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I. Additional experimental details
1.1 General

All chemicals used were purchased from Millipore Sigma or Fisher Scientific and used without
further purification unless specified. 4-bromo-2-hydroxybenzaldehyde was purchased from TCI
America and ChemScene. Deuterated solvents for NMR spectroscopy (nuclear magnetic
resonance) were purchased from Cambridge Isotope Laboratories or Millipore Sigma. Poly(methyl
methacrylate) (PMMA) was purchased from Aldrich Chemical Co. (Mw~350,000). Poly(acrylic
acid) (PAA) was purchased from Aldrich Chemical Co. (lot # MKBR9922V, Mw~450,000).
Poly(4-vinylpyridine), linear (P4VP) was purchased from Scientific Polymer Products Inc. (lot #
401116018, Mw~50,000). Polystyrene (PS) was purchased from Aldrich Chemical Co. (lot #
15902CI, Mw~280,000).

1.2 Physical measurements

e Nuclear Magnetic Resonance (NMR) spectra were collected on Varian Vnmrs 500 (500 MHz)
spectrometer.

e Mass Spectrometry and High Resolution Mass Spectrometry (HRMS) were conducted on
Agilent Q-TOF HPLC-MS. Compounds were dissolved in Milli-Q water/acetonitrile (LC/MS
grade) (9:1) with a concentration of 10 uM and 10 uL of the solution was injected into the
spectrometer. Blank mixed solvent was used as the background. Mass spectra reported in
section VIII were obtained by subtracting the background spectra from the sample spectra.

e Photoluminescence spectra were collected on a Photon Technologies International (PTI)
QuantaMaster spectrofluorometer (QM-400) equipped with an integrating sphere (K-Sphere)
and a cryostat.

e The emitters were doped in PMMA or PAA for solid-state measurements: quartz substrates
(1.5*2.5 cm) were prepared and cleaned by sonication consecutively in soap, deionized water,
acetone, isopropyl alcohol, and then proceeded to UV-ozone treatment for 30 min.
THEF/chloroform (1:1 vol.:vol.) solution containing emitter (1 wt% to polymer) and 2.5 wt%
PMMA, or ethanol solution containing emitter (1 wt% to polymer) and 2.5 wt% PAA were
prepared and spin-coated on the cleaned quartz substrates (500 rpm for 5 min). Last, the films
were transferred into a glovebox filled with N2 and baked at 120 °C for 30 min. Films were
stored in the glovebox except during measurements.

e For absolute quantum yield measurements, blank PMMA or PAA films were used as
background.

1.3 Solvent vapor annealing

The emitters were doped in P4VP or PS for solvent vapor annealing and photophysical
measurements: quartz (1.5*%2.5 cm) or glass (1.5*1.5 cm) substrates were prepared and cleaned by
sonication consecutively in soap, deionized water, acetone, isopropyl alcohol, and then proceeded
to UV-ozone treatment for 30 min. Chloroform solution containing Br-HBI (1 wt% to polymer)
and 1.25 wt% polymer were prepared and spin-coated on the cleaned substrates (500 rpm for 5
min). The prepared films were dried under vacuum for at least 20 minutes to ensure complete
evaporation of solvent. Solvent vapor annealing was carried out in an empty vacuum desiccator:
the sample and a 25 mL beaker containing concentrated HCI (10 mL) were placed in a petri-dish
at the center of the metal plate. The chamber was closed and vacuumed for an initial 2 minutes for
the stabilization of HCI vapor. Then, the stop cock connected with the vacuum was closed and the
vacuum in the desiccator was maintained for an additional 8 minutes.
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1.4 Photopatterning and photochromism

The emitters were doped in PAVP or PS on cleaned glass substrates following the same
procedure. The samples were transferred to a No-filled glovebox and were covered with a
photomask made of Molybdenum by Towne Technologies, Inc. A 254 nm hand-held UV lamp
(purchased from Fisher Scientific) with a low power density of 2.4 mW/cm? was used to generate
the photopattern. The samples were subsequently baked on a hot plate at various temperatures
selected. Note that samples were placed upside-down (polymer film in contact with the hot plate)
during the baking process to prevent bubble formation. A Canon EOS 550d camera was used to
record the emission of the films illuminated with a 365 nm hand-held UV lamp, before
photopatterning, directly after photopatterning, and after baking.

