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Abstract

The method of Outcalt et al., based on work developed originally by Hurst, is

re-examined to evaluate its efficacy in delineating changes in trends and iden-

tifying regime shifts in climatic-related time series. This technique is based on

the concept of the normalized rescaled running sum where temporal changes

in the Hurst exponent can be used to identify climatic trends from one regime

to another as each regime has a characteristic distribution that differs from the

statistical characteristics of the complete time series. An examination of the

temporal change in the amplitude of the normalized rescaled running sum can

be used as a method to identify these regime changes, which may be either real

(i.e., a true climatic shift) or induced (i.e., through a change in measurement

bias, station location, or other nonclimatic influence). Examples shown here

focus on examining time series of the Pacific Decadal Oscillation, Arctic thaw

depth, the Northern Hemisphere snow cover extent, treeflow data from Lees

Ferry (AZ), North Atlantic tropical cyclone frequency, and central England air

temperatures.
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1 | INTRODUCTION

Hurst (1951, 1956) discovered that measurements of
numerous geophysical time series demonstrate the pres-
ence of long-range dependence, which had earlier been
described in the analysis of turbulence by Kolmogorov
(see Koutsoyiannis et al., 2008). Investigating fluctua-
tions in annual water level for the Nile River in Egypt,
Hurst (1951, 1956) found that the river exhibited a pecu-
liar long-term behaviour: years of drought are more
likely followed by another drought year than a year of
flooding and vice versa. Such behaviour does not con-
form to the standard assumption of independence—the
absence of a temporal autocorrelation—but rather, a

system “memory” appears to exist that lies outside tradi-
tional atmospheric dynamic forcings (Koutsoyiannis
and Montanari, 2015). Local shifts in the mean are
expected behaviour under an assumption of persistence,
which is widely seen in climatic time series
(Koutsoyiannis, 2013).

In statistical terminology, the behaviour of the annual
Nile River flow exhibited fewer runs of anomalously high
and low flows than if fluctuations were random (Barton
and David, 1957). In this context, a run is composed of
consecutive outcomes (high or low flow) that occur
sequentially. If the data were truly random, then the
expected number of runs (i.e., the mean) would be (Barton
and David, 1957),
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E μð Þ= 2 N + N −

N
+1, ð1Þ

with a variance of

E σ2
� �

=
2 N + N − 2 N + N − −Nð Þ

N2 N−1ð Þ , ð2Þ

where N is the number of observations (i.e., the length of
the time series), N + is the number of sequences for
which the values were above the mean and N − is the
number of sequences for which the values were below
the mean (N=N + +N − Þ. If the number of runs is greater
than the expected value, negative temporal autocorrela-
tion exists (i.e., high values are more likely followed by a
value below the mean while low values are more likely
followed by values above the mean). Conversely, if the
number of runs is less than the expected value, then posi-
tive temporal autocorrelation exists (i.e., higher values
are more likely followed by another high value while low
values are more likely followed by another low value).
Consistent with Hurst’s findings, positive temporal auto-
correlation produces a time series that exhibits more
lower frequency variability and less higher frequency var-
iability than would be expected if the time series were a
truly random process and stationary in the mean (see
Figure 1). This increase in lower frequencies often is

mischaracterized as a “fat-tailed” (or heavy-tailed) distribu-
tion even though many of the processes are still Gaussian,
which explicitly excludes fat tails (see Koutsoyiannis, 2005a,
2005b).

Interestingly, Hurst and later researchers have found
that numerous other physical variables tend to exhibit
positive temporal autocorrelation “memory.” Sutcliffe
et al. (2016) provides documentation that Hurst’s analysis
had been extended to cover 75 different phenomena,
including river statistics, rainfall, air temperature and
pressure, tree rings, sunspot numbers, wheat prices, and
varves in Canada, Norway, and Lake Saki (Crimea) (see
their fig. 5). Indeed, this process has now been recognized
as an innovative application of natural fractal geometry
(Mandelbrot, 1982) and has been widely used as a tech-
nique of time series analysis.

This paper revisits the Hurst–Kolmogorov process
and, specifically, the integral trace or the normalized
rescaled running sum, as it is alternatively called (Outcalt
et al., 1997). The integral trace allows intercomparison of
variables with different metrics, is independent of the
start or end of the period of record, and is unusually
robust (Outcalt et al., 1997; Runnalls and Oke, 2006). For
example, the Budyko hypothesis (Budyko, 1948) has been
used to analyse regional differences in long-term annual
water and energy balance time series to identify the influ-
ence of changes on mean annual runoff and

FIGURE 1 Time series of

Northern Hemisphere air temperature

from Moberg et al. (2005) (top) and a

simulated “climate” having the same

variance as the Moberg et al. time

series but generated from the average

of 12 spins of a roulette wheel

(bottom). Figure taken from

Koutsoyiannis and Cohn (2008)

[Colour figure can be viewed at

wileyonlinelibrary.com]
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evapotranspiration. Hurst rescaling can be used to exam-
ine how changes in streamflow can be explained by vari-
ability in precipitation and evapotranspiration (see
Istanbulluoglu et al., 2012; Niu et al., 2021).

