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Abstract

We consider the problem of estimating multiple change points for a func-

tional data process. There are numerous examples in science and finance in

which the process of interest may be subject to some sudden changes in the

mean. The process data that are not in a close vicinity of any change point

can be analyzed by the usual nonparametric smoothing methods. However,

the data close to change points and contain the most pertinent information

of structural breaks need to be handled with special care. This paper consid-

ers a half-kernel approach that addresses the inference of the total number,

locations, and jump sizes of the changes. Convergence rates and asymptotic
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distributional results for the proposed procedures are thoroughly investigated.

Simulations are conducted to examine the performance of the approach, and

a number of real data sets are analyzed to provide an illustration.

Keywords: change point, functional data, convergence rate, kernel smoothing,

phase transition, structural break

1 Introduction

Nonparametric techniques for functional data analysis (FDA) are well established

and widely applied in practice. See Ramsay and Silverman (2005), Horváth and

Kokoszka (2012), Hsing and Eubank (2015), and Wang et al. (2015) for an overview.

For identification of meaningful subgroups and distinct patterns in functional data,

earlier works include Chiou and Li (2007), Chiou and Müller (2014) and Chiou

(2012). In this paper we attempt to identify different sub-regions of the functional

process delineated by discontinuities of the mean function. This focus is different

from those earlier discussion on change points with functional data.

Many scientific and business inquiries require the modelling of functional data

with multiple change points. For example, a phase of a thermodynamic system and

the states of matter have uniform physical properties. During a phase transition

of a given medium, certain properties of the medium change, often discontinuously,

as a result of the change of some external condition such as temperature or pres-

sure. Another example is the financial and economic forecasting problem where two

consecutive business cycles may each be described by a smooth process but discon-

nected at the joining time caused by some unexpected drastic change in economic

outlook. Identification of the change-point structure for a period with multiple

business cycles may improve the forecasting for production, prices, interest rates

and other financial measurements.

We first fix our scope for functional data in this paper. In a typical functional-

data setting, a sample of n curves are observed at a set of discrete, cross-sectional

points; denote bymi the number of observations for curve i, i = 1, · · · , n. Generally
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speaking, there are two different sample settings (Cai and Yuan, 2011). Let Tij

denote the location of the j-th observation for the i-th curve. In a common design,

the observations are sampled at the same locations across curves, that is, T1j =

T2j = · · · = Tnj =: Tj for all j = 1, . . . ,m; mostly likely, the Tj are points on a

fixed grid. A more general setting is when the Tij are independently sampled from

a bounded interval [a, b], which we shall refer to as independent design. One may

also distinguish between dense and sparse functional data (see, e.g., Li and Hsing,

2010; Zhang and Wang, 2016), which roughly correspond to whether each mi is

larger than some power of n or all mi’s are bounded by a finite positive number.

Our theoretical results will focus on the independent design setting since doing so

allows us to treat the sparse and dense settings in a unified manner. However, we

note that when the data are dense, the differences between the common design and

independent design settings are small both in theory and computations.

Numerous studies have focused on detecting change points in the mean for uni-

variate series. Wu and Chu (1993) proposed a kernel-type estimators of jump points

in the fixed-design nonparametric regression model. Csörgö and Horváth (1997)

provided an account of early results in change-point detection mainly for data

with independent and identically distributed (i.i.d.) error terms. Zhang (2016)

discussed a nonparametric test for change-point detection under dependent and

non-stationary errors. Górecki et al. (2018) proposed a test for shifts in the mean

of a heteroscedastic time series which accommodates the possibility of changing

variability. See Qiu et al. (1991), Spokoiny et al. (1998), Qiu (2005) and Gijbels

et al. (2007) for additional results on nonparametric change-point detection. For

multivariate high dimensional dependent series, Xu et al. (2016) considered detect-

ing change points for the variance for blocked time series and dependent panel data.

Gromenko et al. (2017) extended the cumulative sum paradigm test statistics for

detecting whether the pattern of a spatio-temporal process has changed over a time

period. Wang and Samworth (2018) studied the change point in high-dimensional

time series of which the mean structure changes in a sparse subset of the coordi-

nates. Recently, Li et al. (2019) proposed a new nonparametric procedure to detect
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change points in the mean of high-dimensional time series data taking into account

both spatial and temporal dependence.

The research on change-point detection for functional data only began recently

and most of the existing works focus on the change-point detection in the mean

of functional observations. For example, Berkes et al. (2009) considered a (single)

break in the mean function assuming that the error terms are i.i.d. curves, and Aue

et al. (2009) assumed that the change size can be both a constant or approaching

zero as the sample size tends to infinity. The results in Berkes et al. (2009) and Aue

et al. (2009) were generalized by Aston and Kirch (2012) to deal with an epidemic

change model, where after the initial change the mean changes back to the original

level after some time. Aue et al. (2014) studied the change of regression operator

in a functional regression model, and Aue et al. (2018) developed a functional test

statistics for detecting and dating structural breaks in functional data. Bardsley

et al. (2017) introduced several asymptotic methods to test the null hypothesis

that the mean structure of a sequence of curves does not change by taking into

account their range and other aspects of their shapes. These aforementioned works

on change points in the context of functional data all have quite different focuses

from ours in this paper.

Most of the earlier works on change point detection focused on single change

point estimation. The problem of multiple change points is more challenging as the

estimation of the unknown number of change points adds an extra layer of difficulty.

Recent research has paid more attention to computational and theoretical devel-

opment for multiple change point. Fryzlewicz (2014) considered a wild binary seg-

mentation method for consistent estimation of the number and locations of multiple

change points for independent data. Li and Jin (2018) introduced another approach

for multiple change point detection where a non-concave penalization approach was

adopted. Their framework can be extended to covariate change point in regression

analysis. However, these approaches are only suitable for independent data with

parametric functionals. For discontinuous nonparametric curve estimation, Xia and

Qiu (2015) proposed a jump information criterion to consistently detect the number
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of jumps through kernel smoothing. Their work is only pertinent to cross-sectional

data and cannot be directly applied to functional data.

In this paper, we introduce a nonparametric framework for change-point anal-

ysis based on functional data. We detect the multiple jump discontinuities in the

mean function using a local linear smoother that employs a one-sided kernel. After

the jump locations are identified, we can then estimate the jump sizes as well as

the smooth component of the mean function and the covariance function. While

the within-curve dependency in the functional-data setting poses extra challenges

compared with nonparametric regression, it also leads to richer theoretical devel-

opments. We will prove a range of convergence rates for our estimates depending

on the denseness of the observation points on each curve. In particular, our results

for the jump location/size estimation show a “phase transition” of rates as obser-

vations per curve changes from sparse to dense. This is akin to the results on mean

function estimation in, e.g., Li and Hsing (2010); Cai and Yuan (2011); Zhang and

Wang (2016). Moreover, the asymptotic normality of the mean estimator is also

discussed after the change points are consistently detected, where a pointwise con-

fidence band can be constructed for the estimated mean function. Our results are

both general and sharp. Different types of sampling weights are considered and our

convergence rates reflect clearly the roles of the smoothing parameters. Further-

more, the functional process is not limited to the Gaussian process and can have

heavy-tailed marginal distributions, as demonstrated in the simulation studies.

This paper is organized as follows. In Section 2, we introduce the model and

data structure as well as all the estimation procedures. We establish the theoretical

properties of the procedures in Section 3, where we also discuss the optimal rates of

change point estimation and their connections to prominent results in the literature.

Some simulation studies are provided in Section 4, and real data applications in

Section 5. All proofs are included in Appendix.

2 Model Assumptions and Methodology
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2.1 Model Assumptions

Let {X(t), t ∈ [a, b]} be a stochastic process defined on a fixed bounded interval

[a, b]. Without loss of generality, we assume that [a, b] = [0, 1]. Denote the mean

and covariance function of X(t) by

µ(t) = E{X(t)}, R(s, t) = cov{X(s), X(t)},

which are assumed to exist. Let

U(t) := X(t)− µ(t)

denote the zero-mean stochastic component of X(t).

The goal is to estimate the mean and covariance function based on noisy func-

tional data {(Yij, Tij), i = 1, . . . , n, j = 1, . . . ,mi}, where

Yij = Xi(Tij) + eij = µ(Tij) + Ui(Tij) + eij, (1)

where the Xi’s are i.i.d. realizations of X, the Tij’s are i.i.d. random observational

points with density function fT (·), and the eij’s are i.i.d. random errors with mean

zero and finite variance σ2. The index T may be the temperature variable in a

physics research study, the time variable in a financial time series, or the location

variable in a spatial or image data. In our asymtotic theory, we allow mi to vary

with n and we will address scenarios where the mi’s are bounded or tend to ∞.

The mean function µ is a usually assumed to be smooth in the functional data

literature (cf. Li and Hsing, 2010; Zhang and Wang, 2016). However, as explained

in Section 1, there are scenarios where it would be more realistic to allow µ to have

discontinuities. We consider the situation that the mean function µ(t) have jump

discontinuities at M different locations, τ1, τ2, . . . , τM ∈ (0, 1), such that

µ(t) = ν(t) +
M∑

k=1

dkI(t ≥ τk), (2)

where ν(t) is a smooth function with a bounded second-order derivative, and {dk :
k = 1, . . . ,M} are the jump sizes. For convenience, assume that |d1| > |d2| > · · · >
|dM | > 0. Our goal is to conduct inference on the (τk, dk),M, ν and R.
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2.2 Mean function estimation

Since the mean function µ(t) is smooth except at the change points τ1, . . . , τM , one

may adopt the familiar local linear regression estimator (Fan and Gijbels, 1996) to

deal with the smooth part of µ. Let K(·) be a bounded symmetric kernel function

with support [−1, 1] and Kh(t) = (1/h)K(t/h) where h is bandwidth. Recall that

the local linear estimator µ̂(t;h) of µ(t) in Li and Hsing (2010) can be obtain as â0,

where

(â0, â1) = argmin
a0,a1

n∑

i=1

wi

mi∑

j=1

{Yij − a0 − a1(Tij − t)}2Kh(Tij − t). (3)

and the weight wi is attached to each observation for the ith subject such that
∑n

i=1miwi = 1. It follows that

µ̂(t;h) =
R0(t)S2(t)−R1S1(t)

S0(t)S2(t)− S2
1(t)

, (4)

where

Sr(t) =
n∑

i=1

wi

mi∑

j=1

Kh(Tij − t){(Tij − t)/h}r,

Rr(t) =
n∑

i=1

wi

mi∑

j=1

Kh(Tij − t){(Tij − t)/h}rYij, r = 0, 1, 2.

(5)

This estimator was studied in detail in Li and Hsing (2010) and Zhang and Wang

(2016) assuming that µ(t) has bounded second derivative. Since µ̂(t;h) is a local

estimator, so long as t is not within a distance of h from any τk, the properties of

µ̂(t;h) are identical to those found in Li and Hsing (2010) and Zhang and Wang

(2016). Thus, one approach to estimating the τk might be to focus on the locations

where µ̂ changes rapidly. However, this is not an effective approach.

