Angewandte
 .

Supporting Information

Total Synthesis of (+)-Cochlearol B by an Approach Based on a Catellani Reaction and Visible-Light-Enabled [2+2] Cycloaddition

A. D. Richardson, T. R. Vogel, E. F. Traficante, K. J. Glover, C. S. Schindler*

Table of Contents

1. General Information 3
2. Experimental Procedures
2.1 Synthesis of chromanone 11 4
2.2 Model Systems and Initial Route 5-9
2.3 Investigation into the asymmetric synthesis of 11 10-11
2.4 Synthesis of (-)-11 through a chiral resolution 12-13
2.5 Total synthesis of (+)-cochlearol B 14-20
3. HPLC Spectra 21-22
4. X-ray Crystallographic Data 23-25
5. References 26
6. NMR Spectra 27-72

1. General Information

1.1. General Laboratory Procedures

All air- or moisture-sensitive reaction were carried out in flame-dried glassware under an atmosphere of nitrogen. Thinlayer chromatography (TLC) was performed on Merck silica gel $60 \mathrm{~F}_{254}$ plates using UV light (254 or 366 nm), KMnO4 or CAM stain for visualization. Flash chromatography was performed using silica gel Silia Flash ${ }^{\circledR} 40-63$ micron (230400 mesh) from Silicycle unless otherwise noted.

1.2. Materials and Instrumentation

All chemicals were purchased from Sigma-Aldrich, Alfa Aesar, Acros Organics, Oakwood, TCI America, Frontier Scientific, Matrix Scientific, and Strem were used as received unless otherwise stated. THF, DCM, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{MeCN}$, DMF, DMSO were dried by being passed through a column of activated alumina under argon using a JC- Meyer Solvent Systems. $\left[\mathrm{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}$ was prepared according to the procedure described by Stephenson. ${ }^{1}$ Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on Varian MR400, Bruker Avance Neo 500, Varian Vnmrs 500, Varian Vnmrs 600, and Varian Vnmrs 700 spectrometers and are referenced to the residual NMR solvent signal $\left(\mathrm{CHCl}_{3}\right.$: d $7.26 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{H}_{6}: \delta 7.16 \mathrm{ppm}$; $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}: \delta 2.50 \mathrm{ppm} ;\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}: \delta 2.05 \mathrm{ppm}\right)$. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($s=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, b $=$ broad), coupling constant (Hz), integration. Carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on Bruker Avance Neo 500, Varian Vnmrs 500, Varian Vnmrs 600, and Varian Vnmrs 700 spectrometers and are referenced to the carbon resonances of the NMR solvent (CDCl3: $\delta 77.16 \mathrm{ppm}$; $\mathrm{C}_{6} \mathrm{D}_{6}$: $\delta 128.06 \mathrm{ppm}$; (CD_{3}) $\mathrm{S}_{2} \mathrm{O}: \delta 39.52$ $\left.\mathrm{ppm} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}: \delta 29.84 \mathrm{ppm}\right)$. High-resolution mass spectrometry (HRMS) data was recorded at the Mass Spectrometry Facility at the Department of Chemistry of the University of Michigan in Ann Arbor, MI on an Agilent 6230 TOF HPLC-MS (ESI) or Micromass AutoSpec Ultima Magnetic Sector mass spectrometer (ESI, EI). Infrared (IR) spectra were obtained using a PerkinElmer Frontier FT-IR spectrometer. IR data are represented as frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Chiral HPLC analysis was performed on a Agilent Infinity 1260 equipped with a Daicel Chiralpak OJH column ($5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$) or a Daicel Chiralpak IC column ($5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$). Optical rotations were acquired on a Jasco P-2000 digital polarimeter and reported as $c=g / 100 \mathrm{~mL}$ at 589 nm (sodium D line) at room temperature and 10 cm path length. Stereochemistry indicators with asterisk $\left(R^{*}, S^{*}\right)$ were used to indicate relative stereochemistry of diastereomers.

1.3. Abbreviations

CAM $=$ ceric ammonium molybdate, $\mathrm{THF}=$ tetrahydrofuran, $\mathrm{DCM}=$ dichloromethane, $\mathrm{Et}_{2} \mathrm{O}=$ diethyl ether, $\mathrm{MeOH}=$ methanol, $\mathrm{MeCN}=$ acetonitrile, $\mathrm{DMF}=N, N$-dimethylformamide, $\mathrm{DMSO}=$ dimethylsulfoxide, EtOAc $=$ ethyl acetate, $\mathrm{ESI}=$ electrospray ionization, $\mathrm{EI}=$ electron ionization, $\mathrm{h}=$ hours, $\mathrm{min}=$ minutes, $\mathrm{rt}=$ room temperature, $\mathrm{TMSCI}=$ thrimethylsilyl chloride, $\mathrm{NaHMDS}=$ sodium bis(trimethylsilyl)amide, $9-\mathrm{BBN}=9$-borabicylco[3.3.1]nonane, $\mathrm{Py} \cdot \mathrm{SO}_{3}=$ pyridine sulfur trioxide complex, $\mathrm{NMMO}=\mathrm{N}$-Methylmorpholine N -oxide, DMF-DMA $=\mathrm{N}, \mathrm{N}$-dimethylformamide dimethyl acetal, $\mathrm{Tf}_{2} \mathrm{O}=$ triflic anhydride

2. Experimental Procedures

2.1. Synthesis of chromanone 11

6-methoxy-2-methyl-2-(4-methylpent-3-en-1-yl)chroman-4-one (11)

General Procedure A (GP-A): Preparation of homoprenyl magnesium bromide (10): A flask was charged with acid washed magnesium ($2.18 \mathrm{~g}, 89.6 \mathrm{mmol}, 1.00$ equiv) turnings and flame dried under vacuum. To the flask was added THF (128 mL) and a small crystal of iodine. Then 5 -bromo-2-methylpent-2-ene ($12.80 \mathrm{~mL}, 95.56 \mathrm{mmol}, 1.07$ equiv) was added slowly while stirring. The reaction mixture was left to react at room temperature for 1.5 h .

Conjugate Addition: A flame dried flask was charged with $\mathrm{CuBr}\left(\mathrm{SMe}_{2}\right)(1.228 \mathrm{~g}, 5.97 \mathrm{mmol}, 0.10$ equiv) and THF (200 mL). The mixture was cooled to $-40^{\circ} \mathrm{C}$, the solution of 10 was added, and the mixture was left to stir for 30 min . TMS$\mathrm{Cl}(12.98 \mathrm{~g}, 15.2 \mathrm{~mL}, 2.0 \mathrm{Eq}, 119.5 \mathrm{mmol})$ was added to the reaction mixture followed by a solution of 6 -methoxy-2-methyl-4H-chromen-4-one ${ }^{2}$ (9) ($11.36 \mathrm{~g}, 1 \mathrm{Eq}, 59.7 \mathrm{mmol}$) in THF (50 mL). The mixture was left to react at $-40^{\circ} \mathrm{C}$ for 3 h . While the reaction was still cold, quenched with water. Diluted in diethyl ether and $\mathrm{NH}_{4} \mathrm{Cl}$ (aq., sat.). Stirred for 30 min while warming to room temperature. Then, the organic layer was separated, and the aqueous layer was extracted with diethyl ether (x 3). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:EtOAc, 99:1 to 9:1) afforded 11 as a yellow oil ($10.00 \mathrm{~g}, 36.45 \mathrm{mmol}, 61 \%$).
$\mathbf{R}_{\mathbf{f}}=0.29$ (hexanes:EtOAc, 9:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=9.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.86(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ $-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 192.8, 154.6, 153.7, 132.4, 125.4, 123.5, 120.2, 119.8, 107.1, 81.0, 55.9, 47.6, 39.2, 25.8, 24.0, 22.4, 17.7.; IR (neat) 2971, 2933, 2915, 2859, 2836, 1686, 1619, 1485, 1430, 1282, 1218, 1052, 1034, 802, 701; HRMS (ESI) m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 275.1642$, found 275.1637.

