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Summary

The paper considers a problem of best smoothing in a strip, where the objective is
to find a function 𝑓 ∶ [0, 1] → ℝ that satisfies bilateral constraints on its values,
𝑑(𝑡) ≤ 𝑓 (𝑡) ≤ 𝑒(𝑡) for all 0 ≤ 𝑡 ≤ 1 and minimizes a weighted sum of the 𝐿2-
norm of the second derivative and squared deviations from specified values, 𝑦𝑖, at
discrete points 0 = 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁+2. We assume that constraints 𝑑(𝑡) and
𝑒(𝑡) are continuous functions that are linear in each interval [𝑡𝑖, 𝑡𝑖+1], 𝑖 = 1,⋯ , 𝑁 +
1. We connect this problem to a state-constrained optimal control problem for the
double integrator, and give conditions for the existence and uniqueness of the solution
under which we also show that the solution is a cubic spline with knots at 𝑡𝑖 and no
more than two additional knots in each interval (𝑡𝑖, 𝑡𝑖+1). We propose a numerical
algorithm for solving this problem based on a two stage minimization, where the
outer loop optimization problem is finite-dimensional and convex, while the inner
loop optimization problem admits a solution which is easy to compute. Numerical
results that show the efficacy of the proposed approach are reported.
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1 INTRODUCTION

Given data (𝑡𝑖, 𝑦𝑖) that represent points on the graph of an unknown function, the classical best interpolation problem is to find
a function 𝑓 with minimal 𝐿2 norm of the second derivative whose values at 𝑡𝑖 equal 𝑦𝑖. As is well known1, the solution of this
problem is a natural cubic spline interpolating the data. Dontchev2 has considered a version of this problem subject to bilateral
constraints; namely, the graph of the interpolating function is restricted to a strip defined by two piecewise linear functions across
the mesh {𝑡𝑖}; it was shown that the solution of this problem is a cubic spline with not more than two additional knots in each
interpolation interval (𝑡𝑖, 𝑡𝑖+1). Later3 the structure of the solution was further characterized as follows. On each interpolation
interval one of the four cases may appear: (i) the solution is in the interior of the strip and no additional knots occur; (ii) there
is a single point on one of the constraints where the constraint is active (one additional knot); (iii) there is an interval on one of
the constraints where this constraint is active (two additional knots on the same constraint); (iv) there are two single points on
each of the constraints where the respective constraints are active (two additional knots on different constraints).

In this paper we consider a problem of data smoothing subject to bilateral constraints representing a strip. By applying
optimality conditions and duality in optimal control, we obtain a characterization of the solution which is somewhat similar to
that of the best interpolation in a strip2,3, but there are important differences. Based on that characterization, we propose an
algorithm for data smoothing in a strip and illustrate its effectiveness through computer experiments.
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Constrained interpolation and smoothing have been studied from various viewpoints in the past4,5,6,7 and more recently8.
Specifically, for constrained smoothing, Irvine et. al.9 considered the smoothing problem as an extension of constrained inter-
polation, where the inequality constraint is imposed on the 𝑘th derivative being non-negative, e.g., 𝑓 (𝑘) ≥ 0. Elfving and
Andersson10 have studied the problem of constrained smoothing splines, where some inequality constraints were imposed on
the first derivative 𝑓 ′ or second derivative 𝑓 ′′. Mammen et. al.11 proposed a unifying framework in a normed vector space for
treating constrained smoothing problems; their work also contained an overview of the progress on constrained data smoothing
up to the year 2001. Mammen and Thomas-Agnan12 then employed the framework of Mammen et. al.11 to study the problem of
constrained smoothing spline interpolation with monotone shape restriction, i.e., 𝑓 (𝑘) ≥ 0. Turlach13 also studied the problem
of constrained smoothing spline interpolation with monotone shape restriction and proposed the method which is extendable
to multiple simultaneous shape constraints. Kano and Martin14 studied constrained and optimal smoothing and interpolating
splines; the examined constraint types include point, interval, and integrated values. In their work they assumed that the solution
function uses the normalized uniform B-splines of some fixed degree 𝑘 as the basis functions; our work differs by considering
𝑓 being in a Sobolev space.

It has been known for quite awhile that problems in approximation theory have important connections to optimal control15, and
this connection is also exploited in the present work. In particular, Shen and Wang16 studied the constrained spline smoothing
problem through optimal control; but unlike our work, which deals with the constraints on the state of the reformulated optimal
control problem, the work of Shen and Wang deals with the constraint on the control 𝑢. Ikeda et. al.17 also addressed the problem
of constrained spline smoothing using optimal control; however, the constraints were imposed only at the knots, whereas in
this paper, we study the case where the bilateral constraints on the function are piecewise linear and imposed pointwise over an
interval.

2 PROBLEM SETTING

We consider the following problem:

Minimize 0.5

(

‖𝑓 ′′
‖

2
2 +

𝑁+2
∑

𝑖,𝑗=1
𝑞𝑖𝑗(𝑓 (𝑡𝑖) − 𝑦𝑖)(𝑓 (𝑡𝑗) − 𝑦𝑗)

)

(1)

subject to 𝑒(𝑡) ≤ 𝑓 (𝑡) ≤ 𝑑(𝑡) for all 𝑡 ∈ [0, 1], and 𝑓 ∈ 𝑊 2,2[0, 1], (2)

where 0 = 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁+2 = 1, 𝑁 is a natural number, 𝑦𝑖, 𝑖 ∈ {1, 2,… , 𝑁 + 2} are given real numbers, ‖ ⋅ ‖2 is the usual
𝐿2 norm of a function on the interval [0, 1], and 𝑊 2,2[0, 1] denotes the Sobolev space of functions on [0, 1] with absolutely
continuous first derivatives and second derivative in 𝐿2. In the problem described by (1)-(2), the first term is the standard in
best interpolation problems squared 𝐿2 norm of the second derivative of 𝑓, while the second term represents least squares with
weights 𝑞𝑖𝑗 of the deviation of values of 𝑓 at 𝑡𝑗 from given points 𝑦𝑗 . The functions 𝑑 and 𝑒 describe a strip where the values of
the function 𝑓 should belong.

We denote by 𝑄 ∈ ℝ(𝑁+2)×(𝑁+2) the square matrix [𝑞𝑖𝑗] and we assume that 𝑄 is symmetric and positive semi-definite
𝑄 = 𝑄T ⪰ 0. Furthermore, there exist 𝑖, 𝑗, 𝑖 < 𝑗, such that

𝑄̃ =
[

𝑞𝑖𝑖 𝑞𝑖𝑗
𝑞𝑗𝑖 𝑞𝑗𝑗

]

≻ 0. (3)

Condition (3) could be satisfied, for instance, by choosing weights 𝑞𝑖𝑖 and 𝑞𝑗𝑗 at some two points 𝑡𝑖 and 𝑡𝑗 to be positive while
selecting the corresponding cross-weights 𝑞𝑖𝑗 and 𝑞𝑗𝑖 to be zero.

