Leve nagers commonly allocate budget to a channel relative to its own ability to
influence and — referred to as channel’s “leverage”. By contrast, our analysis suggests that

ch ng should also be aligned with how much “free advertising help” is generated
from cus WOM.

2. C
channels: momentum quantifies the “mass market penetration” the channel can generate and its

graphy. We show how both leverage and momentum can be used to profile

“chasm-crossing ability” (Moore 1991; Chandrasekaran & Tellis 2011); drops in leverage lower
both Lossing ability and mass market adoption, in turn weakening the channel’s
profitabids

ineffective. Yet our analysis suggests eliminating channels whose effectiveness is
“domiflated” by others or have exhausted their momentum-generation capability, alleviating the

3. Chan ion. A proportional allocation rule suggests dropping a channel only when it is
cu sionality and simplifying the media planning task.

4. ChMactions. The interaction of one channel with others is either synergistic (enhances
others Stitutive (detracts or no influence). Optimizing channel portfolios therefore requires

determining Mhich effect emerges, and how both leverage and momentum affect such
interactions. We find complex but explicit guidelines governing these factors: medium-leverage
channelsglftend to) act synergistically under low-momentum conditions and substitutively
ot ‘*@ while high-leverage channels cannot benefit from synergy at all, making them
dominantly substitutive. Importantly, a channel can behave synergistically in one

setting while substitutively in another.
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5. Costs. Media planning is essentially a trade-off between expenditures and effectiveness. We find
that a higher-cost channel is associated with: reduced maximal profitable expenditure; tightened
conditions for increasing spend beyond its allocated level; and increases the “boost” it needs
fro“mels before it can interact substitutively with them.

Og goal is to understand how multiple channels interact, among themselves and
with custor Ivimand how to manage these interactions via media planning for a new product or
service ¥htFS@WEHOh. As echoed by Nichols (2013), such “..insight represents the holy grail in
marketing ing precisely how all the moving parts of a campaign collectively drive sales and
what happefiS wiieh you adjust them”. To that end, the reminder of the paper is organized as follows.
After reviem
into strategg tical tiers in both the discounted and undiscounted cases in Section 3, along with
a detailedgmC

evant literature in Section 2, we discuss decomposing the media planning problem

| example of media planning for camera sales via Bayesian estimation. The

strategic 1 em — including the interaction of channels with one another and with WOM —
which infor managerial insights, appears in Section 4. Specifically, we start by analyzing the
impact of leverage and demand momentum in Section 4.1, including results allowing a
reduction i ber of channels under consideration. A two-way channel typology is developed in
Section 4. erizing inter-channel interactions based on both leverage and momentum; and
mly in Section 4.3 (sensitivity analyses appear in Appendix E). Lastly, our overall
finding ized in Section 5, along with suggestions for future research.

2 Lite eview: Synergies, Interactions, and Media Planning

Synergies have long been recognized as critical in empirical marketing. Prasad & Ring’s
(1976) ﬂeli experiment revealed interactions among mix variables — price, promotion, TV advertising
— as key

interactiong@n household choices, e.g., Carpenter & Lehmann (1985) incorporated effects of

advertising

Narayarru, & Chintagunta (2004) verified the impact of mix variables, sales force

expenditurds, and their interactions for three antihistamine medications, finding synergistic demand

imants of brand share. Scanner panel data allowed explicit modeling of mix

brand name, and form, reporting consistent evidence of price interactions.

mpha

Naik et al. (2005) documented the need to account for interactions among advertising and promotion

effects and izing “the importance of investigating firms’ optimal budget allocation.” Similarly,

in planning mix sti@tegies.

(television, print;¥@id radio) and offline (banners and search) advertising, focusing on synergies both

within and across media types, and studying (as we do here) optimal overall budget and proportional
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allocation. [Readers are directed to their paper for a detailed review and effects summaries for the
literatures on both media synergies and multimedia allocation.] Pauwels et al. (2016) take synergies —

both onlinggand cy@ss-channel — as a marketing fact, and further study how brand familiarity affects

Srinivasan et al.
marketing srla les (e.g., advertising, promotions, quality) and measures of product innovativeness.

In alignm hese empirical findings, our model allows for synergistic interactions between

channels, @) not build synergy directly into the model (e.g., via explicit interaction terms),

rather explo nergy that arises naturally from the structure of the demand model, in a manner

distinct frofitf pfior iterature.

2.1 Medi ing with Multiple Channels
Li n optimal resource allocation among multiple marketing channels, especially at

the strategts relatively limited, focusing mainly on frequently-purchased products, e.g., for

S

which pan&} data may be available. This stands in contrast to new products, whereby a diffusion
process describes “adoption” rather than “consumption”, with an upper bound on market saturation
(Meade & [§la 6). Because such products are, by their nature, relatively unfamiliar to customers,

their sales over tihe rely on the build-up of social influences, such as customer WOM, in conjunction

with m activities, which in turn aids operations (Cui et al. 2018). Thus, core concepts like
adoption, turation, and WOM are less relevant for existing (henceforth, “commodity”)
productss g crucial for new ones.

Magdia planning models for such commodity products date back many decades. Gensch
(1968), fo
programmi @ paches, while Basu & Batra (1988) formulated ADSPLIT, which interactively

, distinguished among non/linear programming, marginal analysis, and dynamic

allocates a cified promotional budget. Yet tractability dictated fairly stringent assumptions,

particularl rding media synergies: for example, (demand) response to advertising in each

channe

channelWles; and data limitations required precluding such important impacts as those of

rily assumed linear or concave; no interaction was allowed among the various

past advertisi d (on sales) and customer WOM.
So ese early restrictions have been since alleviated. With respect to channel
interactions ically, a number of studies empirically show or implicitly assume that channels (at

ubstitute for one another in influencing demand (e.g., Goldfarb & Tucker 2011a,b;

Bergemann & atti 2011). By contrast, Naik & Raman (2003) show empirically that two
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advertising channels can interact synergistically to enhance sales of a commodity product, and test
this via a model that includes an explicit multiplicative interaction term for marketing efforts in two
channels. Raman & Naik (2004) further accommodate the impact of uncertainty, while Naik & Peters

(2009) consi hierarchical extension to study interaction between online and offline channels.

Thy helped analysts understand channel interactions, including those with sales
(Prasadm& iSethim2609). Although they validate substitution and synergy effects in the context of
commodit)&'li" ngt new-to-market) products, their collective results remain difficult to reconcile,

e.g., why aggarti@mlar effect is observed in one study but not another. Although many (e.g., Prasad &
Sethi 2009, foc

problems 7;jmfous, model-specific analyses, here we provide a decomposition of strategic and
i

on temporal allocation through specific dynamic or stochastic programming

temporal allogati and then focus on the strategic tier: chronicling the nature of multi-channel
policies fo f response functions that obviate the need for the full arsenal of such techniques.
2.2 Medi ing for New Products

That previous research has focused nearly exclusively on commodities limits its use for new
product m ning, for several reasons. First, new product markets are characterized by
saturation, basic diffusion process is terminated by a decay of the number of new adopters”
(Peres et . Extant models for commodities do not (need to) capture saturation effects

typifyi ct trajectories. Second, saturation, along with WOM, leads to S-shaped demand
(Little 1979, rg 2001), as opposed to the concave response for products past their “ramp up”
phase. ined demand response to advertising in these models (i.e., those that incorporate

channel interactions) entails the curse of dimensionality, requiring 2™ — 1 estimated quantities for n

channels, agparticular impediment for new products, given their scant data histories.

Allg of marketing funds for new products has been studied mainly at the tactical level
to describe @ pmer adoption process driven by social influences and the firm’s current and past
marketing ¢
reviews ar@ provided by Mahajan et al. (1990), Meade & Islam (2006), Chandrasekaran & Tellis
(2007), and, Peres et al. (2010). The impact of marketing efforts in diffusion models is ordinarily

This literature, which spans a range of activities and goals, is vast; excellent

modeled a single advertising channel, where price may or may not be controlled for; see, for
example, Docknef& Jorgensen (1988), Horsky & Simon (1983), Mesak & Clark (1998), as well as
the dedica w of Peres et al. (2010). In essence, this approach aggregates the effects of all

relevant a g channels into a single one, providing guidance on total expenditure for this single
annel over time; how to optimally allocate across multiple channels needs to be

tackled by the analyst post hoc.
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The only models that, to our knowledge, address multiple advertising channels for new
product introductions are those of Swami & Khairnar (2006) and Abedi et al. (2014). The former
considers the im of two advertising channels on demand (one for awareness, one for availability),
derivingertising policies under a specific logarithmic demand form. The latter analyzes a
 mul

control problem 1s too analytically complex to afford managerial insight on optimal resource

/H I .
allocation ! channel interactions.

Nong of these models considers the “customer journey” (see Tueanrat et al. 2021 and Lemon

multi-mark channel setting with a general form of demand diffusion, but the resulting optimal

& Verhoef(R016)4dor recent reviews), wherein consumers progressively pass from awareness through

purchase togpotemtial advocacy. This lacuna in the new products literature may arise because early
stages of roduct adoption correspond to initial phases of the customer journey, with greater

media em i informational content pre-consumption (Demmers et al. 2020). Indeed, Lemon &
Verhoef (2016) lagient that aggregate sales models (like GBM) “can account for traditional media, but

they do not he individual customer journey,” a topic to which we return later in Sections 3.1

Specificatign of Advertising Impact Over Time and 5 Discussion and Future Research.

Thm—level granular view in the diffusion literature needs to enact strong assumptions
(e.g., numb annels; form of sales response) so that the resulting resource allocation control

proble e to deriving a full media plan, as is required for strategic decision making. Here,

we seek this soffgef “high level” managerial insight on media planning synergies, without severe
limitati hannels or the nature of their interactions among themselves and with other
critical marketing elements. To achieve this, as discussed earlier, we build a general account of
multiple c!nnels’ demand impact into the GBM framework, specifically, one incorporating past
advertising spending. This extension alleviates a number of shortcomings (as discussed later; see also

@ 1 Bulte 2011) while allowing for interactions among channels and with customer

@ted in Section 3.1, certain properties of this framework make it particularly useful in

strategiﬂljlning, while maintaining the all-important linkage with tactical objectives. We
note th

scenario“ for short lifecycle products (Chung et al. 2012) and the interplay between new
and reman products (Debo et al. 2006).

odel’s flexibility has afforded various distinct extensions to specific operational

To e, among our main goals is to unify the contrasting observations in previous
research g under which conditions mainly substitutive, vs. synergistic, interactions between
channels rise. To that end, we next develop the GBM-based model for multi-channel media
planning.
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3 Model Development & Decomposition

Here, we extend the GBM framework to account for sales dynamics over time. The GBM
relates Me decision of a potential customer at any time to two factors: purchasing
independen; ther customers at the “innovation” rate, p = 0, or being influenced by those who
have alrea@sed (e.g., by WOM) at a rate of qF(t), with g = 0 the “imitation” rate and F(t)
the fracgion ofcumulative adoptions by t; F () can also be interpreted as market penetration or share.
These two @ffects combine to yield the purchase rate for a prospective customer, p + qF (t), which is

in turn influgnced by the firm’s marketing activities (Bass et al. 1994) and which we instantiate for
ning

channel pl rposes.

