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Abstract. In this paper, we conduct a preliminary comparative study
of classification of longitudinal driving behavior using Signal Temporal
Logic (STL) formulas. The goal of the classification problem is to dis-
tinguish between different driving styles or vehicles. The results can be
used to design and test autonomous vehicle policies. We work on a real-
life dataset, the Highway Drone Dataset (HighD). To solve this problem,
our first approach starts with a formula template and reduces the clas-
sification problem to a Mixed-Integer Linear Program (MILP). Solving
MILPs becomes computationally challenging with increasing number of
variables and constraints. We propose two improvements to split the clas-
sification problem into smaller ones. We prove that these simpler prob-
lems are related to the original classification problem in a way that their
feasibility imply that of the original. Finally, we compare our MILP for-
mulation with an existing STL-based classification tool, LoTuS, in terms
of accuracy and execution time.
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1 Introduction
A key factor in developing high-quality and robust policies for autonomous driv-
ing is strong understanding of the driving environment. An essential component
to understanding this environment is high-quality prediction models of driving
behaviors. In this paper, we compare methods to classify driving behaviors as
exhibited in real-world data. We use the HighD dataset to work on naturalistic
vehicle trajectories [12]. The dataset comprises 110500 vehicle tracks recorded
on German highways. As our case study, we consider the task of distinguishing
the longitudinal driving behavior of cars and trucks in this dataset.

Existing work in time series classification provides a variety of methods that
can be used to classify behaviors. However, time-series classifiers such as Long
Short-term Memory (LSTM) [10] or classification using Dynamic Time Warp-
ing [4] frequently lack interpretability. In the early stages of system development,
human engineers are heavily involved in interacting with prediction models, as
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well as debugging erroneous conditions that may arise in either simulation or
real-world testing. Engineers would greatly benefit from interpretable classifica-
tion and prediction models, which would help them to better understand the
root cause of failures as well as possible solutions. Temporal Logic (TL) [16] is
extensively used to describe the behavior of cyber-physical systems [1,6–8]. The
symbolic nature of temporal logic specifications make them a good candidate for
interpretable classifiers. Moreover, they can be used for runtime decision-making.

Signal Temporal Logic (STL) [13] is a variant of Temporal Logic that can
be used to reason about continuous, discrete, or even hybrid signals. In addi-
tion, several different quantitative semantics have been proposed for STL. The
quantitative semantics can be used to compute the robustness metric, which is
a measure of the degree of satisfaction of signals for a given STL formula and a
signal trace. Robustness is a sound and non-smooth function [18].

TL formula inference problem tries to learn an TL formula from the data
and it has been studied before in the literature [5,9,11,14]. [5,9,11] use another
variant of STL called Parametric STL (PSTL) where numerical values of the
formula are interpreted as unknown parameters. In [3], the authors approach
the two-class classification problem as a statistical learning problem. Given the
template formula, they explore the parameters using statistical model checking.
The paper [11] defines a directed acyclic graph (DAG) of formula templates
and searches over this graph, after proving the partial ordering of formulas.
Their loss function is the number of misclassifications and the length of the
formula (the number of linear predicates that appear in the formula). In [5], they
propose a decision tree approach for both online and offline learning using STL
formula. They incrementally update the binary tree linked to the STL formula
decision and search for the smallest formula that can be constructed from a set
of primitives. In this paper, we use their toolbox LoTuS for comparison. [14]
solves a series of satisfiability problems in Boolean logic to obtain the smallest
linear temporal logic formula possible.

