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Abstract
The article considers a problem of best smoothing in a strip, where the objec-
tive is to find a function f ∶ [0, 1]→ R that satisfies bilateral constraints on
its values, d(t) ≤ f (t) ≤ e(t) for all 0 ≤ t ≤ 1 and minimizes a weighted sum of
the L2-norm of the second derivative and squared deviations from specified val-
ues, yi, at discrete points 0 = t1 < t2 < · · · < tN+2. We assume that constraints
d(t) and e(t) are continuous functions that are linear in each interval [ti, ti+1],
i = 1, … ,N + 1. We connect this problem to a state-constrained optimal con-
trol problem for the double integrator, and give conditions for the existence
and uniqueness of the solution under which we also show that the solution is
a cubic spline with knots at ti and no more than two additional knots in each
interval (ti, ti+1). We propose a numerical algorithm for solving this problem
based on a two stage minimization, where the outer loop optimization problem
is finite-dimensional and convex, while the inner loop optimization problem
admits a solution which is easy to compute. Numerical results that show the
efficacy of the proposed approach are reported.
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1 INTRODUCTION

Given data (ti, yi) that represent points on the graph of an unknown function, the classical best interpolation problem is to
find a function f with minimal L2 norm of the second derivative whose values at ti equal yi. As is well known,1 the solution
of this problem is a natural cubic spline interpolating the data. Dontchev2 has considered a version of this problem subject
to bilateral constraints; namely, the graph of the interpolating function is restricted to a strip defined by two piecewise
linear functions across the mesh {ti}; it was shown that the solution of this problem is a cubic spline with not more than
two additional knots in each interpolation interval (ti, ti+1). Later3 the structure of the solution was further characterized
as follows. On each interpolation interval one of the four cases may appear: (i) the solution is in the interior of the strip
and no additional knots occur; (ii) there is a single point on one of the constraints where the constraint is active (one
additional knot); (iii) there is an interval on one of the constraints where this constraint is active (two additional knots
on the same constraint); (iv) there are two single points on each of the constraints where the respective constraints are
active (two additional knots on different constraints).

In this article we consider a problem of data smoothing subject to bilateral constraints representing a strip. By applying
optimality conditions and duality in optimal control, we obtain a characterization of the solution which is somewhat
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similar to that of the best interpolation in a strip,2,3 but there are important differences. Based on that characterization,
we propose an algorithm for data smoothing in a strip and illustrate its effectiveness through computer experiments.

Constrained interpolation and smoothing have been studied from various viewpoints in the past4-7 and more recently.8
Specifically, for constrained smoothing, Irvine et al.9 considered the smoothing problem as an extension of constrained
interpolation, where the inequality constraint is imposed on the kth derivative being non-negative, for example, f (k) ≥ 0.
Elfving and Andersson10 have studied the problem of constrained smoothing splines, where some inequality constraints
were imposed on the first derivative f ′ or second derivative f ′′. Mammen et al.11 proposed a unifying framework in
a normed vector space for treating constrained smoothing problems; their work also contained an overview of the
progress on constrained data smoothing up to the year 2001. Mammen and Thomas-Agnan12 then employed the frame-
work of Mammen et al.11 to study the problem of constrained smoothing spline interpolation with monotone shape
restriction, that is, f (k) ≥ 0. Turlach13 also studied the problem of constrained smoothing spline interpolation with
monotone shape restriction and proposed the method which is extendable to multiple simultaneous shape constraints.
Kano and Martin14 studied constrained and optimal smoothing and interpolating splines; the examined constraint types
include point, interval, and integrated values. In their work they assumed that the solution function uses the normal-
ized uniform B-splines of some fixed degree k as the basis functions; our work differs by considering f being in a
Sobolev space.

It has been known for quite a while that problems in approximation theory have important connections to optimal
control,15 and this connection is also exploited in the present work. In particular, Shen and Wang16 studied the constrained
spline smoothing problem through optimal control; but unlike our work, which deals with the constraints on the state of
the reformulated optimal control problem, the work of Shen and Wang deals with the constraint on the control u. Ikeda
et al.17 also addressed the problem of constrained spline smoothing using optimal control; however, the constraints were
imposed only at the knots, whereas in this article, we study the case where the bilateral constraints on the function are
piecewise linear and imposed pointwise over an interval.

2 PROBLEM SETTING

We consider the following problem:

Minimize 0.5

(
||f ′′||22 +

N+2∑
i,j=1

qij(f (ti) − yi)(f (tj) − yj)

)
, (1)

subject to e(t) ≤ f (t) ≤ d(t) for all t ∈ [0, 1], and f ∈ W2,2[0, 1], (2)

where 0 = t1 < t2 < · · · < tN+2 = 1, N is a natural number, yi, i ∈ {1, 2, … ,N + 2} are given real numbers, || ⋅ ||2 is the
usual L2 norm of a function on the interval [0, 1], and W2,2[0, 1] denotes the Sobolev space of functions on [0, 1] with
absolutely continuous first derivatives and second derivative in L2. In the problem described by (1) and (2), the first
term is the standard in best interpolation problems squared L2 norm of the second derivative of f , while the second term
represents least squares with weights qij of the deviation of values of f at tj from given points yj. The functions d and e
describe a strip where the values of the function f should belong.