7
$+$

8

11

General Procedure B (GP-B): Charged a flame dried flask with pyrrolidine ($1.50 \mathrm{~mL}, 18.13 \mathrm{mmol}, 3.00$ equiv), DMSO $(12.0 \mathrm{~mL})$, and butyric acid ($0.55 \mathrm{~mL}, 6.05 \mathrm{mmol}, 1.00$ equiv). After the mixture was stirred for 10 min , ketone 8 (984 $\mu \mathrm{L}, 6.65 \mathrm{mmol}, 1.10$ equiv) was added dropwise. After stirring for an additional 15 min , acetophenone $7(1.005 \mathrm{~g}, 6.05$ mmol, 1.00 equiv) was added in one portion. The resulting reaction mixture was stirred at room temperature for 18 hours. Then, the reaction mixture was diluted with water (600 mL) and EtOAc (300 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc ($2 \times 300 \mathrm{~mL}$). The combined organic layers were washed with $1 \mathrm{~N} \mathrm{HCl}(300 \mathrm{~mL})$ and brine $(300 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:DCM, $19: 1$ to $3: 2$) afforded 11 as a yellow oil ($1.261 \mathrm{~g}, 4.60 \mathrm{mmol}, 76 \%$). ${ }^{3}$

2.2 Model Systems and Initial Route

6-methoxy-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-4-yl trifluoromethanesulfonate (6) and (1 $\left.R^{*}, 3 \mathrm{a} S^{*}\right)$-7-methoxy-3a-methyl-1-(prop-1-en-2-yl)-1,2,3,3a-tetrahydrocyclopenta[b]chromene (12)

11

Charged a flame dried flask with 11 ($1.092 \mathrm{~g}, 3.98 \mathrm{mmol}, 1.00$ equiv) and THF (15 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. In a separate flame dried flask, NaHMDS ($1.094 \mathrm{~g}, 5.97 \mathrm{mmol}, 1.50$ equiv) was dissolved in THF (5 mL). This mixture was then added dropwise to the solution chromanone 11 at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 1 hour, phenyl triflimide (1.706 $\mathrm{g}, 4.78 \mathrm{mmol}, 1.20$ equiv) was added in one portion. The reaction mixture was allowed to warm to room temperature and stirred for 18 h . Then, the reaction mixture was quenched with water and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted with EtOAc (x3). The combined organic layers were washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq. sat.), brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:DCM, 19:1 to 3:2) afforded 6 as a colorless oil ($956 \mathrm{mg}, 2.35 \mathrm{mmol}, 59 \%$) and 12 as a yellow oil ($359 \mathrm{mg}, 1.40 \mathrm{mmol}, 35 \%$).
(6) $\mathbf{R}_{\mathbf{f}}=0.38$ (hexanes:DCM, 3:2); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.83-6.74$ (m, 3H), 5.61 (s, 1H), 5.08 (t, J = 7.0 Hz , $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.0,147.7,142.6,132.5,123.5,118.7$ (q, J = 320 Hz), 118.6, 117.7, 117.3, 116.6, 106.4, 80.0, 55.9, 41.0, 26.1, 25.8, 22.8, 17.7; IR (neat) 2972, 2929, 2859, 2837, 1661, 1615, 1579, 1488, 1424, 1207, 1139, 1040, 1020, 1010, 868, 848, 815, 784, 760, 706; HRMS (ESI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}\left([\mathrm{M}]^{+}\right) 406.1062$, found 406.1059.
(12) $\mathbf{R}_{\mathbf{f}}=0.26$ (hexanes:DCM, 3:2); ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78$ (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.65 (dd, J = 8.7, 2.9 Hz , $1 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, \mathrm{~J}=1.84 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=56.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.11-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2,146.2,146.2$, 146.0, 124.4, 117.7, 117.0, 113.3, 111.7, 111.2, 82.9, 55.8, 48.8, 38.8, 28.3, 22.1, 20.2.; IR (neat) 2965, 2871, 2832 , $1645,1610,1578,1484,1268,1212,1178,1159,1038,882,798,762,692 ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{H}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$257.1536, found 257.1533 .
(S*)-2-((1 $\left.\left.R^{*}, 3 a S^{*}\right)-7-m e t h o x y-3 a-m e t h y l-1,2,3,3 a-t e t r a h y d r o c y c l o p e n t a[b] c h r o m e n-1-y l\right) p r o p a n-1-o l ~$ (S1)

Charged flame dried flask with 12 ($133 \mathrm{mg}, 519 \mu \mathrm{~mol}, 1.00$ equiv) and THF (3.00 mL), then cooled this solution to 0 ${ }^{\circ} \mathrm{C}$. Added $9-\mathrm{BBN}(1.04 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF, $519 \mu \mathrm{~mol}, 1.00$ equiv) and stirred the reaction mixture at room temperature for 1 h . Returned the reaction to $0^{\circ} \mathrm{C}$ then added $\mathrm{NaOH}(0.5 \mathrm{~mL}, 2 \mathrm{M})$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}(53 \mu \mathrm{~L}, 30 \% \mathrm{w} / \mathrm{w}$ in water, 519 $\mu \mathrm{mol}, 1.00$ equiv). Stirred this mixture at room temperature for 1 h . Then, diluted the reaction with water and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(\mathrm{x} 3)$. The combined organic layers were
washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography over silica (hexanes:EtOAc, 9:1 to 1:1) afforded S1 as a colorless oil ($90 \mathrm{mg}, 328 \mu \mathrm{~mol}, 63 \%$).
$\mathbf{R f}=0.42$ (hexanes:EtOAc, 1:1); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \delta 6.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.58(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.13(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 4 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.07-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{dt}, J=13.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2,146.6,146.1,124.3,117.4,116.9,113.3,111.6,83.1,66.3,55.8,43.4$, 39.7, 38.7, 26.1, 22.2, 15.4; IR (neat) 3434, 2960, 2875, 2834, 1733, 1485, 1465, 1269, 1214, 1183, 1159, 1036, 971, 877, 813, 756; HRMS (ESI) m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}{ }^{+}\left([\mathrm{M}]^{+}\right)$274.1569, found 274.1561.

Guanidinium (S*)-2-((1 $\left.R^{*}, 3 a S^{*}\right)$-7-methoxy-3a-methyl-1,2,3,3a-tetrahydrocyclopenta[b]-chromen-1yl)propyl sulfate (13)

A flame dried flask was charged with $\mathrm{Py} \cdot \mathrm{SO}_{3}(26 \mathrm{mg}, 166 \mu \mathrm{~mol}, 1.3$ equiv). Added a solution of $\mathbf{S 1}(35 \mathrm{mg}, 128 \mu \mathrm{~mol}$, 1.00 equiv) in DCM (0.6 mL) and stirred this mixture at room temperature for 18 hours. Then, the reaction mixture was filtered, and the filtrate was concentrated in vacuo. To this residue was added guanidinium chloride ($12 \mathrm{mg}, 128 \mu \mathrm{~mol}$, 1.00 equiv) and methanol (2.0 mL). Slow evaporation of this homogeneous solution afforded 13 as a yellow crystalline solid ($44 \mathrm{mg}, 106 \mu \mathrm{~mol}, 83 \%$). ${ }^{4}$

In accordance with the literature, ${ }^{3} \mathrm{H},{ }^{13} \mathrm{C}$, and IR data is provided for the intermediate pyridinium sulfate $\mathbf{S 2}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) ס 9.29 (d, $J=5.8 \mathrm{~Hz}, 6 \mathrm{H}$), 8.89 (d, $\left.J=4.3 \mathrm{~Hz}, 5 \mathrm{H}\right), 8.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 8.51(\mathrm{~s}, 2 \mathrm{H}), 8.14(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 8.00(\mathrm{~s}, 5 \mathrm{H}), 6.73-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.77$ (dd, $J=9.5,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{~m}, 4 \mathrm{H}), 2.78(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3H) ; ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) $\delta 153.59,146.98,146.18,145.41,144.92,143.21,140.15,127.98,126.80$, 123.90, 116.77, 116.37, 113.25, 111.19, 82.43, 68.70, 55.27, 42.48, 38.03, 36.45, 25.54, 21.81, 15.09; IR (neat) 3455 , 3074, 2964, 2889, 1620, 1545, 1488, 1216, 1156, 1023, 971, 848, 750, 680; HRMS (ESI) m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{~S}$ (M-H)- 353.1064, found 353.1068 .