Learning from formula templates can be used for car-truck classification as
well. It is known that trucks tend to go slower than cars since they are heavier
and tend to maintain a longer distance from lead vehicles since their deceleration
rates are slower than cars. By considering this knowledge and taking inspiration
from Adaptive Cruise Control (ACC) driving specifications [15], we develop an
STL formula template. We recast the classification problem to an appropriate
MILP problem in parameters of the STL formula template, and we optimize
the robustness of the STL formula to find the optimal parameters. Since MILP
problems can blow up in execution time with the number of variables and con-
straints, we propose two separation methods to improve execution time. The
first separation is over the formula template and the second one is over the data.
Although optimality is not preserved, we prove that the parameters found af-
ter improvements are also in the feasible domain for the original problem. We
compare the MILP formulation with [5] and provide quantitative results for test
error and for execution times. Limitations of both approaches are discussed.
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2 Preliminaries
STL is defined with the syntax ϕ := ⊤ | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2. The boolean
true is ⊤, and π is a predicate of the form f(s(t)) ≤ µ where f : Rn → R, π = ⊤
when inequality holds. The logical not is ¬, and ∧ is the conjunction operator.
The temporal operator “Until” with the bounded interval I is shown as UI .
Always □I , eventually ♢I , disjunction ∨, are defined as ϕ1∨ϕ2 = ¬(¬ϕ1∧¬ϕ2),
♢Iϕ = ⊤UIϕ, and □Iϕ = ¬♢I¬ϕ.

If a signal s satisfies a formula ϕ, it is shown as s |= ϕ, and if it violates, it
is shown as s ̸|= ϕ. Satisfaction rules are given by the qualitative semantics:
s(t) |= π ⇐⇒ π
s(t) |= ¬ϕ ⇐⇒ ¬(s(t) |= ϕ)
s(t) |= ϕ1 ∧ ϕ2 ⇐⇒ ((s(t) |= ϕ1) ∧ (s(t) |= ϕ2))
s(t) |= ϕ1U[a,b]ϕ2 ⇐⇒ ∃t′ ∈ [t+ a, t+ b] s.t. (s(t′) |= ϕ2) ∧ (∀t′′ ∈ [t, t′](s(t′′) |= ϕ1))

.

In addition to their boolean semantics, STL formulas have a quantitative se-
mantics, which quantify the degree to which a formula is satisfied or falsified. The
quantitative semantics are defined with a metric called robustness. Given the sig-
nal and the formula, if the robustness metric is positive, then the signal satisfies
the formula and vice versa. The robustness of the logical truth is ρ(s,⊤, t) = +∞
and the robustness of the predicate ϕ = f(s) ≤ µ is ρ(s, ϕ, t) = µ− f(s(t)). The
robustness of a formula is defined recursively as follows:

ρ(s,¬ϕ, t) = −ρ(s, ϕ, t)
ρ(s, ϕ1 ∧ ϕ2, t) = min(ρ(s, ϕ1, t), ρ(s, ϕ2, t))
ρ(s, ϕ1U[a,b]ϕ2, t) = maxt′∈[t+a,t+b](min(ρ(s, ϕ2, t

′),mint′′∈[t,t′] ρ(s, ϕ1, t
′′)))

Robustness of derived operators can be found by re-writing the operator
in terms of the primitive operators. In STL formulas, the predicate values µ
and time intervals I are known. In [2], authors define another variant of STL,
called Parametric Signal Temporal Logic (PSTL), where those values can be
defined as parameters. A PSTL formula ϕµ will become an STL formula ϕ with
a corresponding valuation of parameters µ, where µ is the set of both scale and
time parameters. With slight abuse of notation, we use φµ for corresponding
valuation vector µ of parameters µ. We define an STL formula template as a
PSTL formula with a set of unknown parameters.

3 Specifying Longitudinal Driving Behavior with STL
For the longitudinal driving scenario considered in this paper, the sample signal is

two-dimensional, speed in [km/h] and time headway in [s], that is si =
[
vi wi

]⊤
,

where vi ∈ RTi and wi ∈ RTi are the time series of speed and time headway
values, respectively, with signal duration Ti. We want to find the formula that
separates trucks from cars. From the intuition that trucks keep different speed
and time headway than cars, we propose the following STL formula template:
φ = □{□[0,τ1](w ≥ wϵ) =⇒ ♢[0,τ2](□(v ≤ (1 + ϵ)vdes) ∧ □(v ≥ (1 − ϵ)vdes) ∨ w < wϵ)