We assume that the functions 𝑒 and 𝑑 are piecewise linear and continuous across the knots 𝑡𝑖 and such that 𝑒(𝑡) < 𝑑(𝑡) for all
𝑡 ∈ [0, 1]. Furthermore, we assume that

𝑒(𝑡𝑗) < 𝑦𝑗 < 𝑑(𝑡𝑗), 𝑗 = 1,… , 𝑁 + 2. (4)

Indeed, we need to find a best fit of the points 𝑦𝑖 with a function having values in the strip, hence it should be expected that the
points (𝑡𝑖, 𝑦𝑖) are inside the strip. Without the strip constraint, the solution to this problem is the well-known smoothing cubic
spline1.
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We will now prove the existence and uniqueness of solution by reformulating the problem as an optimal control problem. Let
𝑥1 = 𝑓, 𝑥2 = 𝑓 ′, 𝑢 = 𝑓 ′′. Then problem (1)-(2) can be written in the following form:

Minimize 𝐽 = 0.5

(

‖𝑢‖22 +
𝑁+2
∑

𝑖,𝑗=1
𝑞𝑖𝑗(𝑥1(𝑡𝑖) − 𝑦𝑖)(𝑥1(𝑡𝑗) − 𝑦𝑗)

)

(5)

subject to 𝑥̇1 = 𝑥2,
𝑥̇2 = 𝑢,

and 𝑢 ∈  = {𝑢 ∈ 𝐿2[0, 1] ∣ ∃𝑥1 with 𝑥̈1(𝑡) = 𝑢(𝑡) a.e. 0 ≤ 𝑡 ≤ 1 and 𝑒(𝑡) ≤ 𝑥1(𝑡) ≤ 𝑑(𝑡) for all 𝑡 ∈ [0, 1]}. (6)

Note that in the optimal control problem we interpret 𝑡 as time and we use dots to designate time derivatives. This is a (non-
standard) optimal control problem for the double integrator, where 𝑢 is the control and 𝑥 = (𝑥1, 𝑥2) is the state. Note that the
inequality state constraints appear in the definition of the feasible set  for the control.

The set  is clearly convex. It is also closed. Indeed, suppose 𝑢𝑛 ∈  , 𝑢𝑛 → 𝑢̄ in 𝐿2 and let 𝑥𝑛1 be the corresponding 𝑥1. Note
that

𝑥𝑛1(𝑡) = 𝑥𝑛1(0) + 𝑡
(

𝑥𝑛1(1) − 𝑥𝑛1(0) −

1

∫
0

(𝑡 − 𝜎)𝑢𝑛(𝜎)𝑑𝜎
)

+

𝑡

∫
0

(𝑡 − 𝜎)𝑢𝑛(𝜎)𝑑𝜎. (7)

The sequences of real numbers 𝑥𝑛1(0) and 𝑥𝑛1(1) are bounded between 𝑒(0) and 𝑑(0) and between 𝑒(1) and 𝑑(1), respectively;
hence we can extract their convergent subsequences to some 𝑥̄1(0) and 𝑥̄1(1), respectively. Without loss of generality, we can
assume that the original sequences 𝑥𝑛1(0) and 𝑥𝑛1(1) converge to 𝑥̄1(0) and 𝑥̄1(1) while 𝑢𝑛 → 𝑢̄ in 𝐿2 as 𝑛 → ∞. Define 𝑥̄1 by
boundary conditions 𝑥̄1(0) and 𝑥̄1(1) and ̈̄𝑥1 = 𝑢̄, i.e.,

𝑥̄1(𝑡) = 𝑥̄1(0) + 𝑡
(

𝑥̄1(1) − 𝑥̄1(0) −

1

∫
0

(𝑡 − 𝜎)𝑢̄(𝜎)𝑑𝜎
)

+

𝑡

∫
0

(𝑡 − 𝜎)𝑢̄(𝜎)𝑑𝜎. (8)

Exploiting Cauchy-Schwartz inequality in the expression for |𝑥𝑛1(𝑡) − 𝑥̄1(𝑡)| formed using (7) and (8), we obtain that 𝐿2 con-
vergence of controls and convergence of boundary conditions implies uniform (𝐶0) convergence of the corresponding state
trajectories, i.e., 𝑥𝑛1 → 𝑥̄1 as 𝑛 → ∞. Thus 𝑒(𝑡) ≤ 𝑥̄1(𝑡) ≤ 𝑑(𝑡) for all 0 ≤ 𝑡 ≤ 1 and 𝑢̄ ∈  .

Based on condition (4), we will now show that there exists a feasible trajectory of the state 𝑥1 whose values at 𝑡𝑗 are in the
interior of the strip. Let 𝑓0 be the piecewise linear function whose graph connects the points (𝑡𝑖, 𝑦𝑖). Clearly, 𝑒(𝑡) < 𝑓0(𝑡) < 𝑑(𝑡)
for all 𝑡 ∈ [0, 1]. For any natural 𝑚, let 𝑡𝑖,𝑗 = 𝑡𝑖 + 𝑗(𝑡𝑖+1 − 𝑡𝑖)∕𝑚. It is well known that there exists a sequence 𝑆𝑚 of cubic
splines interpolating points (𝑡𝑖,𝑗 , 𝑓0(𝑡𝑖𝑗)) that converges to 𝑓0 uniformly in [0, 1]. Then for 𝑚 sufficiently large we will have
𝑒(𝑡) < 𝑆𝑚(𝑡) < 𝑑(𝑡) for all 𝑡 ∈ [0, 1]. Thus, 𝑆𝑚 is a feasible trajectory for the state 𝑥1 with values in the interior of the strip, and
the second time-derivative of 𝑆𝑚 is a feasible control for which the value of the objective function is finite. This yields that there
exists a sublevel set of 𝐽 in (5), viewed as a function of 𝑢, which is nonempty; it is obviously closed and convex in 𝐿2. Since

0.5‖𝑢‖22 ≤ 𝐽 (𝑢) for all 𝑢 ∈ 𝐿2,

the sublevel sets are furthermore bounded, hence weakly compact.
The rest of the proof of the existence is standard. The intersections of the nonempty sublevel set with the feasible set  is

weakly compact too and the minimization over this intersection is equivalent to the minimization over  . The objective function
is convex and continuous, hence weakly lower semicontinuous. Thus, under the assumption made, problem (5)-(6) has a solution
and hence problem (1)-(2) has a solution.