We denote by Q ∈ R(N+2)×(N+2) the square matrix [qij] and we assume that Q is symmetric and positive semi-definite
Q = QT

≽ 0. Furthermore, there exist i, j, i < j, such that

̃Q =

[
qii qij

qji qjj

]
≻ 0. (3)

Condition (3) could be satisfied, for instance, by choosing weights qii and qjj at some two points ti and tj to be positive
while selecting the corresponding cross-weights qij and qji to be zero.

We assume that the functions e and d are piecewise linear and continuous across the knots ti and such that e(t) < d(t)
for all t ∈ [0, 1]. Furthermore, we assume that

e(tj) < yj < d(tj), j = 1, … ,N + 2. (4)
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Indeed, we need to find a best fit of the points yi with a function having values in the strip, hence it should be expected
that the points (ti, yi) are inside the strip. Without the strip constraint, the solution to this problem is the well-known
smoothing cubic spline.1

We will now prove the existence and uniqueness of solution by reformulating the problem as an optimal control
problem. Let x1 = f , x2 = f ′,u = f ′′. Then problem (1) and (2) can be written in the following form:

Minimize J = 0.5

(
||u||22 +

N+2∑
i,j=1

qij(x1(ti) − yi)(x1(tj) − yj)

)
, (5)

subject to ẋ1 = x2,

ẋ2 = u,
and u ∈  = {u ∈ L2[0, 1]|∃x1 with ẍ1(t) = u(t) a.e. 0 ≤ t ≤ 1 and e(t) ≤ x1(t) ≤ d(t) for all t ∈ [0, 1]}. (6)

Note that in the optimal control problem we interpret t as time and we use dots to designate time derivatives.
This is a (nonstandard) optimal control problem for the double integrator, where u is the control and x = (x1, x2)
is the state. Note that the inequality state constraints appear in the definition of the feasible set  for the
control.

The set  is clearly convex. It is also closed. Indeed, suppose un ∈  , un → ū in L2 and let xn
1 be the corresponding

x1. Note that

xn
1 (t) = xn

1 (0) + t
(

xn
1 (1) − xn

1 (0) − ∫

1

0
(t − 𝜎)un(𝜎)d𝜎

)
+
∫

t

0
(t − 𝜎)un(𝜎)d𝜎. (7)

The sequences of real numbers xn
1 (0) and xn

1 (1) are bounded between e(0) and d(0) and between e(1) and d(1), respectively;
hence we can extract their convergent subsequences to some x1(0) and x1(1), respectively. Without loss of generality, we
can assume that the original sequences xn

1 (0) and xn
1 (1) converge to x1(0) and x1(1) while un → ū in L2 as n →∞. Define

x1 by boundary conditions x1(0) and x1(1) and ̈x1 = ū, that is,

x1(t) = x1(0) + t
(

x1(1) − x1(0) −
∫

1

0
(t − 𝜎)ū(𝜎)d𝜎

)
+
∫

t

0
(t − 𝜎)ū(𝜎)d𝜎. (8)

Exploiting Cauchy–Schwartz inequality in the expression for |xn
1 (t) − x1(t)| formed using (7) and (8), we obtain

that L2 convergence of controls and convergence of boundary conditions implies uniform (C0) convergence
of the corresponding state trajectories, that is, xn

1 → x1 as n → ∞. Thus e(t) ≤ x1(t) ≤ d(t) for all 0 ≤ t ≤ 1
and ū ∈  .

Based on condition (4), we will now show that there exists a feasible trajectory of the state x1 whose values at tj
are in the interior of the strip. Let f0 be the piecewise linear function whose graph connects the points (ti, yi). Clearly,
e(t) < f0(t) < d(t) for all t ∈ [0, 1]. For any natural m, let ti,j = ti + j(ti+1 − ti)∕m. It is well known that there exists a sequence
Sm of cubic splines interpolating points (ti,j, f0(tij)) that converges to f0 uniformly in [0, 1]. Then for m sufficiently large we
will have e(t) < Sm(t) < d(t) for all t ∈ [0, 1]. Thus, Sm is a feasible trajectory for the state x1 with values in the interior of
the strip, and the second time-derivative of Sm is a feasible control for which the value of the objective function is finite.
This yields that there exists a sublevel set of J in (5), viewed as a function of u, which is nonempty; it is obviously closed
and convex in L2. Since

0.5||u||22 ≤ J(u) for all u ∈ L2
,

the sublevel sets are furthermore bounded, hence weakly compact.
The rest of the proof of the existence is standard. The intersections of the nonempty sublevel set with the feasible

set  is weakly compact too and the minimization over this intersection is equivalent to the minimization over  . The
objective function is convex and continuous, hence weakly lower semicontinuous. Thus, under the assumption made,
problem (5) and (6) has a solution and hence problem (1) and (2) has a solution.