Let

Y ∗
ij = Yij −

M∑

k=1

dkI(Tij ≥ τk) (6)

for which the mean function is ν(t) by (2). Then the local linear estimator is

ν̂∗(t;h) =
R∗

0(t)S2(t)−R∗
1(t)S1(t)

S0(t)S2(t)− S2
1(t)

,
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where R∗
r(t) is obtained by replacing Yij with Y

∗
ij in Rr(t). We can refer to ν̂∗(t;h)

the “oracle” estimator of ν(t) as we assume the jump locations and sizes are known.

Clearly,

Rr(t)−R∗
r(t) =

n∑

i=1

mi∑

j=1

Kh(Tij − t)

(
Tij − t

h

)r M∑

k=1

dkI(Tij ≥ τk). (7)

Observe that, for t not within a distance of h from any τk, we have µ̂(t;h)−ν̂∗(t;h) =
∑

k dkI(t ≥ τk) and therefore

µ̂(t;h)− µ(t) = ν̂∗(t;h)− ν(t). (8)

For t within a distance of h from some τk, the relationship between µ̂(t;h) and

ν̂∗(t;h) is more complicated and we will defer that to Section 3. In the rest of the

paper, we focus on the case where the (τk, dk) are unknown.

2.3 Estimating discontinuities

In this subsection, we consider estimating the unknown locations and sizes of the

discontinuities of µ using a so-called half-kernel approach. Asymmetric, one-sided,

kernels were sometimes used to address the boundary issues in the early literature

of kernel smoothing (cf. Gasser and Muller, 1984; Rice, 1984). Qiu et al. (1991)

and Xia and Qiu (2015) considered a difference kernel estimator based one-sided

local linear regression to detect discontinuities in the mean regression curve. Wu

and Zhao (2007) proposed a test statistic using the difference between the left

and right local averages of observations for identifying the existence of structural

breaks in trends. Recently Cao et al. (2016) used the half-kernel approach to handle

asynchronous longitudinal data.

Let

K−(t) = K(t)1{t∈[−1,0)} and K+(t) = K(t)1{t∈[0,1]}

be the two one-sided kernel functions corresponding to the symmetric kernel func-

tion K(·). Denote

Kh,ℓ(t) = (1/h)Kℓ(t/h), ℓ = ±.

8

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



for a bandwidth h. Then, for a given interior point t ∈ [h, 1− h], by using the data

points in the two halves [t − h, t) and [t, t + h] of the neighborhood [t − h, t + h]

we obtain the two one-sided local linear estimators µ̂−(t;h) and µ̂+(t;h), which are

simply obtained in the same way as (3) and (4) using K− and K+ as the kernels.

Now, define

∆n(t;h) = µ̂+(t;h)− µ̂−(t;h). (9)

Note that if [t − h, t) does not contain any τk, then, as a special case of µ̂(t;h),

µ̂−(t;h) estimates µ(t) and its asymptotic properties are no different from the gen-

eral local linear estimator for continuous µ(t); the same can be said for µ̂+(t) if

[t, t+h] does not contain any τk. In particular, if [t−h, t+h] does not contain any

τk, then both µ̂−(t;h), µ̂+(t;h) estimate µ(t) under suitable conditions and there-

fore ∆n(t;h) is expected to be small. On the other hand, as we shall see below, if

a point t is within a distance h of some τk, say t = τk + λh for some λ ∈ [−1, 1]

and a suitable bandwidth h, then µ̂−(t;h) and µ̂+(t;h) would be estimating quan-

tities that differ roughly by the jump size. These ideas motivate the approach to

be introduced below.

For clarity, formally define the h-neighborhoods of the τk as follows. Let

Dh = [h, 1− h], Dh,k = [τk − h, τk + h], k = 1, . . . ,M,

and

Dh,M1→M2
=

M2⋃

k=M1

Dh,k, D̄h,M1→M2
= Dh\Dh,M1→M2

, 1 ≤M1 ≤M2 ≤M.

As explained earlier, D̄h,1→M contains no change points and the detection criterion

|∆n(t;h)| is expected to be small in D̄h,1→M . On the other hand, |∆n(t;h)| is

expected to reflect the jump sizes in any of the Dh,k.

We first consider the estimation of the τk. To do so we begin by assuming that

M is known but will later return to the case of unknown M . Let

τ̂1 = τ̂1(hτ ) := argmax
t∈Dhτ

|∆n(t;hτ )| (10)
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be the first change point candidate, where hτ is the bandwidth used for this step.

Similarly, τ̂2 is the maximizer of |∆n(t;hτ )| in the set Dhτ
\D̂ǫhτ ,1, where D̂ǫhτ ,1 =

[τ̂1 − ǫhτ , τ̂1 + ǫhτ ], with ǫ > 1, is the region excluding the ǫhτ -neighborhood of the

first identified change point. There is flexibility in choosing ǫ but for convenience

we will let ǫ = 2 in our procedure. The recursive formula of τ̂k is

τ̂k = τ̂k(hτ ) := argmax
t∈Dhτ \

⋃k−1

i=1
D̂ǫhτ ,i

|∆n(t;hτ )|, k = 1, . . .M, (11)

where D̂ǫhτ ,i = [τ̂i − ǫhτ , τ̂i + ǫhτ ].

For estimating dk, an obvious candidate is ∆n(τ̂k;hτ ) (cf. Xia and Qiu, 2015).

However, this approach does not achieve the optimal rate in some cases for func-

tional data. Thus, we propose the following modified approach. Theorem 3.2 shows

that |τ̂k − τk| = O(h2τ + hτ ςn(hτ )), where

ςn(h) =

{
log n

n∑

i=1

mi

(
(mi − 1) + 1/h

)
w2

i

}1/2

. (12)

Thus, if we pick ρd to be of a bigger order of magitude than h2τ + hτ ςn(hτ ), then

τ̂k − ρd < τk and τ̂k + ρd > τk for large n. This motivates the estimator

d̂k(hτ , hd, ρd) = µ̂+(τ̂k + ρd;hd)− µ̂−(τ̂k − ρd;hd). (13)

The considerations for selecting hτ and hd are not entirely the same, as will be seen

in Theorem 3.2 and the discussions in Section 3.3.

After obtaining the estimates τ̂k, d̂k, we can define the following estimate for the

mean function

µ̂(t;hτ , hd, ρd) = ν̂(t;hτ ) +
M∑

k=1

d̂k(hτ , hd, ρd)I(t ≥ τ̂k(hτ )) (14)

where ν̂(t;hτ ) is the local linear estimator using bandwidth hτ , with Yij replaced

by

Ỹij(hτ , hd, ρd) := Yij −
M∑

k=1

d̂k(hτ , hd, ρd)I(Tij ≥ τ̂k(hτ )).

Note that the same notation µ̂ is used in (4) and (13) to streamline notation.

However, we distinguish the two by the different tuning parameters.
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In applications, M is generally unknown and has to be estimated. A simple

and effective way to determine M is to leverage the idea that the uniform rate of

∆(t;hτ ) at continuity points is h2τ + ςn(hτ ) (cf. Theorem 3.1) under rather general

conditions, with ςn defined by (12). Thus, one can proceed in the same way as

before in estimating τk but would stop whenever

sup
t∈Dhτ \

⋃k−1

i=1
D̂ǫhτ ,i

|∆n(t;hτ )| < some threshold ζn (15)

and declare M̂ = k−1, where ζn is of a bigger order of magnitude than h2τ + ςn(hτ ).

We will establish that M̂ → M with probability one under suitable conditions (cf.

Theorem 3.4).

Remark 1. (i) After obtaining the mean estimate µ̂(t;hτ , hd, ρd) by (14), the

corresponding covariance estimator R̂(s, t;hτ , hd, ρd, hR) can be obtained fol-

lowing the approaches in Li and Hsing (2010) and Zhang and Wang (2016)

by a local linear smoother applied to the raw residual covariances, Cijl =

[Yij− µ̂(Tij)][Yil− µ̂(Til)] with another bandwidth hR. Briefly, choose some ap-

propriate weight wi for each Cijl such that
∑n

i=1m
2
iwi = 1 and let R̂(s, t) = b̂0,

where

(̂b0, b̂1, b̂2) = argmin
b0,b1,b2

n∑

i=1

[
wi

∑

l 6=j

{Cijl − b0 − b1(Tij − s)− b2(Til − t)}2

×KhR
(Tij − s)KhR

(Til − t)

]
, (16)

with
∑

l 6=j denoting sum over all l, j = 1, . . . ,mi such that l 6= j. We also note

that for dense functional data, after obtaining µ̂(t), it is possible to estimate

the individual Ui, the stochastic component of Xi, by smoothing the residuals

ε̂ij = Yij − µ̂(Tij), i = 1, . . . ,mi.

(ii) To implement the procedures described above, a fully data-driven method for

the tuning parameters is appealing. In general, cross validation is a widely

accepted approach for selecting bandwidths and can be adopted here. We will

postpone the details of this until Section 4.1.
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3 Theoretical Properties

In this section, we conduct a theoretical investigation of the properties of the proce-

dures introduced in Section 2. Standard notations for asymptotic relations between

two real sequences {an} and {bn} will be used. For instance, an . bn means

an = O(bn); an ≺ bn and an ≻ bn mean an = o(bn) and bn = o(an), respectively;

an ≍ bn stands for an . bn and bn . an. Also, a ∨ b := max(a, b) and a ∧ b :=

min(a, b) for any two real numbers a, b.

Throughout the rest of the paper we always assume that h = hn → 0.

3.1 Technical assumptions

For clarity, we collect most of the technical conditions in this subsection.

Let ψ(x) be a function on (0,∞) such that ψ(x)/x is monotone increasing for

large enough x. For a kernel function K, define

g(λ) = gK(λ) :=

∫ 1

|λ|

K∗
+

(
u
)
du, λ ∈ [−1, 1], (17)

where

K∗
ℓ

(
u
)
= Kℓ(u)

υℓ,2 − υℓ,1u

υℓ,0υℓ,2 − υ2ℓ,1
and υℓ,r =

∫ 1

−1

trKℓ(t)dt, ℓ = +,−. (18)

Also, define

Gn(t;h) =
M∑

k=1

dkg

(
t− τk
h

)
I(t ∈ Dh,k).

The following conditions are needed to facilitate our theoretical results.

(C1) K(·) is a symmetric probability density function on [−1, 1] which is is Lipschitz

continuous and υ2 =
∫
t2K(t)dt <∞, and ‖K‖2 =

∫
K(t)2dt <∞.

(C2) The kernel K is such that |g(λ)| has a unique maximum of 1 at 0.

(C3) For some constants mT > 0 and MT < ∞, the density function fT of Tij

satisfies mT ≤ fT (t) ≤ MT for all t ∈ [0, 1] and fT is differentiable with a

bounded derivative.
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(C4) The smooth component ν(t) of the mean function is twice differentiable and

the second derivative ν(2)(t) is uniformly bounded.

(C5) E(ψ(|eij|)) <∞ and E
(
supt∈[0,1] ψ(|U(t)|)

)
<∞.

(C6) ςn(h) → 0 and

ψ

(
n

log n
hςn(h)

)
≻ n

log n
. (19)

where ςn(h) is defined in (12).