1.5 Statistical Analysis and Data Processing

o All data were processed and plots were generated in Origin Pro 2017.

o Steady state emission and excitation spectra were smoothed with the built-in Savitzky-Golay
method (Points of Window: 20; Polynomial Order: 3), and were plotted either as lines or shades.

o Lifetime decay profiles (e.g. Figure 2c and 5b) were plotted without any data pre-processing.

o Phosphorescence emission spectra were plotted as dots due to the high signal/noise ratio
without any data pre-processing.

o Quamtum yields in Figure 4 and elsewhere in the manuscript were averaged among three film
samples. The mean and standard error included in Figure 4 were calculated by Origin Pro 2017.

1.6 Synthesis of prototype molecules

Purity of the compounds synthesized were confirmed by NMR and MS/HRMS, as documented
in section VII and VIIIL.

= (HBI, 1) 2-(1H-benzo|d]imidazol-2-yl)phenol
HBI was purchased from Millipore Sigma and used without further purification.

= (Br-HBI, 3) 2- (lH-benzo[d]lmldazol -2-yl)- 5 bromophenol

NH
2 Na,S,05
Br 4
NH2 DMF < § <Nj©
H

benzene- 4-bromo- 2
1,2-diamine hydroxybenzaldehyde

Br-HBI

To a single-neck 500 mL round bottom flask with a stirring solution of benzene-1,2-diamine
(9.95 mmol, 1 equiv.) and 4-bromo-2-hydroxybenzaldehyde (9.95 mmol, 1 equiv.) in DMF (200
mL, ~0.05 mL/mmol benzaldehyde), sodium metabisulfite (1.99 mmol, 0.2 equiv.) was added. The
mixture was stirred for 6-8 h at 110 °C. Color of the mixture turned gradually to green and dark
brown at the end. After the reaction was completed, the mixture was poured into cold DI water
under stirring. The resulting solid (pink/red) was further prified by column chromatography on
silica gel (eluent: hexane/ethyl acetate, 30:1 to 4:1) to afford a pale yellow solid (1.7g, 60%).

o 'H NMR (500 MHz, DMSO-d6) & 13.41 (s), 8.00 (d, J = 8.4 Hz, 1H), 7.67 (s, 2H), 7.30 (dt, J
=6.1,3.6 Hz, 2H), 7.27 (d, J = 2.0 Hz, 1H), 7.24 (dd, J = 8.4, 2.0 Hz, 1H).
o 13C NMR (126 MHz, DMSO-d6) & 159.27, 151.32, 128.27, 124.70, 122.65, 120.34, 112.59.
o HRMS [M+H]*
o Predicted m/z: 289.00 (100.0%), 291.00 (98.5%), 290.00 (14.2%), 292.00 (13.8%), 293.00
(1.2%)
4
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o Found m/z: 288.9968 (100%), 290.9949 (97.7%), 288.9998 (14.5%), 291.9977 (14.4%)

= (BrA-HBI, 2) 5-(1H-benzo|d]imidazol-2-yl)-2-bromo-4-hydroxybenzaldehyde

OH OH
:( N 1. HMTA, TFA, reflux N
Br 4 :@ 2. water, reflux Br ( j@
H O= H
Br-HBI BrA-HBI

In a 100 mL double-neck round bottom flask, the previously synthesized Br-HBI (3.35 mmol,
1 equiv.) and hexamethylenetetramine (HMTA, 33.5 mmol, 10 equiv.) were added followed by
the addition of trifluoroacetic acid (TFA, 35 mL). After degassing the mixture with Ar, it was
heated at reflux for 5 h, during which the initial white slurry turned into clear yellow solution.
Prolonged reaction time had no obvious side effects and might help increase the yield of para
aldehyde-substituted products v.s. ortho products. 2. Afterwards, DI water (~ 30 mL) was added
and the mixture was refluxed for another 1 h. Then the reaction was stopped and left in the
refrigerator overnight. The solid precipitate formed was filtered and washed with water. The
obtained crude product was purified by column chromatography on silica gel (dry-loading, eluent:
hexane/ethylacetate, 20:1 to 1:1; product was obtained near 9:1-6:1) to afford a pale yellow solid
(93 mg).