To edia decision-making, the firm must plan over a given time horizon, T. This
horizon typ

cover partmroduct lifecycle, but could be extended to the full cycle, e.g., for fast-paced,

technologi mwfovative products. Because the horizon can start after product launch, a fraction
X €[0,1) Eers may have already adopted at time 0. During this media planning period, this
r

nges from a few days to a few months in most media planning applications; it can

initial sha to a fraction F(T) of the potential market of size m, resulting in m(F(T) — x;)

total additim over the horizon.
TheSi an influence channel-specific levels of marketing effort over a set of potential

y R. These levels, for each channel r € R and time t, are given by functions

u,(t) = 0, whi n incorporate the impacts of current or past marketing expenditures, as elaborated
dependence of u, on r allows for investments in distinct marketing channels to

influence demand with different structures or with varying degrees of effectiveness.

CoLvith the GBM framework, the firm’s overall marketing effort at time t is the sum
of the effo h channel, i.e., Y,-cg U,-(t). This ‘separable’ form agrees with that of Bass et al.
(1994) (to ®
Khaimamcombine the effects of the two advertising channels). Also consistent with GBM,

marketip modifies the baseline purchase rate of a new customer multiplicatively, resulting in

the effects of a single advertising channel and price promotions) and of Swami &

the ‘insta*neou’ purchase rate [p + qF (t)](1 + XY er Ur(t)). The fraction of total customers

-
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adopting the product by time t is therefore described by the following differential equation' for

“demand diffusion’:

) v (1= FO)p +gFOIL+ Tyer w (O FO) = xo.

a
Nduces to the standard Bass model when there is no investment in marketing (so

that ur(ﬁ) M results in the following closed-form solution (as per Bass et al. 1994):

F(T) = G(Zrer Pr),

xoﬂ) — (1-x)e~@+DT+D)

where G (U = D and @, =[] u,(t)dt.

xo%) +(1_x0)% e~ @+ (T+U)

Gr

The expres§io Yrer P, captures cumulative marketing effort over the horizon, itself composed

S

of cumulative efforts across investments in the available channels. G (U) is increasing and S-shaped in

U, ie., it is conyex before its inflection point 5(1 _Z) and concave after. Thus, increases in

U

cumulative ing effort accelerate sales only when market penetration is relatively low.

1

It ant to note that (1) is linear in {u,(t)}, that is, there are no explicit interaction

terms of t en adopted in studies of media channels (e.g., Egs. 3 and 6 in the seminal article

2003) and operations (e.g., Kovach et al. 2018) to account for synergies. By

[on
<
z
o
=

ework synergies arise from the “native” GBM setting; moreover, as demonstrated

shortly, if spen is altered in one channel, optimal investments in other channels can increase or
decreas hat is not “hard-wired” into the model via interaction terms, although these can be

incorporated by the analyst, as illustrated in Appendix D.

Sgeh presents a fairly general form of u,.(-) that encompasses many common in the
literature, @lllustrates that the ®,. resulting from a given pattern of temporal investing would
a

be a conc sing function of the total spending in channel r. These preliminaries in place, in
Section 3. ulate an (undiscounted) optimization problem for Detailed Media Planning
(DMP), joi essing the two types of decisions: how much should be invested in each channel at

each pow his represents the best a marketer can reasonably achieve through careful media

! Seasonal ﬂ;zand/or other exogenous temporal effects can be incorporated by introducing the function w(t), which

captures relati iation from baseline (i.e., w(t) = 0.5 means adoption rate at t is expected to be 50% of the average
rate) ing the last term in (1) with [w(t) + X eg u,-(t)]. Note that w(t) = 0, and averages to 1 over the
horizon®
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planning. We demonstrate that the optimal marketing strategy decomposes into two parts when the
effect of time discounting is not large (as in most practical applications with relatively short media

plannin rizong) finding the optimal strategic plan, and finding the optimal tactical plan

(specifying gpéinal spending in each channel over time) when total budget for each channel is
determinegic level.

Ny SSHSW™hat the optimal tactical plan follows typically observed patterns of advertising
spending oh It also results in the cumulative effectiveness @, to be concave increasing in the
total (per c@oenditure in that channel (and hence referred to as ®,.(E;.)), not only under a pre-

determined ent plan, but also when temporal spending is made optimally at the tactical level.

In other wmough marketing decisions are made at two separate tiers, they are fundamentally
coordinate lag as the optimal strategy is sought in each. We further show in Section 3.3 that,

even undeﬂtime—discounting, implementing the above policy (as is typically approached in

practice) i se to optimal. A summary of all notation used in this section and the remainder

also appeacendix A.

3.1 Specifi on. of Advertising Impact Over Time

L

structure of cumulative marketing effort @,. as a function of total channel spending.

pvide a specification for u,(t) under relatively mild conditions, then describe the

As in edia planning, the advertising plan in each channel r € R is updated at certain

time po the time horizon is partitioned into K, time blocks, of lengths 7,. (i.e., T = K,.7;.).

Depending on how frequently the firm can update its investment plan in each channel, the blocking

can be relaffiyely ‘crude’, e.g., a week or longer, or more granular (a day or even an hour). This results

ents in different marketing channels can influence not only the current demand,
stant effect” of advertising, but also demand in the future, typically referred to as the
“carry-over effe Therefore, we consider a generalization of the Distributed Lagged Model of

Koyck (1954), where investment in each channel r can impact current sales as well as sales up to
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s” > 0 blocks into the future. More formally, the effectiveness of expenditure a, in channel r € R
during block k is given by ¢2(a), ... qbrsr(ark) for demand during blocks k, ...,k + s”, where
oL (i“ is a non-negative and smoothly differentiable function; ¢~ (a,,) measures how
much a no ater’s baseline purchase rate increases during block k + i for investment a,; made i
blocks ag with empirical research suggesting that demand response to advertising is
positive-wWishing returns (e.g., Vakratsas 2005, Chae et al. 2019), we take {¢p:(-)} to be
strictly indfeasing and concave, but keep their structure general, to capture a variety advertising
impact ‘sh:% our model applicable to disparate categories. If the media planning horizon starts

sometime dfter layfich (i.e., there are initial adoptions, xy > 0, and prior advertising spending), the

overall effect o ?d expenditures prior to t = 0 on demand in block k is set to y, for k =1, ...,s

T

(and, if x and there is no pre-launch advertising, y, = 0). Consequently, the total impact of
current and past marketing efforts in channel r during block k is given by:
u,(t) : <s")+ Z?;ig{k_l'sr} ¢£(ar,k_i) fort € [(k— Dt kt,)andk =1,..., k"

c 3)
The structure of the marketing effort function u,.(-) can capture a variety of forms to

incorporate¥in and carry-over effects for each channel r, via specifying the functional form of

e No carry- effect: Set ¢pL(-) =0 for i > 1. This form is similar to models in Dockner &
J n (1988), Horsky & Simon (1983), and Mesak & Clark (1998).

e Exponentially decaying impact of past advertising expenses: Set (,‘bﬁ (a) =6 iafk, with 6 > 0

and gy = oo; the exponent term (0 < p < 1) can capture diminishing returns to advertising. In
this Ltotal impact of marketing effort in channel r up to block k is often referred to as
the « advertising goodwill,” u,.(t) = S, (k) for t € [(k — 1)7,, k,-) (Nerlove & Arrow

1962 @

S,(0) may be non-zero, capturing the impact of advertising spending prior to

time OMEParticularly if t =0 is post-launch. For k =1, we can write S,.(k) =y, +

ol T —i) =6kS,.(0)+ XK1 6 iaf'k_i: goodwill stock increases with new marketing

e clines at the “forgetting rate” of 1—4, that is, S,.(k) —S,(k—1) = afk —
(]W 1), reducing to the model of Nerlove & Arrow (1962) when p = 1.

e Adventisi emorability causes effectiveness to decline, not immediately, but after z > 0

marketing effort in channel r up to block k (i.e., over time interval [(k — 1)7,, kT,))
the stock of advertising goodwill u,(t) = S,(k) = §max(k=20)g (0) +
ke ri(ar, _i), and has the property that S(k) —S(k—1) = afk —(1-6)Sk —2); ie,
goodwill stock increases immediately with new marketing effort, but declines at the “forgetting
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rate” of 1 — § after z periods. This model reduces to that of Aravindakshan & Naik (2015)
when p = 0.5.

DeEite th'ﬂexibility of the u,.(+) function, it deviates somewhat from the original form used
QO

in GBM in how carry-over is captured. In GBM, the percentage change in advertising at any point of

@ mpact of past advertising, for which “a behavioral rationale has never been

n lead to questionable optimal marketing strategies (Fruchter & Van den Bulte
|

2011). Th;fore, we alter the form of carry-over in our tactical plan while retaining the general

structure o how sales evolve over time, as expressed in (1).

To , based on the definition of u,.(t) above, cumulative marketing effort ®,. over the

planning hmn be summarized as follows, and as a function of the total expenditure in channel

T per capit th ®y =1, ;{ni?{k’sr} ¥ a constant capturing the effect of advertising prior to time

0):
E) =1, Syly Zimo ) ol (@) + @, with By = S 3K ay. (4)

Note that, for ease of expression, a,, represents dollar spending in each channel over each block,

while E. i endlng per target customer, adding up to total expenditure of mE,. in channel r.

determmed temporal investment plan is pursued, ®,.(E,) becomes concave
othly differentiable in E,. Specifically, consider a tactical plan {d,.} (k =

> T
increasing an i i i . i i i a =
total of $1 in channel r (that is, Zk 1 Gy = 1). If the total budget mE; is spent

in this channel proportlonal to the given tactical plan (i.e., investing mE,.d,, over block k), it is easy

to see th umulative effectiveness @,.(E,) = 1, ’k‘;l Z?:él te=Lsr) oL (mEr &r_k_i) + O,

possesses t e characteristics as a function of E,., based on the characteristics of ¢.(.) functions.
We will 1111mi1ar result when the optimal tactical plan is derives and analyzed in Section 3.2.

ill be seen later, the @, functions link tactical and strategic decisions, whereas the ¢}
can be tentlal linkages between tactical allocation and customer experience management.
Advanc digital advertising allow for a highly granular record of multiple customer
touchpoint Ehe purchase funnel via multiple channels. However firm-level budget allocation

often utili aggregate measures to enable proper alignment with other business functions.