The condition (3) ensures that 𝐽 in (5), viewed as a function of 𝑥1, is strictly convex1. This gives us uniqueness of the solution.
We denote the solution by (𝑥̄, 𝑢̄, 𝑧̄). In the following section we will show that the solution 𝑥̄1 is in fact a cubic spline with

no more than 2 additional knots in each interval [𝑡𝑖, 𝑡𝑖+1]. We also give a detailed description of the solution together with an
algorithm to compute it.

1This follows since 𝐿2-squared norm is strictly convex, 𝑄̃ ≻ 0, 𝑄 ⪰ 0 and noting that 𝑢 = 𝑥̈(1)1 = 𝑥̈(2)1 , 𝑥(1)1 (𝑡𝑖) = 𝑥(2)1 (𝑡𝑖), 𝑥
(1)
1 (𝑡𝑗 ) = 𝑥(2)1 (𝑡𝑗 ) imply that 𝑥(1)1 (𝑡) = 𝑥(2)1 (𝑡)

for all 0 ≤ 𝑡 ≤ 1. The full details of the proof are analogous to the ones of strict convexity of the function 𝜑 in Section 4; we chose not to repeat them here.
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3 CHARACTERIZING THE SOLUTION

Suppose 𝑓 ∈ 𝑊 2,2[0, 1] and 0 = 𝑡1 < 𝑡2 < ⋯ 𝑡𝑁+2 = 1 are given. The 𝑖th normalized linear B-spline is defined by1:

𝐵𝑖(𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if 𝑡𝑖+2 < 𝑡,
𝑡𝑖+2 − 𝑡

𝑡𝑖+2 − 𝑡𝑖+1
if 𝑡𝑖+1 < 𝑡 ≤ 𝑡𝑖+2,

𝑡𝑖+2 − 𝑡
𝑡𝑖+2 − 𝑡𝑖+1

−
𝑡𝑖+1 − 𝑡

𝑡𝑖+2 − 𝑡𝑖+1
−

𝑡𝑖+1 − 𝑡
𝑡𝑖+1 − 𝑡𝑖

if 𝑡𝑖 < 𝑡 ≤ 𝑡𝑖+1,

0 if 𝑡 ≤ 𝑡𝑖.

Integrating by parts, it follows that
1

∫
0

𝑓 ′′(𝑡)𝐵𝑖(𝑡)𝑑𝑡 =

𝑡𝑖+1

∫
𝑡𝑖

𝑓 ′′(𝑡)𝐵𝑖(𝑡)𝑑𝑡 +

𝑡𝑖+2

∫
𝑡𝑖+1

𝑓 ′′(𝑡)𝐵𝑖(𝑡)𝑑𝑡

=
(

−𝑓 ′(𝑡𝑖+1) +
𝑓 (𝑡𝑖+2) − 𝑓 (𝑡𝑖+1)

𝑡𝑖+2 − 𝑡𝑖+1

)

+
(

𝑓 ′(𝑡𝑖+1) −
𝑓 (𝑡𝑖+1) − 𝑓 (𝑡𝑖)

𝑡𝑖+1 − 𝑡𝑖

)

=
𝑓 (𝑡𝑖+2) − 𝑓 (𝑡𝑖+1)

𝑡𝑖+2 − 𝑡𝑖+1
−

𝑓 (𝑡𝑖+1) − 𝑓 (𝑡𝑖)
𝑡𝑖+1 − 𝑡𝑖

.

Defining the vector function 𝐵(𝑡) = (𝐵𝑖)𝑁𝑖=1 = (𝐵1(𝑡),⋯ , 𝐵𝑁 (𝑡))𝑇 , where 𝐵𝑖’s are as above, we have

1

∫
0

𝑓 ′′(𝑡)𝐵(𝑡)𝑑𝑡 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓 (𝑡3) − 𝑓 (𝑡2)
𝑡3 − 𝑡2

−
𝑓 (𝑡2) − 𝑓 (𝑡1)

𝑡2 − 𝑡1
𝑓 (𝑡4) − 𝑓 (𝑡3)

𝑡4 − 𝑡3
−

𝑓 (𝑡3) − 𝑓 (𝑡2)
𝑡3 − 𝑡2

⋮
𝑓 (𝑡𝑁+2) − 𝑓 (𝑡𝑁+1)

𝑡𝑁+2 − 𝑡𝑁+1
−

𝑓 (𝑡𝑁+1) − 𝑓 (𝑡𝑁 )
𝑡𝑁+1 − 𝑡𝑁

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 𝐾𝑧,

where

𝐾 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝑡2 − 𝑡1

−
𝑡3 − 𝑡1

(𝑡3 − 𝑡2)(𝑡2 − 𝑡1)
1

𝑡3 − 𝑡2
0 ⋯ 0 0 0

0 1
𝑡3 − 𝑡2

−
𝑡4 − 𝑡2

(𝑡4 − 𝑡3)(𝑡3 − 𝑡2)
1

𝑡2 − 𝑡1
⋯ 0 0 0

⋮ ⋱ ⋱ ⋱ ⋯ ⋱ ⋱ 0

0 0 0 0 ⋯
1

𝑡𝑁+1 − 𝑡𝑁
−

𝑡𝑁+2 − 𝑡𝑁
(𝑡𝑁+2 − 𝑡𝑁+1)(𝑡𝑁+1 − 𝑡𝑁 )

1
𝑡𝑁+2 − 𝑡𝑁+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑧 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑓 (𝑡1)
𝑓 (𝑡2)
𝑓 (𝑡3)
⋮

𝑓 (𝑡𝑁 )
𝑓 (𝑡𝑁+1)
𝑓 (𝑡𝑁+2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Because 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁+2, the rows of 𝐾 must be linearly independent, i.e., 𝐾 ∈ ℝ𝑁×(𝑁+2) is full row rank.
Let 𝑦 = (𝑦1, 𝑦2,⋯ , 𝑦𝑁+2)T.As in Section 2, denoting 𝑥1 = 𝑓, 𝑥2 = 𝑓 ′, 𝑢 = 𝑓 ′′, problem (1)-(2) can be written in the following

form:
Minimize with respect to (𝑥, 𝑢, 𝑧) ∈ 𝑊 2,2 × 𝐿2 ×ℝ𝑁+2 (9)

the objective function 𝐽 (𝑥, 𝑧, 𝑢) = 1
2
(

‖𝑢‖22 + (𝑧 − 𝑦)𝖳𝑄(𝑧 − 𝑦)
)
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subject to 𝑥̇1 = 𝑥2, 𝑥1(𝑡𝑖) = 𝑧𝑖, for 𝑖 ∈ {1,… , 𝑁 + 2}
𝑥̇2 = 𝑢,
𝑒(𝑡) ≤ 𝑥1(𝑡) ≤ 𝑑(𝑡) for all 𝑡 ∈ [0, 1],
1

∫
0

𝑢(𝑡)𝐵(𝑡)𝑑𝑡 = 𝐾𝑧.

