Supplementary Materials for “On Functional

Processes with Multiple Discontinuities”

Jialiang Li*
Department of Statistics and Applied Probability

National University of Singapore

Yaguang Li

School of Management, University of Science and Technology of China

Tailen Hsing
Department of Statistics, University of Michigan, USA

1 Additional results from simulation study

In this section, we provide more simulation results. The following part includes
the Gaussian and the heavy tailed cases with sample size n = 100, m = 100, and

n =50, m = 300.

1.1 Simulation 1

Consider the same mean function settings as in the main paper:

o Setting 1: pu(t) = sin(2rt) + cos(2mt) + 12+ So_ dil (t > 73),
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with M = 3 change points at (71, 72, 73) = (0.25,0.5,0.75) and jump sizes (dy, da, d3) =
(0.5,—0.4,0.4), and

o Setting 2: u(t) = sin(27t) + Soo_, dil(t > 71.),

with M = 5 change points at (71,72, 73,74, 75) = (0.167,0.333,0.500, 0.667,0.833)
and jump sizes (dy,ds,ds,dy,ds) = (0.45,—0.5,0.45,—0.5,0.45). The true covari-

ance function is designed as
R(s,t) = iéwk@)wk(t), s,t €[0,1],
ot
where &, = 1/(k+1)%, k=1,2,3, and
Vi) =1,  et) = V2sin(27t),  ¥s(t) = V2 cos(2t).

The data are then generated from model with T;; ~ Uniform[0,1], U;; =
22:1 aixx(T;;) where a;, are independent from N(0,&;) and e;; ~ N(0,0.2?).

In addition to the cases considered in the main paper, we consider another
setting with n = 100, m = 100, and n = 50, m = 300, where m; ~ Poisson(m) for
different settings, which stands for a purely ultra-dense functional data with small
n.

Tables present the performance of the proposed change point detection
procedure for the case n = 100, m = 100, and n = 50, m = 300. Observe that the
performance improves as the m; increases. The MISEs are reported in Table

Furthermore, Figure [1] displays representative smoothed mean estimation after
consistently detecting the change point in three settings along with the 95% confi-
dence band constructed from asymptotic normal approximation. The selected curve
estimation corresponds to the case with median MISE among the L simulations.

Similar as n = 400 case, the estimation accuracy improves when m; increases.

1.2 Simulation 2

We next generate data assuming a heavy-tailed process to illustrate the applicability

of our proposed methods. We consider the same true mean and covariance function



Table 1: Performance of change point detection for setting 1 in simulation 1. The

corresponding standard deviations are in the parentheses.

n =100, m = 100 n = 50, m = 300

SUBJ Mean(]\/f\) - M

OBS

MIX

Med(M) — M
E(M = M)[%]
max; min; |7; — 7;|
max; min; |7; — 7;|
maxy \cﬁ — di|
Mean(]\/i) - M
Med(M) — M
E(M = M)[%]
max; min; |7; — 7;|
max; min; |7; — 7;|
maxy \(;l\k — di|
Mean(]\//j) - M
Med (M) — M
E(M = M)[%]
max; min; |7; — 7;|
max; min; |7; — 7;|

maxj, |c/l\k — d|

-0.010
0
85.0
0.0138 (0.0463)
0.0263 (0.0904)
0.1276 (0.0916)
-0.020
0
92.0
0.0063 (0.0291)
0.0156 (0.0597)
0.1322 (0.0823)
-0.030
0
94.0
0.0046 (0.0221)
0.0159 (0.0695)
0.1434 (0.1148)

-0.075
0
92.5
0.0001 (0.0001)
0.0188 (0.0666)
0.1055 (0.0395)
0.010
0
95.0
0.0030 (0.0189)
0.0063 (0.0395)
0.0862 (0.0371)
-0.045
0
95.5
0.0001 (0.0001)
0.0113 (0.0519)
0.0957 (0.0385)

settings given in the preceding subsection, except that, the data are generated from
model where T;; ~ Uniform[0, 1], U;; = 22:1 aixi(Ti;), i are independent
from t-distributed with 3 degree of freedom and e;; follows a t-distribution with 3
degree of freedom and variance 0.03.

Eyeballing Tables we note that the accuracy of change point detection is
increasing as the observations become denser. Similarly, examining Tables [0 the

MISE for pi suggest good overall performance of our proposed estimator.