Methyl (E)-4-(6-methoxy-4-(3-methoxy-3-oxoprop-1-en-1-yl)-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-3-yl)butanoate (5) and methyl (2S*,3aS*,3a**,5aS*)-9-methoxy-3,3,5a-trimethyl-3,3a,3a¹,4,5,5a-hexahydro-2H-indeno[1,7-bc]chromene-2-carboxylate (15)

In a glovebox, $\mathrm{Pd}(\operatorname{cod}) \mathrm{Cl}_{2}(8.4 \mathrm{mg}, 29.5 \mu \mathrm{~mol}, 0.10$ equiv) and Ph-DavePhos ($11.3 \mathrm{mg}, 29.5 \mu \mathrm{~mol}, 0.10$ equiv) were dissolved in a vial in 1,4-dioxane (1 mL). This mixture was stirred for 1 min . Vinyl triflate 6 ($120 \mathrm{mg}, 295 \mu \mathrm{~mol}, 1.00$ equiv), methyl 4-iodobutanoate ($120 \mu \mathrm{~L}, 886 \mu \mathrm{~mol}, 3.00$ equiv), methyl acrylate ($40 \mu \mathrm{~L}, 443 \mu \mathrm{~mol}, 1.50$ equiv), N -methylbicyclo[2.2.1]hept-2-ene-2-carboxamide ${ }^{5}$ ($22.3 \mathrm{mg}, 148 \mu \mathrm{~mol}, 0.50$ equiv), 5 -(trifluoromethyl)-2-pyridinol (9.6 $\mathrm{mg}, 59.1 \mu \mathrm{~mol}, 0.20$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(289 \mathrm{mg}, 886 \mu \mathrm{~mol}, 3.00$ equiv), and additional 1,4-dioxane (5 mL) were added to the reaction mixture. The vial was sealed, removed from the glovebox, and stirred at $100^{\circ} \mathrm{C}$ for 16 h . Then, the mixture was filtered through a thin pad of silica eluting with EtOAc. The combined filtrate was concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:EtOAc, 99:1 to 4:1) afforded 5 as a colorless oil ($40 \mathrm{mg}, 91 \mu \mathrm{~mol}$, 31%) and 15 as a colorless oil ($11 \mathrm{mg}, 32 \mu \mathrm{~mol}, 11 \%$).
(5) $\mathbf{R}_{\mathbf{f}}=0.23$ (hexanes:EtOAc, 4:1); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.61(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75$ $(\mathrm{s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.68$ $(\mathrm{m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\left.{ }_{3}\right) \delta 173.5,167.3,153.8,146.3$, $143.6,140.3,132.0,126.4,123.9,123.8,123.1,117.5,113.8,111.1,80.0,55.9,51.9,51.8,37.4,34.1,29.4,25.8$, 25.4, 23.0, 22.3, 17.7; IR (neat) 2951, 2880, 1735, 1721, 1631, 1491, 1435, 1271, 1194, 1168, 1040, 987, 870, 816, 775, 722; HRMS (ESI) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 465.2247$; found 465.2243 .
(15) $\mathbf{R}_{\mathbf{f}}=0.26$ (hexanes:EtOAc, $9: 1$); ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.89(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.15$ $(\mathrm{m}, 2 \mathrm{H}), 1.96(\mathrm{dt}, J=12.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 174.08,154.75,147.64,137.39,125.42,119.46,114.99,108.16,82.93,55.84$, 54.84, 53.84, 51.69, 51.08, 42.19, 35.10, 27.15, 26.95, 24.86, 24.31; IR (neat) 2959, 2874, 2835, 1732, 1483, 1432, 1258, 1208, 1156, 1038, 923, 868, 847, 820, 791, 736; HRMS (ESI) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 343.1904$; found 343.1898 .

Methyl
 ($\left.1 R^{*}, 1 \mathrm{a} R^{*}, 2 \mathrm{a}^{1} S^{*}, 4 \mathrm{a} S^{*}, 9 \mathrm{~b} S^{\star}\right)$-8-methoxy-2a${ }^{1}$-(4-methoxy-4-oxobutyl)-2,2,4a-trimethyl-1,1a,2,2a,2a¹,3,4,4a-octahydrocyclopropa[5,6]pentaleno[1,6-bc]chromene-1-carboxylate (18)

5

blue LEDs (427 nm
$\operatorname{MeCN}, \mathrm{rt}, 1 \mathrm{~h}$ 85\%

18

Charged a flame dried flask with $5(15 \mathrm{mg}, 34 \mu \mathrm{~mol}, 1.00$ equiv $), \mathrm{MeCN}(0.400 \mathrm{~mL})$ and $\operatorname{Ir[(dF(\mathrm {CF}_{3}))_{ppy})_{2}dtbbpy]F_{6}}$ ($0.3 \mathrm{mg}, 0.34 \mu \mathrm{~mol}, 0.01$ equiv). The reaction mixture was degassed by sparging with nitrogen gas for 30 min . The flask was placed approximately 5 cm in front of two 40 W PR160-427 nm Kessil lights. The lights were set to 100% intensity, a fan was used for cooling, and the reaction was stirred for 1 h . Then, the reaction mixture was concentrated in vacuo and purification by flash column chromatography over silica (hexanes:EtOAc, 99:1 to 9:1) afforded 18 as a colorless solid (13 mg, $29 \mu \mathrm{~mol}, 85 \%$).
$\mathbf{R}_{\mathbf{f}}=0.23$ (hexanes:EtOAc, 4:1) ; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.69(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, \mathrm{J}=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.51(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{q}, \mathrm{J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.26-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{dd}, \mathrm{J}=13.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2 \mathrm{H})$, $1.50-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{td}, \mathrm{J}=14.2,13.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.8,170.2,152.5,151.0,125.3,115.8,112.8,112.5,92.7,59.0,55.8,51.6,51.5,48.5$, 48.5, 45.9, 40.9, 36.9, 35.8, 34.1, 33.0, 30.7, 26.8, 24.2, 24.2, 22.8; IR (neat) 2958, 1728, 1464, 1429, 1269, 1209,

1159, 1140, 1032, 927, 888, 874, 848, 814, 783; HRMS (ESI) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 443.2438$, found 443.2424.

Methyl (E)-3-(6-methoxy-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-4-yl)acrylate (16)

Charged a flamed dried flask with potassium bicarbonate ($185 \mathrm{mg}, 1.85 \mathrm{mmol}, 3.00$ equiv), palladium(II) acetate (2.07 $\mathrm{mg}, 9.23 \mu \mathrm{~mol}, 0.015$ equiv) and tetrabutylammonium chloride ($205 \mathrm{mg}, 738 \mu \mathrm{~mol}, 1.20$ equiv). A solution of 6 (250 $\mathrm{mg}, 615 \mu \mathrm{~mol}, 1.00$ equiv $)$ in $\mathrm{MeCN}(5.00 \mathrm{~mL})$ was then added, followed by methyl acrylate ($223 \mu \mathrm{~L}, 2.46 \mathrm{mmol}, 4.00$ equiv). The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 1 h . The mixture was concentrated in vacuo, re-dissolved in DCM, and diluted with water. The organic layer was separated, and the aqueous layer was extracted with DCM (x3). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:EtOAc, 99:1 to 17:3) afforded 16 as a colorless oil (145 mg, 423 $\mu \mathrm{mol}, 69 \%)$.
$\mathbf{R}_{\mathbf{f}}=0.27$ (hexanes:EtOAc, 9:1); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, \mathrm{J}=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{3} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,154.0,147.0,141.3,132.6,132.1,129.7,124.0,121.3,120.9,117.7,114.9,109.8,77.7,56.0$, 51.9, 40.2, 25.8, 25.2, 22.8, 17.8; IR (neat) 2969, 2949, 2925, 2857, 2845, 2838, 1719, 1486, 1429, 1308, 1262, 1168, 1039, 979, 821, 737; HRMS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 343.1904$, found 343.1903.

Methyl $\quad\left(2 S^{*}, 3 a S^{*}, 3 a^{1} S^{\star}, 5 a S^{\star}\right)-9-m e t h o x y-3,3,5 a-t r i m e t h y l-3,3 a, 3 a^{1}, 4,5,5 a-h e x a h y d r o-2 H-i n d e n o[1,7-$ $b c] c h r o m e n e-2-c a r b o x y l a t e ~(15) ~$

Charged a flame dried flask with $16(34 \mathrm{mg}, 99 \mu \mathrm{~mol}, 1.00$ equiv) and dioxane (3.0 mL). The reaction mixture was degassed by sparging with nitrogen gas for 15 mins. The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 16 h . Then, the reaction mixture was concentrated in vacuo and purification by flash column chromatography over silica (hexanes:EtOAc, 99:1 to 9:1) afforded 15 as a colorless oil ($31 \mathrm{mg}, 91 \mu \mathrm{~mol}, 92 \%$).
$\mathbf{R}_{\mathrm{f}}=0.26$ (hexanes:EtOAc, 9:1); ${ }^{1} \mathrm{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.89(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (dd, $J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.15(\mathrm{~m}$, 2 H), 1.96 (dt, J = 12.3, 2.1 Hz, 1H), $1.79-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) б 174.1, 154.8, 147.6, 137.4, 125.4, 119.5 (2C), 115.0, 108.2, 82.9, 55.8, 54.8, 53.8, 51.7,
51.1, 42.2, 35.1, 27.1, 26.95, 24.86, 24.31; IR (neat) 2959, 2874, 2835, 1732, 1483, 1432, 1258, 1208, 1156, 1038, 923, 868, 847, 820, 791, 736; HRMS (ESI) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 343.1904$; found 343.1898.
 oxabenzo[f]cyclobuta[col]inden-8b-yl)acrylate (22) and methyl ($2 S^{*}, 3 a S^{*}, 3 a^{1} S^{*}, 5 a S^{*}$)-9-methoxy-
 methyl ($\left.2 R^{*}, 3 a R^{*}, 3 a^{1} S^{*}, 5 a S^{\star}\right)-9-m e t h o x y-3,3,5 a-t r i m e t h y l-3,3 a, 3 a^{1}, 4,5,5 a-h e x a h y d r o-2 H-i n d e n o[1,7-$ bc]chromene-2-carboxylate (24)