In this section we employ the duality theory and optimality conditions for state and control constrained optimal control
problems developed by Hagger and Mitter18 and previously applied by Dontchev2 to the best interpolation in a strip problem.
First, observe that, as shown in the preceding section, condition (4) implies that there exists a feasible control 𝑢 such that the
corresponding trajectory of the state 𝑥1 satisfies 𝑒(𝑡) < 𝑥1(𝑡) < 𝑑(𝑡) for all 𝑡 ∈ [0, 1]. This, combined with the surjectivity of the
matrix 𝐾 , implies that Slater’s constraint qualification holds, hence we can apply the Lagrange multiplier rule.

To do that, we introduce the Lagrange functional

(𝑥, 𝑥(0), 𝑧, 𝑢, 𝜆, 𝜈, 𝜇) = 𝐽 (𝑥, 𝑧, 𝑢) + 𝜆𝑇
⎛

⎜

⎜

⎝

1

∫
0

𝑢(𝑡)𝐵(𝑡)𝑑𝑡 −𝐾𝑧
⎞

⎟

⎟

⎠

+

1

∫
0

⎡

⎢

⎢

⎣

𝑥1(𝑡) − 𝑥1(0) −

𝑡

∫
0

𝑥2(𝑠)𝑑𝑠
⎤

⎥

⎥

⎦

𝑑𝜈1

+

1

∫
0

⎡

⎢

⎢

⎣

𝑥2(𝑡) − 𝑥2(0) −

𝑡

∫
0

𝑢(𝑠)𝑑𝑠
⎤

⎥

⎥

⎦

𝑑𝜈2 +

1

∫
0

(𝑒 − 𝑥1)𝑑𝜇1 +

1

∫
0

(𝑥1 − 𝑑)𝑑𝜇2,

where 𝜆 = (𝜆1,… , 𝜆𝑁 )T ∈ ℝ𝑁 , 𝜈 = (𝜈1, 𝜈2) is a regular Borel measure, and 𝜇 = (𝜇1, 𝜇2) is a nonnegative regular Borel measure
such that 𝜇1 is supported on the set 𝑇1 = {𝑡 ∈ [0, 1], 𝑥1(𝑡) = 𝑒(𝑡)} and 𝜇2 is supported on the set 𝑇2 = {𝑡 ∈ [0, 1], 𝑥1(𝑡) = 𝑑(𝑡)}.
Based on separation of convex sets by a hyperplane, one can show, following similar arguments as by Dontchev2, that there
exist optimal Lagrange multiplers (𝜆̄, 𝜈̄, 𝜇̄) such that

(𝑥̄, 𝑥̄(0), 𝑧̄, 𝑢̄, 𝜆̄, 𝜈̄, 𝜇̄) ≤ (𝑥, 𝛼, 𝑧, 𝑢, 𝜆̄, 𝜈̄, 𝜇̄) (10)

for every continuous function 𝑥 with 𝑥(𝑡) ∈ ℝ2, 𝑡 ∈ [0, 1], every 𝛼 ∈ ℝ2, every 𝑧 ∈ ℝ𝑁+2, and every 𝑢 ∈ 𝐿2.
Define

𝑝̄1(𝑡) =

1

∫
𝑡

𝑑𝜈̄1, 𝑝̄2(𝑡) =

1

∫
𝑡

𝑑𝜈̄2. (11)

Then 𝑝̄1 and 𝑝̄2 are functions of bounded variations that are continuous from the left. Since the Lagrange functional is convex
and Fréchet differentiable, the condition (10) is equivalent to the corresponding optimality condition based on the Fermat rule
“derivative equals zero.” Differentiating  with respect to 𝑧 and evaluating at the optimal variables results in

𝑄(𝑧̄ − 𝑦) +𝐾𝑇 𝜆̄ = 0. (12)

Next, differentiating  with respect to 𝑥(0) = (𝑥1(0), 𝑥2(0)) and evaluating at the optimal variables gives

𝑝̄1(0) = 𝑝̄2(0) = 0.

Since
𝑡

∫
0

𝑡

∫
1

𝑢̄(𝑠)𝑑𝑠𝑑𝜈̄2 =

1

∫
0

𝑢̄(𝑡)𝑝̄2(𝑡)𝑑𝑡,

from the equality 𝜕∕𝜕𝑢 = 0 evaluated at the optimal variables we get

𝑢̄(𝑡) + 𝐵(𝑡)𝑇 𝜆̄ − 𝑝̄2(𝑡) = 0. (13)

Furthermore, utilizing the equality
1

∫
0

𝑥̄2𝑑𝜈̄2 −

1

∫
0

𝑡

∫
0

𝑑𝑠𝑑𝜈̄2 =

1

∫
0

𝑥̄2𝑑(−𝑝̄2 +

1

∫
𝑠

𝑝̄1)

and differentiating  with respect to 𝑥2 gives
̇̄𝑝2 = −𝑝̄1, 𝑝̄2(0) = 0. (14)
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Note that 𝑝̄1 and 𝑝̄2 are the familiar from Pontryagin’s Maximum Principle adjoint variables. Finally, differentiating  with
respect to 𝑥1 results in

𝑝̄1(𝑡) = −

1

∫
𝑡

𝑑(𝜇̄2 − 𝜇̄1). (15)

We conclude from (13) that the optimal control 𝑢̄ is an absolutely continuous function which is the sum of a piecewise linear
and continuous function across the knots 𝑡𝑖 and an absolutely continuous function whose derivative, as given in (14), is of the
form (15) with 𝜇̄𝑖, 𝑖 = 1, 2, being nonnegative regular measures supported on the disjoint subsets 𝑇𝑖 of [0, 1] where the state
constraints are active. In addition, (13), 𝑝̄2(0) = 0, (11) (implying 𝑝̄2(1) = 0), and 𝐵(0) = 𝐵(1) = 0 give that the optimal control
satisfies 𝑢̄(0) = 𝑢̄(1) = 0.

Let 𝜏1, 𝜏2 be such that for the optimal solution 𝑥̄1 satisfies 𝑒(𝑡) < 𝑥̄1(𝑡) < 𝑑(𝑡) for all 𝑡 ∈ (𝜏1, 𝜏2). From (15) we have that
𝑝̄1(𝑡) = 0, hence from (14) the adjoint variable 𝑝̄2 is constant. Thus, from (13), on such an interval (𝜏1, 𝜏2) the optimal control
𝑢̄(𝑡) is a piecewise linear continuous function. Furthermore, in the case when the interval (𝜏1, 𝜏2) is contained in some of the
intervals (𝑡𝑗 , 𝑡𝑗+1), the optimal 𝑢̄ is a linear function inasmuch 𝐵𝑗 is linear there. Then the optimal 𝑥̄2 is a quadratic polynomial
there while the optimal 𝑥̄1 is a cubic polynomial.