∧□[0,τ1](w < wϵ) =⇒ ♢[0,τ2](□(w ≤ (1 + ϵ)wdes) ∧ □(w ≥ (1 − ϵ)wdes) ∨ w ≥ wϵ)},
(1)

where wϵ is the time headway threshold, τ1 is the cause time interval, τ2 is
the effect time interval, ϵ is the acceptance threshold for desired values, and
vdes and wdes are desired speed and desired time headway, respectively. This
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formula comprises of two subformulas. The first subformula φ1 = □[0,τ1](w ≥
wϵ) =⇒ ♢[0,τ2](□(v ≤ (1 + ϵ)vdes ∧ v ≥ (1 − ϵ)vdes) ∨ w > wϵ) semantically
represents that if there is no lead vehicle in close distance (time headway more
than wϵ) for τ1 seconds, the ego vehicle eventually reaches it desired speed vdes
or lead vehicle happens to be in ego vehicle’s close distance. This is similar to
ACC set speed mode. The second subformula represents ACC time gap mode.
φ2 = □[0,τ1](w < wϵ) =⇒ ♢[0,τ2](□(w ≤ (1+ϵ)wdes∧w ≥ (1−ϵ)wdes)∨w ≥ wϵ)
means if there is a lead vehicle in front of the ego vehicle in time interval [0, τ1],
ego vehicle eventually reaches its desired time headway wdes in time interval
[0, τ2] or the time headway increases. Here in this formula, it is assumed that
wϵ, ϵ, τ1 and τ2 are known values. µ = µ1 ∪ µ2 = {vdes, wdes} are unknown
parameters. Note that the formula can be seen as φµ = □(φ1,µ1 ∧ φ2,µ2).

4 Methods

Let S = {(si, yi)}Ni=1 be the signal set. Let si be the ith sample signal, and
yi ∈ {0, 1} be its label. We assume there are two classes of signals that we wish
to classify: Class 0 signals are denoted as S0 := {si ∈ S : yi = 0}, and class 1
signals are denoted as S1 := {si ∈ S : yi = 1}. The problem this paper addresses
is to find an STL formula satisfied by class 0 signals and violated by class 1.

We can attempt to solve this problem by proposing a PSTL template and
then solving an optimization problem over the formula parameters to maxi-
mize the robustness of the formula over class 0 while minimizing the robustness
over class 1. This method can be useful when domain-specific knowledge allows
proposing a suitable PSTL template, but specific parameters are unknown. As-
suming that signal classes are separable with the formula above, the problem:

max
r,µ

r

s.t. ρ(si, φµ, 0) ≥ r ∀si ∈ S0

ρ(si, φµ, 0) ≤ −r ∀si ∈ S1

r ≥ 0

(2)

returns the optimal parameter set. In particular, Problem (2) tries to find the
parameter set that maximizes the margin r between two classes.

The classes might not be separable in reality, at least for two reasons. First,
in real-life scenarios, it is likely to have outliers. Second, the formula template
is heuristically selected. It is not guaranteed that experts are competent enough
to separate the dataset with respect to the template or this separation may not
be that obvious to human observation. Hence, we also consider a soft margin
version of Problem (2):

max
r,µ

r − θ(
∑

i ζ
+
i +

∑
i ζ

−
i )

s.t. ρ(si, φµ, 0) + ζ+i ≥ r ∀si ∈ S0

ρ(si, φµ, 0)− ζ−i ≤ −r ∀si ∈ S1

r, ζ+i , ζ−i ≥ 0,

(3)

where ζ+i and ζ−i are slack variables, θ is a weight that penalizes the violation
of margins. In this formulation, class 0 signals can have negative robustness and
class 1 signals can have positive robustness.
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Both problems (2) and (3) can be converted to MILP using standard en-
codings of robustness metrics [17]. The performance of a MILP depends on the
number of variables and the number of constraints. Here, each signal adds new
sets of variables and constraints. In addition, the number of constraints increases
with increasing formula complexity, i.e., the number of operators in the formula.
With large datasets and complex formulas such as HighD and the formula above,
Problems (2) and (3) may not be solved in reasonable time. To address this is-
sue, we propose two improvements and one formula template relaxation. First
improvement uses the structure of the formula (1).
Proposition 1 (Formula Separation). Given any PSTL formula of the form
φµ = □(φ1,µ1