Attribution , such as introduced in Li & Kannan (2014) and Anderl et al. (2016), aggregate the

ence at multiple touchpoints in different channels, and measure the effectiveness of

each channel in gerlerating sales (similar to ¢b}), which can be used in tactical planning. Nevertheless,
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such models are mainly applied to established commodities, as opposed to new products, as discussed

in Section 5.

3.2 Decolposmg Optimal Strategic & Tactical Decisions: The Undiscounted Case

In iled Media Planning (DMP) problem, the firm exerts full control over its

marketing d maximizes net profit over the horizon by deciding on expenditures in each
marketigg annel during each block (i.e., ay,, ¥ €R, k=1,...,K,). Since the media planning
horizon in lications is short relative to currency depreciation, the effect of discounting profits
is usually minimalk Therefore, in our first formulation, we suppress an explicit discount factor,
revisiting th in Section 3.3. The “base” unit price, net of non-marketing variable costs, is set at
P. Becaus roblem is a net profit maximization, no fixed budget need be pre-specified, although
relevant conStrairtts can be readily incorporated. The resulting optimization problem (“DMP”’) can be

stated as follows:

KT
ar ER.k=1,...,Krm P(F(T) — x¢) — Xrer Zk=1 Qrg (DMP)

(t

Subject to: i 1- F(t))[p + qF(®O)][1 + u,.(O)]; F(0) = xq

w(t) = yp 1(k < s7) + ymntk=tsd giq ) for t € [(k — 1)ty kt,) and k =
1,...,k"
<b, VreRk=1,...,K,.

In practical marketing expenditure allocations, tactical planners have first-hand knowledge of

the upper m for the spend on channel r; that is, they understand the available inventory of

effective angd opriately priced advertising vehicles for a given channel. In the absence of upper

bounds, b, @

can stilltated as part of the firm’s marketing activities, i.e., as a separate marketing channel

set to co. Note that even though a fixed base price is assumed, price promotions

with its owll cost and effectiveness function. Price P can also include the salvage value of the product

at the end i the h’izonz.

k, Frutcher & Van den Bulte (2011) consider two specifications for product salvage value after
first, they consider the new product to still be available after time T and calculate the discounted value
ptions. In the second, they consider the product to evolve into a second generation, and account for the

discounted pr dopters form a potential market for that (2"-gen) product when launched at time T. In both cases,
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DMP is a highly non-linear NP-hard optimization: solving it for more than a few time periods
and channels with typical non-linear solvers would be prohibitive, and the results could be strongly

suboptimall Solvig DMP full-force for a large number of channels and time periods is highly

impractical.
HQy property of (2) is that total market penetration over the decision horizon

depend o IERWorts in each channel only through the firm’s cumulative marketing effort in that
channel, ® t on the specific trajectory of effort, u,.(t), t € [0, T]. That is, any trajectory wu,(t)
(for each @ € R) leading to total cumulative effort ®,. in that channel results in the same
outcome, S as the cumulative effort in other channels does not change. This affords a

decomposi e DMP problem into two tiers: (a) the strategic problem of how to achieve the

S

best cumul rketing effort in each channel (and in turn the best profit); and (b) the tactical

problem o vailable resources to achieve the required level of cumulative marketing effort for

¢

that chann isfdlecomposition property of the GBM-type models makes them particularly tractable

and trans strategic media planning, a quality lacking for a wide spectrum of other

N

frameworkgi ew products literature.

Error! Reference source not found.in Appendix B that the tactical expenditure

<
E

plan for eacli'chafhel over time can be represented in a much simpler form once the total expenditure
in each annels are decided. Consequently, if E,. dollars are pre-allocated to channel r € R per

capita, the temporal investment plan for DMP maximizes cumulative marketing effort in

M

channel horizon, and this is independent of the plan for all the other channels and the

WOM process. So, the Tactical Planning Problem (TPP) can be stated as follows:

[

— K, min{k-1,s,} o
ol 5 Srg}*il)ﬁ(brtr k=1 Zi:O " (;br(ar,k_i) + oy
=1,..Ky

ubject to: Zlk(;O Arx < ME,.

:I* =

t

If &,.(F,) gs detegmined by TPP, the DMP problem reduces to the following strategic Marketing

Expenditur€ Allocation (MEA) problem, whose resolution is a primary focus in this paper:

!

the a that total salvage value is linear in F(T). Here, salvage value can be accounted for in the parameter P
multip

A
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rr}gax N=m[PGXrer Pr(E;) —Xo) — Xrer Erl (MEA)

I S')ject to: E. € [E},E,] T ER,
where E, = , and 0 < E? < E, represents the minimum “feasible” investment in channel
r € R over, izon. Because there are often long-term minimal spend agreements in place for
specificaghammelsste ensure some advertising capacity is reserved, estimates of E? are available to the
media plar&i ‘in their absence, the lower bound can be set to 0). Any budget constraint added to

DMP wouldgea ver directly to MEA. This two-tiered problem structure effectively ‘disentangles’

the decisio trategic and tactical levels.

Efrog! Reference source not found.in Appendix B further shows that the resulting optimal
cumulative effort, ®.(E,), from solving TPP is concave and non-decreasing in E,, and can be
specified in@vtly of the other channels and the WOM process. In addition, the optimal plan of
investing in channel r is non-increasing over time, i.e., ) is non-increasing in k. This pattern (for
DMP and @PP) agrees with Fruchter & Van den Bulte’s (2011) empirical analysis that “strongly

suggests th imal strategy in real markets is likely to involve decreasing advertising over time,

especially m diffusion process”.

33D iilg Optimal Strategic & Tactical Decisions: The Discounted Case
Even h media planning horizons are typically brief, if a firm urgently desires sales
earlier rsion of the DMP problem with discount rate 8 can be formulated as follows:

Tdr@) _,
max ! max m Pf —e tdt—zEr (DMP — DISC)
E, T€ERa —1 K, o dt
TER
Subje @ L= (1= F®)lp + qFOIL +u (O)]; F(0) = xo
urS) =¥y 10k < 57) + 20T pl(appy) fort € [(k — D1y kt,) & k=
1,..., k" I '
K
o mE, Vre€R
(- =b,, VreRk=1,... K,

iscounted profit maximization, not only is the volume of sales important to the firm,

but how the tained over time. Thus, the disentanglement of strategic and tactical decisions of

A

Section 3.2 is no longer practically achievable, so that strategic budgeting and interaction between
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channels (and tactical implementation of the media plan) are interlinked at each point of time, and a
division of tasks between organizational tiers is no longer possible. Because this greatly complicates
media antation, firms typically resort to a “rule-of-thumb” or “heuristic” approach. This
is important begause strategic decisions need to align with other business imperatives such as Finance,
Operationsat cannot be readily captured in the firm’s media plan optimization. Given that
the optiglal advertising spending in the undiscounted DMP problem in Section 3.2 possesses this

I
modularityf@haracteristic, we show that employing the optimal strategic policy from the undiscounted

case would generate sales patterns that are very close to optimal even when sales are discounted over
time.
i

In m a few formalities are in order. With a little abuse of notation, let F[t,{a,|E,}]
represent t agket penetration by time t when the piecewise-constant advertising policy of a, (t)
for t € [O,g € R is used, which sums up to E, per capita for channel r over the planning

Dfa,|E,} and IY{a,|E,} represent the discounted profit (from DMP-DISC) and
the undiscﬂoﬁt (from DMP) respectively when the above advertising policy is employed. In

horizon. A

these defin, te that the tactical spending plan of {a,} is conditional on the budget allocated to

each chanmo that foT a,(t)dt = mE,. Therefore, if the budget allocated to a channel changes,
the policy ould need to be adjusted to match the total budget. Further, let {a?|E,} and
{ar |Ey

discounted (D

the optimal spending plan in each of the channels over time based on the

ISC) and undiscounted (DMP) problems, when the total budget spending in each
channel ined to be E,. Lastly, {EP} and {E/} represent the optimal budget allocation for

the discounted and undiscounted problems, respectively.

Whove definitions, the goal of the firm is to set both strategic and tactical plans to

maximize {af |EP}. To facilitate this, the firm can follow two “rule-of-thumb” strategies.
fu ]

One is to ze the strategic and tactical decisions derived from the undiscounted problem that
yields a ﬂl) {al|EV}. Second, the firm could do somewhat better, and try to allocate total
budget

undiSCO\Hm, but to carry out the tactical plan based on the best strategy from DMP-DISC
when the budgets are taken as given. This second strategy would obtain a profit of
.

nnel (which is a more complex part of DMP-DISC problem) based on the

ough optimizing the tactical plan of investment based on the discounted problem
({a?|EI 1 rofitable, it is less practical, since tactical plan of investments across channels are

interlinked. We show in Appendix B (Error! Reference source not found.) that the profit obtained
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from using these two strategies are close to that of the optimal one, with the following worst-case

error bound on profit:
w10 52 - IO RIEY) < P(aRIE) - 1Pl )
QmP [(1 - e'eT)(F[T, {aﬁ’|E£’}] — xo) -0 fOT(F[t, {aﬂEij}] — xo)e_mdt] (5)
The totdF dfS@8EMTEd share for the undiscounted policy has a similar worst-case error bound:

, 6 (a2IBYY APl VIEY L,
. dt dt

< (1= e ") (FIT. {a/ 1E/}] — x0) — 6 f T(F [t, {a?|EY}] — xo)e % dt.
0

The above error:gounds can be easily computed (numerically) from the trajectory of ad spending
based on the undi§gounted policy. Also note that these bounds govern the “theoretical” worst case
scenario, bu ustrated in Section 3.4, the loss in profitability and discounted market share is much

smaller “pSctically”. The existence of such error bounds is particularly useful, as guarantees for

many sim ization problems are not available. In short, the firm can implement the

undiscounmal strategic plan as described MEA confident about sacrificing neither profit nor

total discou

3.4 Empiri timation & Illustration
We illu our model and method using real-world data on camera sales. The data stem from Gray’s

Photography’, which at the time of collection had a new store with a “local monopoly” in a major

North Amggican city, but closed its brick-and-mortar operations in the mid-2000s. Both sales and ad
expenditurLere available over 28 months, from which model parameters are estimated and
subsequent,

how the fu
data, and i i the effect of discounting on both tactical and strategic decisions. We revisit this
case later iMySection 4.3 for further illustration of media planning and managerial implications.