Assume that in some interval (𝑡𝑗 , 𝑡𝑗+1) there are two points 𝜏1 and 𝜏2, 𝑡𝑖 ≤ 𝜏1 < 𝜏2 ≤ 𝑡𝑖+1 such that 𝑥̄1(𝜏1) = 𝑒(𝜏1) and
𝑥̄1(𝜏2) = 𝑒(𝜏2). Let 𝜁 (𝑡) = 0 for 𝑡 ∈ (𝜏1, 𝜏2) and 𝜁 (𝑡) = 𝑢̄(𝑡) for 𝑡 ∉ (𝜏1, 𝜏2). Note that 𝑥̄1(𝜏2) = 𝑒(𝜏2) and 𝑥̄2(𝜏2) = 𝑒̇(𝜏2)
since 𝑥̄2 − 𝑒 is maximized at 𝜏2. Apply the control 𝜁 to the double integrator with the optimal initial conditions 𝑥̄1(0) and 𝑥̄2(0)
obtaining trajectories 𝜉 = (𝜉1, 𝜉2). Clearly, 𝜉𝑖(𝑡) = 𝑥̄𝑖(𝑡) for 𝑡 ∈ [0, 𝜏1]. Since 𝜁 (𝑡) = 0 on [𝜏1, 𝜏2], we have that 𝜉1(𝑡) = 𝑒(𝑡) on
[𝜏1, 𝜏2). Then we also have 𝜉1(𝜏2) = 𝑒(𝜏2) = 𝑥̄1(𝜏2) and 𝜉2(𝜏2) = 𝑒̇(𝜏2) = 𝑥̄2(𝜏2). But then 𝜉𝑖(𝑡) = 𝑥̄𝑖(𝑡) for 𝑡 ∈ [𝜏2, 1], 𝑖 ∈ {1, 2}.
Thus, we found a function 𝜉1(𝑡) such that 𝜉1(𝑡𝑖) = 𝑥̄1(𝑡𝑖) and also 𝜉1(𝑡) = 0 on [𝜏1, 𝜏2]. If we assume that 𝑢̄(𝜈) = ̈̄𝑥1(𝜈) ≠ 0 for
some 𝜈 ∈ ([𝜏1, 𝜏2), since 𝑢̄ is a continuous function, there exists 𝜀 > 0 such that 𝑢̄(𝑡) = ̈̄𝑥1(𝑡) ≠ 0 in (𝜈 − 𝜀, 𝜈 + 𝜀) and then the
value of the objective function of (9) will be greater than the value obtained for the function 𝜁 (𝑡) = 𝜉1(𝑡) and 𝜉1. This contradicts
the optimality of 𝑢̄. We conclude that when 𝑥̄1(𝜏1) = 𝑒(𝜏1) and 𝑥̄1(𝜏2) = 𝑒(𝜏2) for 𝑡𝑗 ≤ 𝜏1 < 𝜏2 ≤ 𝑡𝑗+1 then 𝑥̄1(𝑡) = 𝑒(𝑡) for all
𝑡 ∈ [𝜏1, 𝜏2]; moreover, 𝑢̄(𝑡) = 0 for all 𝑡 ∈ [𝜏1, 𝜏2] as well. Clearly, the same argument works for the lower constraint 𝑑.

The property of the solution 𝑥̄1 we found means that each of the constraints cannot be active in two separate (isolated) points
in (𝑡𝑖, 𝑡𝑖+1). That is, in every (𝑡𝑖, 𝑡𝑖+1) each of the constraints is active either at one point, or on an interval. We will also show
that if one of the constraints is active on an interval with positive length in [𝑡𝑖, 𝑡𝑖+1] the other constraint cannot be active in
(𝑡𝑖, 𝑡𝑖+1). We summarize and complement our findings in the following theorem:

Theorem 1. If one of the constraints is active on an interval with positive length in [𝑡𝑖, 𝑡𝑖+1] the other constraint cannot be active
in (𝑡𝑖, 𝑡𝑖+1). This implies that the solution 𝑥̄1 is a cubic spline with knots at 𝑡𝑖, 𝑖 = 1,⋯ , 𝑁 + 2, and at most two additional knots
in each (𝑡𝑖, 𝑡𝑖+1), 𝑖 = 1,⋯ , 𝑁 + 1.

Proof. Suppose that both constraints are active somewhere in [𝑡𝑖, 𝑡𝑖+1] and such that one of the constraints is active on an interval
with positive length. Let 𝜏1, 𝜏2 be two additional consecutive knots in (𝑡𝑖, 𝑡𝑖+1) that belong to two different constraints; assume
also 𝜏1 < 𝜏2. There are four cases to be considered:

1. 𝜏1 is the right end of a proper interval where the lower constraint 𝑒 is active.

2. 𝜏1 is the right end of a proper interval where the upper constraint 𝑑 is active.

3. 𝜏1 is a single (isolated) point where lower constraint 𝑒 is active, meaning that 𝜏2 is the left end of a proper interval where
the upper constraint 𝑑 is active.

4. 𝜏1 is a single (isolated) point where the upper constraint 𝑑 is active, meaning that 𝜏2 is the left end of a proper interval
where the lower constraint 𝑒 is active.

Consider the first case and let 𝑥̄1 be the solution. Note that 𝑒(𝑡) < 𝑥̄1(𝑡) < 𝑑(𝑡) for 𝑡 ∈ (𝜏1, 𝜏2). Since ̈̄𝑥1(𝑡) = 𝑒(𝑡) = 0 for
𝑡 < 𝜏1 and close to 𝜏1, and since ̈̄𝑥1 is continuous on (0, 1), it follows that ̈̄𝑥1(𝜏1) = 0.

From (13), (12) and the fact that 𝐾 is full rank, we have that

𝜆̄ = −(𝐾𝐾T)−1𝐾𝑄(𝑧̄ − 𝑦),
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and for 𝑡 ∈ (𝜏1, 𝜏2),
...
𝑥̄ 1(𝑡) = 𝐵̇(𝑡)T(𝐾𝐾T)−1𝐾𝑄(𝑧̄ − 𝑦) +

1

∫
𝑡

𝑑(𝜇̄1 − 𝜇̄2). (16)

Since 𝐵̇(𝑡) is a constant for 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1), 𝜇̄2(𝑡) = 0 and 𝜇̄1(𝑡) ≥ 0 for 𝑡 ∈ (𝑡𝑖, 𝜏1) and 𝜇̄1(𝑡) = 0 for 𝑡 ∈ (𝜏1, 𝜏2), it follows that...
𝑥̄ 1(𝑡) ≥ 0 for 𝑡 ∈ (𝜏1, 𝜏2). Note that