∧φ2,µ2
), with µ1, µ2 disjoint, consider the following optimization

problems:

max
r1,µ1

r1

s.t. ρ(si, φ1,µ1
, 0) ≥ r1 ∀si ∈ S0

ρ(si, φ1,µ1
, 0) ≤ −r1 ∀si ∈ S1

r1 ≥ 0,
(4)

max
r2,µ2

r2

s.t. ρ(si, φ2,µ2
, 0) ≥ r2 ∀si ∈ S0

ρ(si, φ2,µ2
, 0) ≤ −r2 ∀si ∈ S1

r2 ≥ 0
(5)

If Problems (4) and (5) are feasible, then Problem (2) is feasible. Specifically,
if µ∗

1, µ
∗
2, r

∗
1, r

∗
2 are the optimizers of Problem (4) and (5), then µ̃ =

[
µ∗
1 µ∗

2

]
and r̃ = min(r∗1 , r

∗
2) is a feasible solution for Problem (2).

Proof of Proposition 1 can be found in Appendix A. Since the formula (1)
satisfies the conditions in Proposition 1, we are able to halve the number of
variables and number of constraints for each subproblem.

Next, we propose a relaxation of the formula template (1), inspired by [15].
Assuming that trucks move slower than cars, instead of using φ1,µ1 , we can
remove the upper bound and range acceptance threshold ϵ. The new formula
becomes φ̃1,µ1 = □[0,τ1](w ≥ wϵ) =⇒ ♢[0,τ2](□(v ≤ µ1) ∨ w < wϵ). Note
that this formula is to be satisfied by trucks. Therefore, trucks are set to class
0. Formula φ̃1,µ1 tries to find limit speed that distinguishes two classes. Same
approach can be applied for time headway. Since trucks are keeping longer time
headways, we can remove the lower bound. Second subformula will be φ2,µ2 =
□[0,τ1](□w < wϵ) =⇒ ♢[0,τ2](□(w ≥ µ2) ∨ w ≥ wϵ). Finally, we obtain

φ̃µ = □(φ̃1,µ1 ∧ φ̃2,µ2). (6)

Note that we can apply Proposition 1 to template (6). With the help of formula
(6), we are able to discard two sets of constraints per each input. However,
number of variables and constraints still depends on number of inputs and large
input sets are still not solvable in reasonable time even with these improvements.
Instead of solving the large input set as a whole, we can divide it into smaller
chunks and handle them separately.

Proposition 2 (Data Separation). Take one of the formulas φ̃i,µi , i ∈ {1, 2}
from (6). Consider a dataset S = S0 ∪ S1, where S0 denotes trucks and S1

denotes cars. Partition S0 and S1 to form B batches {Si = (Si
0,Si

1)}Bi=1. If
Problem (4) solved for S is feasible, then Problem (4) is feasible for every batch
Si. Conversely, let µ∗

1,i and r∗i be the optimizers of Problem (4) solved for Si for
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each i. Then, µ̃1 = 1/B
∑B

i=1 µ
∗
1,i gives a feasible solution with 0 ≤ r̃ ≤ mini(r

∗
i )

for Problem (4) for S.
Proof can be found in Appendix A. This proposition depends on class definitions,
satisfaction rules posed in the problem setup, and formula template. Although we
are losing optimality, we can still recover feasible STL formulas that are satisfied
by class 0 and violated by class 1 signals. We use Proposition 2 for soft margin
problem as well. Soft margin problem is not a feasibility problem, in fact every
solution is feasible in that formulation. By dividing the dataset into smaller parts,
we are finding optimal decision boundaries for each subproblem. Our intuition is
by taking the mean of optimal parameters, we approach minimum error in total.