o 'HNMR (500 MHz, DMSO-d6) & 10.12 (s, 1H), 8.67 (s, 1H), 7.70 (dd, J = 6.0, 3.2 Hz, 2H),
7.41 (s, 1H), 7.34 (dd, T = 6.0, 3.1 Hz, 2H).

o 13C NMR (126 MHz, DMSO-d6) § 190.16, 164.56, 150.34, 129.44, 129.02, 125.08, 123.97,
122.64, 115.38, 113.20.

o HRMS [M+H]'
o Predicted m/z: 316.99 (100.0%), 318.99 (97.4%), 319.99 (15.5%), 318.00 (15.3%), 319.00

(1.5%), 321.00 (1.1%)

o Found m/z: 316.9916 (100%), 318.9898 (97.6%), 317.9940 (15.3%), 319.9926 (15.7%)

= Methylation of BrA-HBI

OH Oo—
N Mel, K,CO3 N
Br 7 5 Br 7
N Acetone, DMF, 50°C N
o= H o= H

BrA-HBI Methylated BrA-HBI

In a 10 mL round bottom flask, the mixture of BrA-HBI (4.337 mg, 13.68 umol), powdered
K2COs3 (5.900 mg, 3.121 equiv.), and methyl iodide (Mel, a few drops, in access) in acetone (3 mL)
+ DMF (1 mL) mixed solvent (DMF could be used solely) was stirred at 60°C under Ar atmosphere
for several days. The reaction was slow due to the low reactivity of BrA-HBI. K2CO3 (5.9 mg) and
Mel (a few drops) were added in the middle of the reaction to fully convert the unreacted BrA-HBI
to the product. When the starting material disappeared on TLC, the solution was poured into water
to obtain the crude product, which was further purified by multiple reprecipitations in
water/methanol mixture to obtain the pure product as a white powder (0.99 mg).

o 'H NMR (400 MHz, DMSO-d6) & 12.29 (s, 1H), 10.18 (s, 1H), 8.81 (s, 1H), 7.71 — 7.67 (m,
1H), 7.66 (s, 1H), 7.62 (dd, ] = 6.7, 1.7 Hz, 1H), 7.27 — 7.19 (m, 2H), 4.17 (s, 3H).
o HRMS [M+H]*
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o Predicted m/z: 331.01 (100.0%), 333.01 (99.0%), 332.01 (17.2%), 334.01 (16.0%), 335.01
(1.7%)
o Found m/z: 331.0075 (100%), 333.0056 (98.9%), 332.0102 (16.9%), 334.0084 (16.5%)

= (A-HBI, 4) 3-(1H-benzo|d]imidazol-2-yl)-4-hydroxybenzaldehyde
OH

OH
N 1. HMTA, TFA, reflux N
@—( j@ 2. Water, Teflux AQ_«N:Q
H fo i H
HBI

A-HBI

A-HBI was synthesized from HBI using the same procedure as BrA-HBI. Yield: 100 mg, 12.6%.

O 'H NMR (500 MHz, DMSO-d6) & 13.88 (s), 9.93 (s, 1H), 8.69 (d, ] = 1.6 Hz, 1H), 7.95 (dd, J
=8.5, 1.6 Hz, 1H), 7.70 (dd, J = 5.4, 3.3 Hz, 2H), 7.32 (dd, J = 6.0, 3.1 Hz, 2H), 7.23 (d, ] =
8.5 Hz, 1H).