$\xrightarrow{\left[\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right]\left(\mathrm{PF}_{6}\right)} \underset{(\mathbf{1 7}, 1 \mathrm{~mol} \%)}{ }$

$\mathrm{MeCN}, \mathrm{rt}, 1 \mathrm{~h}$ 24-29\%
$15+25$ (1:3)-32\%

24

 $\mathrm{mg}, 2.83 \mu \mathrm{~mol}, 0.01$ equiv). The reaction mixture was degassed by sparging with nitrogen gas for 30 min . The flask was placed approximately 5 cm in front of two 40 W PR160-427 nm Kessil lights. The lights were set to 100\% intensity, a fan was used for cooling, and the reaction was stirred for 1 h . Then, the reaction mixture was concentrated in vacuo and purification by flash column chromatography over silica (hexanes:EtOAc, 99:1 to 9:1) afforded 23 as a colorless oil ($28 \mathrm{mg}, 82 \mu \mathrm{~mol}, 29 \%$) and $15+24$ as a colorless oil ($1: 3,31 \mathrm{mg}, 91 \mu \mathrm{~mol}, 32 \%$).
(21) $\mathbf{R f}=0.23$ (hexanes:EtOAc, 9:1); ${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.69 (dd, J = 8.8, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.46(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, 2.76 (d, J $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.24$ $(\mathrm{s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.5,154.1,153.4,147.2,126.7,119.4,118.4,114.8,113.1,84.7$, $55.8,51.6,46.0,46.0,45.1,43.5,36.8,29.7,27.8,25.5,22.1$; IR (neat) 2952, 2866, 2835, 1721, 1640, 1492, 1463, 1436, 1376, 1297, 1267, 1176, 1129, 1040, 809, 771; HRMS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 343.1904$, found 343.1903.
$(15+24) \mathbf{R}_{\mathbf{f}}=0.26$ (hexanes:EtOAc, $9: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90-6.87(\mathrm{~m}, 1.3 \mathrm{H}), 6.81-6.71(\mathrm{~m}, 2.6 \mathrm{H})$, $6.05(\mathrm{~s}, 0.3 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3.9 \mathrm{H}), 3.74(\mathrm{~s}, 0.9 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 0.3 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H}), 2.19$ $-2.15(\mathrm{~m}, 0.6 \mathrm{H}), 2.05(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.9(\mathrm{~m}, 2.3 \mathrm{H}), 1.77-1.70(\mathrm{~m} 0.6 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.49$ $(\mathrm{m}, 1 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 3.3 \mathrm{H}), 1.30(\mathrm{~s}, 0.9 \mathrm{H}), 1.20-1.15(\mathrm{~m}, 3.9 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 0.9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.2,174.1,154.7,153.5,147.6,146.9,137.4,129.7,125.4,121.8,119.5$ (2C), 119.0, 117.8, 116.1, 115.0, $108.6,108.1,84.3,82.9,56.0,55.8,54.8,53.8,51.7,51.7,51.4,51.0,46.8,42.5,42.2,35.2,35.1,33.9,32.9,27.1$ (2C), 27.0, 25.5, 24.9, 24.3, 20.8; IR (neat) 2959, 2874, 2835, 1732, 1483, 1432, 1258, 1208, 1156, 1038, 923, 868, 847, 820, 791, 736; HRMS (ESI) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 343.1904$; found 343.1898.

2.3. Investigation into the asymmetric synthesis of 11

An asymmetric copper-catalyzed conjugate addition between 9 and 10 was explored using chiral ligands L1-L5. The catalyst and ligand were pre-stirred in THF at rt for 30 min , then cooled to $-78{ }^{\circ} \mathrm{C}$. Each reaction was subsequently completed according to GP-A, with any modifications indicated in Table S1.

Table S1. (A) Evaluation of asymmetric conjugate addition conditions. (B) Control reaction without copper.
A. Conditions evaluated for an asymmetric copper-catalyzed conjugate addition

${ }^{\text {a }}$ Reaction performed without TMSCI
B. Background reactivity likely responsible for racemic product observed

In addition, an asymmetric Kabbe condensation between $\mathbf{7}$ and 8 was explored using chiral catalysts $\mathbf{C 1} \mathbf{C 1 3}$. Each reaction was completed according to GP-B, with any modifications indicated in Table S2.

Table S2. Evaluation of asymmetric Kabbe condensation conditions.

2.4. Synthesis of (-)-11 through a chiral resolution

(R)-N-((S,E)-6-methoxy-2-methyl-2-(4-methylpent-3-en-1-yl)chroman-4-ylidene)-2-methylpropane-2sulfinamide (27) and (R)-N-((R,E)-6-methoxy-2-methyl-2-(4-methylpent-3-en-1-yl)chroman-4-ylidene)-2-methylpropane-2-sulfinamide (S3)

Charged a flame dried flask with chromanone 11 ($2.28 \mathrm{~g}, 8.31 \mathrm{mmol}, 1.00$ equiv), toluene (16.6 mL), titaniumethoxide $(3.79 \mathrm{~g}, 16.6 \mathrm{mmol}, 2.00$ equiv), and (R)-(+)-2-methylpropane-2-sulphinamide (26) ($1.01 \mathrm{~g}, 8.31 \mathrm{mmol}, 1.00$ equiv). The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 24 hours. Then, the reaction mixture was diluted in THF and quenched with $24 \% \mathrm{NaCl}$ (aq.). The mixture was filtered through celite and the filtrate was washed with brine. The organic layer was separated, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:EtOAc, 99:1 to 4:1) afforded S3 as a yellow oil ($1.06 \mathrm{~g}, 2.81 \mathrm{mmol}, 34 \%$) followed by 27 as a yellow oil ($1.05 \mathrm{~g}, 2.78 \mathrm{mmol}, 34 \%$).
(S3) $\mathbf{R f}=0.48$ (hexanes:EtOAc, $7: 3$); $[\boldsymbol{\alpha}]_{\mathrm{D}}^{\mathbf{2 4}}=+15.6(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, \mathrm{~J}=3.2$ Hz, 1H), 7.00 (dd, $J=9.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.81 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.78$ (s, 3H), 3.42 (d, $J=16.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$, 1.32 (s, 9H).; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.30,153.46,151.78,132.23,123.60,122.87,120.22,119.54,108.19$, 78.62, 57.93, 55.81, 39.86, 38.94, 25.78, 23.96, 22.76, 22.29, 17.76; IR (neat) 2967, 2913, 2870, 2834, 1740, 1622, 1594, 1487, 1426, 1285, 1220, 1199, 1068, 1032, 895, 688; HRMS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}^{+} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 378.2098 , found 378.2094.
(27) $\mathbf{R f}=0.43$ (hexanes:EtOAc, 7:3); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{24}=-139.6(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, \mathrm{~J}=3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=9.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=16.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}$, 3H), 1.38 (s, 3H), 1.32 (s, 9H).; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.24,153.47,151.73,132.32,123.59,122.80,120.30$, $119.55,108.22,78.70,58.00,55.83,39.74,38.63,25.80,24.22,22.79,22.48,17.74$. IR (neat) 2975, 2924, 2865, 2835, 1740, 1590, 1485, 1427, 1284, 1214, 1086, 1037, 890, 823, 735, 694; HRMS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{31^{-}}$ $\mathrm{NO}_{3} \mathrm{~S}^{+} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 378.2098$, found 378.2092.
(S)-6-methoxy-2-methyl-2-(4-methylpent-3-en-1-yl)chroman-4-one [(-)-11]

Charged a flask with 27 ($1.44 \mathrm{~g}, 3.81 \mathrm{mmol}, 1.00$ equiv) and methanol (8.80 mL). The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, then a solution of HCl (aq.) ($556 \mathrm{mg}, 1.27 \mathrm{~mL}, 12 \mathrm{molar}, 15.3 \mathrm{mmol}, 4.00$ equiv) was added
dropwise while stirring. The mixture was removed from the cold bath and allowed to warm to room temp. for 15 minutes. The reaction was quenched with NaHCO_{3} (sat. aq.) and diluted with DCM. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{DCM}(x 3)$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:EtOAc, 99:1 to $17: 3$) afforded (-)-11 as a yellow oil ($866 \mathrm{mg}, 3.16 \mathrm{mmol}, 83 \%$).
$\mathbf{R}_{\mathbf{f}}=0.29$ (hexanes:EtOAc, 9:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{24}=-43.6(\mathrm{c}=0.10, \mathrm{MeOH})$; HPLC (Daicel Chiralpak OJ-H, hexanes:isopropanol 99.9:0.1 to 99.7:0.3) 13.3 min (minor), 23.2 min (major); ${ }^{1} \mathrm{H}$ NMR ($401 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28$ (d, J=3.2 Hz, 1H), 7.08 (dd, J=9.0, 3.2 Hz, 1H), $6.86(d, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (d, J=16.5 Hz, 1H), 2.17-2.05(m, 2H), 1.85-1.74(m, 1H), 1.71-1.60(m, 4H), $1.57(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.8,154.6,153.7,132.4,125.4,123.5,120.2,119.8,107.1,81.0,55.9,47.6,39.2,25.8,24.0$, 22.4, 17.7.; IR (neat) 2971, 2933, 2915, 2859, 2836, 1686, 1619, 1485, 1430, 1282, 1218, 1052, 1034, 802, 701; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$275.1642, found 275.1637.