5 Experiments

HighD dataset consists of vehicle trajectory data from different highway sections.
Since we are interested in longitudinal driving behavior, we discard vehicles that
change lanes. Speed and time headway signals have different orders of magni-
tudes, effecting robustness differently. To avoid this, we normalize the data for
training, and then denormalize to report the learned parameter values. Among
all vehicles in the dataset, 79.24% of them of them are cars, the rest are trucks.

Initially, we conduct a baseline experiment. We use one of the well-known and
interpretable classifiers, Support Vector Machines (SVM). The accuracy of SVM
over HigD dataset is 80.59%. It is slightly more than assuming that all vehicles
are cars. Therefore, it is clear that we need different approaches. Additional in-
formation for baseline experiment can be found in Appendix B. Next, we execute
four different MILP instances:(M1) Soft margin MILP approach (Problem (3))
with formula template (1) without any improvement, (M2) using Proposition 1,
(M3) Problem (3) with formula template (6) using only Proposition 1 and (M4)
Problem (3) with formula template (6) using Proposition 1 and Proposition 2.
Known values of templates (1) and (6) are as follows: wϵ = 3, τ1 = 2, τ2 = 3 and
ϵ = 0.2. We randomly partitioned data into batches of four inputs. MILP method
does not require equal signal lengths but LoTuS needs equal signal lengths. In
the first part of the experiments we compare only MILP instances with full data
length. In the second part, for the sake of fair comparison with LoTuS, we trun-
cate the data. There are two comparison metrics: test error and execution time.
Training set is balanced with equal number of cars and trucks. However, the test
set is not balanced. For all MILP instances, we use an off-the-shelf optimization
solver, Gurobi. We set Gurobi’s solving time limit to one hour per parameter
and optimality gap to 5%. When time limit is reached, Gurobi returns its in-
cumbent solution if there exists any. The optimality of the incumbent solution is
not guaranteed. In tables below, “∼” means that Gurobi cannot find a feasible
solution within the time limit. For tests, a Macbook Pro with 2 GHz Quad-Core
Intel Core i5 processors and 16 GB RAM is used.

Results for full length can be found in Table 1. The first column represents
the number of training inputs. Methods (M1)-(M4) represent methods that are
described in the beginning of this section. The minimum test error occurs when
formula template (6) with MILP instance (M4) is trained with 2000 inputs, and
φ̃ = □{□[0,2](w ≥ 3) =⇒ ♢[0,3](□(v ≤ 98.95) ∨ w < 3) ∧□[0,2](w < 3) =⇒ ♢[0,3](□(w ≥ 2.047) ∨ w ≥ 3)}
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is the STL formula. When shorter execution time is an important criterion,
formula template (6) trained with 1000 inputs gives comparable results. The
test error increases by 0.04% but execution times decreases almost 2.5 times.
Optimal parameters for this instance are µ1000 =

[
97.13 1.99

]
. Execution times

between MILP methods decrease significantly with each improvement.

Table 1. Comparison among MILP methods with full time length

Inputs (M1) (M2) (M3) (M4)

Error Time Error Time Error Time Error Time
% [s] % [s] % [s] % [s]

8 18.09 697 14.11 4011 14.29 11.71 13.18 3.057

20 25.07 7201 25.14 7201 12.87 119.7 13.19 4.991

40 ∼ ∼ ∼ ∼ 13.87 725.3 13.37 31.24

200 ∼ ∼ ∼ ∼ 15.02 7204 12.15 145.34

1000 ∼ ∼ ∼ ∼ 43.95 7214 11.35 675.6

2000 ∼ ∼ ∼ ∼ 79.83 7218 11.31 1507

Table 2 shows comparative results of each MILP instance with LoTuS on
truncated data. When data is truncated, we lose information during truncation,
and hence, test error increases. The minimum test error is obtained with LoTuS
when trained with 200 inputs. The obtained formula is
φLoTuS2000 = ((□[1e−06,0.5]v < 90.4 ∧ (□[8.33,24]v < 87.5 ∨ (♢[8.33,24]v > 87.5∧
♢[15.3,24]w > 1.74))) ∨ (♢[1e−06,0.5]v > 90.4 ∧ (□[0.369,19.7]v < 97.8 ∧ ♢[3.73,20]w > 2.08))).