0 13C NMR (126 MHZ, DMSO-d6) § 191.30, 163.68, 151.05, 133.98, 128.80, 128.77, 123.69,
118.45, 113.67.

o HRMS [M+H]"

o Predicted m/z: 239.08 (100.0%), 240.09 (15.3%), 241.09 (1.5%)
o Found m/z: 239.0815 (100%), 240.0841 (15.8%)
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I1. Computational details

The RAS-SF method is programmed in the Q-Chem 5.4 software package!!l, and the SOC
computations are implemented in a development version of Q-Chem. All RAS-SF calculations
were performed with the 6-31G* basis set!?! and the RIMP2-cc-pVDZ auxiliary basis®]. RAS-SF
hole, particle calculations with 8§ electron in 8 orbital active spaces were carried out with RASI
and RAS3 subspaces including all occupied and virtual orbitals, respectively. Unless otherwise
stated, the core electrons were kept frozen. Reference orbitals for RAS-SF were obtained from
restricted open-shell density functional theory (RODFT) using the B3LYP functional in the nonet
state. Geometries of the molecules were optimized at the ground state using ®B97X-D functional!*!
and the def2-TZVP basis setl®!. Calculations of SOC constants utilize general libraries developed
for SOC calculations within EOM-CCI®]. Spin-orbit NTOs were computed and analyzed using the
libwfa library!”). The NTOs with the largest singular values, for each compound, were plotted using
Molden program!®,
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II1. Additional computational results

OH O O
N NH NH
0 ah® o0 o~ =0
NH NH NH NH
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HBI (1-enol) HBI (1-keto) BrA HBI (2-enol) BrA-HBI (2-keto)
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* nn
S =T, ('"'”.) 5 ;¢( m 4_( ) : , ﬁ%ﬁd
SOCME - ~ 450 N . O 62 0.44 0 43
ST, (u’) ’ y a ) ()
SOCME é cﬁ 0.14 5 m 1046 é : 58.99 g : 31.23 o

Figure S1. Expanded RAS-SF NTO results for HBI (1) and BrA-HBI (2) Relevant orbitals of
HBI and BrA-HBI in their enol or keto forms; RAS-SF natural transition orbitals of significant S-
T transitions are displayed, along with their SOC constants (units in cm™) and the corresponding
transition characters.
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Figure S2. Expanded RAS-SF calculation results for HBI (1) and BrA-HBI (2) showing the
orbital configurations: Chemical structures of HBI and BrA-HBI in their enol or keto forms; RAS-
SF calculation results for the selected excited states, their energies (units in eV), transition
character, and SOCMEs (units in cm™') between S and triplet states (see the legend for details).
RAS-SF natural transition orbitals of the S-T transitions with largest SOCME are displayed. w
represents the singular values of the transitions shown in the NTO pairs, indicating the significance
of the specified orbital transitions. Selected frontier molecular orbitals were attached in section VI.
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Figure S3. RAS-SF calculation results for keto-form molecules Chemically structures of HBI,
Br-HBI, A-HBI, and BrA-HBI in their keto form; RAS-SF calculation results for the selected
excited states, their energies, transition character, SOCMEs between Si and triplet states, and
SOCMEs between T1 and So (see the legend for details). ). RAS-SF natural transition orbitals of
the S-T transitions with largest SOCME are displayed. w represents the singular values of the
transitions shown in the NTO pairs, indicating the significance of the specified orbital transitions.
In some cases (A-HBI), two NTO pairs are shown, both having large w values. Selected frontier
molecular orbitals were attached in section VI.
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Figure S4. RAS-SF calculation results for enol-form molecules Chemically structures of HBI,
Br-HBI, A-HBI, and BrA-HBI in their enol form; RAS-SF calculation results for the selected
excited states, their energies, transition character, SOCMEs between Si and triplet states, and
SOCMEs between T1 and So (see the legend for details). RAS-SF natural transition orbitals of the
S-T transitions with largest SOCME are displayed. w represents the singular values of the
transitions shown in the NTO pairs, indicating the significance of the specified orbital transitions.
In some cases (BrA-HBI), two NTO pairs under the same transition are shown, both having large
w values. Selected frontier molecular orbitals were attached in section VI.
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IV. Additional photophysical analyses
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Figure S5. Emission spectra v.s. temperature curve for BrA-HBI (2) Steady state emission
spectra of BrA-HBI in spin-coated PMMA film with 1 wt% doping concentration, measured in