The condition (3) ensures that J in (5), viewed as a function of x1, is strictly convex*. This gives us uniqueness of the
solution.
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We denote the solution by (x, ū, z). In the following section we will show that the solution x1 is in fact a cubic spline
with no more than 2 additional knots in each interval [ti, ti+1]. We also give a detailed description of the solution together
with an algorithm to compute it.

3 CHARACTERIZING THE SOLUTION

Suppose f ∈ W2,2[0, 1] and 0 = t1 < t2 < · · · tN+2 = 1 are given. The ith normalized linear B-spline is defined by:1

Bi(t) =

⎧⎪⎪⎨⎪⎪⎩

0 if ti+2 < t,
ti+2−t

ti+2−ti+1
if ti+1 < t ≤ ti+2,

ti+2−t
ti+2−ti+1

− ti+1−t
ti+2−ti+1

− ti+1−t
ti+1−ti

if ti < t ≤ ti+1,

0 if t ≤ ti.

Integrating by parts, it follows that

∫

1

0
f ′′(t)Bi(t)dt =

∫

ti+1

ti

f ′′(t)Bi(t)dt +
∫

ti+2

ti+1

f ′′(t)Bi(t)dt

=
(
−f ′(ti+1) +

f (ti+2) − f (ti+1)
ti+2 − ti+1

)
+
(

f ′(ti+1) −
f (ti+1) − f (ti)

ti+1 − ti

)

=
f (ti+2) − f (ti+1)

ti+2 − ti+1
−

f (ti+1) − f (ti)
ti+1 − ti

.

Defining the vector function B(t) = (Bi)Ni=1 = (B1(t), … ,BN(t))T , where Bi’s are as above, we have

∫

1

0
f ′′(t)B(t)dt =

⎛⎜⎜⎜⎜⎜⎜⎝

f (t3)−f (t2)
t3−t2

− f (t2)−f (t1)
t2−t1

f (t4)−f (t3)
t4−t3

− f (t3)−f (t2)
t3−t2

⋮
f (tN+2)−f (tN+1)

tN+2−tN+1
− f (tN+1)−f (tN )

tN+1−tN

⎞⎟⎟⎟⎟⎟⎟⎠
= Kz,

where

K =

⎡⎢⎢⎢⎢⎢⎢⎣

1
t2−t1

− t3−t1

(t3−t2)(t2−t1)
1

t3−t2
0 · · · 0 0 0

0 1
t3−t2

− t4−t2
(t4−t3)(t3−t2)

1
t2−t1

· · · 0 0 0

⋮ ⋱ ⋱ ⋱ · · · ⋱ ⋱ 0
0 0 0 0 · · · 1

tN+1−tN
− tN+2−tN

(tN+2−tN+1)(tN+1−tN )
1

tN+2−tN+1

⎤⎥⎥⎥⎥⎥⎥⎦
,

z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (t1)
f (t2)
f (t3)
⋮

f (tN)
f (tN+1)
f (tN+2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Because t1 < t2 < · · · < tN+2, the rows of K must be linearly independent, that is, K ∈ RN×(N+2) is full
row rank.
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Let y = (y1, y2, … , yN+2)T. As in Section 2, denoting x1 = f , x2 = f ′,u = f ′′, problem (1) and (2) can be written in the
following form:

Minimize with respect to (x,u, z) ∈ W2,2 × L2 ×R
N+2 (9)

the objective function J(x, z,u) = 1
2
(||u||22 + (z − y)TQ(z − y)

)
subject to ẋ1 = x2, x1(ti) = zi, for i ∈ {1, … ,N + 2}

ẋ2 = u,
e(t) ≤ x1(t) ≤ d(t) for all t ∈ [0, 1],

∫

1

0
u(t)B(t)dt = Kz.

In this section we employ the duality theory and optimality conditions for state and control constrained optimal
control problems developed by Hagger and Mitter18 and previously applied by Dontchev2 to the best interpolation in a
strip problem. First, observe that, as shown in the preceding section, condition (4) implies that there exists a feasible
control u such that the corresponding trajectory of the state x1 satisfies e(t) < x1(t) < d(t) for all t ∈ [0, 1]. This, combined
with the surjectivity of the matrix K, implies that Slater’s constraint qualification holds, hence we can apply the Lagrange
multiplier rule.

To do that, we introduce the Lagrange functional

(x, x(0), z,u, 𝜆, 𝜈, 𝜇) = J(x, z,u) + 𝜆T
(
∫

1

0
u(t)B(t)dt − Kz

)
+
∫

1

0

[
x1(t) − x1(0) −

∫

t

0
x2(s)ds

]
d𝜈1

+
∫

1

0

[
x2(t) − x2(0) −

∫

t

0
u(s)ds

]
d𝜈2 +

∫

1

0
(e − x1)d𝜇1 +

∫

1

0
(x1 − d)d𝜇2,

where 𝜆 = (𝜆1, … , 𝜆N)T ∈ RN , 𝜈 = (𝜈1, 𝜈2) is a regular Borel measure, and𝜇 = (𝜇1, 𝜇2) is a nonnegative regular Borel mea-
sure such that 𝜇1 is supported on the set T1 = {t ∈ [0, 1], x1(t) = e(t)} and 𝜇2 is supported on the set T2 = {t ∈ [0, 1], x1(t) =
d(t)}. Based on separation of convex sets by a hyperplane, one can show, following similar arguments as by Dontchev,2
that there exist optimal Lagrange multipliers (𝜆, 𝜈, 𝜇) such that