...
𝑥̄ 1 is also a constant on (𝜏1, 𝜏2). Thus ̈̄𝑥1(𝑡) is non-decreasing for 𝑡 ∈ (𝜏1, 𝜏2), ̈̄𝑥1(𝜏1) = 0,

and hence ̈̄𝑥1(𝑡) ≥ 0 for all 𝑡 < 𝜏2 that are close to 𝜏2. On the other hand, since ̈̄𝑥1 is continuous in (0, 1), by the Taylor theorem,
for every 𝑡 ∈ (𝜏1, 𝜏2), we have

𝑥̄1(𝑡) = 𝑥̄1(𝜏2) + ̇̄𝑥1(𝜏2)(𝑡 − 𝜏2) +
1
2
̈̄𝑥1(𝜏)(𝑡 − 𝜏2)2

= 𝑑(𝑡) + 1
2
̈̄𝑥1(𝜏)(𝑡 − 𝜏2)2,

for some 𝜏 ∈ [𝑡, 𝜏2]. This follows since 𝑥̄1(𝜏2) = 𝑑(𝜏2), and ̇̄𝑥1(𝜏2) = 𝑑̇(𝜏2) as 𝑥̄1 − 𝑑 has a maximum at 𝑡 = 𝜏2, while
𝑑(𝑡) = 𝑑(𝜏2) + 𝑑̇(𝜏2)(𝑡 − 𝜏2) for 𝑡 ∈ [𝜏1, 𝜏2] since 𝑑(𝑡) is linear. Since 𝑥̄1(𝑡) < 𝑑(𝑡) for 𝑡 ∈ (𝜏1, 𝜏2, there exist time instants 𝑡 < 𝜏2
arbitrary close to 𝜏2 where ̈̄𝑥1(𝑡) < 0. Consequently, Case 1 cannot occur.

The rest of the cases is analyzed similarly. Therefore, the solution can only have at most two additional knots in [𝑡𝑖, 𝑡𝑖+1].

4 REDUCTION TO TWO STAGE MINIMIZATION

Given any 𝑓 ∈ 𝑊 2,2[0, 1], let 𝜂(𝑓 ) be a vector with components 𝑓 (𝑡𝑖) and 𝜃(𝑓 ) be a vector with components 𝑓 ′(𝑡𝑖), 𝑖 =
1, 2,⋯ , 𝑁 + 2. Let

𝐽 (𝑓 ) = 0.5
(

‖𝑓 ′′
‖

2
2 + (𝜂(𝑓 ) − 𝑦)T𝑄(𝜂(𝑓 ) − 𝑦)

)

and consider the problem (1)-(2) which can be restated as

Minimize 𝐽 (𝑓 ) subject to 𝑓 ∈ 𝑊 2,2[0, 1], 𝑒(𝑡) ≤ 𝑓 (𝑡) ≤ 𝑑(𝑡). (17)

Define 𝜑(𝜂, 𝜃) as the value function of the following optimization problem:

Minimize 0.5
(

‖𝑓 ′′
‖

2
2 + (𝜂 − 𝑦)T𝑄(𝜂 − 𝑦)

)

subject to 𝑓 (𝑡𝑖) = 𝜂𝑖, 𝑓
′(𝑡𝑖) = 𝜃𝑖, 𝑖 = 1,⋯ , 𝑁 + 2, (18)

𝑒(𝑡) ≤ 𝑓 (𝑡) ≤ 𝑑(𝑡), 0 ≤ 𝑡 ≤ 1,
𝑓 ∈ 𝑊 2,2[0, 1].

We let 𝜑(𝜂, 𝜃) = +∞ if a feasible solution to (18) does not exist. Consider the problem:

Minimize 𝜑(𝜂, 𝜃)
subject to 𝜂 ∈  ∶= {𝜂 ∈ ℝ𝑁+2 ∶ 𝑒(𝑡𝑖) ≤ 𝜂𝑖 ≤ 𝑑(𝑡𝑖), 𝑖 = 1,⋯ , 𝑁 + 2} and 𝜃 ∈ ℝ𝑁+2. (19)

The solution to (19) exists and is unique. Indeed, let 𝑓 ∗ be the unique solution to (1)-(2), and define 𝜂∗ = 𝜂(𝑓 ∗), 𝜃∗ = 𝜃(𝑓 ∗).
If there exists 𝑓 ∗∗ which is feasible for (18) for some 𝜂∗∗, 𝜃∗∗ and 𝜑(𝜂∗∗, 𝜃∗∗) ≤ 𝜑(𝜂∗, 𝜃∗) then

𝐽 (𝑓 ∗∗) = 𝜑(𝜂∗∗, 𝜃∗∗) ≤ 𝜑(𝜂∗, 𝜃∗) = 𝐽 (𝑓 ∗).

Since 𝑓 ∗∗ is feasible for (1)-(2), this is only possible if 𝑓 ∗∗ = 𝑓 ∗ and 𝜂∗∗ = 𝜂∗, 𝜃∗∗ = 𝜃∗. By an analogous argument, solving
problem (18)-(19) should lead to the same solution as solving the original problem (1)-(2).

The problem (19) is a convex finite-dimensional optimization problem. Furthermore, the solution to problem (18) can be
easily computed.

For completeness, we demonstrate that the function𝜑 is strictly convex. Let 𝜂1, 𝜂2 ∈ [𝑒(𝑡1), 𝑑(𝑡1)]×⋯×[𝑒(𝑡𝑁+2), 𝑑(𝑡𝑁+2)] and
𝜃1, 𝜃2 ∈ ℝ𝑁+2. Let 𝑓 1 and 𝑓 2 be the solutions to (18) which correspond to 𝜂1, 𝜃1 and 𝜂2, 𝜃2, respectively. Consider 𝜆 ∈ (0, 1)
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and 𝜂0 = 𝜆𝜂1 + (1 − 𝜆)𝜂2, 𝜃0 = 𝜆𝜃1 + (1 − 𝜆)𝜃2, 𝑓 𝜆 = 𝜆𝑓 1 + (1 − 𝜆)𝑓 2. Then 𝑓 𝜆 is feasible for (18) with 𝜂 = 𝜂0, 𝜃 = 𝜃0. Let 𝑓 0

denote the solution to (18) corresponding to 𝜂0, 𝜃0. Note that 2𝜑(𝜂, 𝜃) can be decomposed into a sum of a function: A function

2𝜑̃(𝜂, 𝜃) = ‖(𝑓 )′′‖22 + (𝜂̃ − 𝑦̃)T𝑄̃(𝜂̃ − 𝑦̃), (20)

and another convex function, where 𝜂̃, 𝑦̃ are 2 × 1 vectors consisting of 𝑖th and 𝑗th components of 𝜂 and 𝑦, respectively, and 𝑖,
𝑗 and 𝑄̃ are identified in (3). Hence it is sufficient to show strict convexity of 2𝜑̃(𝜂, 𝜃). From 𝑄̃ ≻ 0, optimality of 𝑓 0 for 𝜂0, 𝜃0
and strict convexity of the 𝐿2 norm squared, we have