(C7) supn{nmaxi(miwi)} ≤ B <∞

We briefly discuss the conditions. (C1) is a standard condition for the kernel

function in smoothing problems. (C2) is less common but we conjecture it holds

universally. We need this condition explicitly to ensure the desirable rates in the

estimates. An intuitive explanation of this is given in (a) of Remark 2. We have

examined a large number of kernels, either those commonly used or numerically gen-

erated, and have not encountered a single one that does not satisfy (C2). However,

we do not yet know how to prove it for a general K. The condition is stated as a re-

sult in the supplement of Xia and Qiu (2015) but the proof appears to be incorrect.

(C3)–(C4) are standard assumptions in the context of FDA and local polynomial

smoothing. In (C4), if ν has bounded high-order derivatives, then the correspond-

ing higher-order local polynomial regression procedure would lead to better rates of

convergence. (C5) and (C6) are more general than the standard conditions in the

literature where ψ(x) is taken as xα for some α ≥ 2 (cf. Li and Hsing, 2010; Zhang

and Wang, 2016). While there is little incentive to entertain other choices of ψ for

the smooth mean estimation problem, it is different for the change point estimation

problem. For instance, for a process X for which the marginal distributions have

exponentially decaying tail probabilities (e.g., Gaussian), the almost sure conver-

gence rate of n−1 for the jump point location estimation problem can be achieved

by using a ψ that is exponentially increasing. See the discussions in Section 3.3 for

details.
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3.2 Main results

We present the following results by first assuming that one has prior knowledge

about the number of jump locationsM . The jump sizes and locations {(dk, τk) : k =

1, . . . ,M} can be consistently estimated with ∆n(t;h), defined in (9), using the

approach introduced in Section 2. The various convergence rates are described by

the following results.

Theorem 3.1. Assume that (C1) and (C3)–(C7) hold. Then, with probability one,

(i) supt∈D̄h,1→M
|∆n(t;h)| = O (h2 + ςn(h)),

(ii) supt∈Dh,1→M
|∆n(t;h)− Gn(t;h)| = O (h+ ςn(h)).

The proof of (i) of Theorem 3.1 is based on the idea that both µ̂+(t) and µ̂−(t)

estimate µ(t) at rate O(h2 + ςn(h)) for t ∈ D̄h,1→M . This is in keeping with what

was obtained in Li and Hsing (2010) for a smooth mean function. Theorem 3.1

shows that the ∆n(t;h) behaves like dkg
(
t−τk
h

)
for t in the h-neighborhood of some

τk and is of vanishing order if this is not the case. This means that, for large n, our

algorithm focuses on these neighborhoods to search for change points.

The following is a key result of this paper which gives the rates of convergence

of τ̂k, d̂k defined in (10)-(14).

Theorem 3.2. Assume that (C1)–(C7) hold for h = hτ and hd. Let ρd be another

tuning parameter such that hτ (hτ + ςn(hτ )) ≺ ρd . hτ + ς(hτ ). Then we have, with

probability one,

(i) maxk=1,...,M |τ̂k(hτ )− τk| = O (h2τ + hτ ςn(hτ )),

(ii) maxk=1,...,M |d̂k(hτ , hd, ρd)− dk| = O (hτ + ςn(hτ ) + h2d + ςn(hd)),

(iii) supt∈D̄ρd,1→M
|µ̂(t;hτ , hd, ρd)− µ(t)| = O (hτ + ςn(hτ ) + h2d + ςn(hd)).

A few remarks are in order.

Remark 2. (a) We mentioned in the discussion following Theorem 3.1 that, asymp-

totically, ∆n(t;h) behaves like dkg
(
t−τk
h

)
for t in the h-neighborhood of some
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τk. Condition (C2) then enables us to control where the maximum of |∆n(t;h)|
is achieved in this interval.

(b) The proof of Theorem 3.2 shows that (iii) remains true if the set D̄ρd,1→M is

replaced by any set En such that the minimum distance between points in En

and the τk is of a larger order than h2τ + hτ ςn(hτ ). An example of such En

that only depends on data is
(
∪M
k=1[τ̂k(hτ )− ρn, τ̂k(hτ )− ρn]

)c
.

(c) As stated in Theorem 3.2, the choice of hd depends on hτ . Indeed, one possi-

bility for ρd is hτ + ς(hτ ). In order to evaluate the optimal rates in (i)-(iii),

one would choose hτ , hd to minimize the stated error bounds there while taking

into account (C6). We will defer the discussions until Section 3.3.

(d) Applying Theorem 3.2, the theoretical properties of the estimator defined for

the covariance in Remark 1 can be established in the same way as in Li and

Hsing (2010) and are omitted.

Next we establish the asymptotic normality of the mean function estimator in

the smooth part.

Theorem 3.3. Assume that the conditions of Theorem 3.2 with ψ(x) = x3. Also,

assume that
∑n

i=1miw
3
i (1/h

2
τ + (mi − 1)/hτ + (mi − 1)(mi − 2))

(
∑n

i=1miw2
i (1/hτ + (mi − 1))

3/2
→ 0, (20)

min

(
hτ/

n∑

i=1

miw
2
i , 1/

n∑

i=1

mi(mi − 1)w2
i

)
(hτ + ςn(hτ ) + h2d + ςn(hd))

2 → 0, (21)

and

hτ

n∑

i=1

mi(mi − 1)w2
i /

n∑

i=1

miw
2
i → C0 ∈ [0,∞]. (22)

Then for any interior point t ∈ D̄ρd,1→M ,

Γ−1/2
[
µ̂(t)− µ(t)− (1/2)h2τυ2ν

(2)(t)
] d−→ N (0, 1),

where

Γ =

∑n
i=1miw

2
i

hτ
‖K‖2R(t, t) + σ2

fT (t)
+

(
n∑

i=1

mi(mi − 1)w2
i

)
R(t, t).
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Remark 3. Theorem 3.3 is useful for providing the asymptotic pointwise confidence

band for the estimated mean function. In the covariance function, the unknown

quantities Γ, R(t, t), σ2 and fT (t) can be replaced by their consistent estimators. In

practice, R(t, t) and σ2 can be estimated using a local linear smoother as described

in Remark 1, and the density fT (t) can be estimated via a kernel density estimation

(Sheather and Jones, 1991). It is possible to extend our theoretical results further

to achieve functional weak convergence by verifying the process tightness conditions.

See Degras (2011) and Zheng et al. (2014) for some recent examples. Such devel-

opment may facilitate the construction of simultaneous confidence band. However,

it will involve a high level of technicality and is beyond the scope of this paper.

The following corollary provides the central limit theorem of ∆n(t;h) which can

be used for testing whether a given point is a change point.

Corollary 3.1. Assume that the conditions of Theorem 3.2 hold with ψ(x) = x3.

Also, assume (20), (22) and min (hτ/
∑n

i=1miw
2
i , 1/

∑n
i=1Niw

2
i ) (hτ + ςn(hτ ))

2 → 0

for bandwidth hτ . Then for any point t 6∈ {τ1, . . . , τM},

Ω−1/2∆n(t)
d−→ N (0, 1)

where

Ω =
2
∑n

i=1miw
2
i

hτ
‖K∗

+‖2
R(t, t) + σ2

fT (t)
+ 2

(
n∑

i=1

mi(mi − 1)w2
i

)
R(t, t).

Corollary 3.1 provides the basis for a statistical test; in particular, one can reject

the null hypothesis that t is not a change point at level α if

|∆n(t)Ω
−1/2| > z1−α/2,

where z1−α/2 is the (1− α/2)-th quantile of the standard normal distribution. If Ω

contains unknown components, then they can be replaced by consistent estimates as

discussed in Remark 3. Note that this test does not adjust for multiple comparisons

and cannot be regarded as a global test. In particular, it cannot be used to determine

M when it is unknown. However, the procedure described immediately before

Remark 1 in Section 2.3 for estimating M is consistent, as the following result

shows.
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Theorem 3.4. Assume that conditions in Theorem 3.2 hold and the threshold pa-

rameter ζn in (15) satisfies ζn → 0 and ζn/{h2τ + ςn(hτ )} → ∞. Then M̂ → M

with probability one.

3.3 Discussions on optimal rates for τ̂k and d̂k

In this subsection we discuss optimal choices of the tuning parameters hτ , hd for

estimating τk, dk by τ̂k and d̂k, respectively, based on Theorem 3.2. We will focus

on two examples of ψ(x), namely, ψ(x) = xα for some α > 2 and ψ(x) = ex.

First consider the optimal convergence rate of τ̂k. For simplicity, consider wi =

1/(nmi) in Li and Hsing (2010) let m̄n =
(
n−1

∑n
i=1m

−1
i

)−1
, the harmonic mean of

the mi. Then,

ςn(h) = O

({
log(n)

n

(
1 +

1

hm̄n

)}1/2
)
. (23)

By (i) of Theorem 3.2, we have that

max
k=1,...,M

|τ̂k(hτ )− τk| = O

(
h2τ +

{
log n

n

(
h2τ +

hτ
m̄n

)}1/2
)
. (24)

For any hτ that satisfies (C6), we consider the rate calculation for two specific

functions ψ(x).

(a) Consider ψ(x) = xα, with α > 2. In view of (23) and (24), the optimal hτ

is obtained by selecting the smallest hτ that satisfies (C6), i.e.,

log n/(nm̄n) ≺ hτ , (25)

(
log n/n

)1−2/α ≺ h2τ + hτ/m̄n. (26)

It suffices to focus on (26), which amounts to

hτ = Bn

((
log n

n

)1/2−1/α

∧ m̄n

(
log n

n

)1−2/α
)

(27)

where Bn → ∞ slowly. After some calculations, the rate in (24) can be seen to be

h2τ + hτ ς(hτ ) = B2
nm̄

2
n(log n/n)

2−4/α +Bn(log n/n)
1−1/α

= B2
n

{
m̄2

n ∧ (n/ log n)1−2/α
}
(log n/n)2−4/α +Bn(log n/n)

1−1/α.
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Thus, for m̄n bounded, the rate dominated by Bn(log n/n)
1−1/α for any Bn → ∞.

However, if m̄n is not bounded, then the rate increases in m̄n, with the worst possible

rate Bn(log n/n)
1−2/α achieved when m̄n > (n/ log n)1/2−1/α. This is counter to the

intuition that denser data lead to better rates.

(b) Next consider ψ(x) = ex, where (C6) is essentially

(
h2τ +

hτ
m̄n

)1/2(
n

log n

)1/2

− log n+ log log n→ ∞, (28)

which can be achieved if

(
h2τ +

hτ
m̄n

)1/2(
n

log n

)1/2

≥ log n

Arguing as in the previous case, let

hτ =

((
log3 n

n

)1/2

∧ m̄n
log3 n

n

)
.

The rate in (24) can be seen to be log2 n/n.

We next briefly discuss the optimal convergence rate of d̂k. First, ρd depends

on hτ , which we have already addressed above. Thus, it is sufficient to focus on

hd. In view of the error bound h2d + ςn(hd), the considerations on that are similar

to the bandwidth selection problem when the mean function is continuous; see Li

and Hsing (2010). If m̄n is bounded and ψ(x) = xα, α > 2.5, then the optimal

hd is (log n/n)1/5 which leads to the rate of (log n/n)2/5. On the other hand, if

m̄n & (n/ log n)1/4 and and ψ(x) = xα, α > 4, then any bandwidth hd satisfying

m̄−1
n . hd . (log n/n)1/4 leads to the rate (log n/n)1/2. Unlike for τ̂k, the rates will

not improve if ψ(x) = ex. The overall rate for d̂k can be obtained by combining ρd

and h2d + ςn(hd).