(x, x(0), z, ū, 𝜆, 𝜈, 𝜇) ≤ (x, 𝛼, z,u, 𝜆, 𝜈, 𝜇), (10)

for every continuous function x with x(t) ∈ R2
, t ∈ [0, 1], every 𝛼 ∈ R2

, every z ∈ RN+2, and every u ∈ L2.
Define

p1(t) =
∫

1

t
d𝜈1, p2(t) =

∫

1

t
d𝜈2. (11)

Then p1 and p2 are functions of bounded variations that are continuous from the left. Since the Lagrange functional is
convex and Fréchet differentiable, the condition (10) is equivalent to the corresponding optimality condition based on the
Fermat rule “derivative equals zero.” Differentiating with respect to z and evaluating at the optimal variables results in

Q(z − y) + KT
𝜆 = 0. (12)

Next, differentiating  with respect to x(0) = (x1(0), x2(0)) and evaluating at the optimal variables gives

p1(0) = p2(0) = 0.

Since

∫

t

0 ∫

t

1
ū(s)dsd𝜈2 =

∫

1

0
ū(t)p2(t)dt,
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from the equality 𝜕∕𝜕u = 0 evaluated at the optimal variables we get

ū(t) + B(t)T𝜆 − p2(t) = 0. (13)

Furthermore, utilizing the equality

∫

1

0
x2d𝜈2 −

∫

1

0 ∫

t

0
dsd𝜈2 =

∫

1

0
x2d(−p2 +

∫

1

s
p1),

and differentiating  with respect to x2 gives

̇p2 = −p1, p2(0) = 0. (14)

Note that p1 and p2 are the familiar from Pontryagin’s maximum principle adjoint variables. Finally, differentiating 
with respect to x1 results in

p1(t) = −
∫

1

t
d(𝜇2 − 𝜇1). (15)

We conclude from (13) that the optimal control ū is an absolutely continuous function which is the sum of a piecewise
linear and continuous function across the knots ti and an absolutely continuous function whose derivative, as given in
(14), is of the form (15) with 𝜇i, i = 1, 2, being nonnegative regular measures supported on the disjoint subsets Ti of [0, 1]
where the state constraints are active. In addition, (13), p2(0) = 0, (11) (implying p2(1) = 0), and B(0) = B(1) = 0 give that
the optimal control satisfies ū(0) = ū(1) = 0.

Let 𝜏1, 𝜏2 be such that for the optimal solution x1 satisfies e(t) < x1(t) < d(t) for all t ∈ (𝜏1, 𝜏2). From (15) we have that
p1(t) = 0, hence from (14) the adjoint variable p2 is constant. Thus, from (13), on such an interval (𝜏1, 𝜏2) the optimal
control ū(t) is a piecewise linear continuous function. Furthermore, in the case when the interval (𝜏1, 𝜏2) is contained
in some of the intervals (tj, tj+1), the optimal ū is a linear function inasmuch Bj is linear there. Then the optimal x2 is a
quadratic polynomial there while the optimal x1 is a cubic polynomial.

Assume that in some interval (tj, tj+1) there are two points 𝜏1 and 𝜏2, ti ≤ 𝜏1 < 𝜏2 ≤ ti+1 such that x1(𝜏1) = e(𝜏1) and
x1(𝜏2) = e(𝜏2). Let 𝜁(t) = 0 for t ∈ (𝜏1, 𝜏2) and 𝜁(t) = ū(t) for t ∉ (𝜏1, 𝜏2). Note that x1(𝜏2) = e(𝜏2) and x2(𝜏2) = ė(𝜏2) since
x2 − e is maximized at 𝜏2. Apply the control 𝜁 to the double integrator with the optimal initial conditions x1(0) and x2(0)
obtaining trajectories 𝜉 = (𝜉1, 𝜉2). Clearly, 𝜉i(t) = xi(t) for t ∈ [0, 𝜏1]. Since 𝜁(t) = 0 on [𝜏1, 𝜏2], we have that 𝜉1(t) = e(t) on
[𝜏1, 𝜏2). Then we also have 𝜉1(𝜏2) = e(𝜏2) = x1(𝜏2) and 𝜉2(𝜏2) = ė(𝜏2) = x2(𝜏2). But then 𝜉i(t) = xi(t) for t ∈ [𝜏2, 1], i ∈ {1, 2}.
Thus, we found a function 𝜉1(t) such that 𝜉1(ti) = x1(ti) and also ̈

𝜉1(t) = 0 on [𝜏1, 𝜏2]. If we assume that ū(𝜈) = ̈x1(𝜈) ≠ 0
for some 𝜈 ∈ ([𝜏1, 𝜏2), since ū is a continuous function, there exists 𝜀 > 0 such that ū(t) = ̈x1(t) ≠ 0 in (𝜈 − 𝜀, 𝜈 + 𝜀) and
then the value of the objective function of (9) will be greater than the value obtained for the function 𝜁(t) = ̈

𝜉1(t) and 𝜉1.
This contradicts the optimality of ū. We conclude that when x1(𝜏1) = e(𝜏1) and x1(𝜏2) = e(𝜏2) for tj ≤ 𝜏1 < 𝜏2 ≤ tj+1 then
x1(t) = e(t) for all t ∈ [𝜏1, 𝜏2]; moreover, ū(t) = 0 for all t ∈ [𝜏1, 𝜏2] as well. Clearly, the same argument works for the lower
constraint d.