2𝜑̃(𝜂0, 𝜃0) = ‖(𝑓 0)′′‖22 + (𝜂̃0 − 𝑦)T𝑄̃(𝜂̃0 − 𝑦̃)
≤ ‖(𝑓 𝜆)′′‖22
+

(

𝜆(𝜂̃1 − 𝑦) + (1 − 𝜆)(𝜂̃2 − 𝑦̃)
)T𝑄̃

(

𝜆(𝜂̃1 − 𝑦̃) + (1 − 𝜆)(𝜂̃2 − 𝑦̃)
)

≤ 𝜆‖(𝑓 1)′′‖22 + (1 − 𝜆)‖(𝑓 2)′′‖22
+ 𝜆(𝜂̃1 − 𝑦̃)T𝑄̃(𝜂̃1 − 𝑦̃) + (1 − 𝜆)(𝜂̃2 − 𝑦̃)T𝑄̃(𝜂̃2 − 𝑦̃),

where the equality is only possible if (𝑓 1)′′(𝑡) = (𝑓 2)′′(𝑡) for almost all 0 ≤ 𝑡 ≤ 1 and 𝜂̃1 = 𝜂̃2, i.e., 𝑓 1(𝑡𝑖) = 𝑓 2(𝑡𝑖), 𝑓 1(𝑡𝑗) =
𝑓 2(𝑡𝑗). But this implies 𝑓 1 = 𝑓 2 and hence 𝜂1 = 𝜂2 and 𝜃1 = 𝜃2. This proves strict convexity.

Given a set of values {𝜂𝑖}𝑁+2
𝑖=1 , {𝜃𝑖}𝑁+2

𝑖=1 , 𝜂 = (𝜂1,⋯ , 𝜂𝑁+2)T and 𝑄 ⪰ 0, 𝜑(𝜂, 𝜃) can be computed as

𝜑(𝜂, 𝜃) = 0.5

[𝑁+1
∑

𝑖=1
𝜑𝑖(𝜂𝑖, 𝜃𝑖, 𝜂𝑖+1, 𝜃𝑖+1)

]

+ 0.5(𝜂 − 𝑦)T𝑄(𝜂 − 𝑦),

where 𝜑𝑖 is the value function of the following optimization problem for the interval [𝑡𝑖, 𝑡𝑖+1]:

Minimize ‖𝑓 ′′
‖

2
𝐿2[𝑡𝑖,𝑡𝑖+1]

(21)

subject to 𝑓 (𝑡𝑖) = 𝜂𝑖, 𝑓
′(𝑡𝑖) = 𝜃𝑖, 𝑓 (𝑡𝑖+1) = 𝜂𝑖+1, 𝑓

′(𝑡𝑖+1) = 𝜃𝑖+1, (22)
𝑒(𝑡) ≤ 𝑓 (𝑡) ≤ 𝑑(𝑡) for 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1, and 𝑓 ∈ 𝑊 2,2[𝑡𝑖, 𝑡𝑖+1].

Thus the inner-loop optimization problem (18) can be broken down into 𝑁 + 1 independent problems. Note that each of these
optimization problems is convex in 𝑊 2,2[𝑡𝑖, 𝑡𝑖+1] but infinite-dimensional. By the same arguments as in the proof of Theorem 1
(see also a similar treatment in7), the solution to (21)-(22) is a cubic spline for which one of the following holds in each interval
(𝑡𝑖, 𝑡𝑖+1):

1. The constraints are not active (Case 0).

2. A constraint is active at a single (isolated) point either on the lower constraint 𝑒 (Case 1) or on the upper constraint 𝑑
(Case 2). The point where the constraint is active is called a touching point.

3. A constraint is active on a proper interval; the segment on the constraint that is active is refereed to as the subarc. The
subarc can be on a lower constraint (Case 3) or on the upper constraint (Case 4).

4. The solution touches lower constraint at a single (isolated) point first and then the upper constraint at a single (isolated)
point (Case 5) or the upper constraint first at a single (isolated) point and then the lower constraint at a single (isolated)
point (Case 6). Such a solution is said to have a touching pair in [𝑡𝑖, 𝑡𝑖+1]

As it will become clear from Section 5, the numerical complexity of solving (21)-(22) primarily stems from Cases 5 and
6 that need to be handled numerically (Cases 0-4 can be solved analytically), and from the objective function of (19) being
differentiable almost everywhere yet potentially not everywhere. Strategies for addressing Cases 5 and 6 are further discussed
in Section 5 while a plethora of algorithms for nondifferentiable optimization19 is available for nonsmooth problems.
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5 NUMERICAL IMPLEMENTATION AND EXAMPLES

The numerical implementation has been carried out in MATLAB 2021a using the Optimization Toolbox and the Curve Fitting
Toolbox. The codebase written for this paper is uploaded to GitLab; its URL is included at the end of this paper.
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Example 1: Smooth Spline
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Example 1: Double Derivative of Smooth Spline

FIGURE 1 Top: The solution as 𝑞5,5 varies in the first example. Bottom: The second derivative of the solution.

The process of numerically solving the problem involves a two stage optimization. In the inner loop, independent problems
(21)-(22) are solved by constructing solution candidates for each of 7 cases (if exist) and selecting the one that has the smallest
𝐿2-norm. In the outer loop, the function 𝜑 is minimized in its domain. To reliably distinguish between the touching point and
subarc in the numerical implementation, the domain is slightly reduced to 𝑒(𝑡𝑖) + 𝜖 ≤ 𝜂𝑖 ≤ 𝑑(𝑡𝑖) − 𝜖 where 𝜖 > 0 is small.
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For the inner loop optimization in Case 0, the solution is a cubic polynomial and its coefficients are determined from the
boundary conditions by solving a system of four linear algebraic equations. In Cases 1 and 2, the cubic spline in [𝑡𝑖, 𝑡𝑖+1] consist
of two pieces adjoined at the touching point 𝑡𝑖 < 𝜏𝑖,1 < 𝑡𝑖+1. The boundary conditions of (21)-(22), the conditions that 𝑓 (𝜏𝑖,1),
𝑓 ′(𝜏𝑖,1) match the corresponding values of the constraint and its derivative, and the condition for the continuity of the second
derivative of the solution yield a cubic equation for the location of the touching point 𝜏𝑖,1 and eight linear algebraic equations
that determine the coefficients of the two cubic polynomials which constitute the cubic spline. Thus in Cases 1 and 2, up to three
solution candidates corresponding to the roots of the cubic polynomial need to be considered. The cubic spline with the subarc
in Cases 3 and 4 consist of two cubic polynomials adjoining a linear function from both sides. The equations for the ends of
the subarc 𝜏𝑖,1, 𝜏𝑖,2 and for the coefficients of two cubic polynomials are constructed similarly; they reduce to a system of linear
algebraic equations. For Cases 5 and 6, determining the location of the two additional knots (𝜏𝑖,1 and 𝜏𝑖,2) reduces to solving two
(coupled) multivariate polynomial equations of order five; then the coefficients of the three cubic polynomials are determined by
solving a system of linear algebraic equations. For the former, numerical methods are used. In MATLAB, the options are either
fsolve that uses Newton’s method or vpasolve which uses both symbolic and numerical manipulations. In the former case,
multiple starting points may need to be used to reliably determine all solution candidates (this is implemented in the function
ic_search of our codebase). While vpasolve is able to reliably find solutions, its run time is about 50 times slower than
fsolve without ic_search. A potential alternative solution, that we leave to future work, is to train a neural network offline to
compute the locations of additional knots in the touching pair given problem data in (𝑡𝑖, 𝑡𝑖+1) as inputs. Typically, many of the
solution candidates are discarded as they do not satisfy the constraints (this check reduces to finding minima of a cubic function)
or the conditions informing each Case.