341 D

or media planning over a 12-month horizon. Using these results, we first illustrate

Q

form of the cumulative effectiveness function, ®,.(.), can be obtained from past

[

ion & Estimation
Th

advertisin, il in two channels. Because adoption data comprise dollar sales rather than units

ver the period Sept 2003 to Dec 2005 and include total retail sales, as well as

U

’ A pseu used, as the actual firm, to whom we are indebted for these data, did not wish to be named.

A
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purchased, we set normalized unit price to P = $1. Advertising data for the first channel is dollars

spent on free-standing inserts (FSI) in flyers, while the second pertains to aggregate expenditure on

radio. Becamse adyertising and sales data are provided monthly, we set 7,, = 1 month. Throughout,
;& a

monetary

re in units of $1000.
Wm form of influence of advertising spending a,, on demand for each channel

r = 1,2goveugtimegk = 1,2, ...) via the Nerlove-Arrow goodwill stock discussed in Section 3.1. In

summary, §e consider that advertising over each month can influence both current and (all) future

sales, and w= a, 8L aPr fori = 0,1,... and r = 1,2. This results in goodwill stock u,-(t) =

Sy(k) = ay(5FS.40) + Yk} 5ﬁaf§<_i) over time block (month) k, i.e., that coincides with t € [k —

v m

The"mod€l’s many parameters are estimated using Bayesian techniques, laid out fully in
Online Appendix§: Bass-specific parameters p,q and m; channel-specific ad effectiveness (a,.),
diminishin
and ad damde available starting a few months after the initial product offering, we also

exponent (p, ), and ad remembering rate (8,-) for both channels; and, because sales
estimate x nd S,(0). Online Appendix C also specifies: all estimated values, Highest Density

Regions, a ior statistics; all (diffuse) priors; all 1- and 2-dimensional “slices” of the joint 12-

parameter {gos (showing all marginal densities were nearly unimodal and parameters were

estimated relatively independently of one another); that all squared parameter correlations were well

ce, with all parameters having Effective Sample Size over 4000. For convenience,

parame given by:
Param. Mean Param. Mean Param. Mean
p 0.0391 a4 0.0124 &y 0.4038
q 0.5445 a, 0.0081 & 0.3602
m 6738.9 P1 0.3777 5:(0) 1.5781
X 0.0808 o 0.2722 S,(0) 1.4068

n Media Planning Decisions

Subsequen -month observation period, we consider a 12-month window (“periods 29 to 40”)

for new medi

ing decisions. Starting at the estimated initial market penetration of x, = 8.08%,
achieved a share of F(28) = 44.22% after the 28-month period. Also, given the ad
nel over the 28 months, the goodwill stock has reached S;(28) = 2.742 and
S,(28) = 2.911. The initial values of market penetration and goodwill for the media planning
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horizon are taken as the corresponding values after month 28; however, innovation and imitation

rates, market potential, and channel-specific parameters remain at their estimated values. We still

consider t; possii'lity of updating the advertising plan once every month (indicating a piecewise-
constant advertising plan), leading to 7, = 1 month and K, = 12 for r = 1,2. We consider the firm

allocated spending

to allocate um spending of EY = E? = 0.0002 per target customer, which leads to total

mEY = mEJ = $1,348. This allocated spend level would be equivalent to
average-sp m $112 per month in each channel, considerably lower than average monthly spend
of $2,387 iLs

high annuaffdiscott rate of 8 = 15%.

annel over the 28-month initial sales period. In our analysis, we use a moderately

The be media planner can do can be found by solving DMP-DISC (Section 3.3). This
i optimal level of ad spending in each channel and each month — a dynamic
optimization wit
advertisingmover time is depicted in Figure 1; total spend in each channel and total discounted
ed in Table 1.

24 decision variables. We solve this problem in Matlab; the optimal tactical

profit are s

EvEn though the size of the undiscounted problem is not very large, high-grade commercial
solvers, such as in_Matlab, still struggle to locate a stable optimum. Because the problem is highly

a

non-linear,fthe

ization needs to be repeated many times with different sets of initial solutions

cn here), which is time-consuming even with only two channels. This makes
or adjustment based on other unforeseeable factors very difficult, which in turn

rtance of structural results such as those derived earlier and subsequently in

Advertising Plan Total Discounted Total Spend in Total Spend in
s ising Profit (1) Channel 1 (mE,) Channel 2 (mE,)
Optimal DISC-DMP plan {a?|E?}  $ 1,505,493 $ 195,480 $42,472
Optimal tac“‘l“,g”enb g $1,504774 $214,318 $ 45,970
Undlscounthn {a;|E;}
Using Optimal undiscounted DMP $ 1.504.345 $214318 $ 45.970

plan {a/|E;}

jble 1: Summary of optimal and heuristic media planning strategies.
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Thousand $

Spending Patterns in Channel 1 Spending Patterns in Channel 2

25 5
w4
<
=
g 3
—— {ay|ErU} for channel 1 £ —— {ay|ErU} for channel 2
0 —— {a$|ErU} for channel 1 =2 - {a?|Er"} for channel 2
—e— {aP|EP} for channel 1 . —eo— {aP|EP} for channel 2
1 2 3 45 6 7 8 9 1011 12 1 2 3 45 6 7 8 9 1011 12
Month Month

Tod

1:}Comparison of spending patterns in each channel under different scenarios
igate the two heuristics of Section 3.3, we solve the undiscounted MEA problem,

finding total undig@ounted profit to be MV [{aY|EY}] = $1,633,607, which translates to discounted
profit TP [WE (naturally lower than its undiscounted counterpart), and total channel spending

listed in th@third row of Table 1. In the second row of Table 1, the tactical discounted spending plan
given.

eals that the discounted profit for optimal discounted solution ({a?|EP}) and the
two undiscoun euristics ({aP|EY} and {aY|EY}) are very close, resulting in only $719 (0.048%)
and $1 %) drops in discounted profit respectively. In contrast, the profit error bound

(5) is computed numerically to be $11,256 (0.748%): even though the guaranteed error bound is

is optimized accor;ing to DMP-DISC, assuming the undiscounted budget allocation E{ and EY as

relatively Sall, the practical profit loss between discounted and undiscounted policies turn out

dramatically smaller than the theoretical one. The optimal total spend in each of the channels is

comparabl | with the undiscounted case suggesting 9.39% higher expenditure; allocation of

these total spends are also carried out quite similarly in the optimal discounted and the {a?|EY}

heuristic, adepicted in Figure 1. These spending patterns follow a declining pattern in advertising, as

predict 3.2.

Th analysis suggests that not much is lost if discounting is ignored at both the
strategic and tactigal levels (especially in terms of profitability), despite having a fairly high (15%)

discount rate as jngthis example. However, ignoring discounting remarkably simplifies the complexity

and allows more focused decision-making at each tier while maintaining the linkage
between straf€ and tactical decisions. This linkage is established through the cumulative

effectiveness function ®,.(E,) for each channel. With the exponentially decaying form of ¢}(.)
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functions, the tactical plan from TPP problem can be solved in closed form, as follows, for given

levels of the budget E,. for each channel:

H 1
Kr+1—k)1—pr

(1 - 5r P 0
O D and 0(8)= BB o,
Ky N1-p,
z:j:1(1 - Sr]) P

H
. Ky . 1=pr 5. — st
wi = 4 Z(l 8]y and 9 = 1,a, ——— 5,(0).
1—6, |« . 1-6,
]:

this empiri

The above ggpu@88ions confirm that the @,.(.) function has a power form when the ¢ (.) also do. For
ple, the constants corresponding to the 12-month media planning period would

turn out to 0926, B, = 0.0738, 9 = 0.0230, dY = 0.0133.

3.5 Summ Model Decomposition & Next Steps in Strategic Decision-Making

Walnote that the derivations in this section allow us to transform and simplify the DMP

problem optima
@ d in their review of methodology specific to TV advertising, Singh et al. (2018)
highlight the' cG
squarel ¢d on the strategic aspect of marketing allocation, which requires only determining how
much s@ca‘ced to each individual channel (E,). Therefore, solving this problem is notably

simpler

or simplify the DMP-DISC problem near-optimally, into the strategic MEA
problem. AS

putational difficulties in solving media planning problems. In contrast, MEA is

ecision variables), compared to either of the optimal control problems DMP or
DMP-DISC (with ),,cg K, decision variables), which focus on extracting specific time-paths to
address ta(&al details. Therefore, most non-linear solvers would find the MEA problem far easier to

solve quickl ccurately than either DMP or DMP-DISC.

Th problem can be regarded as strategic budget allocation across channels,
incorporati hannels interact with one another and with the WOM process, while foreseeing
that the ated to each channel would be optimally spent. This structure further aligns with

the pranentation of media planning decisions (as referred to in Section 1). At the
“strategic” i _suite executive(s) align marketing with other business goals, and decide on both

overall marketing spend and its allocation across channels. The decomposition of strategic and tactical

decisions essentially means that the interaction of channels with one another and WOM needs to be

at the strategic level, without direct/constant involvement of lower-tier marketing

managers not assess how their efforts may impact overall firm profitability. Nevertheless,
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their feedback would be critical to assist C-level executives to properly capture and measure the

effectiveness of each channel (i.e., @,.(.) functions).

M of lower-tier managerial effort is typically assessed through various observable
metrics (oimﬁt), such as the number of impressions, click-through rates, etc., which can
more readi igally accounted for by maximizing the overall effectiveness function, given an
availablel budgemmilihis practice highlights that multiple decision makers are involved in the overall
implementw a media plan who potentially pursue different objectives. However, the

decomposedgstriggure shows that the incentives of the different decision-makers are still aligned to
enhance prefitability for the firm as a whole, so long as channel interactions (with one another and

with WOM)gis erly managed at the strategic level, and the tactical planners optimally spend the
allocated b .