The property of the solution x1 we found means that each of the constraints cannot be active in two separate (isolated)
points in (ti, ti+1). That is, in every (ti, ti+1) each of the constraints is active either at one point, or on an interval. We will
also show that if one of the constraints is active on an interval with positive length in [ti, ti+1] the other constraint cannot
be active in (ti, ti+1). We summarize and complement our findings in the following theorem:

Theorem 1. If one of the constraints is active on an interval with positive length in [ti, ti+1] the other constraint cannot be
active in (ti, ti+1). This implies that the solution x1 is a cubic spline with knots at ti, i = 1, … ,N + 2, and at most two additional
knots in each (ti, ti+1), i = 1, … ,N + 1.

Proof. Suppose that both constraints are active somewhere in [ti, ti+1] and such that one of the constraints is active on
an interval with positive length. Let 𝜏1, 𝜏2 be two additional consecutive knots in (ti, ti+1) that belong to two different
constraints; assume also 𝜏1 < 𝜏2. There are four cases to be considered:

1. 𝜏1 is the right end of a proper interval where the lower constraint e is active.
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2. 𝜏1 is the right end of a proper interval where the upper constraint d is active.
3. 𝜏1 is a single (isolated) point where lower constraint e is active, meaning that 𝜏2 is the left end of a proper interval

where the upper constraint d is active.
4. 𝜏1 is a single (isolated) point where the upper constraint d is active, meaning that 𝜏2 is the left end of a proper interval

where the lower constraint e is active.

Consider the first case and let x1 be the solution. Note that e(t) < x1(t) < d(t) for t ∈ (𝜏1, 𝜏2). Since ̈x1(t) = ë(t) = 0 for
t < 𝜏1 and close to 𝜏1, and since ̈x1 is continuous on (0, 1), it follows that ̈x1(𝜏1) = 0.

From (13), (12) and the fact that K is full rank, we have that

𝜆 = −(KKT)−1KQ(z − y),

and for t ∈ (𝜏1, 𝜏2),

...
x1(t) = ̇B(t)T(KKT)−1KQ(z − y) +

∫

1

t
d(𝜇1 − 𝜇2). (16)

Since ̇B(t) is a constant for t ∈ (ti, ti+1), 𝜇2(t) = 0 and 𝜇1(t) ≥ 0 for t ∈ (ti, 𝜏1) and 𝜇1(t) = 0 for t ∈ (𝜏1, 𝜏2), it follows that...
x1(t) ≥ 0 for t ∈ (𝜏1, 𝜏2). Note that

...
x1 is also a constant on (𝜏1, 𝜏2). Thus ̈x1(t) is non-decreasing for t ∈ (𝜏1, 𝜏2), ̈x1(𝜏1) = 0,

and hence ̈x1(t) ≥ 0 for all t < 𝜏2 that are close to 𝜏2. On the other hand, since ̈x1 is continuous in (0, 1), by the Taylor
theorem, for every t ∈ (𝜏1, 𝜏2), we have

x1(t) = x1(𝜏2) + ̇x1(𝜏2)(t − 𝜏2) +
1
2
̈x1(𝜏)(t − 𝜏2)2

= d(t) + 1
2
̈x1(𝜏)(t − 𝜏2)2,

for some 𝜏 ∈ [t, 𝜏2]. This follows since x1(𝜏2) = d(𝜏2), and ̇x1(𝜏2) = ̇d(𝜏2) as x1 − d has a maximum at t = 𝜏2, while d(t) =
d(𝜏2) + ̇d(𝜏2)(t − 𝜏2) for t ∈ [𝜏1, 𝜏2] since d(t) is linear. Since x1(t) < d(t) for t ∈ (𝜏1, 𝜏2, there exist time instants t < 𝜏2
arbitrary close to 𝜏2 where ̈x1(t) < 0. Consequently, Case 1 cannot occur.