Although it is not a new method, the integral trace
has several features that make it an important and under-
utilized method. Moreover, this paper defines how a
modification of it can be used in climatological settings to
detect climate shifts from natural causes, anthropogenic
changes, or observational biases. The method has been
used successfully in a variety of different settings includ-
ing air temperature thresholds in an urban setting
(Ruddell et al., 2013), an evaluation of turbulent flows
(van Atta and Helland, 1977), land-use-dependent surface
thermal contrasts (Outcalt, 1972; Pease et al., 1976), natural
terrain texture (Outcalt and Melton, 1992), warming of the
active layer (Hinkel and Outcalt, 1995), and water-/lake-
level variation (Kenkel, 1995; Todhunter, 2012; Todhunter
and Fietzek-DeVries, 2016). Moreover, the integral trace
has been used successfully to detect microclimatic inhomo-
geneities in air temperature data (Runnalls and Oke, 2006)
and atmospheric turbulence (Dias et al., 2018). Several
atmospheric-related applications will be shown here to
illustrate the utility of the method. It is suggested the reader
consult Cohn and Lins (2005), Koutsoyiannis and
Cohn (2008), O’Connell et al. (2016), and Koutsoyiannis
et al. (2018) for a deeper discussion of Hurst–Kolmogorov
statistics.

2 | THE HURST EXPONENT

Hurst (1951, 1956) determined that for a time series,
Xt, of length n (i.e., t= 1,n½ �),

R nð Þ
S nð Þ / nH , ð3Þ

where R nð Þ is its adjusted range, given by max xtð Þ−½
min xtð Þ�8t, S nð Þ is the standard deviation of the time series,
and H is the Hurst exponent. To calculate H, all subsets
of the time series of length n− ið Þ, where i= 0,n−1½ �, are
used to compute the rescaled range, RR nð Þ,

RR nð Þ= ln
R nð Þ
S nð Þ

� �
: ð4Þ

The rescaled range is the amplitude of the integral
trace of deviations from the mean of the time series.
Moreover, the slope of the logarithm of the rescaled
range plotted versus the logarithm of n is H
(Equation (3)). Note that this derivation is consistent
with Schroeder (1991) rather than using the logarithm of

the ratio of n to S nð Þ as the abscissa (see Potter, 1979;
Outcalt et al., 1997). For additional discussion on the
rescaled range, see Hamed (2007) and Ceballos and
Largo (2017). Moreover, this method is similar to the nor-
malized dynamic range presented by Wu et al. (2021).

If the time series is a truly random sample taken from
a Gaussian distribution, H would be 0.5 and a spectral
distribution would represent Brownian noise (sometimes
called Brown noise or red noise)—the amplitude of the
frequencies produced by Brownian motion or a random
walk process (see Santana and Coelho, 2012). True
Brownian noise will decrease by 20 dB per log10 of the
frequency; thus, it is dominated by lower frequencies.
But Hurst noticed, as have many subsequent researchers,
that the value of H usually exceeds 0.5 and is often
between 0.6 and 0.9 for many geophysical time series.
This implies that these time series exhibit a higher degree
of temporal autocorrelation than would be expected from
a purely random process. An extreme value of 1.0 for H
often is referred to as black noise (Outcalt et al., 1997).

Several researchers have argued that a Hurst expo-
nent exceeding 0.5 results from the fact that while the
entire time series may be stationary, certain sub-periods
are not. Thus, the time series exhibits a shifting mean at
time-scales shorter than the record length (Wallis and
O’Connell, 1973; Klemeš, 1974; Potter, 1976; Boes and
Salas, 1978; Potter, 1979; Mesa and Poveda, 1993). The
concept behind Hurst rescaling is that if the process is
consistent in time; that is, the Brownian motion/random
walk process remains constant across the entire time
series, the mean value of H will remain largely constant
over time. However, if the process changes over the dura-
tion of the time series, this would be reflected in a tempo-
ral change in H. This paper argues that an examination
of the temporal change in the amplitude of the rescaled
range (i.e., the integral trace) can be used as a method to
identify changes in climate regimes or measurement dis-
continuities, such as station relocations and instrumenta-
tion changes.

The Hurst process has an interesting interpretation
when considering turbulence and Brownian motion.
Nordin et al. (1972) argue that for Hurst phenomenon,
the integral scale can be considered infinite and thus, a
diffusing particle moving with Brownian motion can be
modelled as a fractal dimension. Fischer (1973) suggested
some of this behaviour could be explained as secondary
flow resulting from edge effects or other interfering prop-
erties. Moreover, the turbulent velocity would be a con-
tinuous Gaussian noise process, albeit fractional. For
more discussion, see Nordin et al. (1972), Fischer (1973),
and van Atta and Helland (1977).

It should be noted that the traditional description of the
Hurst process using the rescaled range is somewhat
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outdated. Although it has historical roots and provides an
effective way to understand the process, Koutsoyiannis (2002)
demonstrates that the rescaled range exhibits more bias and
a higher degree of uncertainty than the variance of the
time-averaged process. Thus, Koutsoyiannis suggests the
climacogram as a more intuitive alternative (see also
Dimitriadis and Koutsoyiannis, 2015).

The climacogram is a logarithmic plot of the variance
of a time series, γ2k, averaged over time scale k versus k
(Koutsoyiannis et al., 2018). The time scale k is computed
for integer values of k= 1,kmax½ �,kmax≤0:1n where n is
the length of the time series. For k=1, each of the values
of the time series are taken individually; thus, γ21 is sim-
ply the variance in the time series. For k=2, the values
are paired (1 with 2, 3 with 4, etc.), averaged, and the var-
iance of their averages constitute γ22. Similarly, the calcu-
lation of γ2k proceeds through k=kmax. From the slope (b)
of the line (γ2k vs. k), the Hurst parameter (H) is com-
puted using H= 1

2 b+2ð Þ. Although potentially exhibiting
more bias and error variance, the rescaled range will be
used in the remainder of this manuscript instead of the
climacogram, as the original derivation by Outcalt
et al. (1997) utilized the rescaled range and consistency
with earlier uses of the integral trace is desired. Subse-
quent research will focus on upgrading the method by
using the climacogram.