2.5. Total synthesis of (+)-cochlearol B

(S)-6-methoxy-2-methyl-2-(4-methylpent-3-en-1-yl)-2H-chromen-4-yl trifluoromethanesulfonate [(+)6]

Charged a flame dried flask with $\operatorname{NaHMDS}(2.16 \mathrm{~g}, 11.8 \mathrm{mmol}, 1.10$ equiv) and THF (24 mL), then cooled this mixture to $-78{ }^{\circ} \mathrm{C}$. A solution of $11\left(2.94 \mathrm{~g}, 10.7 \mathrm{mmol}, 1.00\right.$ equiv) in THF (8 mL) was then added. After stirring for 1 h at $-78{ }^{\circ} \mathrm{C}$, a solution of Comins' reagent ($4.63 \mathrm{~g}, 11.8 \mathrm{mmol}, 1.10$ equiv) in THF (8 mL) was added and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h . Then, the reaction mixture was quenched with water and diluted with diethyl ether and NaHCO_{3} (aq. sat.). The organic layer was separated, and the aqueous layer was extracted with diethyl ether (x3). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:DCM, 19:1 to $3: 2$) afforded (+)-6 as a yellow oil ($3.75 \mathrm{~g}, 9.23 \mathrm{mmol}, 86 \%$).
$\mathbf{R}_{\mathbf{f}}=0.54$ (hexanes:EtOAc, 9:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{23}=+109.7(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.83-6.74(\mathrm{~m}, 3 \mathrm{H})$, $5.61(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67$ (s, 3H), 1.58 (s, 3H), 1.45 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.0,147.7,142.6,132.5,123.5,118.7$ ($\mathrm{q}, \mathrm{J}=320$ Hz), 118.6, 117.7, 117.3, 116.6, 106.4, 80.0, 55.9, 41.0, 26.1, 25.8, 22.8, 17.7; IR (neat) 2972, 2929, 2859, 2837, 1661, 1615, 1579, 1488, 1424, 1207, 1139, 1040, 1020, 1010, 868, 848, 815, 784, 760, 706; HRMS (ESI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}\left([\mathrm{M}]^{+}\right) 406.1062$, found 406.1059 .

(S)-2-methoxy-6-methyl-10-methylene-6-(4-methylpent-3-en-1-yl)-7,8,9,10-tetrahydro-6H-benzo[c]chromene (28)

In a glovebox, $\mathrm{Pd}(\mathrm{cod}) \mathrm{Cl}_{2}(70 \mathrm{mg}, 246 \mu \mathrm{~mol}, 0.10$ equiv) and Ph -DavePhos ($94 \mathrm{mg}, 246 \mu \mathrm{~mol}, 0.10$ equiv) were dissolved in 1,4-dioxane (10 mL). This mixture was stirred for 1 min . Vinyl triflate (+) $-6(1.00 \mathrm{~g}, 2.46 \mathrm{mmol}, 1.00$ equiv), 5-iodopent-1-ene ($923 \mu \mathrm{~L}, 7.38 \mathrm{mmol}, 3.00$ equiv), N -methylbicyclo[2.2.1]hept-2-ene-2-carboxamide ${ }^{5}(186 \mathrm{mg}, 1.23$ $\mathrm{mmol}, 0.50$ equiv), 5 -(trifluoromethyl)-2-pyridinol ($80 \mathrm{mg}, 492 \mu \mathrm{~mol}, 0.20$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.41 \mathrm{~g}, 7.38 \mathrm{mmol}, 3.00$ equiv), and additional 1,4-dioxane (36 mL) were added to the reaction mixture. The flask was sealed with a rubber septum, removed from the glovebox, and stirred at $100^{\circ} \mathrm{C}$ for 16 h . Then, the mixture was filtered through a thin pad of silica eluting with EtOAc. The combined filtrate was concentrated in vacuo. Purification by flash column chromatography over silica gel (hexanes:EtOAc, 49:1 to 4:1) followed by purification by flash chromatography over C18 silica (Water:MeCN, 1:4 to 0:1) afforded 28 as a colorless oil ($647 \mathrm{mg}, 1.99 \mathrm{mmol}, 81 \%$).
$\mathbf{R}_{\mathbf{f}}=0.57$ (hexanes:EtOAc, 9:1) and on C-18 silica $\mathbf{R}_{\mathbf{f}}=0.19$ (Water/MeCN, 1:4); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 3}}=+65.8(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl ${ }_{3}$) $\delta 7.07(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, \mathrm{J}=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, \mathrm{~J}=$ $53.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{qt}, \mathrm{J}=18.5,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-1.99(\mathrm{~m}$, 2H), $1.92-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 153.2$, $151.8,148.3,130.6,118.3,115.9,112.3,110.9,86.1,55.7,53.6,50.6,47.4,42.3,38.8,33.8,30.1,29.8,23.8,23.7$, 23.5, 19.9.; IR (neat) 2987, 2966, 2930, 2856, 2831, 1632, 1610, 1574, 1486, 1454, 1424, 1375, 1272, 1226, 1166, 1045, 882, 849, 765, 740; HRMS (ESI) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 325.2162$; found 325.2160 .
(4aS,5S,7aS,12bS)-11-methoxy-7a,13,13-trimethyl-1-methylene-1,2,3,4,5,6,7,7a-octahydro-5,12bmethanobenzo[c]cyclopenta[b]chromene (26)

Charged a flame dried flask with 28 (300 mg , $925 \mu \mathrm{~mol}, 1.00$ equiv), MeCN (90 mL) and $\operatorname{Ir[(dF(\mathrm {CF}_{3})\mathrm {ppy}){}_{2}\mathrm {dtbbpy}]\text {PF}6}$ (10.4 mg, $9.25 \mu \mathrm{~mol}, 0.01$ equiv). The reaction mixture was degassed by sparging with nitrogen gas for 20 min . The flask was placed approximately 5 cm in front of two 40 W PR160-427 nm Kessil lights. The lights were set to 100% intensity, a fan was used for cooling, and the reaction was stirred for 1 h . Then, the reaction mixture was concentrated in vacuo and purification by flash column chromatography over silica (hexanes:EtOAc, 99:1 to 9:1) afforded 29 as a colorless oil ($283 \mathrm{mg}, 872 \mu \mathrm{~mol}, 94 \%$).
$\mathbf{R f}=0.48$ (hexanes:EtOAc, $9: 1$); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 3}}=-117.7(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.72-6.68(\mathrm{~m}, 2 \mathrm{H})$, $6.65(\mathrm{dd}, \mathrm{J}=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=35.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.95-$ $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 153.5,147.0,140.8,139.5,131.8,126.7,124.3,123.4,117.7,112.9,112.2,111.5,79.6$, 55.8, 37.0, 33.6, 26.0, 25.8, 23.9, 23.0, 22.4, 17.7.; IR (neat) 2945, 2865, 2831, 1489, 1455, 1374, 1267, 1229, 1210, 1137, 1043, 848, 802, 784, 773, 722; HRMS (ESI) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 325.2162$, found 325.2157.
(4aS,5S,7aS,12bR)-1-(hydroxymethyl)-11-methoxy-7a,13,13-trimethyl-1,2,3,4,5,6,7,7a-octahydro-5,12b-methanobenzo[c]cyclopenta[b]chromen-1-ol (S4)