vacuum with rising temperature.
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Figure S6. Delayed emission lifetime v.s. temperature curve of BrA-HBI (2) in spin-coated
PMMA or PAA film with 1 wt% doping concentration, measured in vacuum with rising

temperature.
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(a) PMMA (methylated BrA-HBI) (b) PAA (methylated BrA-HBI)
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Figure S7. Photophysical analysis of methylated BrA-HBI (2) Steady state excitation (filled),
emission spectra (filled), and delayed emission spectra (dots) of methylated BrA-HBI in spin-
coated (a) PMMA or (b) PAA films with 1 wt% doping concentration measured at 298K.
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Figure S8. Br-HBI (3) in PS. Steady state emission spectra of Br-HBI in PS (spin-coated, 1 wt%
doping) upon solvent vapor annealing (SVA) with concentrated HCL.
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Pattern under 365nm excitation

Pristine Photo- Baked 24h later
etched

Figure S9. Emissive patterns of Br-HBI (3) in P4VP under 365 nm illumination created by 1)
photo-etching with 254 nm UV lamp and a mask for 15 minutes, followed by ii) baking at various
temperatures for 10 minutes.
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Pattern under 365nm excitation

Pristine Photo- Baked
etched

Figure S10. Emissive patterns of Br-HBI (3) in PS under 365 nm illumination created by 1)
photo-etching with 254 nm UV lamp and a mask for 15 minutes, followed by ii) baking at various
temperatures for 10 minutes.
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(a) Br-HBI@P4VP, after photochemical etching
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Figure S11. Photophysical analysis of emissive patterns. (a) Steady state excitation (filled),
emission spectra (filled), and delayed emission spectra (dots) of Br-HBI in P4VP (spin-coated, 1
wt% doping) after photo-etching with 254 nm UV lamp for 15 minutes; panel (b) displayes the
steady state emission spectra with various excitation wavelengths.
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V. Extracting delayed emission quantum yield from total quantum yield

In this section, we will explain how to deconvolute the total quantum yield (®;,;) into prompt
fluorescence (Ppr) and delayed emission quantum yield (P ¢4, ) as shown in Fig. 4.

For HBI, A-HBI, Br-HBI, and BrA-HBI in PAA matrix, deconvolution could be simply done
from the steady state emission spectra since prompt fluorescence and delayed emission, in the form
of phosphorescence, could be easily distinguished.

In the PMMA matrix at room temperature, the steady state emission spectra were complicated
by prompt and delayed emission, which overlapped with each other. However, we could use the
steady state emission intensity in air v.s. in vacuum, assisted by the delayed emission intensity in
air v.s. in vacuum, to deconvolute ® 4,4, from ®,,.. The procedure is documented as follows:

1) Data acquisition

First, the steady state and delayed emission spectra in air and in vacuum are obtained as well as
the delayed emission decay curve in air and in vacuum. Steady state emission spectra of a blank
PMMA film fabrication under the same procedure was measured as the background. Delayed
emission spectra didn’t need additional background information since PMMA was optically inert
in our excitation range and scattered incident light has been gated. and Spin-coated PMMA thin
films were quite susceptible to oxygen permeation, and thus deprivation of oxygen under vacuum
would restore the total emission profile, both in the steady state and delayed regime.

2) Integration of emission intensity

After substracting the background spectra from blank PMMA films, the steady state emission
spectra in air and in vacuum were integrated to obtain Iy 4;,- and Igg 4. Using the same integration
rage, delayed emission spectra were integrated without background substraction to obtain I 4;,
and I} 4. Since a gated time range was applied during delayed emission measurement (e.g. 0.2-
10 ms), I3 ;- and I ,,,. Were not the total delayed emission intensity and therefore not comparable
and needed to be corrected using the fitted decay curve.