Table 2: Performance of change point detection for setting 2 in simulation 1. The

corresponding standard deviations are in the parentheses.

n =100, m = 100 n = 50, m = 300

SUBJ Mean(]\/f\) - M

OBS

MIX

Med(M) — M
E(M = M)[%]
max; min; |7; — 7;|
max; min; |7; — 7;|
maxy \cﬁ — di|
Mean(]\/i) - M
Med(M) — M
E(M = M)[%]
max; min; |7; — 7;|
max; min; |7; — 7;|
maxy \(;l\k — di|
Mean(]\//j) - M
Med (M) — M
E(M = M)[%]
max; min; |7; — 7;|
max; min; |7; — 7;|

maxj, |c/l\k — d|

0.010
0
98.5
0.0014 (0.0085)
0.0007 (0.0050)
0.1243 (0.0427)
-0.020
0
98.0
0.0005 (0.0031)
0.0038 (0.0233)
0.1291 (0.0753)
-0.030
0
97.0
0.0009 (0.0070)
0.0066 (0.0314)
0.1300 (0.0867)

-0.020
0
96.0
0.0014 (0.0115)
0.0057 (0.0297)
0.1095 (0.0421)
-0.020
0
98.0
0.0001 (0.0001)
0.0032 (0.0227)
0.1046 (0.0366)
0.015
0
97.0
0.0019 (0.0130)
0.0016 (0.0159)
0.1026 (0.0378)

Again, Figure [2| displays representative smoothed mean estimation after consis-
tently detecting the change point along with the 95% confidence band constructed
from asymptotic normal approximation. The estimated variances are somehow more
diverging due to the heavy tailed distribution. In general, as n or m; increases the

estimation accuracy improves.



Table 3: MISE (x1072) of fips, fisub; and f, in Simulation 1. The corresponding

standard deviations are in the parentheses.

(n,m) (n =50,m =300) (n=100,m = 100)

Setting 1 iy 0.0715 (0.0002)  0.1064 (0.0436)
A2 0.2609 (0.0225)  0.3068 (0.0412)
fiow;  0.0835 (0.0332)  0.1174 (0.0548)
AZY.0.2679 (0.0201)  0.3104 (0.0454)
Lo, 0.0712 (0.0303) 0.1082 (0.0484)
AZW 02668 (0.0247)  0.3073 (0.0410)

Setting 2 i 0.0768 (0.0288)  0.1021 (0.0376)
G4V 0.3244 (0.0421)  0.4517 (0.0544)
Hsub;  0.0784 (0.0275) 0.1020 (0.0344)
AZW0.3245 (0.0422)  0.4446 (0.0551)
Jo 00732 (0.0275)  0.1114 (0.0388)
A7W 03248 (0.0422)  0.4524 (0.0599)

2 Additional case studies

2.1 Australian Temperature Data

Australian daily minimum temperature climate data form year 1855 to 2012 for 8
different stations are investigated in |Aue et al. (2018). The stations that the daily
temperature data is taken are: Sydney (Observatory Hill), Melbourne (Regional
Office), Boulia Airport, Cape Otway Lighthouse, Gayndah Post Office, Gunnedah
Pool, Hobart (Ellerslie Road), Robe Comparison. The data is taken from Australian
Government Bureau of Meteorology. The daily observations are available from
http://www.bom.gov.au/climate/data. Copyright Commonwealth of Australia
2010, Bureau of Meteorology. The data is available in the R package fChange.
Definitions of variables are adapted from http://www.bom.gov.au/climate/dwo/

IDCJDWO000. shtml.


http://www.bom.gov.au/climate/data
http://www.bom.gov.au/climate/dwo/IDCJDW0000.shtml
http://www.bom.gov.au/climate/dwo/IDCJDW0000.shtml
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Figure 1: Smoothed mean function estimation and 95% confidence band from
asymptotic normal approximation with the mixture weight. The two columns cor-
respond to setting 1 and setting 2, and the two rows correspond to m = 100, 300,

respectively.

We take the Sydney station data as an example to illustrate our method. Based
on the work of Aue et al.| (2018)), a subset is extracted which we can assume that the
data follow an identical distribution. The extracted dataset consists of m; = 365
(366 in leap years) daily measurements of minimum temperatures from year 1957
to 2011 (n = 55) . We then apply our method to estimate the mean curve for daily
minimum temperature for this station. From Figure [3] 2 jumps are detected at
July 5 and October 26 of an average year. The estimated jump sizes at the five
points are —0.809 and 0.630, respectively. The overall mean curve thus displays

four smoothing segments, indicating sudden changes in different seasons. Also, to



Table 4: Performance of change point detection for setting 1 in simulation 2. The

corresponding standard deviations are in the parentheses.