It should be noted that the use of the integral trace
lends itself to several areas of scientific inquiry. In partic-
ular, the integral trace can be used (a) to identify natural
regime changes in a variable, (b) to examine regime
changes from known external forcings, (c) to examine
regime changes resulting from suspected discontinuities
in the time series, and (d) to identify both the timing
(i.e., from transitions between ascending and descending
traces) and the magnitude of regime changes (i.e., as
determined by the amplitude of the traces). Thus, the
integral trace may be used as both a diagnostic tool and
as a confirmatory tool.

3 | METHODS

3.1 | Integral trace

Using the Hurst–Kolmogorov process, Outcalt et al. (1997)
determined that patterns in the integral trace can identify
regime changes or measurement discontinuities in the
time series. These patterns could make such identifica-
tions in cases where tests of discontinuities in the bulk
data failed. Differences in the patterns of the temporal
autocorrelation were useful to make these identifications.

The method is based on Hurst rescaling and proceeds
as follows from Outcalt et al. (1997). First, the grand

mean is subtracted from each observation and these
mean deviations are added together to produce a running
sum for each observation (column C in Supporting Infor-
mation). Because the sum of all mean deviations must
equal zero, the last observation has a running sum of
zero. The normalized rescaled running sum then is com-
puted by taking the running sum for each observation,
subtracting the minimum accumulated deviation, and
then dividing by the range of the accumulated deviations
(column D in Supporting Information). The rescaled
range then is computed by taking the range of the devia-
tions from the mean and dividing by the standard devia-
tion of the original observations (in this case, the sample
standard deviation, with n−1 in the denominator, should
be used). Finally, the Hurst Exponent is computed by tak-
ing the ratio of the natural log of the rescaled range
(or the natural log of the range of the accumulated devia-
tions divided by the standard deviation of the observa-
tions) and dividing by the natural log of the number of
observations (Schroeder, 1991). The normalized observa-
tion also can be computed by subtracting the minimum
value from the original observations and dividing by the
range (column E in Supporting Information).

Next, the minimum of the deviations from the mean
is subtracted from each deviation from the mean
(min xt−x½ �) and the result is divided by their range to
produce the normalized rescaled running sum. The nor-
malized rescaled running sum can be plotted as a func-
tion of time to produce the integral trace (Outcalt
et al., 1997). This integral trace is used to screen for
changes in the character of the time series, although we
caution against interpretation of every small deviation in
the integral trace (see Klemeš, 1986). If desired, the obser-
vations can be normalized by removing the mean and then
dividing by the range, to create a series that ranges from
zero to one. Normalizing the observations allows for the
raw and rescaled data to be easily intercompared (Outcalt
et al., 1997; see also Runnalls and Oke, 2006).

3.2 | A simple example

A simple example with known characteristics a priori
would be helpful. Consider a time series (Table 1) with
n=50. In this example, the observations, Xt, are taken
from a Gaussian normal distribution. However, for
t= 1,15½ �, the population mean is 20.0 and its standard
deviation is 2.0 (N 20,2ð Þ), for t= 16,34½ �, the population
mean is 22.0 and its standard deviation is 2.0 (N 22,2ð Þ),
and for t= 35,50½ �, the population mean is 22.0 and its
standard deviation is 3.0 (N 22,4ð Þ). Thus, between t=15
and t=16, a change in the mean occurs while between
t=34 and t=35, a change in the standard deviation
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occurs. The Hurst exponent, H, for the entire time series
is 0.6292 (Table 1), implying the presence of Hurst–
Kolmogorov behaviour (or long-term dependence). How-
ever, it changes due to the inherent discontinuities in the
time series.

Visually, it is difficult to assess the known changes in
the mean and standard deviation from even a close exam-
ination of the original data (Figure 2a). Although a shift
in the mean occurs at t=15=16, it is not apparent on the
graph; neither is the shift in the standard deviation at
t=34=35. In fact, the data might be visually interpreted
as heteroscedastic with an increasing trend over the
entire time series and an increasing standard deviation
over the entire time domain.

The underlying signal becomes more obvious when
the normalized rescaled running sum is plotted as a

function of time (Figure 2b). The graph shows a steady
decline until between t=15 and t=18 with a near con-
stant slope. Then, the slope becomes near zero until
about t=34 when it dramatically increases for the
remainder of the time series. It may be difficult to pin-
point exactly when the underlying signal changes; how-
ever, three regimes clearly exist and are properly
identified, which captures the pattern inherent in the
original data successfully. Nevertheless, both the change
in mean and the change in variance (heteroscedasticity)
were identified properly.

To assess whether the apparent change in slope is sta-
tistically significant between any of these regions, para-
metric or nonparametric tests can be employed. For
example, Welch’s parametric test (Andrade and Estévez-
Pérez, 2014) can be used because it does not a priori