The rest of the cases is analyzed similarly. Therefore, the solution can only have at most two additional knots
in [ti, ti+1]. ▪

4 REDUCTION TO TWO STAGE MINIMIZATION

Given any f ∈ W2,2[0, 1], let 𝜂(f ) be a vector with components f (ti) and 𝜃(f ) be a vector with components f ′(ti), i =
1, 2, … ,N + 2. Let

J(f ) = 0.5
(||f ′′||22 + (𝜂(f ) − y)TQ(𝜂(f ) − y)

)
,

and consider the problem (1) and (2) which can be restated as

Minimize J(f ) subject to f ∈ W2,2[0, 1], e(t) ≤ f (t) ≤ d(t). (17)

Define 𝜑(𝜂, 𝜃) as the value function of the following optimization problem:

Minimize 0.5
(||f ′′||22 + (𝜂 − y)TQ(𝜂 − y)

)
subject to f (ti) = 𝜂i, f ′(ti) = 𝜃i, i = 1, … ,N + 2,

e(t) ≤ f (t) ≤ d(t), 0 ≤ t ≤ 1,
f ∈ W2,2[0, 1]. (18)
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We let 𝜑(𝜂, 𝜃) = +∞ if a feasible solution to (18) does not exist. Consider the problem:

Minimize 𝜑(𝜂, 𝜃)
subject to 𝜂 ∈  ∶= {𝜂 ∈ R

N+2 ∶ e(ti) ≤ 𝜂i ≤ d(ti), i = 1, … ,N + 2} and 𝜃 ∈ R
N+2

. (19)

The solution to (19) exists and is unique. Indeed, let f ∗ be the unique solution to (1) and (2), and define 𝜂∗ = 𝜂(f ∗),
𝜃

∗ = 𝜃(f ∗). If there exists f ∗∗ which is feasible for (18) for some 𝜂∗∗, 𝜃∗∗ and 𝜑(𝜂∗∗, 𝜃∗∗) ≤ 𝜑(𝜂∗, 𝜃∗) then

J(f ∗∗) = 𝜑(𝜂∗∗, 𝜃∗∗) ≤ 𝜑(𝜂∗, 𝜃∗) = J(f ∗).

Since f ∗∗ is feasible for (1) and (2), this is only possible if f ∗∗ = f ∗ and 𝜂∗∗ = 𝜂∗, 𝜃∗∗ = 𝜃∗. By an analogous argument,
solving problem (18) and (19) should lead to the same solution as solving the original problem (1) and (2).

The problem (19) is a convex finite-dimensional optimization problem. Furthermore, the solution to problem (18) can
be easily computed.

For completeness, we demonstrate that the function 𝜑 is strictly convex. Let 𝜂

1
, 𝜂

2 ∈ [e(t1), d(t1)] × · · · ×
[e(tN+2), d(tN+2)] and 𝜃1

, 𝜃

2 ∈ RN+2. Let f 1 and f 2 be the solutions to (18) which correspond to 𝜂1, 𝜃1 and 𝜂2, 𝜃2, respec-
tively. Consider 𝜆 ∈ (0, 1) and 𝜂0 = 𝜆𝜂1 + (1 − 𝜆)𝜂2, 𝜃0 = 𝜆𝜃1 + (1 − 𝜆)𝜃2, f 𝜆 = 𝜆f 1 + (1 − 𝜆)f 2. Then f 𝜆 is feasible for (18)
with 𝜂 = 𝜂0

, 𝜃 = 𝜃0. Let f 0 denote the solution to (18) corresponding to 𝜂0, 𝜃0. Note that 2𝜑(𝜂, 𝜃) can be decomposed into
a sum of a function: A function

2�̃�(𝜂, 𝜃) = ||(f )′′||22 + (�̃� − ỹ)T ̃Q(�̃� − ỹ), (20)

and another convex function, where �̃�, ỹ are 2 × 1 vectors consisting of ith and jth components of 𝜂 and y, respectively,
and i, j, and ̃Q are identified in (3). Hence it is sufficient to show strict convexity of 2�̃�(𝜂, 𝜃). From ̃Q ≻ 0, optimality of f 0

for 𝜂0, 𝜃0 and strict convexity of the L2 norm squared, we have

2�̃�(𝜂0
, 𝜃

0) = ||(f 0)′′||22 + (�̃�0 − y)T ̃Q(�̃�0 − ỹ)
≤ ||(f 𝜆)′′||22
+ (𝜆(�̃�1 − y) + (1 − 𝜆)(�̃�2 − ỹ))T ̃Q(𝜆(�̃�1 − ỹ) + (1 − 𝜆)(�̃�2 − ỹ))

≤ 𝜆||(f 1)′′||22 + (1 − 𝜆)||(f 2)′′||22
+ 𝜆(�̃�1 − ỹ)T ̃Q(�̃�1 − ỹ) + (1 − 𝜆)(�̃�2 − ỹ)T ̃Q(�̃�2 − ỹ),

where the equality is only possible if (f 1)′′(t) = (f 2)′′(t) for almost all 0 ≤ t ≤ 1 and �̃�1 = �̃�2, that is, f 1(ti) = f 2(ti), f 1(tj) =
f 2(tj). But this implies f 1 = f 2 and hence 𝜂1 = 𝜂2 and 𝜃1 = 𝜃2. This proves strict convexity.