n =100, m = 100 n = 50, m = 300

SUBJ Mean(]\/f\) - M

OBS

MIX

Med(M) — M
E(M = M)[%]
max; min; |7; — 7;|
max; min; |7; — 7;|
maxy \cﬁ — di|
Mean(]\/i) - M
Med(M) — M
E(M = M)[%]
max; min; |7; — 7;|
max; min; |7; — 7;|
maxy \(;l\k — di|
Mean(]\//j) - M
Med (M) — M
E(M = M)[%]
max; min; |7; — 7;|
max; min; |7; — 7;|

maxj, |c/l\k — d|

0.020
0
84.0
0.0124 (0.0395)
0.0284 (0.0934)
0.1136 (0.0422)
0.020
0
85.0
0.0157 (0.0481)
0.0173 (0.0630)
0.1140 (0.0793)
-0.120
0
89.0
0.0071 (0.0296)
0.0421 (0.0989)
0.1365 (0.1422)

-0.030
0
97.0
0.0001 (0.0001)
0.0075 (0.0427)
0.0960 (0.0446)
-0.021
0
98.0
0.0001 (0.0001)
0.0053 (0.0361)
0.0970 (0.0392)
-0.065
0
91.5
0.0019 (0.0153)
0.0200 (0.0678)
0.1047 (0.0718)

compare the individual estimate, we estimate the individual functions using the two
methods described for the preceding example. We select 9 latest years and show

their estimates in Figure[d, We make similar observations as the previous examples.
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Table 5: Performance of change point detection for setting 2 in simulation 2. The

corresponding standard deviations are in the parentheses.

n =100, m = 100 n = 50, m = 300

SUBJ Mean(M) — M -0.030 -0.010
Med(M) — M 0 0
E(M = M)[%] 97.0 96.5

max; min; |7; — 7;|
max; min; |7; — 7;|

maxy \cﬁ — di|

0.0006 (0.0021)
0.0054 (0.0274)
0.1236 (0.0437)

0.0019 (0.0136)
0.0041 (0.0253)
0.1049 (0.0682)

OBS  Mean(M) — M -0.010 -0.005
Med(M) — M 0 0
E(M = M)[%] 97.0 96.5
max; min; | — 75| 0.0012 (0.0084) 0.0019 (0.0136)
max; min; |7; — 7;| 0.0036 (0.0226) 0.0041 (0.0253)
maxy, |dy — di| 0.1126 (0.0716) 0.1050 (0.0681)
MIX  Mean(M) — M -0.045 -0.015
Med(M) — M 0 0
E(M = M)[%] 94.5 98.0

max; min; |7; — 7;|
max; min; |7; — 7;|

maxj, |c/l\k — d|

0.0014 (0.0113)
0.0093 (0.0473)
0.1182 (0.0622)

0.0011 (0.0110)
0.0028 (0.0204)
0.1056 (0.0546)
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Table 6: MISE (x1072) of fiops, fisub; and [, in Simulation 2. The corresponding

standard deviations are in the parentheses.

(n,m) (n =50,m =300) (n=100,m = 100)

Setting 1 s 0.0755 (0.0311)  0.1008 (0.0387)
aav0.2638 (0.0231) 0.3008 (0.0380)
fow;  0.0682 (0.0292)  0.1080 (0.0475)
ﬁsZqu[g 0.2650 (0.0255) 0.3064 (0.0425)
J. 00738 (0.0323)  0.1121 (0.0536)
G2 0.2641 (0.0256)  0.3107 (0.0357)

Setting 2 figps  0.0737 (0.0276)  0.0986 (0.0380)
A4V 0.3222 (0.0476)  0.4398 (0.0602)
Qo 0.0738 (0.0277)  0.1081 (0.0524)
AZW0.3221 (0.0477)  0.4379 (0.0655)
Lo, 0.0715 (0.0297) 0.1042 (0.0539)
GZW0.3227 (0.0428)  0.4347 (0.0606)
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Figure 2: Smoothed mean function estimation and 95% confidence band from
asymptotic normal approximation with the mixture weight. The two columns cor-
respond to setting 1 and setting 2, and the two rows correspond to m = 100, 300,

respectively.
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Figure 3: Mean curve of the Sydney Temperature (Degree C) for the period 1957-
2011. Left panel: The red solid line is the mean function estimate fi(t), the vertical

dash lines show the change point locations, the green curve is the estimate using

Xia and Qiul (2015)). Right panel: Smoothed mean function estimation and 95%

confidence band from asymptotic normal.
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Figure 4: Individual mean curve of the Sydney temp for the period 2004-2012. The

blue curve is the individual estimate and the red curve is fi(f) using our approach.
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