TABLE 1 Simple example of a dataset with discontinuities

t Xt Xt−X

Running sum
of mean
deviations

Normalized
rescaled
running sum t Xt Xt−X

Running sum
of mean
deviations

Normalized
rescaled
running sum

1 21.52 −0.55 −0.55 0.99 26 21.69 −0.38 −39.04 0.14

2 19.79 −2.28 −2.83 0.94 27 28.28 6.21 −32.83 0.27

3 16.78 −5.29 −8.13 0.82 28 24.34 2.27 −30.56 0.32

4 17.40 −4.67 −12.80 0.72 29 18.37 −3.70 −34.26 0.24

5 19.83 −2.24 −15.05 0.67 30 20.84 −1.23 −35.50 0.21

6 17.87 −4.20 −19.25 0.57 31 23.27 1.20 −34.30 0.24

7 19.52 −2.55 −21.81 0.52 32 19.73 −2.34 −36.65 0.19

8 21.02 −1.05 −22.86 0.49 33 21.04 −1.03 −37.69 0.17

9 16.93 −5.14 −28.01 0.38 34 19.65 −2.42 −40.11 0.11

10 21.35 −0.72 −28.73 0.36 35 18.59 −3.48 −43.59 0.04

11 20.00 −2.07 −30.80 0.32 36 20.46 −1.61 −45.21 0.00

12 21.43 −0.64 −31.44 0.30 37 31.37 9.30 −35.91 0.21

13 17.63 −4.44 −35.88 0.21 38 32.83 10.76 −25.15 0.44

14 23.07 1.00 −34.89 0.23 39 21.88 −0.19 −25.35 0.44

15 20.46 −1.67 −36.50 0.19 40 28.19 6.12 −19.24 0.57

16 19.38 −2.69 −39.19 0.13 41 22.07 0.00 −19.24 0.57

17 23.85 1.78 −37.42 0.17 42 26.96 4.89 −14.35 0.68

18 21.41 −0.66 −38.08 0.16 43 21.80 −0.27 −14.62 0.68

19 24.84 2.77 −35.31 0.22 44 27.21 5.14 −9.49 0.79

20 21.02 −1.05 −36.36 0.20 45 18.27 −3.80 −13.29 0.71

21 25.40 3.33 −33.04 0.27 46 25.59 3.52 −9.77 0.78

22 15.38 −6.69 −39.72 0.12 47 22.43 0.36 −9.41 0.79

23 23.74 1.67 −38.06 0.16 48 21.58 −0.49 −9.91 0.78

24 23.25 1.18 −36.88 0.18 49 21.95 −0.12 −10.03 0.78

25 20.30 −1.77 −38.65 0.14 50 32.10 10.03 0.00 1.00

Note: The observations (Xt) are taken from a Gaussian normal distribution that are N 20,2ð Þ for t=1,15, N 22,2ð Þ for t=16,34, and N 22,4ð Þ for t=35,50. Data

are rounded to two decimal places. Grand maximum: 32.83, grand minimum: 15.38, grand mean 22.07, standard deviation: 3.86, range: 17.45, rescaled range:
11.72, Hurst exponent: 0.6292.
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assume that the population variances of the two samples
are equal, although several other alternatives have been
utilized (cf., Chow, 1960; Hjellvik and Tjøstheim, 1995).
The Mann–Kendall test is the most often used nonpara-
metric test although other alternatives do exist
(cf., Sen, 1965; Hjellvik and Tjøstheim, 1995). Choices
usually are made based on the length of the time series
and the non-normality/presence of outliers with prefer-
ence to parametric tests given to longer time series and
absence of non-normality and outliers (cf., Fagerland,
2012). Parametric solutions require more assumptions
while the tradeoff is a lack of power associated with non-
parametric solutions (Yue et al., 2002). However, only a
physical reason or suspected breakpoint warrants testing,
as Type I errors may result when testing multiple hypoth-
eses (see Nakagawa and Cuthill, 2007; Clarke, 2010).
Moreover, the use of both hypothesis testing and p-values
has been questioned with alternatives proposed (see

Briggs, 2017; 2019; McShane and Gal, 2017; Briggs
et al., 2019; Halsey, 2019; Wasserstein et al., 2019).

For illustrative purposes only, the Walsh test will be
used here with this simple example. Its test statistic is
given by

t=
b1−b2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
yjxð Þ1P
xi1−x1ð Þ2 +

s2
yjxð Þ2P
xi2−x2ð Þ2

r , ð5Þ

with

γ=

s2
yjxð Þ1P
xi1−x1ð Þ2 +

s2
yjxð Þ2P
xi2−x2ð Þ2

� �2

n−1
1

s2
yjxð Þ1P
xi1−x1ð Þ2

� �2
+n−1

2

s2
yjxð Þ2P
xi2−x2ð Þ2

� �2 , ð6Þ

FIGURE 2 Raw observations from a

hypothetical distribution (a) and its normalized

rescaled running sum as a function of time (b)
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degrees of freedom where b is the slope, the overbar
denotes the mean, s2yjxð Þ is the square of the standard error

of the slope (the variance of the errors about the regres-
sion line), and the subscripts 1 and 2 denote the two
potentially disparate time series. The null hypothesis is
that the differences in the population slopes are zero
(i.e., β1=β2 or β1−β2=0) with the alternative hypothesis
that they are not zero (i.e., β1 ≠ β2 or β1−β2 ≠ 0).

First, consider the comparison of the slope of the time
series between t= 1,15½ � (subscript 1) and t= 16,34½ � (sub-
script 2) for the normalized rescaled running sum
(Figure 2b). The means are 0.51 and 0.19, the slopes are
−0.058 and 0.0016, and the squares of the standard error
of the estimate are 0.0029 and 0.0034, for the two time
series segments, respectively. This yields a t-statistic of
−14.68 (i.e., β1<β2) with 30 degree of freedom (γ=29:68),
which is statistically significant at α<0:01. Thus, it can be
concluded that the slopes for the time segments
between t= 1,15½ � and t= 16,34½ � are statistically differ-
ent, which implies that a shift in the population statistics
exists between time 15 and 16. One could search for a
smaller p-value by comparing t= 1,14½ � and t= 15,34½ � or
comparing t= 1,16½ � and t= 17,34½ � if it were not known
exactly where the discontinuity occurred (as is often the
case in an operational setting), for example.

Similarly, for the comparison between the second
time segment (t= 16,34½ �) and the third time segment
(t= 35,50½ �), the t-statistic is −8.04 (i.e., β2<β3) with
21 degree of freedom (γ=20:90) which is also statistically
significant at α<0:01. Thus, it can be concluded that the
Hurst rescaling method can clearly detect changes in
both the first (mean) and second (variance) moments of
this illustrative distribution.