The mamjctor linking the strategic and tactical tiers are the functions {®,.(E,.)}. In practice,

each such reflects the cumulative effort in channel r when the total budget E, is spent either

according mdetermined marketing strategy”, or “optimally” (based on TPP). The specific
functional

at any pome. For a given application and as illustrated in 3.4.1 Data Description &

Estimation)

»(*) would of course depend on how advertising impacts current and future sales

s model from (1) and (3) can be fitted to data on past sales and advertising

expend ime to estimate the functional form of the ¢.(.). Depending on using a pre-

determined al marketing strategy or the optimal one, the ®,(.) functions can be
derive uted accordingly. The function ®,.(E,) from the TPP problem cannot generally be
characterized in closed form unless more is known about the functional form of {(l),i} (as seen for
example in§f3.4.2 Post-Estimation Media Planning Decisions). Nevertheless, TPP is an instance of a

(Mroblem, and if no closed form solution is available, many algorithmic routines are

available tcalculate ®,.(.) and its numerical derivative, ®,.(.), with guaranteed optimality

(e.g., Zipkin@807 Mor¢ & Vavasis 1990).

concave

D&ite not requiring the full arsenal of dynamic programming methods, the MEA Problem
does present a numgber of technical hurdles. Specifically, it is a non-separable, non-convex non-linear
programH)rd global optimization (Horst et al. 1995). In practical terms, this means any
algorithm om media schedules in MEA would have computation time increasing exponentially

in the num! annels (decision variables), and be feasible only if the dimensionality of MEA is

kept smal cases, managerial guidelines narrowing down the set of relevant channels a priori

are valu btaining a good solution quickly enough to be useful in pragmatic media planning.

While a world with such limited channel choice was once the norm, it no longer is: the number of
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available digital channels is both large and growing. Even if the “optimal” media plan can be
realistically extracted from MEA, it must still make sense to marketing managers: strategic media
decisions ‘ten i,olve large resource commitments unlikely to be delegated entirely to some
algorithmic “‘black box”. For these reasons, we focus on obtaining managerial insights beyond solely
developing @ gorithmic approach to the MEA problem.

iin thessemmainder of this paper, we derive guidelines regarding the role of each channel in the

strategic nw, and their interactions with both other channels and WOM. Some of the results

help reducmber of channels under consideration a priori, enhancing the usability of existing
We

algorithms outline conditions ensuring substitutive or synergistic channels interactions that

on manage

help demystify e algorithmic black-box outputs and enable informed adjustments as needed, based
onslderations beyond the scope of the optimization problem.

4 Channel In;raction Typologies Based on Leverage and Momentum

In this section, we study how channels impact demand adoption and the WOM process, as
well as ho!( they interact with one another. As discussed earlier, we assume throughout that the firm

has allocated (or committed to spend) E2 > 0 on each channel s € R (of course, EQ can be 0 as well).

In @, we determine the extent to which each channel can individually influence
sales, a ifymehannels based on their “leverage” (i.e., potential for impacting demand). We find
that leverage 1 he sole determining factor in how successfully a channel can impact sales; rather,

leverag

be assessed in comparison to demand “momentum”: the degree of market
penetration ensured by the allocated expenditures, a primary driver of WOM’s effects. The channel
typology d@rived in this section also provides a number of high-level managerial insights. First, it
allows us to 1dentity low-leverage channels, in which any expenditures beyond their allocated levels
are suboptinating them from further consideration. Second, for the remaining channels, we
identify thoSeM#@Wwhich further expenditures may be reasonably considered, vs. those in which the
(previouslyfiallocated) expenditures have already exhausted their momentum-generation capability, so

that no enditures are necessary. This also allows us to reduce the set of channels

consider‘H’ing the media planning task.

In Sectioni}.Z, we turn our focus to inter-channel interactions, which are revealed when the
allocated investmeat in one or multiple channels are changed (potentially in response to unforeseen

change ess strategy or to fine-tune the media plan) and its impact on optimal investment in

others is st sing the two-way (leverage and momentum) channel classification developed in

Section 4.1, we show that channels in each class have different patterns of interaction with others, as
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well as identifying regions where a given channel’s interactions are driven primarily by synergy vs.
substitution. In Section 4.3, we continue analyzing the Camera Sales data (3.4 Empirical Estimation
& Illuszustrate the applicability of our results. To streamline exposition, detailed proofs

of all result in Appendix B, and in Appendix E we further discuss how insights in this section
are impact arketing resources become scarce as a result of total budget limitations or limited

availabilitysafadyertising inventory.

4.1 The he of Influence of Individual Channels on Demand Adoption

Regall thafithe firm has already allocated a spend E9 > 0 on each channel s € R, resulting in
correspon oJprior allocation. Total cumulative marketing effort from initial investment in all
channels is_gj y CO =Y. .cr ®-(E); it is convenient to notate cumulative initial-investment
marketing effort 1§ all channels except channel s € R using the usual “—s” subscript as C% =

ZrER—{s} @, (Ex).
W immby investigating whether any further investment beyond EQ in a given channel

SER canm};inﬂuence demand. We define E:(C%) as the optimal level of investment in

channel s Siye ulative effort in all other channels C%; this can be interpreted as the optimal

a non-negative profit [1[E°] > 0, where E° is the vector of allocated expenditures, and that E® = 0
(‘ti‘i ')

“respo el s to C%. Since we assume that amount EQ has already been allocated, we

constrain E;( EQ. When the value of C_g is clear from context, we may drop the explicit

depend C_s.

4.1.1 Changel Classification Based on Leverage

It will be hL the ensuing analysis to derive an upper bound on the optimal investment in a
given chan ifically, Error! Reference source not found. in Appendix B shows that the
optimal in in channel s is bounded from above by EV, defined as follows:

0 ey (O 4q
£ EU = Es lf(I)SOES)<P(q+p)2’.

1 4 .
SUPg, > g0 [CDS(ES) > P(qu)z] otherwise

As will be illustrated in Section 4.2, when EY is finite, this upper bound is “tight” in the sense that, for
certain all e

nd levels, it is optimal to invest EY in channel s. Note that the value of EY is
independ e spends or effectiveness of all other channels: it is driven only by the ability of
channel fluence demand. For this reason, EY can serve as a measure of leverage or

effectiveness for channel s, and we subsequently refer to it as such.
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The expression for EY, along with the concavity of @, affords a useful typology regarding its
permissible values. Specifically, notating E = [E2,C_,] as a spend vector with the same allocated
spend OW as EQ and total effort on all other channels C_g, then one of the following cases

occur — depgnsimg on whether EV takes some internal value on [E2, o]:

o “L », EY = EQ. In this case EZ(C_,) = E?, i.e., it would never be optimal to
MoEME MW additional expenditure in channel s, no matter how much spend is allocated to
oth annels.

. “Mewverage”, E9 < EV < o and satisfies ®L(EY) = —2— In this case E:(C_;) €

P(q+p)*
[EQ, U], i.g¥ it may be optimal to increase the investment in channel s to a level not exceeding
EY.
. “Hine”, EV = o, i, limg o, P (E,) > ﬁ, implying that the channel remains
i when it is highly invested. In this case E;(C_g) € [E2, ), that is, further
positive invd§tment in channel s may be warranted.

Intuitively, leverage classification suggests that low-leverage channels cannot influence

demand efISCtively, so any marginal investment (beyond allocated amount E?) is not justified. For

medium a everage channels, further investment in channel s may be effective, but is not

solely gualmv the given degree of channel leverage. As will be shown below, the suitability of

additional in¥e nt in this channel depends on C_g, i.e., how much has been allocated to all other

channel d vector E and consequently how much boost in WOM they can collectively
create to “helpz nel s.

4.1.2 Channel Classification Based on Demand Momentum

Hes we explore how much “help” WOM can provide to a channel’s ability to generate sales.

In addition to channel leverage, this second key factor has to do with the level of market penetration

assured by spend E° — namely, G(C?), where again G is as in the Bass formulation (2) and
latr v

total cumu arketing effort is C° = Y,.cg @, (EY) is. This level can be interpreted as the (pre-
assured) Siet :imomentum,” the primary driver of the WOM effect, on which further expenditures
in chan 1d.

Si ready know that no further expenditures in channel s can be justified for low-
leverage channels,Bwve assume that E0 < EY, i.e., that the leverage of channel s is medium or high.

Then it is well-defined and useful to specify the following lower and upper market penetration
thresho

1._1q_P_1L 2__*
GS'_Z(l q) ZqJ(Q+P) Pd)_’g(ESO)
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2.1 _Pyy L 2 ___ %
GS'_Z(]- q)+2q\/(Q+P) P<I>§(E£) .

H‘[ {G},G2} depend only on the parameters of the demand curve (innovation and
imitation r the base per-unit profit P and the initial expenditure EQ on channel s, but not on
expenditurmer channels; and also that the two thresholds are symmetric around the
inflection poimm@sS(1 — p/q) of the demand penetration curve. Error! Reference source not found.
in AppendMNS that the threshold level G2 is an upper bound on the market penetration level
that can be g@hi with investment vector [Es(C2,), C%] — in which an optimal investment is made
in channel meeping the expenditures in all other channels at their initial levels — and moreover

that a thrmology of channels (not of the low-leverage type) regarding the level of demand

momentu el experiences is as follows:

e “Low Mo tum”, G(C°) < G1: a small increase in expenditure in channel s results in a
profit 10ss, i.e., there exists EM™ > EQ such that I[E,, E%] < M[E?, ES] for all Eg €
(ES, B However, a larger investment E; € (EM™™, EY] may be profitable.

1y

Y “Me
chan

mentum”, G! < G(C°) < G2: it is always beneficial to increase investment in
L E5(C) € (B9, Ef].

dl

e “Hig entum”, G(C°) > G2: demand adoption with current expenditure E° is

gh and further investment in channel s is not profitable, i.e., EX(C%,) = E?.

S

As men d at the outset, this typology characterizes how much “help” is available from the

rocess for channel s to be further successful in generating sales, and how much

guarant

Wi

capability channel s has to generate additional momentum with this help. Therefore, the threshold

levels of défhand momentum G} and G2 depend on the current effectiveness of channel s as well.