3) Decay fitting and extrapolation

The decay curves in air and in vacuum were fitted using the embedded multi-exponent fitting
module of QuantaMaster (data acquisition and analysis software from PTI). Using the fitting
parameters, the original decay curves were extrapolated to 1 us and 1 s, assuming that this range
would cover most of the delayed contents and make I 4;,- and 1 ., comparable. The tail of the
decay curves (1 s) could be easily fitted with various softwares (QuantaMaster, OriginalPro, etc.);
however, extra discretion was needed to fit the head (1 us) of the decay curve in air, which usually
exhibit multi-exponent profile in contrast to the decay curve in vacuum. Misleading short decay
species (T < 20 us) could exist in the final fitting results even though the measured time range
(usually 0.2-10 ms) couldn’t cover these short decay species.

As a result, the fitted decay curves could be integrated with the time range chosen for delayed
emission spectra measurment (e.g. 0.2-10 ms) and the "full intensity range" (1 us - 1 s). The ratio,
I1ys—1s/Io2-10ms Was used to correct the delayed emission intensity, Ij ;- and I ,,,.. In other
words,
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g Ilus—ls _
Id,air - Id,airl 'Id,vac - Id,vacl
0.2-10ms 0

Where 1 4; and 1,4, are the corrected delayed emission intensity.

4) Extracing ® 4,4, and Ppp
We assume that prompt fluorescence intensity, Ipg, didn’t change from air to vacuum. Thus,
Issvac = lgvac + Ipr
Iss,air = Ié,air + Ipp

Note that we used I 4;,- and I3 ,,4 here to be distinguished from Iy 4 and I, since steady state
and delayed emission were measured using different detectors. Thus, we could derive

* *
Iss,vac B Iss,air _ Id,vac B Id,air _ Id,vac B Id,air
* - * -
Id,vac Id,vac Id,vac

Therefore,

*
dyvac

q)delay,vac - (Dtot,vacl

ss,vac

Dpp = Do — (Ddelay
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VI. Reported ESIPT molecules with room temperature triplet emission

Table S1 listed the contemporary ESIPT emitters that exhibited triplet emission potential. As
shown here, room-temperature triplet emission, either in the form of room-temperature
phosphorescence (RTP) or thermal assisted delayed fluorescence (TADF) were very rarely
observed prior to 2017, nor were their photophysical properties systematically studied. The first
tailor-designed ESIPT TADF emitter was made by Adachi group in 2017, ) but the
photoluminescence quantum yield of the delayed emission did not exceed 10% due to insufficient
reverse intersystem crossing. Since then, study of ESIPT TADF emitters mushroomed and the
delayed emission quantum yield was pushed to 42%.'%! However, all of these pioneer studies are
based on the keto form of ESIPT molecules, and no reports on activating triplet emission from
enol form is reported to the best of our knowledge. In addition, activating efficient RTP from
ESIPT emitters is rarely explored.

Table S1. Reported ESIPT molecules with room temperature triplet emission

Type of Year
Compound ermission D yerayea rof
1 RTP Unreported 2002
[11]
2007
2 RTP Unreported [12]
3 TADF Unreported 2007
[13]
2017
0/a
4 TADF 9.5% [9]
2018
o/b
5 TADF 36% [10]

PXZPDO
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(0] OH
7
AL OO

6 TADF 42%"

g Q o

DMACPDO

S
©/ . :Nj:@ 2021

7 S TADF 4.5%"

) [14]

N
CL
TPXZBM
S
N_
HN;b
PP, N@ PhPNH
@XS 3=
Sj© 2021

o/ C
8 Jgj RTP <1% [15]
N
\
PhP—
PPh \O
HN

-0

*Measured at 300K, doped in bis[2-(diphenyl- phosphino)phenyl]ether oxide (DPEPO) host.
®Measured at 300K, doped in 4,4"-di(9H-carbazol-9-yl)-1,1"-biphenyl (CBP) host. D getayea Was
calculated using the total PLQY (®p;) and delayed fluorescence weight factor (R,) provided in
the original reports.