For convenience, a brief summary of the preceding discussion on rates is given

Table 1.

Remark 4. A number of papers have studied the problem of estimating jump points

in the nonparametric regression problem. For example, Müller and Song (1997),

Grégoire and Hamrouni (2002) and Huh and Park (2004) all established the rates

for estimating the discontinuities to be Op(n
−1) based on different approaches under

18

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Table 1: Summary of convergence rates for break locations τ̂k and jump sizes d̂k.

τ̂k d̂k

ψ(x) m̄n . 1 m̄n & (n/ log n)1/2−1/α m̄n . 1 m̄n & (n/ log n)1/4

xα Bn(log n/n)
1−1/α Bn(log n/n)

1−2/α

(log n/n)2/5 (log n/n)1/2

ex log2 n/n

the finite variance assumption for the errors. Recall that ψ(x) = ex is needed in our

approach in order to achieve the almost sure rate of O(n−1). Xia and Qiu (2015),

on the other hand, showed that the almost sure rate of estimating the jump points

to be Bn(log n/n)
2/3 for any Bn → ∞. That result can be roughly compared to ours

in the sparse functional setting with α = 3.

4 Tuning parameter selection and simulation stud-

ies

In this section, we discuss the selection of tuning parameters in our procedures

from data and evaluate the performance of the procedures based on two simulation

examples.

4.1 Data-driven tuning parameter selection

The methods introduced in this paper depend crucially on the tuning parameter

hτ , hd, and ζn. While the theory provides some guidance, in practice we need to

determine these tuning parameters using a data-driven approach. In this section

we provide some details on how to choose these tuning parameters.

First, we suggest using the cut-off value from the test constructed from Corollary

3.1 as the threshold ζn for determining M in (15). Specifically, given hτ , one can

choose ζn to be maxt z1−α/2Ω
1/2(t), where the unknown variance terms R(t, t) and

σ2 can be estimated by plugging in the local linear smoothers after we obtain the

residuals from fitting the initial one-sided local linear regression, similar to the
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calculation steps described in Remark 1. Then, we can adopt a cross validation

approach to select the optimal bandwidths hτ and hd. In the simulation studies in

the next two subsections, we consider the K-fold cross validation score

CV(hτ , hd) =
1

K

K∑

k=1

[∑

i∈Ik

wi

mi∑

j=1

(Yij − µ̂−k(Tij;hτ , hd))
2

]
,

where I1, . . . , IK form a partition of {1, . . . , n}, and µ̂−k(·;hτ , hd) is our estimator

in (14), with bandwidths hτ , ρd = hτ , and hd, based all the data Yij except the ones

for which i ∈ Ik. Then select hτ and hd as the minimizer of CV(hτ , hd) by searching

over a 2-dimensional grid. We have examined this approach using K = 5 and 10

and found satisfactory performance in numerical studies (cf. Sections 4.2 and 4.3)

4.2 Simulation 1

In this section, we evaluate the numerical performance of our proposed approach

through simulations. We consider the following mean function settings:

• Setting 1: µ(t) = sin(2πt) + cos(2πt) + t2 +
∑3

k=1 dkI(t ≥ τk),

withM = 3 change points at (τ1, τ2, τ3) = (0.25, 0.5, 0.75) and jump sizes (d1, d2, d3) =

(0.5,−0.4, 0.4), and

• Setting 2: µ(t) = sin(2πt) +
∑5

k=1 dkI(t ≥ τk),

with M = 5 change points at (τ1, τ2, τ3, τ4, τ5) = (0.167, 0.333, 0.500, 0.667, 0.833)

and jump sizes (d1, d2, d3, d4, d5) = (0.45,−0.5, 0.45,−0.5, 0.45). The true covari-

ance function is designed as

R(s, t) =
3∑

k=1

ξkψk(s)ψk(t), s, t ∈ [0, 1],

where ξk = 1/(k + 1)2, k = 1, 2, 3, and

ψ1(t) = 1, ψ2(t) =
√
2 sin(2πt), ψ3(t) =

√
2 cos(2πt).

The data are then generated from model (1) with Tij ∼ Uniform[0, 1], Uij =
∑3

k=1 aikψk(Tij) where aik are independent from N(0, ξk) and eij ∼ N(0, 0.22).
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In order to investigate the phase transition of convergence rate of change points,

we consider the following functional data structures: n = 400 and mi ∼ Poisson(m)

where m = 10, 20, or 50 for different settings. The cases of m = 10 and m = 50 may

be viewed as representing sparse and dense functional data, respectively, whereas

that of m = 20 represents an intermediate scenario between the two extremes.

In addition, we investigate the case of having a small number of curves n, while

the observations for each curve are dense. Specifically we consider the combinations

n = 50, m = 300, and n = 100, m = 100. These cases resemble the real data

analysis in the following section, in which we have relatively small n and very large

mi for each curve. In each setting, we generated L = 200 simulation runs.

We follow similar simulation settings in Zhang and Wang (2016) and compare

three weight schemes for the estimation. The OBS scheme assigns the same weight

to each observation, that is, wi = 1/
∑n

i=1mi (Yao et al., 2005); the SUBJ scheme

assigns the same weight to each subject, that is, wi = 1/(nmi) (Li and Hsing,

2010); the mixture of the OBS and SUBJ schemes, that is, wi = α/(
∑n

i=1mi) +

(1−α)/(nmi(mi − 1)) for some 0 ≤ α ≤ 1. Here, we choose α = c2/(c1 + c2) where

c1 =
1

hτ
∑n

i=1mi

+

∑n
i=1m

2
i

(
∑n

i=1mi)2
,

and

c2 =

(
1

hτ (n−1
∑n

i=1m
−1
i )

+ 1

)
1

n
.

We report the results with the bandwidths hτ and hd selected by the 5-fold cross

validation procedure proposed in Section 4.1. The performance based on 10-fold

cross validation is quite similar.

To assess the estimation performance of multiple change point detection, we

report the centered mean, Mean(M̂) −M , and the centered median, Med(M̂) −
M , of the number of change point detected by our method and the frequency of

correct estimation of the number of change point, E(M̂ = M). To investigate the

accuracy of the estimated change point locations, we calculate the means of the two

Hausdorff distances (cf. Boysen et al., 2009; Xia and Qiu, 2015), maxi minj |τi − τ̂j|
and maxj mini |τi − τ̂j|, where τ and τ̂ denote a true change point location and its
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estimate, respectively. The performance of µ̂ is evaluated by the mean integrated

squared error (MISE),

MISE(µ̂) =
1

L

L∑

l=1

∫ b

a

[µ̂[l](t)− µ(t)]2dt,

where {µ̂[l], l = 1, . . . , L} are estimates of the mean functions obtained from L = 200

replications. We denote by µ̂obs, µ̂subj, and µ̂α the corresponding results for the OBS,

SUBJ, and mixture weight mean estimators, respectively.

Tables 2–3 present the various performance measures of the proposed change

point detection procedure for m = 10, 20, and 50. Observe that the performance

improves as the mi increases while the size of improvement becomes smaller once

the data becomes dense. Clearly, under the dense setting m = 50, the proposed

change point detection performance is more satisfactory with smaller biases for M̂ ,

τ̂j and d̂k, and higher frequency of achieving exactly M̂ = M . It is relatively more

difficult to identify the number of change points correctly based on sparse functional

data , especially when the number of change points is large, as observed in setting

2.

The MISEs of Table 4 for µ̂ suggest overall satisfactory performance of our pro-

posed estimator. It supports our theory the estimation of µ̂ can still be consistent

with small m even though the change point detection performance in practice may

be less satisfactory. The estimation results for all cases appear to be insensitive

to the three mixing schemes. Moreover, we compare our method with the stan-

dard functional mean estimation without considering the break points in the mean

function (Li and Hsing, 2010; Zhang and Wang, 2016). Let µ̂ZW denotes the mean

estimation in Zhang and Wang (2016), which can be implemented by the R pack-

age fdapace. Not surprisingly, the entries in Table 4 show that our method has

much smaller MISE for the mean estimation than the existing approaches assum-

ing smooth mean function. The optimal bandwidths in this simulation study were

selected by a 5-fold CV procedure. We report the average of optimal bandwidths

selected in simulations in Table 5. We also provide the bandwidths selected by a

CV procedure for the estimate µ̂ZW , denoted by hZW . It seems that our data driven

procedure tends to select a slightly larger bandwidth hd for jump size estimation
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Table 2: Performance of change point detection for setting 1 with n = 400 in

simulation 1. The corresponding standard deviations are in the parentheses.

m = 10 m = 20 m = 50

SUBJ Mean(M̂)−M −0.125 0.035 0.020

Med(M̂)−M 0 0 0

E(M̂ =M)[%] 61.5 76.5 95.0

maxi minj |τi − τ̂j| 0.0494 (0.0632) 0.0237 (0.0557) 0.0069 (0.0341)

maxj mini |τi − τ̂j| 0.1063 (0.1444) 0.0321 (0.0856) 0.0050 (0.0499)

maxk |d̂k − dk| 0.3023 (0.2286) 0.1539 (0.1356) 0.0876 (0.0344)

OBS Mean(M̂)−M −0.030 −0.095 0.050

Med(M̂)−M 0 0 0

E(M̂ =M)[%] 67.0 81.4 96.0

maxi minj |τi − τ̂j| 0.0556 (0.0685) 0.0102 (0.0364) 0.0054 (0.0269)

maxj mini |τi − τ̂j| 0.0923 (0.1294) 0.0379 (0.0978) 0.0001 (0.0001)

maxk |d̂k − dk| 0.3213 (0.2656) 0.1488 (0.1163) 0.0821 (0.0329)

MIX Mean(M̂)−M −0.133 −0.070 −0.015

Med(M̂)−M 0 0 0

E(M̂ =M)[%] 70.9 84.0 97.5

maxi minj |τi − τ̂j| 0.0395 (0.0593) 0.0147 (0.0452) 0.0006 (0.0084)

maxj mini |τi − τ̂j| 0.0846 (0.1254) 0.0377 (0.0966) 0.0050 (0.0351)

maxk |d̂k − dk| 0.3045 (0.2385) 0.1632 (0.1476) 0.0894 (0.0364)

than hτ for change point location detection. This empirical observation affirms

the theoretical results. Furthermore, we found that one tends to select smaller

bandwidth when using µ̂ZW in these settings with breaks.