Given a set of values {𝜂i}N+2
i=1 , {𝜃i}N+2

i=1 , 𝜂 = (𝜂1, … , 𝜂N+2)T and Q ≽ 0, 𝜑(𝜂, 𝜃) can be computed as

𝜑(𝜂, 𝜃) = 0.5

[N+1∑
i=1
𝜑i(𝜂i, 𝜃i, 𝜂i+1, 𝜃i+1)

]
+ 0.5(𝜂 − y)TQ(𝜂 − y),

where 𝜑i is the value function of the following optimization problem for the interval [ti, ti+1]:

Minimize ||f ′′||2L2[ti,ti+1]
, (21)

subject to f (ti) = 𝜂i, f ′(ti) = 𝜃i, f (ti+1) = 𝜂i+1, f ′(ti+1) = 𝜃i+1, (22)

e(t) ≤ f (t) ≤ d(t) for ti ≤ t ≤ ti+1, and f ∈ W2,2[ti, ti+1].

Thus the inner-loop optimization problem (18) can be broken down into N + 1 independent problems. Note that each of
these optimization problems is convex in W2,2[ti, ti+1] but infinite-dimensional. By the same arguments as in the proof of
Theorem 1 (see also a similar treatment in Reference 7), the solution to (21) and (22) is a cubic spline for which one of
the following holds in each interval (ti, ti+1):
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1. The constraints are not active (Case 0).
2. A constraint is active at a single (isolated) point either on the lower constraint e (Case 1) or on the upper constraint d

(Case 2). The point where the constraint is active is called a touching point.
3. A constraint is active on a proper interval; the segment on the constraint that is active is refereed to as the subarc. The

subarc can be on a lower constraint (Case 3) or on the upper constraint (Case 4).
4. The solution touches lower constraint at a single (isolated) point first and then the upper constraint at a single (isolated)

point (Case 5) or the upper constraint first at a single (isolated) point and then the lower constraint at a single (isolated)
point (Case 6). Such a solution is said to have a touching pair in [ti, ti+1]

As it will become clear from Section 5, the numerical complexity of solving (21) and (22) primarily stems from Cases 5
and 6 that need to be handled numerically (Cases 0–4 can be solved analytically), and from the objective function of (19)
being differentiable almost everywhere yet potentially not everywhere. Strategies for addressing Cases 5 and 6 are further
discussed in Section 5 while a plethora of algorithms for nondifferentiable optimization19 is available for nonsmooth
problems.

5 NUMERICAL IMPLEMENTATION AND EXAMPLES

The numerical implementation has been carried out in MATLAB 2021a using the Optimization Toolbox and the Curve
Fitting Toolbox. The codebase written for this article is uploaded to GitLab; its URL is included at the end of this article.

The process of numerically solving the problem involves a two stage optimization. In the inner loop, independent
problems (21) and (22) are solved by constructing solution candidates for each of 7 cases (if exist) and selecting the one that
has the smallest L2-norm. In the outer loop, the function 𝜑 is minimized in its domain. To reliably distinguish between
the touching point and subarc in the numerical implementation, the domain is slightly reduced to e(ti) + 𝜀 ≤ 𝜂i ≤ d(ti) − 𝜀
where 𝜀 > 0 is small.

For the inner loop optimization in Case 0, the solution is a cubic polynomial and its coefficients are determined from
the boundary conditions by solving a system of four linear algebraic equations. In Cases 1 and 2, the cubic spline in
[ti, ti+1] consist of two pieces adjoined at the touching point ti < 𝜏i,1 < ti+1. The boundary conditions of (21) and (22), the
conditions that f (𝜏i,1), f ′(𝜏i,1) match the corresponding values of the constraint and its derivative, and the condition for
the continuity of the second derivative of the solution yield a cubic equation for the location of the touching point 𝜏i,1 and
eight linear algebraic equations that determine the coefficients of the two cubic polynomials which constitute the cubic
spline. Thus in Cases 1 and 2, up to three solution candidates corresponding to the roots of the cubic polynomial need to be
considered. The cubic spline with the subarc in Cases 3 and 4 consist of two cubic polynomials adjoining a linear function
from both sides. The equations for the ends of the subarc 𝜏i,1, 𝜏i,2 and for the coefficients of two cubic polynomials are
constructed similarly; they reduce to a system of linear algebraic equations. For Cases 5 and 6, determining the location
of the two additional knots (𝜏i,1 and 𝜏i,2) reduces to solving two (coupled) multivariate polynomial equations of order five;
then the coefficients of the three cubic polynomials are determined by solving a system of linear algebraic equations.
For the former, numerical methods are used. In MATLAB, the options are either fsolve that uses Newton’s method
or vpasolve which uses both symbolic and numerical manipulations. In the former case, multiple starting points may
need to be used to reliably determine all solution candidates (this is implemented in the function ic_search of our
codebase). While vpasolve is able to reliably find solutions, its run time is about 50 times slower than fsolvewithout
ic_search. A potential alternative solution, that we leave to future work, is to train a neural network offline to compute
the locations of additional knots in the touching pair given problem data in (ti, ti+1) as inputs. Typically, many of the
solution candidates are discarded as they do not satisfy the constraints (this check reduces to finding minima of a cubic
function) or the conditions informing each Case.