“Measured at 300K in undoped crystals.
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VI. RAS-SF frontier molecular orbitals of the prototype molecules

0 0 o} 0
NH NH NH NH
OO0 =040 1D =)=
NH NH NH NH
H H
o) o}

HBI (1-keto) Br-HBI (3-keto) A-HBI (4-keto) BrA-HBI (2-keto)

Figure S12. Selected frontier molecular orbitals in the keto form calculated by RAS-SF methods.
H: HOMO, L: LUMO.
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OH CH CH OH
NH NH NH NH
O = 12 DR D
NH NH NH NH
H H
@] (0]
HBI (1-enol) Br-HBI (3-enol) A-HBI (4-enol) BrA-HBI (2-enol)

L+1

H-1
H-2

H-3

Figure S13. Selected frontier molecular orbitals in the enol form calculated by RAS-SF methods.
H: HOMO, L: LUMO.
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VII. NMR spectra
= (Br-HBI, 3) 2-(1H-benzo|d]imidazol-2-yl)-5-bromophenol
OH

N

Br 4 :[::j
N
H

Br-HBI

'H NMR (500 MHz, DMSO-d6)
5 13.41(s), 8.00 (d, J = 8.4 Hz, 1H), 7.67 (s, 2H), 7.30 (dt, J = 6.1, 3.6 Hz, 2H), 7.27 (d, J = 2.0
Hz, 1H), 7.24 (dd, J = 8.4, 2.0 Hz, 1H).
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* (Br-HBI, 3) 2-(1H-benzo|d]imidazol-2-yl)-5-bromophenol
OH

N

Br /j©
N
H

3C NMR (126 MHz, DMSO-d6)

0159.27, 151.32, 128.27, 124.70, 122.65, 120.34, 112.59.
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= (BrA-HBI, 2) 5- (lH-benzo[d]lmldazol -2-yl)-2-bromo-4-hydroxybenzaldehyde

Nraie

BrA-HBI
"H NMR (500 MHz, DMSO-d6)

5 13.41 (s, 2H), 8.00 (d, J = 8.4 Hz, 1H), 7.67 (s, 2H), 7.30 (dt, J = 6.1, 3.6 Hz, 2H), 7.27 (d, J =

2.0Hz, IH), 7.24 (dd, J = 8.4, 2.0 Hz, 1H).
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= (BrA-HBI, 2) 5- (lH-benzo[d]lmldazol -2-yl)-2-bromo-4-hydroxybenzaldehyde

Nraie

BrA-HBI

3C NMR (126 MHz, DMSO-d6)
0 190.16, 164.56, 150.34, 129.44, 129.02, 125.08, 123.97, 122.64, 115.38, 113.20.

BrA-HBT T3C-NVR

e
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o
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= Methylation of BrA-HBI
O—

N
Br /j@

o H
Methylated BrA-HBI

'H NMR (400 MHz, DMSO-d6)
8 12.29 (s, 1H), 10.18 (s, 1H), 8.81 (s, 1H), 7.71 — 7.67 (m, 1H), 7.66 (s, 1H), 7.62 (dd, J = 6.7,
1.7 Hz, 1H), 7.27 — 7.19 (m, 2H), 4.17 (s, 3H).
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* (A-HBIL, 4) 3- (1H—benzo[d]1m1dazol -2-yl)-4-hydroxybenzaldehyde

e

A-HBI

"H NMR (500 MHz, DMSO-d6)

5 13.88 (s), 9.93 (s, 1H), 8.69 (d, J = 1.6 Hz, 1H), 7.95 (dd, J = 8.5, 1.6 Hz, 1H), 7.70 (dd, J =
5.4,3.3 Hz, 2H), 7.32 (dd, J = 6.0, 3.1 Hz, 2H), 7.23 (d, J = 8.5 Hz, 1H).
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* (A-HBI, 4) 3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzaldehyde
OH

3C NMR (126 MHZ, DMSO-d6)
0 191.30, 163.68, 151.05, 133.98, 128.80, 128.77, 123.69, 118.45, 113.67.
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VIII. Mass Spectra
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= (Br-HBI, 3) 2-(1H-benzo|d]imidazol-2-yl)-5-bromophenol
OH
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= (BrA-HBI, 2) 5-(1H-benzo[d]imidazol-2-yl)-2-bromo-4-hydroxybenzaldehyde
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= Methylation of BrA-HBI

O—
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