Table 6 summarizes the coverage probabilities of the 95% pointwise confidence

band after detecting the change points. The coverage rates in general improves

as mi increases. Furthermore, Figure 1 displays representative smoothed mean

estimation after consistently detecting the change point in simulation 1 along with
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Table 3: Performance of change point detection for setting 2 with n = 400 in

simulation 1. The corresponding standard deviations are in the parentheses.

m = 10 m = 20 m = 50

SUBJ Mean(M̂)−M −0.62 −0.080 0.030

Med(M̂)−M 0 0 0

E(M̂ =M)[%] 62.0 94.0 97.5

maxi minj |τi − τ̂j| 0.0094 (0.0221) 0.0015 (0.0114) 0.0023 (0.0148)

maxj mini |τi − τ̂j| 0.0845 (0.1236) 0.0112 (0.0440) 0.0001 (0.0007)

maxk |d̂k − dk| 0.2078 (0.1896) 0.1257 (0.0431) 0.0908 (0.0320)

OBS Mean(M̂)−M −0.500 −0.030 0.010

Med(M̂)−M 0 0 0

E(M̂ =M)[%] 65.5 96.0 99.0

maxi minj |τi − τ̂j| 0.0108 (0.0243) 0.0017 (0.0092) 0.0008 (0.0079)

maxj mini |τi − τ̂j| 0.0727 (0.1129) 0.0068 (0.0299) 0.0001 (0.0001)

maxk |d̂k − dk| 0.2260 (0.1915) 0.1413 (0.1075) 0.0907 (0.0308)

MIX Mean(M̂)−M −0.650 0.015 −0.005

Med(M̂)−M 0 0 0

E(M̂ =M)[%] 62.5 93.0 99.5

maxi minj |τi − τ̂j| 0.0110 (0.0261) 0.0051 (0.0225) 0.0001 (0.0008)

maxj mini |τi − τ̂j| 0.0883 (0.1297) 0.0057 (0.0284) 0.0008 (0.0113)

maxk |d̂k − dk| 0.2227 (0.1909) 0.1365 (0.0783) 0.0899 (0.0328)

the 95% pointwise confidence band constructed from asymptotic normal approxi-

mation. The selected curve estimation corresponds to the case with median MISE

among the L simulations. In Figure 2, we also show the empirical distributions of

σ̂2. The estimated variance is close to the true variance value 0.22 = 0.04 in all

cases and is insensitive to the mixing scheme.

The computing times of our complete estimation procedure (including mean

and covariance function estimation) along with the jump points detection are sum-
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Table 4: MISE (×10−2) of µ̂obs, µ̂subj and µ̂α with n = 400 in simulation 1. The

corresponding standard deviations are in the parentheses.

m = 10 m = 20 m = 50

Setting 1 µ̂obs 0.3320 (0.1373) 0.1436 (0.0676) 0.0538 (0.0173)

µ̂ZW
obs 0.4724 (0.0795) 0.3380 (0.0532) 0.2233 (0.0311)

µ̂subj 0.3347 (0.1315) 0.1543 (0.0658) 0.0529 (0.0170)

µ̂ZW
subj 0.4781 (0.1093) 0.3420 (0.0524) 0.2271 (0.0287)

µ̂α 0.3354 (0.1307) 0.1455 (0.0653) 0.0526 (0.0177)

µ̂ZW
α 0.4785 (0.0921) 0.3387 (0.0525) 0.2254 (0.0293)

Setting 2 µ̂obs 0.3429 (0.1640) 0.1342 (0.0543) 0.0558 (0.0166)

µ̂ZW
obs 0.6669 (0.1087) 0.5091 (0.0473) 0.2698 (0.0260)

µ̂subj 0.3781 (0.1885) 0.1354 (0.0719) 0.0557 (0.0196)

µ̂ZW
subj 0.6889 (0.1089) 0.5191 (0.0564) 0.2760 (0.0246)

µ̂α 0.3652 (0.1784) 0.1303 (0.0542) 0.0530 (0.0185)

µ̂ZW
α 0.6806 (0.1002) 0.5168 (0.0461) 0.2732 (0.0259)

marized in Table 7, where jump locations are detected over 101 grid points equally

spaced on the interval [0, 1]. The computations were done using a desktop computer

with Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and 14 GB of RAM; the operating

system was 64-bit Windows, and R version 4.0.4 (2021-02-15) was used. To speed

up computations involving loops, C++ was implemented through Rcpp. While it is

inevitable that more computing time is needed as the number of subjects n and/or

the number of observations mi increase, our procedure is still very efficient for large

sample sizes.

4.3 Simulation 2

We next generate data assuming a heavy-tailed process to illustrate the applica-

bility of our proposed methods. We consider the same true mean and covariance

function settings given in the preceding subsection, except that the data are gener-
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Table 5: Bandwidths selected in simulation 1.

Setting 1 Setting 2

(n,m) Weight ζn hτ hd hZW ζn hτ hd hZW

(400, 10) SUBJ 0.312 0.063 0.097 0.037 0.258 0.061 0.097 0.031

OBS 0.317 0.062 0.095 0.037 0.248 0.061 0.096 0.030

MIX 0.307 0.066 0.099 0.039 0.253 0.060 0.096 0.030

(400, 20) SUBJ 0.193 0.059 0.093 0.029 0.225 0.063 0.095 0.023

OBS 0.235 0.056 0.092 0.030 0.219 0.063 0.095 0.022

MIX 0.234 0.057 0.091 0.030 0.185 0.062 0.094 0.023

(400, 50) SUBJ 0.177 0.045 0.089 0.016 0.184 0.050 0.090 0.010

OBS 0.173 0.047 0.088 0.017 0.170 0.048 0.092 0.010

MIX 0.171 0.050 0.083 0.016 0.170 0.051 0.087 0.010

(100, 100) SUBJ 0.220 0.056 0.088 0.028 0.216 0.061 0.095 0.017

OBS 0.220 0.057 0.093 0.028 0.215 0.061 0.092 0.018

MIX 0.217 0.058 0.089 0.027 0.217 0.060 0.092 0.019

(50, 300) SUBJ 0.250 0.053 0.085 0.020 0.247 0.058 0.091 0.010

OBS 0.250 0.049 0.085 0.021 0.247 0.059 0.092 0.010

MIX 0.251 0.053 0.086 0.024 0.248 0.058 0.092 0.011

ated assuming that Tij ∼ Uniform[0, 1], Uij =
∑3

k=1 aikψk(Tij) with aik distributed

as t with 3 degree of freedom, and eij is equal to
√
0.03 multiplied by a t random

variable with 3 degree of freedom.

Eyeballing Tables 8–9, we see that the accuracy of change-point detection in-

creases as the observations become denser. Similarly, examining Tables 10, the

MISEs for µ̂ suggest good overall performance of our proposed estimator. The av-

erage of optimal bandwidths selected in simulation 2 are reported in Table 11, and

Table 12 summarizes the coverage probabilities of the 95% pointwise confidence

band after detecting the change points.

Figure 3 also displays representative smoothed mean estimation after consis-
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Table 6: Coverage probabilities of the 95% pointwise confidence band in simulation

1.

(n,m) µ̂subj µ̂obs µ̂α

(400, 10) Setting 1 91.0 91.4 91.8

Setting 2 90.0 90.5 90.3

(400, 20) Setting 1 96.7 97.1 96.9

Setting 2 97.2 97.3 97.4

(400, 50) Setting 1 98.9 99.5 97.9

Setting 2 99.5 98.9 96.5

(100, 100) Setting 1 98.8 98.9 99.5

Setting 2 99.6 99.7 99.6

(50, 300) Setting 1 99.7 99.4 99.6

Setting 2 99.6 99.7 99.8

Table 7: Computing times (seconds) with 5-folds CV over a prefixed grid of band-

widths in simulation 1. Total is the entire computing time while CPD is the time

spent on change point detection after all tuning parameters are fixed at optimal

values.

Setting 1 Setting 2

n m Total CPD Total CPD

400 10 10.71 0.08 10.34 0.10

400 20 33.69 0.35 33.12 0.38

400 50 259.91 1.39 255.02 1.28

100 100 164.72 0.39 158.51 0.52

50 300 770.14 1.28 804.19 1.25

tently detecting the change points in simulation 2 along with the 95% pointwise

confidence band constructed from the asymptotic normal approximation.

Additional simulation results with different data generating settings are included
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Figure 1: Smoothed mean function estimation and 95% pointwise confidence band

from asymptotic normal approximation with the mixture weight in simulation 1.

The two columns correspond to setting 1 and setting 2, and the three rows corre-

spond to m = 10, 20, 50, respectively.
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Figure 2: Box plots for the estimated σ̂2 in simulation 1. The two rows correspond

to setting 1 and setting 2, respectively.

in the supplementary file of this paper.

5 Case studies

5.1 Average Value Weighted Returns

We first consider an average value weighted returns data. Value weighted return is a

type of weighting methodology to calculate portfolio return that gives a weight to an

asset in the portfolio based on the asset’s market value. The data set can be freely

downloaded from Kenneth French’s website: http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html. The original data set consists

of the daily simple returns of n = 49 industry portfolios from 1927 to 2020. Let

Yij be the daily return of the ith portfolio at the jth time point, i = 1, . . . , 49,

j = 1, . . . ,mi. These data have already motivated some well-known financial factor

models (Li et al., 2018). In this section, we choose the most recent mi = 354

observations from December 2018 through April 2020 for an illustration of our

29

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Table 8: Performance of change point detection for setting 1 with n = 400 in

simulation 2. The corresponding standard deviations are in the parentheses.

m = 10 m = 20 m = 50

SUBJ Mean(M̂)−M −0.429 0.085 0.040

Med(M̂)−M 0 0 0

E(M̂ =M)[%] 56.4 76.9 95.0

maxi minj |τi − τ̂j| 0.0383 (0.0595) 0.0284 (0.0568) 0.0069 (0.0308)

maxj mini |τi − τ̂j| 0.1455 (0.1681) 0.0309 (0.0871) 0.0025 (0.0249)

maxk |d̂k − dk| 0.3256 (0.2471) 0.1609 (0.1213) 0.0897 (0.0359)

OBS Mean(M̂)−M −0.314 0.111 0.035

Med(M̂)−M 0 0 0

E(M̂ =M)[%] 60.8 77.3 96.5

maxi minj |τi − τ̂j| 0.0363 (0.0574) 0.0300 (0.0582) 0.0043 (0.0251)

maxj mini |τi − τ̂j| 0.1233 (0.1729) 0.0255 (0.0793) 0.0013 (0.0177)

maxk |d̂k − dk| 0.2792 (0.1931) 0.1609 (0.1373) 0.0768 (0.0335)

MIX Mean(M̂)−M −0.390 0.120 -0.020

Med(M̂)−M 0 0 0

E(M̂ =M)[%] 59.1 77.5 96.0

maxi minj |τi − τ̂j| 0.0355 (0.0559) 0.0312 (0.0599) 0.0018 (0.0181)

maxj mini |τi − τ̂j| 0.1412 (0.1640) 0.0288 (0.0786) 0.0075 (0.0427)

maxk |d̂k − dk| 0.2883 (0.2053) 0.1695 (0.1426) 0.0845 (0.0348)

proposed methods, and investigate the mean return curves across different industries

µ(t) over time.