4 | REAL WORLD EXAMPLES

To demonstrate the efficacy of the Hurst rescaling
method, six disparate, real-world datasets are examined.
These datasets are chosen largely to highlight known dis-
continuities in a time series to establish whether the
method can indeed find discontinuities that have already
been identified, thereby providing a fair evaluation of the
veracity of the methodology. These examples demon-
strate how the integral trace can be used in the four
applications (to identify natural regime changes in a vari-
able, to examine regime changes from known external
forcings, to examine regime changes resulting from
suspected discontinuities in the time series, and to iden-
tify both the timing and the magnitude of regime
changes).

4.1 | The Pacific Decadal Oscillation

This example uses the integral trace to examine regime
changes due to known natural climate forcings—the
Pacific Decadal Oscillation (PDO)—and highlights the
match between the timing and number of regime shifts
evident in the trace and the changes in PDO noted in the
literature.

The PDO is defined as variability in the sea surface
temperatures of the Pacific Ocean that lasts for multiple
decades (Mantua et al., 1997; Zhang et al., 1997). Specifi-
cally, it is represented by the first principal component
(or empirical orthogonal function, EOF) of sea surface
temperature (SST) anomalies (with both the global mean
SST anomaly and the annual cycle removed) in the North
Pacific Ocean (i.e., poleward of 20�N). A positive value of
the PDO corresponds with negative SST anomalies in the
central and western North Pacific and positive anomalies
in the eastern tropical Pacific while a negative value for
the PDO generally reverses this pattern. Shifts in the
PDO are linked to changes in air temperature patterns
over land areas in the North Pacific region (Johnstone
and Mantua, 2014; Khapalova et al., 2018), fluctuations
in tropical cyclone activity in both the Atlantic and
Pacific basins (Lupo et al., 2008; Kubota and Chan, 2009),
the occurrence of droughts and floods around the Pacific
Rim (McCabe Jr. et al., 2004; Zhou and Liu, 2018), and
changes in the productivity of marine ecosystems (Litzow
et al., 2020), for example.

The PDO has been linked to the Great Pacific Climate
Shift, which occurred during the winter of 1976/1977.
This change in SSTs and the PDO has been well-
documented (e.g., Hurrell and van Loon, 1994; Miller
et al., 1994; Gedalof and Smith, 2001; Giese et al., 2001;
Hartmann and Wendler, 2005; Meehl et al., 2009;
Swanson and Tsonis, 2009; Khaliq and Gachon, 2010;
Ding et al., 2013) and is associated with concomitant
changes in atmospheric circulation. A deepening of the
Aleutian Low shifted storm tracks to the south and
increased their intensity. Over North America, air tem-
peratures increased in the northwest while storminess
decreased in the southeast. Even Pacific Ocean ecosys-
tems were affected (see Venrick et al., 1987; Polovina
et al., 1994). Other major shifts in the PDO occurred in
approximately 1947 and 1999 (concomitant with the
major El Niño event of the given year). More recently,
the PDO has fluctuated on a much faster time scale with
changes occurring in 2002, 2007, and 2014 (Bond
et al., 2003; 2015; Ding et al., 2013; Hartmann, 2015).

Monthly data for the PDO from January 1900 to
September 2018 were obtained from Nate Mantua’s Anony-
mous FTP directory (http://research.jisao.washington.edu/
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pdo/PDO.latest.txt accessed on September 2, 2021). Consid-
erable monthly variability exists in the data and the Great
Pacific Climate Shift is not obvious from visual inspection
(Figure 3a). The plot of the normalized rescaled running
sum (Figure 3b), however, shows clearly that two major
shifts occurred—one in May 1943 and the other in May
1976. Both have been extensively documented as major shifts
in the PDO (see Hidalgo and Dracup, 2003). Moreover,
Welch’s test on the normalized rescaled running sum also
suggests four changes between 1998 and 2014 (Figure 3b)
although we do suggest that caution be exercised in over-
emphasizing short-term fluctuations in the normalized
rescaled running sum. Nevertheless, the normalized rescaled
running sum identifies transitions that occurred in June
1998, July 2002, July 2006, and March 2013. These temporal
changes in the PDO also are identified by Bond et al. (2003,
2015), Ding et al. (2013), and Hartmann (2015).

4.2 | Thaw depth in northern Alaska

Nelson et al. (1998) documented a radical shift in the
relationship between the depth of summer thaw and the
degree days of thaw using early records taken by the
United States Army Cold Regions Research and Engi-
neering Laboratory (CRREL) between 1962 and 1966 and
resumed observations beginning in 1991 or 1992. This
dramatic shift can be considered a response to the 1976
global climate transition in PDO discussed previously
(section 4.1; see Hartmann and Wendler, 2005). Evidence
also exists that permafrost temperatures can be linked to
solar variability (Osterkamp et al., 1994; Overpeck
et al., 1997). Thus, this example uses the integral trace to
identify natural regime changes in a climate variable.

Mean thaw depth for four CALM grids in Arctic
Alaska—West Dock, Betty Pingo, Happy Valley, and

FIGURE 3 Monthly Pacific Decadal

Oscillation (PDO from Nate Mantua) (a) and its

normalized rescaled running sum as a function

of time (b)
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Imnavait Creek—from 1992 to 2018 were used to investi-
gate the impact of solar regime changes on thaw in north-
ern Alaska detected in the early 21st century (Figure 4a)
(S. I. Outcalt, Thaw depth in northern Alaska: The confor-
mation of major global climate transitions in the mid 1970's
and early 21st century, unpublished manuscript). These
locations represent a transect along the Sag River from its
outlet at Prudhoe Bay to interior Alaska. West Dock is
located along the coast and Betty Pingo is located about
50 km inland. Happy Valley and Imnavait Creek are
located much farther inland—approximately 400 and
550 km, respectively (see Streletskiy et al., 2008).