@

ggiypologies derived earlier are summarized in Table 2, which illustrates that neither

[

4.1.3 Dua ies, Crossing the Chasm, and Mass Market Penetration

—
:r'

leverageﬂtum can individually classify a channel, thus requiring a dual typology.
Guaranteed Demand Momentum by Allocated Spending, G (C°)
H Low Medium High
3 Low No further channel spending
Lever%dium Further spending may Increase channel No further channel
High be needed spending spending

Table 2: Structure of influence of individual channels on demand
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The “high momentum” case occurs when (the already-assured) demand penetration G (C°) is

above the upper threshold G2, so the allocated spend levels position the product’s ultimate market
share in tllll ﬂatte'branch of the S-shaped penetration curve. This could be either because of high

allocated invg

nt levels and/or because of partial build-up of WOM prior and during the media
planning h @ ls demand momentum is already quite high (compared to what channel s needs,

measured b increasing the penetration level further requires prohibitive effort, leading to
[ |

E: = ED. S a first glance, it may seem surprising, as per Table 2, that channels facing high

momentu similarly to the low-leverage channels: neither one warrants any expenditure
beyond th@ already-allocated amount E2. However, the reasons behind this outcome are very
different. In 1gh-momentum case, channel s can in a sense now “free-ride” on customer WOM
and alloca@ments, so does not require further support. This would, of course, change if the
allocated investmients in other channels were lower, causing G (C°) to drop. This contrasts with a low-
leverage ch@able to sufficiently influence demand cost-effectively independent of investments

in other ch hus, no expenditure beyond E{ is warranted even if investment in other channels

in E® were@uced.

The momentum case occurs for demand momentum in the “sweet spot” range

between G§ a : WOM can well accompany increased investment in channel s, and thus it is

optimal to increase channel s spending, i.e., E; > E2. By contrast, in the low-momentum case the

allocate evels put the product’s ultimate market share in its initial slow-growth region when
WOM is eveloped, requiring a relatively large exertion (in the form of additional investment
in chan perly influence demand; indeed such exertion may be cost-prohibitive, especially

if it is not supported by investment in other channels to raise demand momentum. Thus E} = E?
cannot be t. However, when a cost-efficient expenditure level exists, substantial further
i l!ll unel s may be warranted to ensure that ultimate demand penetration is increased to

1 : .
DL(ED) > e low momentum case cannot occur if the leverage of channel s is not too low.
This s if the allocated investment in channel s has been sufficiently effective, it has

already Hstantial level of demand momentum.

vel. We also note that it follows from the definition of G that G! < 0 when

Based on fhe above discussion, the threshold G} can be interpreted as the “chasm-crossing
ability” of , that is, the ability of the channel in transitioning the ultimate fate of the adoption
process fi ing only to “early adopters” to reaching mass market penetration (Moore 1990; Van
den Bult i 2007). As described by Chandrasekaran & Tellis (2011), a chasm “separates the

early adopters from the early majority” who may “have different characteristics and needs”; although

This article is protected by copyright. All rights reserved.

29



we are agnostic here on whether the former do not form a gopod WOM reference point for the latter, or
whether it leads to an explicit saddle (e.g., Goldenberg et al. 2002). Such chasms have been
implicatedior ex’]ple, in the sequential unfolding of consumer and developer segments in software
platform deploygnent (Mehra et. al. 2014). Consequently, it would be possible to cross the chasm if

enough ma @ pport is allocated initially so as to raise the market share above mingeg G-

M nalegeuslly, the threshold G2 can be interpreted as the “mass market penetration level” that
can be acthannel s is best utilized. That is, the firm would be able to achieve a market share

of at most gfaxMpGZ if proper marketing support is provided. Assuming s is not a low-leverage
4q
P(q+p)*’

0; that is, Wrage of the channel decreases to the low-level threshold, the “sweet spot” region
of the demand c
can individlua!!y 15Iuence demand penetration. Indeed, the interplay between the channel’s leverage

and deman

channel, w observe that, as ®%(E) decreases to the difference G2 — G2 decreases to

¢ defining medium momentum shrinks, thus reducing the region where channel s

ntum is a key determinant of how channels interact with each other; this will be
further ex > and illustrated graphically, in Section 4.2. However, we first exploit some of the

consequen previous result to further “prune” the set of channels under consideration.

It @to note that the initial market share of the product x, (before the media planning
n

horizon) do influence the thresholds in the typography of Table 2. This means that if media

plannin, sions are done at different stages of the product lifecycle, the same metrics of
assessment sti . The main impact of the initial market share would however be in the magnitude
of G(C

higher is the chance that channel s would experience a higher momentum.

e higher is the prior adoption of customers before media planning decisions, the

4.1.4 Elimmominated Channels From the Media Planning Problem
R

ie set of channels needing to be considered by the media planner is important not
only from 3§

dimensiongy - Eut a managerial one: there are nontrivial cognitive, accounting, and time costs to

continu

eliminatHrther consideration: low leverage or high momentum. While these general
prescriptionful, it’s possible to go further by considering channels pairwise, eliminating any

channel t gdeininates” another. Put more rigorously, if there is a channel r € R whose

putational perspective — non-linear optimization for MEA entails the curse of

r ineffective channels. Table 2 suggests that two types of channel can be

effectiveness_a

all E,

dominates that of channel s (that is, ®%(E;) < ®,.(E,) for all Eg € [E2,EY] and
‘ﬂﬂ ]) then it is never optimal to invest in channel s beyond the initial level, E2 (Error!

Reference sourceé“not found. in Appendix B). Practically speaking, this means that for each
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additional dollar invested in channel r and s, the former generates higher “bang for the buck”.

Moreover, this condition is easily verifiable: the concavity of both @4 and &, makes it equivalent to

O} (E_?)w Despite its simplicity, this observation has an important and non-obvious

implication optimal to invest in a less effective channel despite its potential synergistic
IS

interaction

i solving the media planning problem, we can then narrow down R to a subset R4

of “active” that may warrant investments beyond the current vector of allocations E°:

< ) s has medium or high leverage

R4 ={s€R|G(C°) < G? (low or medium momentum)

w s not dominated by any other channel r € R

4.2 Struc hannel Interactions: Substitution & Synergy Implications

In Sion, we explore how channels mutually interact. These interactions cannot be
inferred by, king statically at how influential each channel is for a given spend vector like E°;
rather, onecamine what happens when allocated investments in some of the channels change
and the opti ponse of others is characterized. The analysis is, somewhat surprisingly, entirely
tractable i feasible channel (i.e., s € R4) and any positive offset, z > 0, the marketing

effectiv, ion @, satisfies at least one of the following conditions (where, as always, P is

base unit pric

SCE) + z) is concave or S-shaped in E

(bs - G(x + z) — ®;1(x) is concave or S-shaped in x

Intujdi both conditions guarantee uniqueness: that if it is optimal to increase the

investmen el s (while keeping the investment in all other channels fixed), the optimal
magnitude o increase (i.e., the optimal response) can be obtained uniquely. In conditions (a) and
(b), z stand§ in for the cumulative marketing effort of all channels other than s, so it suffices to check
either conﬁtion fg internal values, that is, for 0 <z <X RA_{S}QD,,(ETU ). While (a) and (b) depend

on both d doption and effectiveness structure of channels s € R4, they have a simple

associated sufficie
hold if (Pg*(x)
Appendi

condition, one based on channel effectiveness functions only; specifically, they
is convex in x for all x > 0 and s € R4 (Error! Reference source not found. in

rtunately, this sufficient condition holds for the most common forms of effectiveness

functions in t ature, e.g., P;(E;) = E;, In(1 + E;) and \/E_S, among others.
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With these preliminaries in place, channel interactions can be analyzed. To do so efficiently,
we focus on a single channel s € R4 and study its interaction with potentially all remaining channels

R —{s} i y, given that a spend of EQ has been allocated to channel s and combined

cumulative co = YreRr—{s} @, (E?) to all other channels, we study how the optimal spend
ulative effort from other channels increases to C_g from its initial value, C2.

Note tha ifpGsmisgincreased by investing in only one channel, the pairwise interaction of channel s

E

with this cR@nnel can be inferred; but if the increase in C is achieved by investing in multiple or all
channels other than s, the collective interaction of channel s with those channels can still be

characteriz

As@d in Section 2, several studies show that channels interact mainly substitutively,
while others Tind” synergistic behavior between them. However, for a given allocation of marketing
resources represeSed by spend vector E), the key question is: under what conditions is synergy vs.

substitutio vable (or dominant) as opposed to the other? Recall that substitution means

investing ﬁone channel reduces the ability of another channel to (additionally) improve

demand.

investmenmels R — {s} is increased, it would be optimal to reduce the investment in channel
o

s. This in

' when the substitution effect dominates, one expects that, when the level of

erally holds for models of substitutable products or resources (e.g., Chapter 3 of
Topkis . ontrast, synergy means that channels work together better than the sum of each
taken separate us, when synergy dominates, increased spending on channels R — {s} should

trigger crease in channel s (from Theorem 2.8.5 of Topkis 1988), a result that also holds

for the synergy model of Naik and Raman (2003).

Th&ideraﬁons lead to some terminological shorthand that will prove useful. For a

channel s he optimal spend E; is increasing in C_g for some range C_; € [C1,, C2,], where
Co% < Cl hen we say that the interaction between s and all other channels is “dominantly
synergim range. If, on the other hand, E; is decreasing for C_g € [C1,, C2,], then the
interacti s and the other channels is “dominantly substitutive” in this range. Put simply,
domina\Heans that a channel’s optimal investment goes up with the cumulative effort in
other chan particular range), while dominant substitution means the opposite.