Figures 4 and 5 present the results for the estimated mean function µ̂(t). Thir-

teen change points τ̂k are detected by our proposed method at 2018-12-24, 2019-01-

22, 2019-02-11, 2019-03-04, 2019-05-13, 2019-06-04, 2019-06-24, 2019-07-15, 2019-

08-22, 2019-10-02, 2019-10-31, 2019-12-06, 2020-02-10, 2020-03-16, 2020-04-03. The

estimated jump sizes d̂k at the 15 time points are 5.659, −1.265, 1.620, −1.346,
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Table 9: Performance of change point detection for setting 2 with n = 400 in

simulation 2. The corresponding standard deviations are in the parentheses.

m = 10 m = 20 m = 50

SUBJ Mean(M̂)−M 0.075 −0.080 0.010

Med(M̂)−M 0 0 0

E(M̂ =M)[%] 81.0 92.0 99.0

maxi minj |τi − τ̂j| 0.0236 (0.0391) 0.0033 (0.0143) 0.0007 (0.0069)

maxj mini |τi − τ̂j| 0.0260 (0.0457) 0.0153 (0.0447) 0.0001 (0.0001)

maxk |d̂k − dk| 0.2633 (0.2054) 0.1530 (0.1257) 0.0861 (0.0309)

OBS Mean(M̂)−M 0.125 0.005 0.020

Med(M̂)−M 0 0 0

E(M̂ =M)[%] 81.0 94.5 98.0

maxi minj |τi − τ̂j| 0.0227 (0.0367) 0.0043 (0.0187) 0.0022 (0.0154)

maxj mini |τi − τ̂j| 0.0267 (0.0471) 0.0060 (0.0284) 0.0001 (0.0001)

maxk |d̂k − dk| 0.2532 (0.2085) 0.1417 (0.0953) 0.0894 (0.0339)

MIX Mean(M̂)−M 0.175 −0.025 −0.005

Med(M̂)−M 0 0 0

E(M̂ =M)[%] 80.5 94.5 99.5

maxi minj |τi − τ̂j| 0.0262 (0.0408) 0.0040 (0.0165) 0.0001 (0.0001)

maxj mini |τi − τ̂j| 0.0244 (0.0432) 0.0104 (0.0401) 0.0008 (0.0113)

maxk |d̂k − dk| 0.2539 (0.2027) 0.1509 (0.1204) 0.0891 (0.0318)

2.052, 1.774, −1.032, −1.119, −2.347, 2.184, 1.426, −1.029, 1.157, −0.979 and

6.518, respectively. Other than these 15 breaks, the return curve follows a smooth-

changing pattern. We also treat the data as independent samples and apply the

nonparametric regression method by Xia and Qiu (2015) to estimate the mean func-

tion. The resulting curve (green curve in Figure 4) contains eight change points that

are all detected by our method except the one at 2020-02-28. This approach ignores

the data correlation and may not be appropriate for the daily asset data. Figure
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Table 10: MISE (×10−2) of µ̂obs, µ̂subj and µ̂α with n = 400 in simulation 2. The

corresponding standard deviations are in the parentheses.

m = 10 m = 20 m = 50

Setting 1 µ̂obs 0.3375 (0.1419) 0.1400 (0.0605) 0.0494 (0.0176)

µ̂ZW
obs 0.4820 (0.1069) 0.3356 (0.0595) 0.2195 (0.0301)

µ̂subj 0.3741 (0.1386) 0.1495 (0.0648) 0.0558 (0.0198)

µ̂ZW
subj 0.4996 (0.0874) 0.3345 (0.0498) 0.2224 (0.0333)

µ̂α 0.3387 (0.1337) 0.1460 (0.0689) 0.0542 (0.0211)

µ̂ZW
α 0.4725 (0.0851) 0.3360 (0.0506) 0.2235 (0.0311)

Setting 2 µ̂obs 0.3171 (0.1685) 0.1298 (0.0519) 0.0540 (0.0002)

µ̂ZW
obs 0.6585 (0.1182) 0.5035 (0.0508) 0.2679 (0.0250)

µ̂subj 0.3421 (0.1691) 0.1415 (0.0678) 0.0525 (0.0177)

µ̂ZW
subj 0.6628 (0.1027) 0.5062 (0.0475) 0.2742 (0.0229)

µ̂α 0.3185 (0.1627) 0.1331 (0.0655) 0.0535 (0.0175)

µ̂ZW
α 0.6485 (0.0954) 0.5078 (0.0499) 0.2721 (0.0242)

4 also displays change points detected by a double CUSUM method for panel data

(Cho, 2016), which is implemented by R package hdbinseg. Three change points are

detected at 2018-12-24, 2020-02-21, and 2020-03-23. We note that the first change

point was also detected by our method. This approach, however, only gives piece-

wise constant description of the data. Our results may provide a better separation

of different financial and economical cycles over the time period for all asset types

across different industries. The 95% pointwise confidence band is shown in Figure

5, where we have a wider confidence band in the period of March 2020 compared

to other periods.

To compare with the single series analysis, we also present the estimated indi-

vidual mean functions for 4 selected industry portfolios in Figure 6. We note that

the estimated change points from these individual industry are distinct but closely

related to the change points detected by our approach for the functional series.
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Table 11: Bandwidths selected in simulation 2.

Setting 1 Setting 2

(n,m) Weight ζn hτ hd hZW ζn hτ hd hZW

(400, 10) SUBJ 0.355 0.066 0.099 0.037 0.237 0.063 0.096 0.030

OBS 0.333 0.066 0.099 0.038 0.230 0.063 0.096 0.031

MIX 0.340 0.065 0.097 0.038 0.230 0.063 0.097 0.029

(400, 20) SUBJ 0.249 0.059 0.095 0.030 0.244 0.061 0.094 0.030

OBS 0.239 0.061 0.093 0.029 0.231 0.064 0.095 0.022

MIX 0.242 0.059 0.095 0.029 0.241 0.062 0.094 0.022

(400, 50) SUBJ 0.177 0.047 0.089 0.017 0.177 0.048 0.092 0.010

OBS 0.178 0.047 0.088 0.016 0.173 0.048 0.088 0.010

MIX 0.258 0.050 0.089 0.017 0.254 0.052 0.090 0.010

(100, 100) SUBJ 0.216 0.053 0.095 0.027 0.209 0.059 0.092 0.017

OBS 0.214 0.054 0.091 0.028 0.212 0.059 0.093 0.018

MIX 0.216 0.053 0.090 0.027 0.212 0.058 0.094 0.016

(50, 300) SUBJ 0.247 0.053 0.077 0.024 0.259 0.057 0.081 0.011

OBS 0.243 0.055 0.086 0.025 0.259 0.058 0.081 0.011

MIX 0.248 0.052 0.086 0.023 0.246 0.058 0.092 0.011

In practice investigators could combine information from both sources to provide

useful macroeconomic analysis and produce sensible predictions.

We next consider monthly maximum average value weighted returns for 49 in-

dustry portfolios with a longer time frame from January 1990 to April 2020. This

leads to a functional series {Yij : i = 1, · · · , 49; j = 1 · · · , 364}. Figure 7 indicates

that 10 jumps τ̂k are detected by our proposed method, at Feb 1992, Oct 1998,

Apr 2000, Nov 2001, May 2006, Jun 2008, Apr 2010, Jun 2012, Feb 2015, Jan

2019. These breaks correspond to the recoveries after the financial crises during

the periods 1997–1998 and 2008–2012. The estimated jump sizes d̂k at the 10 time

points are −0.673, −1.009, −2.146, −1.028, 0.996, 2.747, 2.186, 1.135, −1.114 and
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Table 12: Coverage probabilities of the 95% pointwise confidence band in simulation

2.

(n,m) µ̂subj µ̂obs µ̂α

(400, 10) Setting 1 91.1 91.8 91.2

Setting 2 89.8 91.7 90.8

(400, 20) Setting 1 96.9 97.1 96.7

Setting 2 97.1 97.6 97.8

(400, 50) Setting 1 98.0 98.7 98.4

Setting 2 98.7 98.9 98.5

(100, 100) Setting 1 99.3 99.4 99.5

Setting 2 99.5 99.7 99.8

(50, 300) Setting 1 99.5 99.7 99.8

Setting 2 99.7 99.8 99.7

−2.538, respectively. In contrast, the green curve estimate using the approach of

Xia and Qiu (2015) only identifies four change points at Oct 1998, Nov 2001, Apr

2010, Jan 2019 (also all detected by our method) while the change point detection

method by Cho (2016) identifies two change points at Mar 2000 (also detected by

our method) and Jul 2003. Similarly, we have a wide confidence band where the

data has a high variation. To compare with the individual estimate, we further

present the estimated individual function for 4 selected industry types in Figure 8.

One can observe that the traditional single curve change point detection method

may be inadequate.

5.2 Monthly U.S. Treasuries

We consider the monthly U.S. treasuries from January 1983 to September 2010. In

total, there are n = 15 interest rates with maturities of 3, 6, 9, 12, 18, 24, 30, 36,

48, 60, 72, 84, 96, 108, and 120 months. Each maturity has a monthly yield curve of

interest rates with mi = 333 observations spanning the observation period. These
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Figure 3: Smoothed mean function estimation and 95% pointwise confidence band

from asymptotic normal approximation with the mixture weight in simulation 2.

The two columns correspond to setting 1 and setting 2, and the three rows corre-

spond to m = 10, 20, 50, respectively.
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data have already been studied with different statistical models in Diebold and Li

(2006); Chen and Li (2011); Chen and Niu (2014). The time period not only covers

two financial crises in 1987 and 2008, but also the tenure of the Fed Chairmen Paul

Volcker (1979 - 1987), Alan Greenspan (1987 - 2006) and Ben Bernanke (2006 -

2014). Some interesting questions are whether the monetary policies changed with

the chairman, a statement which most would probably agree with, and whether

there were lasting effects from the two crises on the movement of interest rates. We

apply our proposed method to address these questions.

Figure 9 presents the mean curve estimation results. Four break points τ̂k are

detected at Mar 1987, Feb 1994, Aug 1999, Dec 2007, which includes two afore-

mentioned historical financial crises. The change in Feb 1994 corresponds to the

event when the Federal Reserve unexpectedly raised interest rates and caused the

bond market crisis or the so-called Great Bond Massacre. The change in Aug 1999

reflects a transition to an economic recovery phase. The estimated jump sizes d̂k at

the 4 change points are 1.554, 2.595, 2.036, and −1.828. The results using Xia and

Qiu (2015) and Cho (2016) were similarly presented as in the preceding example.

We observe again that the method by Xia and Qiu (2015) detected fewer change

points. The results from applying Cho (2016) also divide the whole period into five

segments with 4 change points, located at slightly different time points.

The supplementary file contains more data analysis results. The code for simu-

lation studies and real data analysis are provided in Github and directly download-

able. The R package FPMD to implement our methods can be installed from Github

at https://github.com/liygCR/FPMD.

6 Discussion

The change point detection approach introduced in this paper has a broad range

of applications. In our real-data examples, we considered two economic data sets

for which the functional series are indexed by calendar time. More applications

exist in medical and other scientific investigations where the index t could be any

continuous variable. For example, in genomic studies researchers may be interested
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in identifying short intervals of copy number variations in multiple DNA sequences;

in environmental monitoring, it may be important to detect anomalies such as

the presence of hazardous materials or intruders typically existing only in some

small areas. Our proposed change point detection method produces meaningful

segmentation of such functional data and suggests important subgroups or sub-

regions delineated by discontinuous boundaries.