In the outer loop the function 𝜑 is minimized. This function is strictly convex and Lipschitz continuous but may be
nonsmooth. In MATLAB, fminsearch function is available which implements the Nelder–Mead’s method which does
not rely on the use of the gradient information. The alternative is the use of the function fmincon which is intended
for smooth problems, but as it relies only on function values for the computations, it can be applied to minimizing our
function. Our numerical experiments indicated that fminsearch gives a larger cost solution as compared to fmincon
and, furthermore, with fminsearch the second derivative of the solution is not continuous. In addition, fminsearch
is slower than fmincon. Hence our final implementation uses fmincon. A plethora of computational methods for
nonsmooth optimization exist19 which could be alternatively used.
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Example 1: Smooth Spline
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Example 1: Double Derivative of Smooth Spline

F I G U R E 1 Top: The solution as q5,5 varies in the first example. Bottom: The second derivative of the solution

Two numerical examples are reported in Figures 1 and 2. In these examples, the starting point (𝜂0
, 𝜃

0) for the outer-loop
optimization was set so that

𝜂

0
i = 0.5(e(ti) + d(ti)), 𝜃

0
i = 0, i = 1, … ,N + 2.

Both examples were defined on an interval different from [0, 1] (originally assumed in our analysis) in order to illustrate
a more general situation. In the first example, the interval is [t1, tN+2] = [0, 3] and N = 5 (7 data points). In the second
example, the interval is [t1, tN+2] = [13, 25] and N = 4 (6 data points). The constraints e and d are indicated by the dashed
lines in Figures 1 and 2.

In the examples the matrix Q coincides with the identity matrix except for one diagonal element which is varied to
illustrate the effects of increasing/decreasing the weight corresponding to a given data point; when this weight is set to∞
it means that 𝜂j is fixed at yj and not adjusted in the outer loop optimization (i.e., we replace smoothing by an interpolation
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Example 2: Double Derivative of Smooth Spline

F I G U R E 2 Top: The solution as q3,3 varies in the second example. Bottom: The corresponding second derivative

constraint at that specific point). Such 𝜂j is indicated by “o” in Figures 1 and 2. In the first example q5,5 is varied and in the
second example q3,3 is varied. The increase in the weight causes the solution to approach closer the specified data point.

The locations of yi are indicated by “x” in Figures 1 and 2 and the additional knots in each interval (ti, ti+1) are indicated
by “*.” To avoid excessive annotation, the knots located at the intervals’ starting and ending points (ti’s) are not marked.

Note that the second derivative of the constructed solution is continuous and piecewise linear in both examples, and
that the second derivative being zero at t1 and tN+2 is consistent with our theoretical results.

The computations were carried out on a Lenovo Legion Y520 computer with 16 GB of RAM and an Intel Core
i7-7700HQ 2.80 GHz processor. When fsolve without ic_search was used, the runtime was several minutes of
calculation. This run time could be improved by warm starting (e.g., from an unconstrained interpolating cubic spline).

Remark 1. As an alternative approach to our problem, we could consider a discretized approximation of the original
problem. Specifically, suppose we discretize the interval [t0, tN+2] into m equally spaced sub-intervals, where m ≫ N + 2,
with the sub-interval end points being {𝜏k}m

k=0. Then we could consider two strategies.
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The first and fairly standard strategy would be to treat u as a constant in interval [𝜏k, 𝜏k+1] and only impose constraints
on x1 at 𝜏k’s. The problem with this formulation is that u is piecewise constant and may not be not continuous, which is not
consistent with our theoretical results derived for the original infinite-dimensional optimization problem. Specifically,
we know that the optimal u must be continuous on [t0, tN+2] and satisfy u(t0) = u(tN+2) = 0. The second formulation tries
to address this by treating the third derivative v = ...x1 of x1 as constant in each sub-interval [𝜏k, 𝜏k+1[; similarly, we only
impose the constraints on x1 at 𝜏k’s.

It can be easily shown that both discretized approximation approaches reduce to quadratic programming (QP)
problems. Such problems can then be solved using QP solvers.

The main issue with the above discretized approximation approaches is that the constraints are only imposed and
enforced at the points, 𝜏k. Hence, unlike with the approach proposed in this article, “intersample” constraint violations
could occur. Additionally, the QP problem can be large-dimensional and not trivial to solve if fine discretization is used.
At the same time, if the QP problem could be solved cheaply (e.g., for not very fine discretization) then an approximate
solution through the discretization and QP could be of use for warm-starting, that is, for providing an initial guess to
both the outer loop and the inner loop optimizers described in this article. We leave the comprehensive investigation of
potential synergies between the approach in this article and alternative approaches based on discretization and QP to a
future publication.

6 CONCLUSIONS

In this article we considered a problem of best smoothing in a strip and connected this problem to a state-constrained
optimal control problem for the double integrator. Conditions for the existence and uniqueness of the solution were given
under which the solution was shown to be a cubic spline with no more than two additional knots in each interval between
the given data points. A numerical algorithm for solving this problem based on a two stage minimization was proposed;
its efficacy was illustrated using numerical examples.
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