Charged a flask with 29 ($485 \mathrm{mg}, 1.49 \mathrm{mmol}, 1.00$ equiv) and acetone:water ($3: 1,16 \mathrm{~mL}$). To this mixture was added osmium tetroxide ($3.04 \mathrm{~g}, 3.8 \mathrm{~mL}, 2.5 \% \mathrm{wt}$ in $\mathrm{tBuOH}, 299 \mu \mathrm{~mol}, 0.20$ equiv), citric acid ($574 \mathrm{mg}, 2.99 \mathrm{mmol}, 2.00$ equiv), and N -Methylmorpholine N -oxide ($350 \mathrm{mg}, 2.99 \mathrm{mmol}, 2.00$ equiv). This solution was stirred at room temperature for 16 h . Then, the reaction mixture was diluted with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (aq. sat.) and EtOAc. The organic layer was separated, and the aqueous layer was extracted with EtOAc (x 3). The combined organic layers were washed with
brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:EtOAc, 9:1 to 2:3) afforded S4 as an off-white foam ($247 \mathrm{~g}, 715 \mu \mathrm{~mol}, 48 \%$).
$\mathbf{R f}=0.18$ (hexanes:EtOAc, 1:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 3}}=+72.1(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.81(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.51(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.00$ (m, 2H), $2.00-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{dd}, \mathrm{J}=13.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{dd}, \mathrm{J}=13.0,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.3,150.1,127.1,119.5,118.1,113.7,87.2,77.2$, 69.7, 55.8, 52.0, 48.8, 47.7, 39.1, 37.3, 29.9, 29.3, 26.3, 24.8, 24.4, 24.1, 17.8; IR (neat) 3473, 3468, 2950, 2881, $2834,1489,1414,1376,1265,1219,1137,1039,860,807,784,733,703$; HRMS (ESI) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 381.2036$; Found: 381.2034.
(4aS,5S,7aS,12bR)-11-methoxy-7a,13,13-trimethyl-3,4,5,6,7,7a-hexahydro-5,12b-methanobenzo[c]cyclopenta[b]chromen-1(2H)-one (30)

Charged a flask with S4 (586 mg, $1.63 \mathrm{mmol}, 1.00$ equiv) and THF:water (1:1, 8.5 mL). Added sodium periodate (699 $\mathrm{mg}, 3.27 \mathrm{mmol}, 2.00$ equiv) to this solution and stirred at room temperature for 2 h . Then, the reaction mixture diluted with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (aq. sat.) and EtOAc. The organic layer was separated, and the aqueous layer was extracted with EtOAc (x 3). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:EtOAc, 99:1 to 9:1) afforded 30 as a white powder ($440 \mathrm{mg}, 1.35 \mathrm{mmol}, 83 \%$).
$\mathbf{R}_{\mathbf{f}}=0.31$ (hexanes:EtOAc, 9:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 3}}=-53.1(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.31(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, \mathrm{J}=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{dt}, \mathrm{J}=17.7,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.17(\mathrm{~m}, 5 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 210.5,154.3,148.4,123.5,119.2,115.3,115.2,86.0,55.8,55.2,51.9,48.4,42.6,39.0$, 38.1, 32.5, 31.0, 24.0 (2C), 22.1, 19.7; IR (neat) 2990, 2975, 2952, 2937, 2873, 2831, 1691, 1609, 1493, 1271, 1227, 1134, 1038, 858, 815, 810, 744, 711, 688; HRMS (ESI) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 327.1955$, found 327.1955.
(4aS,5S,7aS,12bR,E)-2-((dimethylamino)methylene)-11-methoxy-7a,13,13-trimethyl-3,4,5,6,7,7a-hexahydro-5,12b-methanobenzo[c]cyclopenta[b]chromen-1(2H)-one (31)

Charged oven dried vial with 30 ($200 \mathrm{mg}, 613 \mu \mathrm{~mol}, 1.00$ equiv), DMF-DMA ($730 \mathrm{mg}, 814 \mu \mathrm{~L}, 6.13 \mathrm{mmol}, 10$ equiv.), and DMF (1.20 mL). The vial was sealed, and the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 20 h . Then, the reaction was diluted with water and EtOAc. The organic layer was separated, and the aqueous layer was extracted with EtOAc
(x3). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:EtOAc, 9:1 to 2:3) afforded 31 as a yellow solid (201 $\mathrm{mg}, 527 \mu \mathrm{~mol}, 86 \%)$.
$\mathbf{R}_{\mathbf{f}}=0.17$ (hexanes:EtOAc, 1:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 3}}=+23.3(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.61(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 6 \mathrm{H}), 2.65(\mathrm{dt}, \mathrm{J}=13.7,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.59(\mathrm{t}, \mathrm{J}=13.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.33(\mathrm{dt}, \mathrm{J}=14.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{td}, \mathrm{J}=13.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.49$ $(\mathrm{m}, 2 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl $\left.{ }_{3}\right) \delta 198.9,153.1,148.5$, $147.8,126.4,118.1,115.2,113.7,105.3,85.9,55.6,53.4,52.2,47.6,43.2,41.9,38.1,32.3,32.3,24.4,23.6,22.5$, 22.5; IR (neat) 2975, 2952, 2914, 2861, 1648, 1550, 1488, 1429, 1230, 1198, 1130, 1088, 1041 922, 870, 806, 780, 703; HRMS (ESI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 382.2377$, found 382.2373.
(4aS,5S,7aS,12bR)-2-formyl-11-methoxy-7a,13,13-trimethyl-3,4,5,6,7,7a-hexahydro-5,12b-methanobenzo[c]cyclopenta[b]chromen-1-yl trifluoromethanesulfonate (S5)

Charged a flame dried flask with 31 ($183 \mathrm{mg}, 480 \mu \mathrm{~mol}, 1.00$ equiv) and DCM (15 mL) and cooled this solution to $-78{ }^{\circ} \mathrm{C}$. To this flask was added 2,6-lutidine ($514 \mu \mathrm{~L}, 4.80 \mathrm{mmol}, 10.00$ equiv) then triflicanhydride ($405 \mu \mathrm{~L}, 2.40 \mathrm{mmol}, 5.00$ equiv). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Then, the reaction quenched with NaHCO_{3} (aq. sat.). The organic layer was separated, and the aqueous layer was extracted with DCM (x3). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:EtOAc, 99:1 to 17:3) afforded S5 as a pale yellow powder ($193 \mathrm{mg}, 397 \mu \mathrm{~mol}, 83 \%$).
$\mathbf{R}_{\mathbf{f}}=0.30$ (hexanes:EtOAc, 9:1); $[\boldsymbol{\alpha}]_{\mathbf{d}}^{\mathbf{2 4}}=+9.0(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}$, $1 \mathrm{H}), 6.85-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{dt}, \mathrm{J}=16.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, \mathrm{J}=16.7,11.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (td, $J=13.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dt}, \mathrm{J}=13.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{dd}, \mathrm{J}=12.9$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 187.2,159.9,153.2,148.3,133.6$, 122.1, 119.4, 118.7 (q, J = 320 Hz), 117.8, 115.2, 87.6, 55.7, 51.1, 50.4, 49.6, 45.4, 36.1, 28.7, 25.2, 24.9, 24.4, 22.8, 22.0; IR (neat) 2995, 2966, 2924, 2873, 1688, 1496, 1395, 1382, 1213, 1135, 1037, 951, 888, 816, 766, 748, 701, 673; HRMS (ESI) m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}^{+}\left([\mathrm{M}]^{+}\right) 486.1324$, found 486.1336.
($4 \mathrm{a} S^{\star}, 5 S^{\star}, 7 a S^{*}, 12 \mathrm{~b} S^{*}$)-11-methoxy-7a,13,13-trimethyl-3,4,5,6,7,7a-hexahydro-5,12b-methanobenzo[c]cyclopenta[b]chromene-2-carbaldehyde (32)

Charged a flame dried flask with $\mathbf{S 5}(180 \mathrm{mg}, 370 \mu \mathrm{~mol}, 1.00$ equiv $)$, THF (8.0 mL), triethylamine ($464 \mu \mathrm{~L}, 3.33 \mathrm{mmol}$, 9.00 equiv), and formic acid ($84 \mu \mathrm{~L}, 2.22 \mathrm{mmol}, 6.00$ equiv). This solution was then degassed by sparging with nitrogen
gas for 10 mins. This mixture was then added to a separate flask containing $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(43 \mathrm{mg}, 37.0 \mu \mathrm{~mol}, 0.10$ equiv). The reaction was stirred at room temperature for 4 h . Then, the reaction mixture was diluted with NaHCO_{3} (aq. sat.) and EtOAc. The organic layer was separated, and the aqueous layer was extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:EtOAc, 99:1 to 17:3) afforded 32 as a colorless, viscous oil ($116 \mathrm{mg}, 341$ $\mu \mathrm{mol}, 92 \%)$.
$\mathbf{R}_{\mathbf{f}}=0.19$ (hexanes:EtOAc, 9:1); $[\boldsymbol{\alpha}]_{\mathrm{D}}^{23}=+23.9(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.48(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}$ $=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, \mathrm{J}=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{dt}, \mathrm{J}$ $=16.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.41(\mathrm{ddd}, \mathrm{J}=$ 13.3, 11.8, $4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.31(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.3,156.5,154.0$, 147.5, 141.5, 128.3, 119.4, 113.6, 112.6, 87.0, 55.9, 49.6, 47.4, 45.7, 44.9, 38.4, 29.0, 26.0, 24.3, 23.8, 21.8, 19.1; IR (neat) 2947, 2912, 2864, 2851, 2834, 1737, 1679, 1636, 1493, 1460, 1375, 1267, 1210, 1182, 1134, 1041, 874, 812, 775, 723; HRMS (ESI) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 339.1955$, found 339.1955.
((4aS,5S,7aS,12bS)-11-methoxy-7a,13,13-trimethyl-3,4,5,6,7,7a-hexahydro-5,12b-methanobenzo[c]cyclopenta[b]chromen-2-yl)methanol (S6)