An immediate extension of our approach is change point detections for multivari-

ate functional data. In such problems, one might be also interested in identifying

structural changes of the covariance function as well as the mean function. Indeed,

many economic patterns are impacted by the underlying volatility or correlation

process that is subject to sudden breaks triggered by external events. In such sit-

uations, both the theoretical development and the computational burden present

new challenges. We will address these in future research.
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Figure 4: Average value weighted returns for 49 industry portfolios. The solid red curve is the mean function estimate using our

method, and the vertical dash lines indicate the change point locations. The green curve is the estimate by using Xia and Qiu

(2015). The blue points are change points detected by Cho (2016).
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Figure 5: Smoothed mean function estimation and 95% pointwise confidence band from asymptotic normal.
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Figure 6: Individual curve estimate of average value weighted returns for 4 industry portfolios. The blue solid curve is the

individual estimate and the red curve is µ̂(t) using our approach.
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(2015), and the blue points are change detected by Cho (2016). Bottom panel: µ̂(t) and 95% pointwise confidence band using our

method.
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Figure 8: Individual curve estimates of monthly maximum average value weighted returns for 4 industry portfolios.The blue curve

is the individual estimate and the red curve is µ̂(t) using our approach.
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using Xia and Qiu (2015), and the blue points are breaks detected by Cho (2016). Right panel: Mean function estimation and
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Appendix: Technical Details

A. Notations and Basic Lemmas

For easy reference, we first collect all the notations needed in the proof here.

Let Kh(u) = (1/h)K(u/h) and Kh,(r)(u) = (1/h)K(u/h)(u/h)r, r = 0, 1. For

r = 0, 1 and τ ∈ (0, 1), define

Sr(t, τ) =
n∑

i=1

wi

mi∑

j=1

Kh,(r)(Tij − t)I(Tij ≥ τ), (A.1)

and

H(t, τ) =
S0(t, τ)S2(t)− S1(t, τ)S1(t)

S0(t)S2(t)− S2
1(t)

− I(t ≥ τ). (A.2)

Let

K∗(u) = K(u)
υ2 − υ1u

υ0υ2 − υ21
where υj =

∫ 1

−1

K(u)ujdu, (A.3)

and define

H̃(λ) =

∫ 1

−1

K∗(u)I(u ≥ −λ)du− I(λ ≥ 0), λ ∈ [−1, 1]. (A.4)

Note that H̃(λ) can also be expressed as

H̃(λ) = I(−1 ≤ λ < 0)

∫ 1

−λ

K∗(u)du− I(0 ≤ λ ≤ 1)

∫ −λ

−1

K∗(u)du. (A.5)

Furthermore, for ℓ = ±, let Sℓ,r(t), Rℓ,r(t), Kℓ,h(u), Kℓ,h,(r)(u), K
∗
ℓ (u), Sℓ,r(t, τ),

Hℓ(t, τ) and H̃ℓ(λ) be defined in the same way as Sr(t), Rr(t) (in (5)), Kh(u),

Kh,(r)(u), K
∗(u), Sr(t, τ), H(t, τ) and H̃(λ), respectively, except with Kℓ replacing

K.

The following lemma slightly generalizes Lemmas 1 - 3 in Li and Hsing (2010).

As usual, let t1 ∧ t2 = min(t1, t2) and t1 ∨ t2 = max(t1, t2).

Lemma 1. Assume that (C5), (C6) and (C7) hold for some ψ and some bandwidth

sequence h = hn tending to 0. Let Zij = Ui(Tij) or eij for 1 ≤ i ≤ n, 1 ≤ j ≤ mi,
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and

Gn(t1, t2) =
n∑

i=1

{
wi

mi∑

j=1

ZijI(Tij ∈ [t1 ∧ t2, t1 ∨ t2])
}
,

G(t1, t2) = E{Gn(t1, t2)}

Vn(t, h) = sup
|u|≤h

|Gn(t, t+ u)−G(t, t+ u)|, h > 0.

(A.6)

Then

(i) supt∈[0,1] Vn(t, h) = O (hςn(h)) a.s.

(ii) supt∈[0,1] ς
−1
n (h)|Dr,n(t)−E{Dr,n(t)}| = O(1) a.s., where, for any nonnegative

integer r, ℓ = +,−,

Dr,n(t) :=
n∑

i=1

[
wi

mi∑

j=1

Kh,(r)(Tij − t)Zij

]
.

Proof. The details of this proof will be omitted since they mirror those for Lemmas

1 and 2 of Li and Hsing (2010). The only major difference is that we bound

Gn(t, t+ u)−G∗
n(t, t+ u) by the following argument using Markov’s inequality:

(
Gn(t, t+ u)−G∗

n(t, t+ u)
)

≤
n∑

i=1

{
wi

mi∑

j=1

ZijI(Zij > Qn)

}

≤ (Qn/ψ(Qn))
n∑

i=1

{
wi

mi∑

j=1

ψ(Zij)I(Zij > Qn)

}

≤ (Qn/ψ(Qn))
n∑

i=1

{
wi

mi∑

j=1

ψ(Zij)

}

since ψ(x)/x is increasing. In Li and Hsing (2010), ψ(x) was assumed to be xα for

some α > 2.

The following lemmas combine ideas from Li and Hsing (2010) and Xia and Qiu

(2015).

Lemma 2. Assume that (C1)–(C3) and (C6)–(C7) hold, and the kernel function

K is uniformly Lipschitz continuous. Then, for any interior point τ ∈ (0, 1), with
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probability one

sup
λ∈[−1,1]

∣∣∣H(τ + λh, τ)− H̃(λ)
∣∣∣ = O (h+ ςn(h)) as h→ 0.

Proof. For convenience, let t = τ + λh. By assumptions (C2) and (C8),

E[Sr] =
1

h

n∑

i=1

wi

mi∑

j=1

E

[
K

(
Tij − t

h

)(
Tij − t

h

)r]

=
n∑

i=1

wimi

∫ 1

−1

K(u)urfT (uh+ t)du

=
n∑

i=1

wimifT (t)υr +O(h)

= fT (t)υr +O(h),

where
∑n

i=1wimi = 1 and υr =
∫ 1

−1
trK(t)dt. By (ii) of Lemma 1, we conclude that,

uniformly for t ∈ [a+ h, b− h],

Sr(t) =
n∑

i=1

wimifT (t)υr +O (h+ ςn(h)) (A.7)

where r = 0, 1, 2 and wi satisfies (C6)–(C7). The same rate can also be similarly

seen to hold for boundary points. Then, by (A.7), we have

H(t, τ)

=
n∑

i=1

wi

mi∑

j=1

Kh(Tij − t)
S2

(Tij−t

h

)
− S1

(Tij−t

h

)

S0

(Tij−t

h

)
S2

(Tij−t

h

)
− S1

(Tij−t

h

)2 I(Tij ≥ τ)

− I(t ≥ τ)

=
1∑n

i=1wimifT (t)

n∑

i=1

wi

mi∑

j=1

Kh

(
Tij − t

h

)
I(Tij ≥ τ)

υ2 − υ1
(Tij−t

h

)

υ0υ2 − υ21

− I(t ≥ τ) +O (h+ ςn(h)) .

(A.8)

The expectation of the first term is

1

fT (t)
E

[
Kh

(
T − t

h

)
I(T ≥ τ)

υ2 − υ1
(
T−t
h

)

υ0υ2 − υ21

]

=
1

fT (t)

∫ 1

−1

K∗(u)I(u ≥ −λ)fT (uh+ t)du
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=

∫ 1

−1

K∗(u)I(u ≥ −λ)du+O(h)

where K∗(u) is as in (A.3). Thus, by (A.5) and applying Lemma 1 on the first term

in (A.8), we obtain H(t, τ) = H̃(λ) +O (h+ ςn(h)) a.s.

Define

D−,h,k = [τk − h, τk], D+,h,k = [τk, τk + h], k = 1, . . . ,M,

and, for ℓ = ±,

Dℓ,h,M1→M2
=

M2⋃

k=M1

Dℓ,h,k, D̄ℓ,h,M1→M2
= D\Dℓ,h,M1→M2

, 1 ≤M1 ≤M2 ≤M.

Lemma 3. Assume the assumptions for Theorem 3.1. Then the following hold with

probability one:

(i) supt∈D̄+,h,1→M
|µ̂−(t;h)− µ(t)| and supt∈D̄−,h,1→M

|µ̂+(t;h)− µ(t)| are both O(h2+
ςn(h)), and

(ii) supλ∈[−1,1]

∣∣∣∣µ̂(τk + λh;h) − µ(τk + λh) − dkH̃(λ)

∣∣∣∣ = O (h+ ςn(h)) for k =

1, . . . ,M .

Proof. (i) It follows from the proof of Theorem 3.1 of Li and Hsing (2010), applying

Lemma 1, that

sup
t∈Dh

|ν̂∗(t;h)− ν(t)| = O
(
h2 + ςn(h)

)
. (A.9)

Note that the required smoothness assumption on ν for this to work is that ν has a

bounded second-order derivative at every point in [t− h, t+ h] = t+ [−h, h], where
[−h, h] is the support of Kh. Now, for t ∈ D̄−,h,1→M , µ has a bounded second-order

derivative at every point in [t, t+ h] = t+ [0, h], where [0, h] is the support of K+,h.

Thus, the exact same approach applies to give the rate of µ̂+. The rate for µ̂− on

D̄+,h,1→M is similar.

(ii) Consider t ∈ Dh,k. By (7) we have

µ̂(t;h)− ν̂∗(t) =
∑

s:τs<t

ds + dkH(t, τk).
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As a result, for t = τk + λh, λ ∈ [−1, 1],

µ̂(t;h)− µ(t)− H̃(λ) = ν̂∗(t)− ν(t) + dk
(
H(τk + λh, τk)− H̃(λ)

)
.

Thus, (ii) follows from (A.9) and Lemma 2.

B. Proof of Theorem 3.1 and Theorem 3.4

Proof of Theorem 3.1 . By (i) of Lemma 3, we have

sup
t∈D̄h,1→M

|∆n(t;h)| = sup
t∈D̄h,1→M

|µ̂+(t;h)− µ̂−(t;h)|

≤ sup
t∈D̄h,1→M

|µ̂+(t;h)− µ(t)|+ sup
t∈D̄h,1→M

|µ̂−(t;h)− µ(t)|

= O
(
h2 + ςn(h)

)
a.s.

which is (i). To provie (ii), first observe that g(λ) = H̃+(λ)− H̃−(λ). Note that (ii)

of Lemma 3 is true for any kernel. Hence, applying that with one-sided kernels Kℓ,

we have for all k

sup
λ∈[−1,1]

|∆n(τk + λh;h)− dkg(λ)|

≤ sup
λ∈[−1,1]

|µ̂+(τk + λh;h)− µ(τk + λh)− dkH̃+(λ)|

+ sup
λ∈[−1,1]

|µ̂−(τk + λh;h)− µ(τk + λh)− dkH̃−(λ)|

= O (h+ ςn(h)) a.s.

Proof of Theorem 3.4. By (i) of Theorem 3.1,

sup
t∈D̄hτ ,1→M

|∆n(t)| = O
(
h2τ + ςn(hτ )

)
a.s.

Thus, there is a set A satisfying P (A) = 1 such that for all ω ∈ A, there exits

N = N(ω) such that when n > N , we have

sup
t∈D̄hτ ,1→M

|∆n(t)| ≤ ζn.
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On the other hand, by (ii) of Theorem 3.1, we have

min
k∈{1,...,M}

|∆n(τk)| ≻ ζn a.s.

The choice ǫ = 2 ensures that, asymptotically, the same jump point will not be

identified more than once. Therefore, with probability one, for all large n there will

be exactly M separate regions where |∆n(t)| exceeds the threshold ζn. Thus, the

conclusion of the result follows.