Table 2. Comparison among MILP methods
and LoTuS with truncated data
Inputs (M3) (M4) LoTuS

Error Time Error Time Error Time
% [s] % [s] % [s]

8 16.88 3.011 17.37 1.894 17.00 7.098
20 16.76 10.80 21.86 5.607 16.22 5.319
40 13.17 152.5 16.89 10.20 15.15 9.749
200 14.03 7213 18.79 40.09 13.69 15.51
1000 30.06 7234 18.50 177.9 15.72 43.72
2000 79.83 7219 18.65 353.5 14.66 51.7

This formula is not as inter-
pretable as the formula templates
used in MILP. Besides, inter-
pretability decreases as the num-
ber of inputs increases. E.g., the
STL formula that LoTuS finds
for eight inputs is □[8.52,11.3]v <
115 whereas, for 2000 inputs is
φLoTuS2000

. We can say that the
test error is lower when using
MILP with full length.

6 Discussion and Conclusions
In this paper, we considered STL-based classification of driving behaviors. First,
we came up with an STL formula template and recast the classification problem
with a template as a MILP. We observed MILP-based solutions suffer from com-
putation complexity. We proposed two improvements to address the scalability
issue. This approach was compared with the toolbox LoTuS in terms of accuracy
and computation time. Both methods have some drawbacks. MILP approach re-
quires domain knowledge to come up with a template and it cannot search for
time parameters effectively. LoTuS has a set of primitives to search over (limited
to eventually always and always eventually) and it connects them with disjunc-
tion or conjunction, not allowing further nesting. This restricts possible formula
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types that can be obtained. In addition, LoTuS loses interpretability as the train-
ing dataset grows. Further research is needed to find a better balance between
scalability, interpretability, and accuracy on real datasets. For scalability, one
can try satisfiability modulo convex optimization approaches, which have been
shown to improve practical performance compared to MILP on some STL prob-
lems in recent years. For interpretability, using two different formula templates,
one per class, might increase flexibility.
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Appendices

A Proofs of Propositions

A.1 Proposition 1: Formula Separation

Proof. By combining the constraints of Problems (4) and (5), we obtain

max
r,µ

r

s.t. ρ(si, φ1,µ1
, 0) ≥ r1 ∀si ∈ S0

ρ(si, φ2,µ2 , 0) ≥ r2 ∀si ∈ S0

ρ(si, φ1,µ1 , 0) ≤ −r1 ∀si ∈ S1

ρ(si, φ2,µ2
, 0) ≤ −r2 ∀si ∈ S1

r = min(r1, r2)
r1, r2 ≥ 0.

(7)

It is easy to see that Problem (7) is feasible if and only if Problems (4) and
(5) are feasible. In fact, Problem (7) is a relaxation of Problem (2). To see this,
consider, φµ = □(φ1,µ1

∧ φ2,µ2
) = □φ1,µ1

∧□φ2,µ2
. Hence

ρ(s, φµ, 0) = min(ρ(s,□φ1,µ1 , 0), ρ(s,□φ2,µ2 , 0)). (8)

If we substitute equation (8) into Problem (2), first robustness constraint means
ρ(si,□φ1,µ1

, 0) ≥ r and ρ(si,□φ2,µ2
, 0) ≥ r, recovering the first two constraints

in (7). However, we cannot do the same manipulation for the second constraint.
Problem (2) requires the minimum of ρ(si,□φ1,µ1 , 0) and ρ(si,□φ2,µ2 , 0) to be
less than −r, meaning one of the subformulas can be satisfied as long as min-
imum of them are violated, whereas problem (7) enforces both subformulas to
be violated by set S1. Therefore, the feasible domain of Problem (7) is a subset
of the feasible domain of Problem (2) and the feasibility claim follows. Since
the optimal parameters µ∗