Charged a flask with 32 ($114 \mathrm{mg}, 337 \mu \mathrm{~mol}, 1.00$ equiv) and methanol $(3.00 \mathrm{~mL})$. Cooled this solution to $0{ }^{\circ} \mathrm{C}$ then added $\mathrm{NaBH}_{4}(12.7 \mathrm{mg}, 337 \mu \mathrm{~mol}, 1.00$ equiv). This mixture was stirred at room temperature for 30 min . Then, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq. sat.) and diluted with EtOAc . The organic layer was separated, and the aqueous layer was extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography (hexanes:EtOAc, 19:1 to 7:3) afforded S6 as a pale yellow solid ($110 \mathrm{mg}, 320 \mu \mathrm{~mol}, 96 \%$).
$\mathbf{R}_{\mathbf{f}}=0.32$ (hexanes:EtOAc, 1:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+71.5(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.76(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.66 (dd, J = 8.7, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ (d, J = $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (s, 1H), 4.12 (d, J = $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (d, J = 13.1 Hz , $1 \mathrm{H}) 3.77$ (s, 3H), $2.25(\mathrm{dt}, \mathrm{J}=16.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.62$ -1.51 (m, 3H), 1.45 (td, J = 12.5, 4.7, 1H), 1.29 (s, 3H), 0.98 (s, 3H), 0.81 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 153.8, $147.2,138.7,130.8,129.0,118.9,113.7,112.0,86.8,67.5,55.8,49.4,46.4,43.6,43.5,38.4,29.2,26.8,24.2,23.9$, 23.7, 21.8; IR (neat) 3411, 3402, 2944, 2924, 2910, 2863, 2845, 1491, 1459, 1265, 1221, 1206, 1135, 1042, 952, 867, 811, 783, 774; HRMS (ESI) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{H}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 341.2111$, found 341.2110 .
(4aS,5S,7aS,12bS)-2-(hydroxymethyl)-7a,13,13-trimethyl-3,4,5,6,7,7a-hexahydro-5,12b-methanobenzo[c]cyclopenta[b]chromen-11-ol (S6)

Charged a flame dried flask with $\mathbf{S 6}$ ($93 \mathrm{mg}, 0.27 \mathrm{mmol}, 1.00$ equiv) and diethyl ether (5.00 mL). Cooled this solution to $0^{\circ} \mathrm{C}$ then added $\mathrm{MeMgl}\left(2.7 \mathrm{~mL}, 3.0\right.$ molar in $\mathrm{Et}_{2} \mathrm{O}, 8.2 \mathrm{mmol}, 30.0$ equiv). After gently removing diethyl ether under vacuum, the resulting residue was heated to $160^{\circ} \mathrm{C}$ under vacuum for 1 h . After cooling to room temperature, then back to $0^{\circ} \mathrm{C}$, the residue was diluted in diethyl ether. Then, the reaction mixture was carefully quenched with water then $\mathrm{NH}_{4} \mathrm{Cl}$ (aq. sat.). The organic layer was separated, and the aqueous layer was extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography over silica (hexanes:EtOAc, $9: 1$ to $2: 3$) afforded $\mathbf{S 7}$ as a pale yellow powder (30 mg , $92 \mu \mathrm{~mol}, 34 \%)$.
$\mathbf{R}_{\mathbf{f}}=0.18$ (hexanes:EtOAc, 1:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{23}=+17.9(\mathrm{c}=0.10, \mathrm{MeOH}) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 6.64$ (d, J = 2.7 Hz, 1H), $6.60(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ (dd, J = $8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 4.09-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{t}, \mathrm{J}$ $=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dt}, \mathrm{J}=16.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{dd}, \mathrm{J}=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.72-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{td}, \mathrm{J}=12.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H})$, 0.79 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$) $\delta 151.9,146.6,139.6,131.5,128.0,119.2,114.9,114.3,86.9,66.3,49.8$, 47.1, 43.8, 43.8, 38.9, 29.3, 27.2, 24.4, 24.1, 23.7, 21.8; IR (neat) 3429, 3212, 3212, 2988, 2967, 2924, 2879, 2846, 2540, 2400, 1494, 1442, 1377, 1210, 1182, 1143, 1131, 997, 952, 944, 869, 810, 758, 740; HRMS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$349.1774, found 349.1778.

(+)-Cochlearol B (2)

Charged a flame dried flask with oxalyl chloride ($2.36 \mu \mathrm{~L}, 27.0 \mu \mathrm{~mol}, 1.10$ equiv) and DCM (0.3 mL), then cooled to $78{ }^{\circ} \mathrm{C}$. To this solution was added DMSO ($3.83 \mu \mathrm{~L}, 53.9 \mu \mathrm{~mol}, 2.20$ equiv). The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 mins. Next, a solution of $\mathbf{S 7}$ ($0.008 \mathrm{~g}, 24.5 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) in DCM:DMSO ($10: 1,0.33 \mathrm{~mL}$) was added. After stirring for 15 min at $-78^{\circ} \mathrm{C}$, triethylamine ($17.1 \mu \mathrm{~L}, 123 \mu \mathrm{~mol}, 5.0$ equiv) was added. Following an additional 15 min of stirring, the reaction mixture was quenched with water and diluted in EtOAc. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{EtOAc}(x 3)$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography (hexanes:EtOAc, 19:1 to 7:3) afforded (+)-cochlearol B (2) as a pale yellow solid ($6.1 \mathrm{mg}, 19 \mu \mathrm{~mol}, 77 \%$).
$\mathbf{R}_{\mathbf{f}}=0.17$ (hexanes:EtOAc, 4:1); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+112.8(\mathrm{c}=0.10, \mathrm{MeOH}) ;$ HPLC (Daicel Chiralpak IC, hexanes:ethanol 75:25) 4.6 min (minor), 6.9 min (major). ${ }^{1} \mathrm{H}$ NMR ($\left.700 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.79(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.58(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{ddd}, J=16.5,4.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{ddd}, J=13.4,11.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.28$ (s, 3H), 1.00 (s, 3H), 0.88 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (176 MHz, (CD $)_{2} \mathrm{CO}$) $\delta 193.4,156.5,152.3,147.3,142.0,129.1,119.9$, 115.3, 115.0, 87.2, 50.2, 48.1, 46.1, 45.1, 39.0, 29.1, 26.7, 24.6, 23.9, 21.8, 19.5; IR (neat) 3375, 2951, 2928, 2859 , 1679, 1663, 1492, 1445, 1209, 1182, 1134, 952, 882, 815, 789, 679; HRMS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{H}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$325.1798, found 325.1794.

3. HPLC Spectra

Figure S1. HPLC traces of $(\pm)-11$ and (-)-11.

Sorted By	\vdots	Signal
Multiplier	\vdots	1.0000
Dilution	1.0000	
Use Multiplier \&	Dilution Factor with ISTDs	

Signal 1: WWD1 A, Wavelength $=254 \mathrm{~nm}$

Peak \#	RetTime [min]		$\begin{aligned} & \text { Width } \\ & {[\text { min] }} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { [mAU*s] } \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	12.234	BB	1.0143	1.50214 e 4	236.71468	50.7720
2	21.261	BB	2.7131	1.45645 e 4	84.36419	49.2280
Total				2.95859 e 4	321.07887	

Sorted By	\vdots	Signal
Multiplier	\vdots	1.0000
Dilution	1.0000	
Use Multiplier \& Dilution Factor with	ISTDs	

Signal 1: WWD1 A , Wavelength=254 nm

Peak	RetTime [min]		$\begin{aligned} & \text { Width } \\ & {[\text { min] }} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { [mAU's] } \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	13.323	BB	0.9890	370.70453	4.46791	2.7525
2	23.231	BB	2.2520	1.30971 e 4	89.51569	97.2475
Totals :				1.34678 e 4	93.98360	

Figure S2. HPLC traces of (\pm)-cochlearol B and (+)-cochlearol B.

Percent Repor				

Sorted By	\vdots	Signal
Multiplier	\vdots	1.0000
Dilution	$\vdots .0000$	

Milution
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: WWD1 A , wavelength $=254 \mathrm{~nm}$

Peak 	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & {[\text { min] }} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { [mAU*s] } \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	4.594	MX	0.1296	597.96875	76.89019	4.0682
2	6.889	BB	0.1868	1.41008e4	1120.88000	95.9318
Totals				1.46988 e 4	1197.77020	

4. X-ray Crystallographic Data

Figure S3. Crystal structure of 19. X-ray crystallographic coordinates have been deposited at the Cambridge Crystallographic Data Centre (CCDC) with the deposit number 2142344.