Two strong inflection points are indicated by the nor-
malized rescaled running sum (Figure 4b) using Welch’s
test. The first inflection point occurs in 1998 for all sta-
tions except Imnavait Creek. It is possible that the change

at Imnavait Creek occurred earlier (1994 is implied by
the graph although the time series is sparse before 1994).
A second inflection is identified at 2007–2008 at Happy
Valley and Imnavait Creek and in 2010 at West Dock and
Betty Pingo. It is possible that the change occurred first
in the north (possibly moderated by the Arctic Ocean)
and was delayed by a couple of years for the inland
stations.

4.3 | Northern Hemisphere snow cover

This example compares an integral trace obtained from
one set of imagery (i.e., snow cover) and comparing them
to another example from the literature using a different
variable (i.e., snow water equivalent) and imagery.

FIGURE 4 Thaw depths (in cm) for

the four locations in northern Alaska

(a) and their normalized rescaled

running sum as a function of time (b)
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Monthly Northern Hemisphere snow cover data were
obtained from the Rutgers University Global Snow Lab
(https://climate.rutgers.edu/snowcover/files/moncov.
nhland.txt, downloaded on April 20, 2019) from October
1971 to March 2019. These data are based on maps of
snow and ice areas produced by the US National Oceanic
and Atmospheric Administration (NOAA) using visual
interpretation of shortwave imagery. Spatial resolution
changed from about 4 to 1 km with imagery from more
advanced satellites in 1972; before this period, snow
extent was generally underestimated. For more informa-
tion on how these data were compiled, see Robinson
et al. (1993, 2012) and Estilow et al. (2015). Before calcu-
lating the normalized rescaled running sum, the data

were detrended by removing the 48-year average monthly
snow cover from the monthly values to produce a
seasonally-detrended time series.

Monthly snow cover data for the Northern Hemi-
sphere (Figure 5a) show considerable monthly variability,
particularly so in the early and late portions of the record.
This change in variability is exhibited in a change in the
normalized rescaled running sum (Figure 5b) in mid-
1979 and early 2005, as identified using Welch’s test. In
addition, there are major inflection points in mid-1987
and early 1995, which are concomitant with shifts in the
monthly trends of snow cover (Figure 5a).

The change between mid-1979 and early 2005 also is
identified by Gan et al. (2013) who used satellite data

FIGURE 5 Maximum

Northern Hemisphere snow

cover extent (in km2) (a) and its

normalized rescaled running

sum as a function of time (b)
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(surface brightness temperature) to evaluate North Amer-
ican snow water equivalent. Their negative trend began
in 1979, reached a minimum in April of 2005 and,
according to Gan et al. (2013), the pattern ended in 2007
and is linked to an overall decrease in rising air tempera-
tures in high latitudes; this is consistent with the finding
using Hurst rescaling (Figure 5b).

4.4 | Treeflow records from Lees Ferry,
Arizona

Treeflow records (i.e., streamflow reconstructions from
tree rings) can be inferred using a linear regression
between tree-ring data and observed stream flow/dis-
charge. This regression then is used to estimate the dis-
charge for the length of the tree-ring record (see Meko
et al., 2007; Mauget, 2015). These treeflow records are
based on tree species that reliably have been proven to
estimate observed streamflow; tree growth in more arid
environments (such as the western United States) are
more responsive to variability in moisture conditions,
thereby providing a reasonable approximation to the
hydroclimatological conditions that exist. The regression
then is used to extend the record prior to the gauged
record using the tree rings as surrogates for the observa-
tions. To refine the streamflow reconstruction, multiple
trees (20–40) are employed so that the treeflow records
are not influenced by peculiarities associated with a sin-
gle tree (Rice et al., 2009) (https://www.treeflow.info).

For this analysis, treeflow data were obtained for Lees
Ferry, Arizona, located just downstream from the Glen
Canyon Dam that forms Lake Powell (and near the Colo-
rado state line) and is the demarcation between the
Upper and the Lower Colorado River Basins
(S. I. Outcalt, The treeflow record from Lees Ferry, Ari-
zona: 762–2005 A.D., unpublished manuscript). A stream
gauge was installed at Lees Ferry in 1921 but over time,
the natural flow of the Colorado River has been affected
by human activities in the Upper Colorado River Basin.
Adjustments have been made to the gauge record to
account for water diversions in the Upper Colorado River
Basin and changes to the stream channel that have cre-
ated increased evaporative losses. Construction of the
Glen Canyon Dam began in 1960, which further affected
streamflow at Lees Ferry (Cech, 2009).

Streamflow reconstructions were accomplished by
calculating treeflow parameters to allow for the altered
flow produced by the dam and other human-induced
effects. The treeflow record at Lees Ferry is displayed
(Figure 6a) and provides a reconstruction of streamflow
using tree-ring chronologies from 762 to 2005 AD. For a
more complete discussion of how the Lees Ferry treeflow

reconstruction was calibrated, see Meko et al. (2007) and
Mauget (2015).

The normalized rescaled running sum (Figure 6b)
shows a strong change (large inflections) in the
streamflow regime corresponding to the beginning of the
Medieval Warm Period (i.e., the early 11th century) as
well as the beginning (i.e., the early 14th century) and
end (i.e., the mid-19th century) of the Little Ice Age. A
closer examination of the normalized rescaled running
sum from 1965 to 2005 shows a minimum in 1977. The
minimum is commensurate with the Great Pacific Cli-
mate Shift discussed earlier while the second is commen-
surate with the global warming hiatus of 1999 (Loeb
et al., 2018).