1, r
∗
1 , µ

∗
2, r

∗
2 of Problems (4) and (5) are feasible for

Problem (7), it follows that µ̃ =
[
µ∗
1, µ

∗
2

]
and r̃ = min(r∗1 , r

∗
2) are feasible for

Problem (2). ⊓⊔

A.2 Proposition 2: Data Separation

Proof. Initially, we prove the first part of the proposition: If Problem (4) is
feasible for S then it is feasible for all partitions. Let µ̄1 and r̄ be a feasible
solution. That means, robustness of every signal in S0 is more than or equal to
r̄ when φ̃1,µ1

is valuated by µ̄1. Similarly, robustness of every signal in S1 is less
than or equal -r̄. This result will stay same with any partition, since we are just
looking into a subset in each subproblem.

Then, we prove the second part: µ̃1 = 1/B
∑B

i=1 µ
∗
1,i gives a feasible solution

with r̃ = mini(r
∗
i ) for Problem (4) solved for S. Assume that we have B parti-

tions. Without loss of generality, we assume that cause part of the implication
of formula template φ̃1,µ1 is always satisfied in [0, τ2]. That means, we only care
about speed part of the formula, that is ϕµ1 = ♢[0,τ2]□v ≤ µ1. The robustness
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of the subformula is given as ρ(v, ϕµ1
, 0) = maxt∈[0,τ2] mint′∈[t,∞)(µ1 − v(t′)) =

µ1 −mint∈[0,τ2] maxt′∈[t,∞) v(t
′).Define the effective upper bound for class 0

u0 = max
vi∈S0

( min
t∈[0,τ2]

max
t′∈[t,∞)

vi(t
′))

and the effective lower bound for class 1

l1 = min
vi∈S1

( max
t∈[0,τ2]

min
t′∈[t,∞)

vi(t
′)).

For class 0 signals, we want that u0 ≤ µ1, and for class 1 signals we want l1 ≥ µ1.
Define effective upper for class 0 and lower bounds for class 1 ui

0 and li1
of each partition Si. Then, the optimizer of Problem (4) for each partition is
µ∗
1,i = 1/2(ui

0 + li1). Then,

µ̃1 =
1

2B

B∑
i=1

(ui
0 + li1).

If u0 ≤ µ̃1 ≤ l1, we say that µ̃1 is a feasible parameter for Problem (4) when
it is solved for S. We know that ui

0 ≤ u0 < l1 ≤ li1 for all i ∈ {1, 2, . . . B}. We
say that ui

0 − εi0 = u0 and li1 + εi1 = l1 for all partitions. That means, as long as

1

B
|

B∑
i=1

(ϵi1 − ϵi0)| ≤ l1 − u0

holds, u0 ≤ µ̃1 ≤ l1 is true.
We can assume that ϵi1 − ϵi0 are sufficiently small. That means signals in one

class generally shows similar behavior. For instance if trucks go with 90[km/h],
it is unlikely to have a large group of trucks that go with 20[km/h]. If that
happens, that means there are two different driving behaviors in one class and
it is better to treat them separately. ⊓⊔

B Additional Experimental Results

B.1 Support Vector Machine (SVM) Classifiers

Before any time-series classification algorithm, we check the performance of SVM
classifiers. SVM decision boundaries do not contain any temporal information
but they are interpretable. Formula template (6) finds threshold values for speed
and time headway when it is in the relevant mode. Inspired from this idea, for
each input, we find mean speed and mean time headway. We write this as a 2-
dimensional soft margin SVM problem. Figure 1 shows inputs and the decision
boundary.

The accuracy of the method is 80.59%. Recall that cars constitutes 79.24%
of all vehicles. That means, if we blindly say all vehicle are cars, we are 79.24%
succesful. Therefore 80.59% is not an impressive result. Besides, as it can be
seen in the figure, decision boundary is not succesful enough to separate two
classes. Majority of trucks are classified as cars. Therefore, it is clear that we
need to consider other classification methods, especially the ones that can handle
temporal data.
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Fig. 1. Decision Boundary found by SVM