The study of the dominant pattern of interaction of a given channel s with all others requires
consideri its leverage-based and momentum-based categories. Focusing only on channels in
R4 remove w leverage and high momentum groups, allowing us to partition R4 into four

distinct classes: R7/M JRH / L RM/M ) RM/L , where the first letter refers to the channel’s leverage and the
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second one to its momentum. The next two sections detail the different interaction pattern of each
class with other channels. To aid in the ensuing analysis, we define the following critical quantities

for chann € R

trans = inffC_. > CO | EX(C_g) > EO}

Nt

CHM  =inf{C_y = C% | G(C_s + DL4(ED)) = G1}

I
: 1 4
;1’;’“" =inf{C_g = C% | G(C_s + D4(EY)) = 2 (1- 5)}
uin;‘x = inf{C_g = C% | G(C_s + D4(ED)) = G2}
4.2.1 Medwrage Channels
Re for a medium leverage channel s € R4, the upper bound on its optimal
expenditure, EV_ighwell defined and finite. For such a channel, we start by analyzing the case wherein
it creates a ket momentum, i.e., s € RM/L Later in this section, we will show that the results
for the cas nnel s creates a medium momentum (i.e., s € RM/M) can be viewed as a special
case of the wult&
WeTe scribe how the M /L (medium-leverage, low-momentum) channel s interacts with

all othe els by characterizing the behavior of E5(C_g) as C_; is increased from its initial level
CY;. Recall increase in C_g can be achieved by increasing the investment in one or multiple

channel | Error! Reference source not found. in Appendix B states that for s € RM/L  the

critical quantities C174"S, CEM, CPE* and M3 exist and obey the order restrictions €% < CILAns <

I"

Ci’ﬁ“" < CB% trans < LM < ¢M2aX Moreover, we can characterize the behavior of E; (C_g) in

each of the @ ed regions as follows:

Valu s | Behavior of E5(C_y) for s € RM/L
€ [CR, CI™s) | EX (C_) = E?

e[c 1 EZ(C_,) increases smoothly in C_g, with maximum EY at CE’;"”‘.
s ees The interaction of s with others is dominantly synergistic.
e [c? | EX(C_,) decreases smoothly in C_g, with minimum EQ at C™2%,

The interaction of s with others is dominantly substitutive.

I ES(Coy) = EY

|
7

This article is protected by copyright. All rights reserved.

33



Proceeding downward through the ranges outlined above illustrates how the interactions of
channel s with other channels change as investment in other channels is increased. This pattern is also
illustratw 2, where a typical curve, together with various regions of interactions, are

depicted. Togbegin with, cumulative effort from all channels except s must reach a threshold CY8"$

for additiofig ment in channel s to be profitable. This makes intuitive sense: since channel s
does noﬁhw leverage, it needs a certain minimum level of momentum (market penetration) to

be built upg the other channels before investments in s become cost-effective.

ises above C1%"S, two different interaction patterns emerge. First when C_g €

trans P
[ctgens, ¢

In this ranwpport of channel s is required to complement the limited investments made in

other channels in"order to improve market momentum and WOM, but channel s must work in concert
with the other cha’wls in order to be effective. As a result, the firm is only motivated to increase its

channel s

¢ interaction of channel s with other channels is dominated by the synergy effect.

ent when it is supported by increased spending in at least one other channel. This

increasing (Pattern continues until the peak spend of EV is reached at Ci’;;’“", where the combined

marketing effort fr:)m all channels (including s) ensures that the inflection point %(1 - S) of the

demand cufiye Itimately be reached.
econd pattern of interaction occurs once peak expenditure level is reached at Cf:ak, at
which point raction between channel s and other channels is dominated by the substitution

effect. ulative efforts by all other channels is high enough to build a substantial level of

market momentum, and hence expenditures on channel s are less and less economically justified as

cumulativewg effort increases. Eventually once C_g exceeds CT4¥**, no further expenditures on

5 canbe JO
L
-

-
<C
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Medium-Leverage Channel

Es(C-s) Synergy = Substitution
dominates = dominates

Low
Momentum

High

Medium E
[ Momentum

Momentum

E_u_-,- CE;un.f CE;{ E.f:ﬂk Ccmax C_s

Figu!e Z.Jypical pattern of interaction for a channel with initial classification of “M/L”

As suggesid in the preceding discussion (and indicated in Figure 2), while channel s starts

out as low-momentum, market momentum “transitions” as the cumulative effort C_g is increased; this

means thatfichannel s can generate a moderate level of momentum when additionally supported by

CLM

other channels. Indeed, as C_g increases to above CZ{', channel s transitions to the medium

that CLM > creak,

*. The transition to medium momentum can happen before or after however,

. eak
in our nu LM < cPe

experiments we observed CZg , even though the opposite cannot be ruled

out. Als 75 turther increases beyond C™2*, it transitions to the high momentum region, where no
increase in channel s spending is justified. These observations suggest that channels belonging to the

initial catesry RM/M can be regarded as a special case of that for RM/L: their pattern of interactions

correspondingeftical quantities of C% = CM < Pk < cmax;

with all o nels follows the one described in the tabular display for RM/L when initial

cumulativ

0. > CIM_ This can be analogously summarized for RM/M as follows with the

Behavior of E;(C_,) for s € RM/M

If €9, < CPe%*

=S

EZ(C_,) increases smoothly in C_g, with maximum EY at Cfsak.

The interaction of s with other channels is dominantly synergistic.

EZ(C_,) decreases smoothly in C_g, from EY to its minimum E2 at C™2X,
The interaction of s with others is dominantly substitutive.
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> CI™ | E5(C) = E

k
If CO = CcP*

EZ(C_,) decreases smoothly in C_g, with minimum E{ at C™2%,
The interaction of s with other channels is dominantly substitutive.

i

max]

ES(Cs) = Eg

| .
To ummarize, the results above show that medium-leverage channels RM/L u RM/M have

two regim ractions with other channels — one dominated by the synergy effect, one by the
substitutiofifeffect ® and which regime is dominant depends on the cumulative marketing effort of all
other chann the following section we provide analogous analyses for high-leverage channels,

showing t

4.2.2 Hig ¢ Channels
Re “high leverage” refers to channels for which EY = oo, that is, even large

1nvestmentEhannel remain effective on demand. We start the analysis by considering channel

tterns of channel interaction are notably distinct.

=t
|y
=

s with the assification of high-leverage, low-momentum, i.e., s € R#/L. As before, we will

see that th for high-leverage, medium-momentum (i.e., R”/M) channels can be viewed as a
special cas H/L results. For the R/ case, Error! Reference source not found. in Appendix
stat have €9 < cirans = Cfﬁak < CIM < c™Ma*  Moreover, spending in channel
s € RH/L canb gorized as follows:
Value o Behavior of E5(C_;) for s € RH/L

€ [CY, fgans EX(C_s) = E?

EX(C_s) decreases smoothly in C_g, from its maximum at C;®"™S to the minimum
EQ at C™%*_ The interaction of s with others is dominantly substitutive.

Es(C_s) = E5

that a H/L channel behaves somewhat differently from its medium-leverage counterpart

may exist an initial interval [CY,, C18™S) where no additional spend is cost

(M/L) I i
effective, dhce C_, reaches the threshold CY2"S = Cf’seak, it faces a substantial enough level of
market momentunto jump-start investment in channel s up to its maximum value. Due to high

leverage in el, it can impact the penetration curve on its own, that is, not requiring “help”

channels. Thus, there is no “synergy” interval. Marketing effort in other channels

beyond CZg Its in investment in channel s to be gradually reduced to its minimum level, E?, so
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that interaction with other channels is dominated by substitution throughout the whole positive spend

region.

Wive effort C_ increases to CY, channel s transitions to medium momentum; and,
as it furthe C™MaX it transitions to high momentum. If CY; is altered to be larger than CL¥
(i.e., transifiOfArESABId to medium momentum), the interaction pattern of channel s with other
channel!cEgarded as a special case of that observed in the R/ case. Therefore, the initial
“no-spend’ ioml does not occur as the channel faces a substantially higher level of market
momentu esul§ for R#/M channels can thus be summarized as follows and depicted in Figure 3

with correspol@ng critical quantities of % = CM = Pk < cmax;

Val

S

Behavior of E%(C_;) for s € RH/M

E;(C_s) decreases smoothly in C_g from its maximum at C% to the minimum

€ [cO, cma o . . . . i .
Eg at C¥**. The interaction of s with others is dominantly substitutive.

E¢(Cos) = E9

]

High-Leverage Channel

Es(C-s) | Substitution
dominates
E5(CIPms) 4
Low Medium High
Momentum Momentum Momentum
co, trans — cpeak cmax C_g

: Pattern of interactions for a channel with initial classification of “H/L”

n , for high-leverage channels, the interaction with other channels is dominantly

substitutivéuntil C_, reaches C™*, at which point no further spend beyond the allocated amount E?

p—
a2
> ! J

can be justified. Gombining the results of this section and the previous one, we conclude that if a

t

channel has limited leverage and spending maximally cannot assure strong enough market momentum

to ultimately devdlop, it works dominantly synergistically with other channels to alleviate these

limitations; otherwise, the dominant interaction of the channel with others is substitutive.

A
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4.3 Camera Sales Case: Empirical Analysis and Implications

Equipped with the results of Sections 4.1 and 4.2, we complete our analysis of the camera media

planninw along with all critical calculations and procedures. Recall that, at the
start of the guth media planning horizon, the firm had already obtained F(28) = 44.22% market
share, havifig allogitted at least $0.0002 per customer in each channel (EY = E2 = 0.0002).

%o Vesflgate channel interactions at the strategic level, one needs to specify the structure of
the @,(.) that links the tactical and strategic decisions. At the tactical level in Section 3.4,

we take th@npact of advertising to have the commonly-used “power form,” with customers

recalling a

cumulatianess function ®4(E,), which allocates the budget Eg optimally over time in

channel s, haS"a sthmilar power form:

: & (E;) = BsEsPs + d fors = 1,2 with 1,5, > 0.

Note that Ea concave increasing function of E. Based on the estimates and media planning
setting of i 4, the constants were obtained as ; = 0.0926, 5, = 0.0738, ®$ = 0.0230,

P = 0.0msee that B; > B, and ®9 > ®I, indicating that Channel 1 is relatively more

‘effective’

amount of past marketing effort. Recall from that section that the resulting

elatively more advertising goodwill is built in this channel prior to the start of the

media zon.