4.5 | Atlantic tropical cyclones

This example illustrates the application of Hurst rescaling
to count data with a dataset for which known observa-
tional difficulties exist. Annual numbers of named storms
(i.e., tropical storms and hurricanes) for the North Atlan-
tic Basin were obtained from the NHC HURDAT2
archive (https://www.nhc.noaa.gov/data/, downloaded
on May 7, 2021) from the 1851 to 2020 tropical cyclone
seasons (Landsea and Franklin, 2013). These data were
based on the maximum Saffir-Simpson category assigned
to the storm during poststorm analysis. Results also were
examined for hurricanes and major hurricanes with simi-
lar conclusions (not shown). For more information on
how these data were compiled, see Landsea et al. (2004)
and Landsea and Franklin (2013).

The annual number of named storms (Figure 7a)
shows considerable variability over the entire period of
record with little trend from 1851 to 1930, a slight
increase through the 1960s, a slight decrease in the 1970s
and 1980s, and a decided increase after about 1995. How-
ever, the normalized rescaled running sum (Figure 7b)
shows two marked changes occurring in 1930 and again
in 1995. An analysis of just the tropical cyclone numbers
(deleting events that reached only tropical storm status)
suggests additional small discontinuities in about 1893
and 1947, although these discontinuities do not appear
significant when only major hurricanes (Category 3 or
higher on the Saffir-Simpson scale) are considered (not
shown). However, the analysis of major hurricanes does
suggest a discontinuity around 1910. Note that while
Chylek and Lesins (2008) suggest a 60-year cycle for hur-
ricane numbers exists and that two full cycles are present
in the data (i.e., 1860–1920 and 1920–1980), this 60-year
cycle does not present a discontinuity in the record, nor
does it adversely affect the analysis of the normalized
rescaled running sum.
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The marked change in the time series in 1930 corre-
sponds to a change from a once daily estimate of tropical
cyclone position and intensity (12Z) to a 6-hourly set of
measurements, which could create issues associated with
rapid storm intensification or decay (Landsea
et al., 2004). In addition, the inclusion of daily surface
synoptic maps for the Northern Hemisphere in the late
1920s and the development of wind tunnels to allow
proper calibration of anemometers in the 1920s also may
contribute to the discontinuity near 1930 (Landsea
et al., 2004).

Another large discontinuity is suggested on or about
1995. Landsea and Franklin (2013) note that for tropical
cyclone reanalysis, best track data transitioned from four

times per day to the nearest minute (in time). They also
note that additional records, which do not align with syn-
optic measurement times (such as for tropical cyclone
landfall or peak intensity) were incorporated into the
reanalysis for data prior to 1945 and after 1991 (Landsea
and Franklin, 2013). This and the inclusion of aircraft
reconnaissance data in the mid-1940s (Landsea
et al., 2004) also may explain the small discontinuity pre-
sent near 1947 in the hurricane-only data.

The apparent discontinuities on or about 1893 in the
hurricane numbers and near 1910 in the major hurricane
numbers may be an artefact of the incorporation of work
by Partagas and Diaz (1996). See also Landsea
et al. (2004, 180) where incorporation of their research

FIGURE 6 Maximum

river flow (in m3�s−1) at Lees
Ferry, Colorado (a) and its

normalized rescaled running

sum as a function of time for

the entire period of record (b)
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“led to the creation of completely new tropical cyclone
tracks and intensities for the years 1851–1885 and the
alteration of existing track and intensity data for the
period of 1886–1910.” Similarly, reanalysis efforts found
and adjusted errors in the 1886 to 1910 data (Landsea
et al., 2004).

4.6 | Central England air temperatures

The Hadley Centre air temperature data (monthly aver-
ages) for central England (a triangle from London, to
Bristol, to Lancashire) were obtained from the
United Kingdom Meteorological Office archive (https://
www.metoffice.gov.uk/hadobs/hadcet/, downloaded on
August 14, 2021, CETv1) from 1659 to 2020 (Parker
et al., 1992; Parker and Horton, 2005). These data were
created by updating and extending Manley’s (1974)
monthly temperature time series for central England.

Station adjustments were made to representative central
England air temperatures by evaluating the urban heat
island effect (through comparison with neighbouring rural
stations). The Hadley Centre Central England Temperature
(HadCET) dataset purports to be the longest instrumental
record of air temperature available anywhere.

Central England air temperature (Figure 8a) exhibits
much temporal variability with a significant decrease in
the 17th century, a relatively constant temperature
through the mid-20th century (with some trends on
multidecadal scales), and subsequent warming from the
latter half of the 20th century into the 21st century. A signif-
icant single-year drop in air temperature occurs in 1740
(~−2.4�C) and 1879 (~ −1.5�C). Concomitant with these
trends, the normalized rescaled running sum (Figure 8b)
divides the time series into four periods—the 17th century
through the first quarter of the 18th century, from the early
1700s until the late 1800s, most of the 20th century (until
about 1990), and then the last 30-year period (Figure 8b).