Colorless blocks of 19 were grown from an ethyl acetate solution of the compound at 20 deg. C. A crystal of dimensions $0.14 \times 0.12 \times 0.08 \mathrm{~mm}$ was mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-focus rotating anode ($\lambda=1.54187 \mathrm{~A}$) operated at 1.2 kW power ($40 \mathrm{kV}, 30 \mathrm{~mA}$). The X-ray intensities were measured at $85(1) \mathrm{K}$ with the detector placed at a distance 42.00 mm from the crystal. A total of 2028 images were collected with an oscillation width of 1.0° in ω. The exposure times were 1 sec . for the low angle images, 2 sec . for high angle. Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for absorption. The integration of the data yielded a total of 32993 reflections to a maximum 2θ value of 138.76° of which 4189 were independent and 4068 were greater than $2 \sigma(1)$. The final cell constants (Table 1) were based on the xyz centroids of 18434 reflections above $10 \sigma(\mathrm{I})$. Analysis of the data showed negligible decay during data collection. The structure was solved and refined with the Bruker SHELXTL (version $2018 / 3$) software package, using the space group $\mathrm{P} 2(1) / \mathrm{c}$ with $\mathrm{Z}=4$ for the formula $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{6}$. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. Full matrix least-squares refinement based on F^{2} converged at $\mathrm{R} 1=0.0433$ and $w R 2=0.1154$ [based on $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I}$], R1 $=0.0448$ and wR 2 $=0.1178$ for all data. Additional details are presented in Table S3 and are given as Supporting Information in a CIF file. Acknowledgement is made for funding from NSF grant CHE-0840456 for X-ray instrumentation.

Table S3. Crystal data and structure refinement for 19.

Empirical formula	C26 H34 O6
Formula weight	442.53
Temperature	85(2) K
Wavelength	1.54184 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	$\begin{aligned} & a=17.6211(3) A \quad \text { alpha }=90 \text { deg. } \\ & b=8.05114(8) A \quad \text { beta }=118.0448(19) \text { deg } . \\ & c=17.9615(3) A \quad \text { gamma }=90 \text { deg. } \end{aligned}$
Volume	2248.98(6) A^3
Z, Calculated density	$4,1.307 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.744 \mathrm{~mm}^{\wedge}-1$

$\mathrm{F}(000)$	952
Crystal size	$0.140 \times 0.120 \times 0.080 \mathrm{~mm}$
Theta range for data collection	2.841 to 69.387 deg.
Limiting indices	$-21<=\mathrm{h}<=21,-9<=\mathrm{k}<=9,-21<=\mathrm{l}<=21$
Reflections collected / unique	$32993 / 4189[\mathrm{R}($ int $)=0.0664]$
Completeness to theta $=67.684$	100.0%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.81148
Refinement method	Full-matrix least-squares on $F^{\wedge} 2$
Data / restraints / parameters	$4189 / 0 / 296$
Goodness-of-fit on F^2	1.094
Final R indices [l>2sigma(I)]	$R 1=0.0433, w R 2=0.1154$
R indices (all data)	$R 1=0.0448, w R 2=0.1178$
Extinction coefficient	$0.0064(4)$
Largest diff. peak and hole	0.311 and -0.298 e. $\mathrm{A}^{\wedge}-3$

G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8 (Open Access).

CrystalClear Expert 2.0 r16, Rigaku Americas and Rigaku Corporation (2014), Rigaku Americas, 9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan.
CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019).

Figure S4. Crystal structure of 13. X-ray crystallographic coordinates have been deposited at the Cambridge Crystallographic Data Centre (CCDC) with the deposit number 2142345.

Colorless plates of $\mathbf{1 3}$ were grown from a methanol solution of the compound at 25 deg . C. A crystal of dimensions $0.07 \times 0.06 \times 0.02 \mathrm{~mm}$ was mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-focus rotating anode ($\lambda=1.54187 \mathrm{~A}$) operated at 1.2 kW power ($40 \mathrm{kV}, 30 \mathrm{~mA}$). The X-ray intensities were measured at $85(1) \mathrm{K}$ with the detector placed at a distance 42.00 mm from the crystal. A total of 2028 images were collected with an oscillation width of 1.0° in ω. The exposure times were 1 sec . for the low angle images, 4 sec . for high angle. Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for absorption. The integration of the data yielded a total of 29002 reflections to a
maximum 2θ value of 139.36° of which 3765 were independent and 2703 were greater than $2 \sigma(\mathrm{I})$. The final cell constants (Table 1) were based on the xyz centroids of 3313 reflections above $10 \sigma(\mathrm{I})$. Analysis of the data showed negligible decay during data collection. The structure was solved and refined with the Bruker SHELXTL (version $2018 / 3$) software package, using the space group $\mathrm{P} 2(1) / c$ with $\mathrm{Z}=4$ for the formula $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in a combination of refined and idealized positions. Full matrix least-squares refinement based on F^{2} converged at $R 1=0.0851$ and $w R 2=0.2275$ [based on $I>2$ sigma(I)], $R 1=0.1118$ and $w R 2=0.2448$ for all data. Additional details are presented in Table $S 4$ and are given as Supporting Information in a CIF file. Acknowledgement is made for funding from NSF grant CHE-0840456 for X-ray instrumentation.

Table S4. Crystal data and structure refinement for 13.

Empirical formula	C18 H27 N3 O6 S
Formula weight	413.48
Temperature	85(2) K
Wavelength	1.54184 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	$\begin{aligned} & a=22.2228(16) A \text { alpha }=90 \text { deg. } \\ & b=7.1175(4) A \text { beta }=100.377(5) \text { deg } \\ & c=12.9942(5) A \text { gamma }=90 \text { deg. } \end{aligned}$
Volume	2021.7(2) $\mathrm{A}^{\wedge} 3$
Z, Calculated density	4, $1.358 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$1.771 \mathrm{~mm}^{\wedge}$-1
F(000)	880
Crystal size	$0.070 \times 0.060 \times 0.020 \mathrm{~mm}$
Theta range for data collection	4.045 to 69.679 deg.
Limiting indices	-26<=h<=25, -8<=k<=8, -15<=l<=15
Reflections collected / unique	$29002 / 3765[R($ int $)=0.1067]$
Completeness to theta $=67.684$	99.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.63671
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	3765 / 15 / 280
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.115
Final R indices [l>2sigma(l)]	$\mathrm{R} 1=0.0851, w R 2=0.2275$
R indices (all data)	$\mathrm{R} 1=0.1118, w R 2=0.2448$
Extinction coefficient	n/a
Largest diff. peak and hole	0.500 and -0.381 e. $\mathrm{A}^{\wedge}-3$

G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8 (Open Access).

CrystalClear Expert 2.0 r16, Rigaku Americas and Rigaku Corporation (2014), Rigaku Americas, 9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan.
CrysAlisPro 1.171.40.53 (Rigaku Oxford Diffraction, 2019).

5. References

1. T. M. Monos, A. C. Sun, R. C. McAtee, J. J. Devery, C. R. J. Stephenson, J. Org. Chem. 2016, 81, 6988-6994.
2. S. B. Abdel Ghani, P. J. Mugisha, J. C. Wilcox, E. A. M. Gado, E. O. Medu, A. J. Lamb, R. C. D. Brown, Synth. Comm. 2013, 43, 1549-1556.
3. N. P. Kapuriya, J. J. Bhalodia, M. A. Ambasana, R. B. Patel, A. H. Bapodra, J. Heterocycl. Chem. 2020, 57, 3369-3374.
4. B. R. Brummel, K. G. Lee, C. D. McMillen, J. W. Kolis, D. C. Whitehead, Org. Lett. 2019, 21, 9622-9627.
5. J. Wang, Z. Dong, C. Yang, G. Dong, Nat. Chem. 2019, 11, 1106-1112.

[^0]

ヘ

 io ${ }^{\infty} \underbrace{\infty}{ }^{\infty}{ }^{\infty}{ }^{\infty}{ }^{\infty}{ }^{\infty}{ }^{\infty}{ }^{\infty}{ }^{\infty}$

ㅇô oo No No O O －

号
かかへ

| 30 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
| :--- |

15
$\frac{m}{u}$

$\stackrel{m}{\stackrel{\rightharpoonup}{0}}$

19


```
#
~
* ט
```


| 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

苞

\qquad

人র

31

[^1]

32

s6

S7

$\begin{array}{llllllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

cochlearol B(2)

[^2]
[^0]: $\begin{array}{lllllllllllllllllllllllllllll}30 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

[^1]: $\begin{array}{llllllllllllllllllllllllllll}30 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

[^2]: $\begin{array}{llllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