In the outer loop the function𝜑 is minimized. This function is strictly convex and Lipschitz continuous but may be nonsmooth.
In MATLAB, fminsearch function is available which implements the Nelder–Mead’s method which does not rely on the use
of the gradient information. The alternative is the use of the function fmincon which is intended for smooth problems, but as
it relies only on function values for the computations, it can be applied to minimizing our function. Our numerical experiments
indicated that fminsearch gives a larger cost solution as compared to fmincon and, furthermore, with fminsearch the second
derivative of the solution is not continuous. In addition, fminsearch is slower than fmincon. Hence our final implementation
uses fmincon. A plethora of computational methods for nonsmooth optimization exist19 which could be alternatively used.

Two numerical examples are reported in Figure 1 and Figure 2. In these examples, the starting point (𝜂0, 𝜃0) for for the
outer-loop optimization was set so that

𝜂0𝑖 = 0.5(𝑒(𝑡𝑖) + 𝑑(𝑡𝑖)), 𝜃0𝑖 = 0, 𝑖 = 1,⋯ , 𝑁 + 2.

Both examples were defined on an interval different from [0, 1] (originally assumed in our analysis) in order to illustrate a
more general situation. In the first example, the interval is [𝑡1, 𝑡𝑁+2] = [0, 3] and 𝑁 = 5 (7 data points). In the second example,
the interval is [𝑡1, 𝑡𝑁+2] = [13, 25] and 𝑁 = 4 (6 data points). The constraints 𝑒 and 𝑑 are indicated by the dashed lines in
Figures 1 and Figure 2.

In the examples the matrix 𝑄 coincides with the identity matrix except for one diagonal element which is varied to illustrate
the effects of increasing/decreasing the weight corresponding to a given data point; when this weight is set to ∞ it means that
𝜂𝑗 is fixed at 𝑦𝑗 and not adjusted in the outer loop optimization (i.e., we replace smoothing by an interpolation constraint at that
specific point). Such 𝜂𝑗 is indicated by ’o’ in Figures 1 and Figure 2. In the first example 𝑞5,5 is varied and in the second example
𝑞3,3 is varied. The increase in the weight causes the solution to approach closer the specified data point.

The locations of 𝑦𝑖 are indicated by ’x’ in Figures 1 and Figure 2 and the additional knots in each interval (𝑡𝑖, 𝑡𝑖+1) are indicated
by ’*’. To avoid excessive annotation, the knots located at the intervals’ starting and ending points (𝑡𝑖’s) are not marked.

Note that the second derivative of the constructed solution is continuous and piecewise linear in both examples, and that the
second derivative being zero at 𝑡1 and 𝑡𝑁+2 is consistent with our theoretical results.

The computations were carried out on a Lenovo Legion Y520 computer with 16GB of RAM and an Intel Core i7-7700HQ
2.80GHz processor. When fsolve without ic_search was used, the runtime was several minutes of calculation. This run
time could be improved by warm starting (e.g., from an unconstrained interpolating cubic spline).

Remark 1: As an alternative approach to our problem, we could consider a discretized approximation of the original problem.
Specifically, suppose we discretize the interval [𝑡0, 𝑡𝑁+2] into 𝑚 equally spaced sub-intervals, where 𝑚 ≫ 𝑁 + 2, with the
sub-interval end points being {𝜏𝑘}𝑚𝑘=0. Then we could consider two strategies.

https://www.mathworks.com/help/optim/ug/fsolve.html
https://www.mathworks.com/help/symbolic/sym.vpasolve.html
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Example 2: Double Derivative of Smooth Spline

FIGURE 2 Top: The solution as 𝑞3,3 varies in the second example. Bottom: The corresponding second derivative.

The first and fairly standard strategy would be to treat 𝑢 as a constant in interval [𝜏𝑘, 𝜏𝑘+1[ and only impose constraints on 𝑥1
at 𝜏𝑘’s. The problem with this formulation is that 𝑢 is piecewise constant and may not be not continuous, which is not consistent
with our theoretical results derived for the original infinite-dimensional optimization problem. Specifically, we know that the
optimal 𝑢 must be continuous on [𝑡0, 𝑡𝑁+2] and satisfy 𝑢(𝑡0) = 𝑢(𝑡𝑁+2) = 0. The second formulation tries to address this by
treating the third derivative 𝑣 =

...
𝑥 1 of 𝑥1 as constant in each sub-interval [𝜏𝑘, 𝜏𝑘+1[; similarly, we only impose the constraints

on 𝑥1 at 𝜏𝑘’s.
It can be easily shown that both discretized approximation approaches reduce to quadratic programming (QP) problems. Such

problems can then be solved using QP solvers.
The main issue with the above discretized approximation approaches is that the constraints are only imposed and enforced at

the points, 𝜏𝑘. Hence, unlike with the approach proposed in this paper, “intersample” constraint violations could occur. Addi-
tionally, the QP problem can be large-dimensional and not trivial to solve if fine discretization is used. At the same time, if the
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QP problem could be solved cheaply (e.g., for not very fine discretization) then an approximate solution through the discretiza-
tion and quadratic programming could be of use for warm-starting, i.e., for providing an initial guess to both the outer loop and
the inner loop optimizers described in this paper. We leave the comprehensive investigation of potential synergies between the
approach in this paper and alternative approaches based on discretization and quadratic programming to a future publication.

6 CONCLUSIONS

In this paper we considered a problem of best smoothing in a strip and connected this problem to a state-constrained optimal
control problem for the double integrator. Conditions for the existence and uniqueness of the solution were given under which
the solution was shown to be a cubic spline with no more than two additional knots in each interval between the given data points.
A numerical algorithm for solving this problem based on a two stage minimization was proposed; its efficacy was illustrated
using numerical examples.
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