FIGURE 7 Total number of named storms

(per year) in the North Atlantic basin (a) and its

normalized rescaled running sum as a function

of time (b) [Colour figure can be viewed at

wileyonlinelibrary.com]
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The first apparent discontinuity is coincident with the
quote by Manley (1974, 393), “for the first six decades to
1720 the figures are printed in italics as an indication that
they must be considered less reliable, based as they are
on extrapolation from the results of readings of highly
imperfect instruments in uncertain exposures at a consid-
erable distance…or on estimates based on interpretations
of daily observations of wind and weather.” Data prior to
1671 were rounded to the nearest whole �C owing to
imprecise instrumental readings while some values from
1707 to 1722 were derived “from analysis of snowfall fre-
quency from a careful analysis of observed snowfall fre-
quency and from the overlapping series of monthly
means representative of Utrecht…coupled with wind
directions” (Manley, 1974, 393). Although the Hadley
Centre database includes estimations at a higher

observational resolution (i.e., to the nearest 0.1�C),
Manley’s (1974) observations indicate that reliability of
data prior to 1722 is much less than the remainder of the
time series.

The second apparent discontinuity occurs in the late
19th century. Parker et al. (1992) notes that a single sta-
tion (i.e., one data point) comprises much of the compos-
ite record from 1772 to 1876. Moreover, Parker and
Horton (2005) indicate that systematic adjustments
(±0.2�C) were applied to data from 1878 to 1921 (but not
before 1878) and although the maximum and minimum
air temperatures usually had adjustments of different
signs, the mean air temperature would have been
affected to some extent. As for the final discontinuity,
Parker et al. (1992) observe that urban warming was sig-
nificant from about 1974 onwards while Parker and

FIGURE 8 Central England air

temperature (�C) (a) and its normalized

rescaled running sum as a function of

time (b)
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Horton (2005) apply a systematic bias adjustment
(±0.1�C) to data from 1980 onwards.

5 | DISCUSSION

Hurst rescaling has been known for more than two
decades (Outcalt et al., 1997) but it still represents a
robust and obvious approach to examining a time series
for both natural breakpoints and data biases. Inflection
points (i.e., significant changes in the slope of the integral
trace) in the integral trace delineate transitions from one
climate regime to another or a significant change in the
manner that data are collected (e.g., changes in data mea-
surement, its location of measurement, and/or the time
of measurement). Statistically, a significant inflection
point identifies when this regime change occurs. More-
over, sign of the slope of the integral trace indicates the
temporal persistence of the time series (i.e., a positive
slope implies a persistence of observations above the
mean while a negative slope indicates persistence below
the mean) while the magnitude of the slope represents
the temporal clustering of similar extremes (Outcalt
et al., 1997).

The examples shown here demonstrate that Hurst
rescaling can be applied across a wide variety of geophys-
ical variables, including climatologically and hydrologi-
cally oriented time series. Outcalt et al. (1997) raises the
issue that Hurst rescaling requires regime lengths of rela-
tively long runs; however, this is a standard statistical
argument. Short runs are difficult to identify as a true,
short-lived regime rather than a small random fluctua-
tion of a larger regime. Therefore, Hurst rescaling should
be used to identify significant changes and an attempt
should not be made to analyse every small fluctuation in
the integral trace. Thus, Hurst rescaling provides a
unique and viable approach to detect changes in atmo-
spheric time series, even in cases where almost no tempo-
ral autocorrelation exists.

Many other methods to identify discontinuities in a
time series have been posited over the years (see
Weatherhead et al., 1998; Reeves et al., 2007;
Mudelsee, 2019; Muthuramu and Maheswari, 2019). Such
methods usually seek to identify structural breaks or
changepoints using a variety of different approaches
including autoregressive and autoregressive-moving aver-
ages (Karl et al., 2000; Seidel and Lanzante, 2004; Davis
et al., 2006), regression-based coefficients and methods
(Jouini and Boutahar, 2005; Dixon and Moore, 2011; Aue
and Horv�ath, 2013; Lyubchich et al., 2013; Guo
et al., 2018; Elder and Fong, 2019; Tharu and
Dhakal, 2020), t or F test with hypothesis testing (Lund
et al., 2007; Rienzner and Gandolfi, 2011; Gallagher

et al., 2013), higher-order moments of the distribution
(Hilas et al., 2013; Xie et al., 2019) and cumulative sums
(Shao and Zhang, 2010), Bayesian methods (Ruggieri, 2013;
Chen et al., 2017; Yu and Ruggieri, 2019), bootstrap
approaches (Bickel and Ren, 2001; Noguchi et al., 2011;
Lyubchich et al., 2013), classification analysis (Anders
et al., 2013), manifold learning models (Xie et al., 2013),
functional data analysis (Alaya et al., 2020), an informa-
tional approach (Beaulieu et al., 2012), and nonparametric
methods (Lanzante, 1996; Douglas et al., 2000; Burn and
Elnur, 2002; Xiong and Guo, 2004; McKitrick and
Vogelsang, 2014; Xie et al., 2014; Basarir et al., 2017; Guo
et al., 2018; Hajani and Rahman, 2018; Zhou et al., 2019;
Bagniewski et al., 2021). Most of these techniques work
directly with the series in the time domain, usually
searching for changes in parameters of the distribution or
trend or shifts in the moments of the time series
(e.g., mean, kurtosis) across a change point, although other
researchers have explored the use of Hurst statistics to
changepoint analyses (Outcalt et al., 1997; Tan and
Gan, 2017). The advantage of the integral trace is that
rather than examining the time domain—where trends,
patterns, and discontinuities may be obscured or difficult to
detect—the integral trace can be considered as a mixed
ARMA process (Wallis and O’Connell, 1973; Boes and
Salas, 1978).

It has also been suggested that smoothing of the time
series (i.e., low-pass filtering) can enhance detection of
change points and discontinuities (e.g., You et al., 2018).
We strongly recommend against this as smoothing tends
to involve subjective decisions that can adversely affect
the outcome (Howarth and Rogers, 1992) but more
importantly, discontinuities in the time series are often
obscured or masked and temporal fidelity can be under-
mined (Esper et al., 2005).
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