Solys ¢ MEA problem, the optimal channel spends are Ef = 0.0318 and E; = 0.0068,
equivalent to the Ievels on the last row of Table 1 (when multiplied by m). These levels suggest
spending considerably more on the relatively more effective channel. However, in competitive
response thxtemal factors, these investments may need to be revised. For example, if a
competitor@ly investing in Channel 2 and large investment in Channel 1 is not considered

compatible e brand’s image, a manager might wish to learn how lowering investment in

Channel 1 timal level would impact the marketing plan. S/he would be interested to know if
savings 1’s spending can create more budget for Channel 2’s spending and create a better
barrier ; ould lowering Channel 1’s spending make Channel 2’s less effective? In such a

scenario, ing the pattern of interaction between the two channels can help meaningfully
adjust their investgilent levels, which we subsequently explore in the context of this case, specifically,

how optimal spendgin Channel 2 varies with changes in Channel 1 expenditure (the reverse argument
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The first step is to check the uniqueness of optimal increase condition in Section 4.2. It is
readily verified that the sufficient condition — i.e., (®5 1(x))’ is convex in x for all x > 0 and s € R4
— only € (0,0.5), which aligns with estimated values of p; and p,. However, numerical

Veriﬁcatiordcondition does hold for all pg € (0,1]. Thus, the results of Section 4.2 apply to

this examp

!Ie‘:massify Channel 2 with respect to leverage and the market momentum faced based

on the res ction 4.1. Comparing the value of ®5(EY) = 108.9 with the threshold level of

4q
P(p+q)?

optimal sp%unded by EY = 0.0098 < o, indicating that Channel 2 has “medium leverage”.
e

= 039, wdlsee that Channel 2 does not have low leverage. We further find that the maximum

To determifie mand momentum of Channel 2 at the initial spend vector E® = [0.0002,0.0002],
we compu o penetration thresholds, G3 = —5.6% and G = 98.4%, as well as the initial
penetration level G(E®) = 61.0%. Since G(E®) is between G3 and G2, the channel’s momentum is

“medium”. ative value of G5 essentially indicates that Channel 2 would never be a low-
momentunighannel for any spend level. Consequently, the interaction of Channel 2 with Channel 1 is

governed b ology specified earlier for RM/M class. Figure 4 depicts the optimal Channel 2
spend E5 (B4) fferent levels of spending in Channel 1. Since there are only two channels in this
example, there is a one-to-one correspondence between C_g = ®(E;) and E;, and using E; for the x-

axis instea results in a bijective re-scaling of the axis.

4, we see that the optimal spend in Channel 2 decreases with increase in Channel

1 spend, indicating a dominantly substitutive interaction for reasonable ranges of Channel 1 spending.

E

Given that 9 EV]) = G([0.0002,0.0098]) = 64.9% is larger than the threshold of%(l - Z) =

46.4% (freﬁnition of Cfﬁak; i.e., the highest spending in Channel 2 can guarantee the

ultimate mafk@®8hare passing the demand inflection point), we have Ef"%" = EIM = EP eak — go.
Therefore, ffhe decreasing pattern of optimal Channel 2 spend starts at a lower level than EY, meaning
that Fi s the right portion of Figure 2 after the peak. The optimal Channel 2 spend stays
well aleocated value of EY =0.0002, but when Channel 1 spending reaches the
inefﬁcien@lue of EJ*** = 10.058, Channel 2 transitions to the high momentum category and

optimal C pend drops to the allocated value. From the figure on optimized profit, we can see
that the _hi profit coincides with the previously found optimal spend plan of
E* = [0 .0068]. Interestingly, the optimized profit is somewhat flat around the highest level

so that when Channel 1 spending is in the range [0.0116,0.0636], the optimal profit does not drop
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more than 3%. Returning to the question initially raised, we can conclude that lowering the

investment in Channel 1 from its optimal level of Ef = 0.0318 slightly reduces the total optimal

profit, b is interacting mainly substitutive with Channel 1, so that reduction in Channel 1
spending O@C budget and would necessitate increased Channel 2 spending.
I
001 Optimal Channel 2 Spending Profit optimized wrt Channel 2
2 2000 spend
0.008
1000
0.006
0.004 0
0.002 -1000
0
Ez
o o1 02 03 04 05 06 07 2000
Channel 1 Spending Channel 1 Spending

4: Optimal expenditure on Channel 2 and optimal corresponding profit
ith respect to changes in Channel 1 spend; *: optimal spend plan

nieraction of Channel 2 with Channel 1 is mainly substitutive in this case, which is
partly depen the media planning settings, e.g., the demand boost (from WOM and advertising)

over th

onths. To illustrate, imagine that the 12-month media planning horizon were to
hypothetically start with initial settings of 28 months ago, i.e., with the initial market share of 8.08%
and initialwng goodwill of 1.578 and 1.407 for channels 1 and 2 respectively. Figure 5

illustrates t al Channel 2 spending with respect to Channel 1 expenditures.

Bot gistic and substitutive patterns can now be observed in Figure 5. When E; <

Ef eak — o 82, the two channels interact synergistically until Channel 2 spending reaches its

maximum yalue EY at Ef @k For higher Channel 1 spend levels, the two channels interact

substitutivety.
the two channels,in contrast to that observed in Figure 4. Therefore, if the firm were to reduce the

optimal sp annel 1 under these settings, it would need to cut back on the spending in Channel

2 as Welh<mnel 2 is relatively less effective in ultimate demand adoption.
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Optimal Channel 2 Spending
With initial settings from 28 months before

E;
0.008

e

0.004
|

|
! 0.002
0

Ej

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Channel 1 Spending

Figure 5: w:;penditure on Channel 2 when the initial media plan values are set to those from 28

months ago; *: the corresponding optimal spend plan

The type ®f interaction between the two channels also depends on the nature of demand
response to advertising. For example, we illustrate in Appendix D how a change in p;, or potential

inclusion cSexplicit interaction term between the two channels (to force in substitution or synergy)

can influen ulting interaction between the two channels.

d

5 DiscusSsi d Future Research

| of managerial and academic attention has focused on improving media budget

allocation, a m exacerbated by dramatic recent proliferation of online media venues. As
unders inberg & Pehlivan (2011), there remains “a fair degree of uncertainty with respect
to allocating marketing effort and budget”. Here, we analyzed media planning decisions for multiple
marketing Sannels over time to support a new product or service introduction. In contrast to a “swim-

ere each channel operates more-or-less independently, our main focus has been on

situations, chdmmels can enhance or detract from one another’s effectiveness, leading, to synergy or
substitutioflf Building upon the marketing literature on new product diffusion, we extended the
Genera odel (GBM) framework in a manner allowing high-level insight without the
complex plicit dynamic programming or the specific assumptions and functional forms
required foﬁlity. We also showed how to apply the model empirically, specifically, to camera

sales for a etropolitan retailer, via Bayesian estimation of a highly flexible, two-channel set-

up for radi flyers.
Thee analysis suggests several broad insights. Perhaps most directly relevant for media

planners is that patterns of channel interactions are governed by two factors: each channel’s leverage
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and the momentum built up by all remaining channels; the latter, being the primary driver of WOM, is
especially critical for new product launches. The modeling framework allows the derivation of
specific_candition§ under which channel interaction is dominantly synergistic vs. dominantly
substitutive, daggspective of functional forms chosen for various elements of market response.
Speciﬁcallel has limited leverage and faces insufficient support (from other channels) to
build m-arket momentum, it works dominantly synergistically with other channels to alleviate its

predicameifi; otherwise, the dominant interaction pattern for the channel is substitutive. The

framework provides a usable typology based on low/medium/high levels of leverage and
g the identification of specific points past which a channel’s adoption process can

“cross the chasm” from lead users to mass market penetration.

In s@of practical media planning, extant literature suggests how certain classes of
channels m categorized. For example, Lemon & Verhoef (2016) describe how mobile
channels, vyl e
interfere a t with other channels, especially with the prevalence of “showrooming”. Their
high per—dm
mobile chag incentivize increased substitution of the expenditures from other channels. On
the other ent—separated online ads (i.e., having little relation to the medium’s content) are

found

r location-based, time-sensitive opportunities to create touchpoints, can directly

tiveness suggests medium-to-high leverage; consequently, customers’ exodus to

ective than content-integrated channels, resulting in lower leverage, possibly

because the more intrusive (De Haan et al. 2016). If expenditures in such channels are
differenti 1lized at the early stages of product adoption (leading to low momentum), they may
require support from other channels, thereby interacting more synergistically. Generally speaking,

however, gr results illustrate that channel leverage and momentum are dependent on product and

w

along leverdg @' momentum (or emergent substitution / synergy patterns) potentially misleading.

channel ¢ tics as well as the product adoption stage. That is, a channel can behave

synergistic ne setting and substitutive in another, making “global” categorization of channels

A fumber of results facilitate computing optimal spend allocations for a target firm. First,
deriving opgimal te@mporal spend patterns allows the original optimal control problem to be formulated
as a norH ram, to which numerical solvers can be readily applied. We also derive results
allowing some “ddininated” channels to be eliminated from the planning problem a priori, helping to
alleviate the curse of dimensionality in crowded media channel spaces. Notably, the model allows the

ion of relative channel marketing costs, leading to optimality conditions that apply

even whe s channels are priced differently, as is common in nearly all media planning
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platforms. Such conditions enable enhanced allocation using identical numerical methods, without

adding computational overhead.

Mctions for future research present themselves. Although our modeling framework
greatly remplexities of dynamic programming, a critical subsequent area of inquiry
concerns ptimization, as the MEA problem structure may hinder the use of non-linear
prograniiff®S8®ers when dimensionality — the number of media channels — is large, as it could be in
practice. i rpose algorithms exploiting the structural properties of the model can be
constructe@:ely, specific functional forms amenable to direct analysis by optimal control, as

per Prasad (2009), is a fertile area for exploration. Similarly, the model can be extended to
consider nmmpetition among channels, but among products. While this is critical for mature
(commodit agié€ts, firms cannot assume that, just because their product is “new”, it will retain its
local mon er indefinitely.

Important avenues for expansion involve particular distinctions within the model or data
sources. F@F example, the GBM framework presumes “complete mixing” in that all customers are
equally likely to “innovate” and then “imitate” from one another. One could therefore posit that p and

ic; while a seemingly straightforward generalization, GBM is an aggregate model,

so accommodatiftg this would require additional information on individual-level exposure. Similarly,

“media™; e characterized by associated channel-specific parameters, are not treated as
fundamenta rent; the Customer Journey literature suggests that, even for new products,
differe best be deployed at different junctures. And the Bass and GBM frameworks
address first, not repeat, purchases, which depend on intermediate satisfaction; a model addressing
channel in ions for follow-up (like Fader et al. 2005 in the CLV literature) or continent purchases
(as in Abedi 's 2014 example of Nespresso machines and capsules), would enrich the model’s

purview. A ffects of both firm-initiated touchpoints (for advertising; Li & Kannan 2016) and

customer-injiti nes (for social effects) could inform attribution modeling for new products
specificallyg Lastly, although our flexibly-parameterized model can capture a wider variety of effects /
shapes thangmany jm the literature, it cannot “learn” these forms in the sense of Machine Learning; we
see greatpﬁntial%or the application of nonparameterics (e.g., Gaussian Processes; Dew & Ansari
2018), which havddnot appeared thus far in the empirical diffusion literature, to large-scale media

planning data, particularly as regards channel interaction.
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