C. Proof of Theorem 3.2

Proof. By (i) and (ii) of Theorem 3.1, we conclude that there is a set A with

P(A) = 1, where, for each ω ∈ A, there exist a constant C = C(ω) and a positive

integer N = N(ω) such that

sup
t∈D

|∆n(t)− Gn(t)| ≤
C

2
(hτ + ςn(hτ )) for all n ≥ N. (A.10)

We first focus on τ̂1, which is the global maximizer of |∆n(t)|. Observe that, by

(A.10), τ̂1 must be in Dhτ ,1 for all large n. Focusing on the subset Dhτ ,1 of the

global set D in (A.10), we have

sup
λ∈[−1,1]

|Ĝ∗(λ)− G∗(λ)| ≤ C

2
(hτ + ςn(hτ )) for all n ≥ N, (A.11)

where Ĝ∗(λ) := |∆n(τ1+λhτ )|,G∗(λ) := |Gn(τ1+λhτ )|, λ ∈ [−1, 1], and τ̂1 = τ1+λ̂hτ

with λ̂ the maximizer of Ĝ∗(λ). Denote an = hτ+ςn(hτ ) and pick any η ∈ (0, K∗
+(0)).

Let Wn = (−C1an, C1an) where C1 :=
C

|d1|(K∗

+
(0)−η)

. It follows that

sup
λ∈[−1,1]∩W c

n

G∗(λ) = |d1| sup
λ∈[−1,1]∩W c

n

|g(λ)| = |d1|g(C1an)

since |g| is continuous and by (C2) achieves its maximum at 0. Also, since K∗
+ is

continuous at 0, for all large n

inf
λ∈(0,C1an)

−g′(λ) = inf
λ∈(0,C1an)

K∗
+(λ) ≥ K∗

+(0)− η.

Thus, by the mean value theorem, for all large n

G∗(0)− sup
λ∈[−1,1]∩W c

n

G∗(λ) = |d1|g(0)− |d1|g(−C1an)

≥ |d1|C1an inf
λ∈(0,C1an)

−g′(λ) ≥ Can,
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or, equivalently,

G∗(0)− Can ≥ sup
λ∈[−1,1]∩W c

n

G∗(λ). (A.12)

By (A.11) and the fact that λ̂ is the maximizer of Ĝ∗(λ), we have, for all n ≥ N ,

G∗(0)− G∗(λ̂) ≤ |G∗(0)− Ĝ∗(0)|+ {Ĝ∗(0)− Ĝ∗(λ̂)}+ |Ĝ∗(λ̂)− G∗(λ̂)|

<
C

2
an + 0 +

C

2
an = Can,

and hence

G∗(0)− Can < G∗(λ̂). (A.13)

Combining (A.12) and (A.13) leads to the conclusion that λ̂ ∈ Wn. Therefore,

|λ̂− λ| < C1an or |τ̂1 − τ1| < hτC1an for all n ≥ N. (A.14)

In accordance with the procedure described in Section 2.3, we now delete the interval

[τ̂1− ǫhτ , τ̂1+ ǫhτ ] with ǫ > 1. By (A.14), for all n ≥ N , we have [τ1−hτ , τ1+hτ ] ⊂
[τ̂1 − ǫhτ , τ̂1 + ǫhτ ] and τ2, . . . , τM ∈ [τ̂1 − ǫhτ , τ̂1 + ǫhτ ]

c. Thus, the above argument

can be applied iteratively for τ2, . . . , τM .

(ii) By part (i), Since τ̂k − ρd ∈ D̄+,h,1→M and τ̂k + ρd ∈ D̄−,h,1→M a.s. for large

n, (i) of Lemma 3 implies that

µ̂−(τ̂k − ρd;hd) = µ(τ̂k − ρd) +O
(
h2d + ςn(hd)

)
,

µ̂+(τ̂k + ρd;hd) = µ(τ̂k + ρd) +O
(
h2d + ςn(hd)

)
.

It follows that

d̂k − dk = µ̂+(τ̂k + ρd;hd)− µ̂−(τ̂k − ρd;hd)− dk

= µ(τ̂k + ρd)− µ(τ̂k − ρd)− dk +O
(
h2d + ςn(hd)

)

= ν(τ̂k + ρd)− ν(τ̂k − ρd) +O
(
h2d + ςn(hd)

)

= O
(
ρd + h2d + ςn(hd)

)
,

where we applied the assumption that ν has a uniformly bounded derivative in the

last step.
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(iii) In the proof below, we will hide the tuning parameters to simplify notation

where µ̂(t) = µ̂(t;hτ , hd, ρd). Note that the bandwidth used in ν̂∗(t) and ν̂(t) is hτ ,

but the latter also depends on the bandwidth hd, which is needed for d̂k. However,

for ease of presentation we leave the bandwidths out of the notations of these

estimators in the proof below. It follows that

µ̂(t)− µ(t)

= ν̂(t) +
M∑

k=1

d̂kI(t ≥ τ̂k)−
(
ν(t) +

M∑

k=1

dkI(t ≥ τk)

)

= (ν̂∗(t)− ν(t)) + ν̂(t)− ν̂∗(t) +
M∑

k=1

d̂kI(t ≥ τ̂k)−
M∑

k=1

dkI(t ≥ τk).

(A.15)

With the notation of Sr(t, τ) and H(t, τ) in (A.1) and (A.2), we can write

ν̂(t)− ν̂∗(t) +
M∑

k=1

d̂kI(t ≥ τ̂k)−
M∑

k=1

dkI(t ≥ τk)

=
M∑

k=1

dk

(
S0(t, τk)S2(t)− S1(t, τk)S1(t)

S0(t)S2(t)− S2
1(t)

− I(t ≥ τk)

)

−
M∑

k=1

d̂k

(
S0(t, τ̂k)S2(t)− S1(t, τ̂k)S1(t)

S0(t)S2(t)− S2
1(t)

− I(t ≥ τ̂k)

)

=
M∑

k=1

dkH(t, τk)−
M∑

k=1

d̂kH(t, τ̂k)

=
M∑

k=1

dkH(t, τk)−
M∑

k=1

dkH(t, τ̂k) +O
(
ρd + h2d + ςn(hd)

)
.

(A.16)

Recall that Dhτ
= [hτ , 1 − hτ ] and Dhτ ,k = [τk − hτ , τk + hτ ]. Now, define D̂hτ ,k =

[τ̂k − hτ , τ̂k + hτ ]. By the definition of H(t, τ), one can verify that

M∑

k=1

dkH(t, τk) = 0 for t 6∈ ∪M
k=1Dhτ ,k,

M∑

k=1

dkH(t, τ̂k) = 0 for t 6∈ ∪M
k=1D̂hτ ,k.

(A.17)

Since the sets Dhτ ,k ∪ D̂hτ ,k, k = 1, . . . ,M , are disjoint, it suffices to focus on the

rate of H(t, τk)−H(t, τ̂k) on Dhτ ,k ∪ D̂hτ ,k for each k. Write

Dhτ ,k ∪ D̂hτ ,k = (Dhτ ,k ∩ D̂hτ ,k) ∪ (Dhτ ,k\D̂hτ ,k) ∪ (D̂hτ ,k\Dhτ ,k).
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As in the proof of Lemma 2, we can express each point t in Dhτ ,k as t = τk+λhτ for

some λ ∈ [−1, 1]. Likewise, each point t in D̂hτ ,k can be expressed as t = τ̂k + λ̂hτ

for some λ̂ ∈ [−1, 1]. Thus, by Lemma 2, uniformly for each t ∈ Dhτ ,k ∩ D̂hτ ,k,

H(t, τk)−H(t, τ̂k) = H̃(λ)− H̃(λ̂) +O(hτ + ςn(hτ )). (A.18)

It follows that λ̂−λ = (τ̂k−τk)/hτ = O (hτ + ςn(hτ )). Also, note that λ and λ̂ have

different signs only for t between τk and τ̂k, which cannot be the case for t 6∈ Dρd,k

by (i). Thus, by (A.5) and (A.18),

sup
t∈(Dhτ ,k∩D̂hτ ,k)\Dρd,k

|H(t, τk)−H(t, τ̂k)| = O(hτ + ςn(hτ )). (A.19)

Next, consider H(t, τk) − H(t, τ̂k) for t ∈ (Dhτ ,k\D̂hτ ,k) ∪ (D̂hτ ,k\Dhτ ,k). Observe

that in this case, one of H(t, τk) and H(t, τ̂k) is exactly equal to zero and the other

term is H̃(λ) + O(hτ + ςn(hτ )) where 1 − |λ| = O(hτ + ςn(hτ )). Hence, again we

have

sup
t∈(Dhτ ,k\D̂hτ ,k)∪(D̂hτ ,k\Dhτ ,k)

|H(t, τk)−H(t, τ̂k)| = O(hτ + ςn(hτ )). (A.20)

Thus, (iii) follows from combining (A.15), (A.9), (A.16), (A.19) and (A.20).

D. Proof of Theorem 3.3

Proof. By (A.15) and the proofs there, with probability one,

µ̂(t)− µ(t) = ν̂∗(t)− ν(t) +O(hτ + ςn(hτ ) + h2d + ςn(hd))),

uniformly for t ∈ D̄ρd,1→M . Thus, by (21), Γ−1/2(µ̂(t)−µ(t)) = Γ−1/2(ν̂∗(t)−ν(t))+
o(1) for such t and the result is then a direct consequence of Theorem 3.1 of Zhang

and Wang (2016).

E. Proof of Corollary 3.1

Proof. Recall the definition of half-kernel estimator with bandwidth h = hτ ,

µ̂ℓ(t) =
Rℓ,0Sℓ,2 −Rℓ,1Sℓ,1

Sℓ,0Sℓ,2 − S2
ℓ,1

,
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where for r = 0, 1, 2,

Sℓ,r(t) =
n∑

i=1

wi

mi∑

j=1

Kh,ℓ(Tij − t){(Tij − t)/h}r,

Rℓ,r(t) =
n∑

i=1

wi

mi∑

j=1

Kh,ℓ(Tij − t){(Tij − t)/h}rYij.

Then, we have

µ̂ℓ(t) =
Rℓ,0

S̃ℓ,0

− S̃ℓ,1

S̃ℓ,0

µ̂
(1)
ℓ (t) + tµ̂

(1)
ℓ (t),

where µ̂
(1)
ℓ (t) = 1

h

Rℓ,1−Rℓ,0Sℓ,1/Sℓ,0

Sℓ,2−S2
ℓ,1

/Sℓ,0
and

S̃ℓ,r =
n∑

i=1

wi

mi∑

j=1

Kh,ℓ(Tij − t)T r
ij, r = 0, 1.

If t ∈ (0, 1)\{τ1, . . . , τM} is a differentiable point, following the proof of Theo-

rem 3.1 of Zhang and Wang (2016), by the Cramér-Wold device and the Lyapunov

central limit theorem due to the condition (20), we can achieve the asymptotic

joint normality of (Rℓ,0 −E[Rℓ,0], S̃ℓ,r −E[S̃ℓ,0], S̃ℓ,1 −E[S̃ℓ,1]) with convergence rate

[min{h/∑n
i=1miw

2
i , 1/

∑n
i=1mi(mi − 1)w2

i }]1/2. Explicitly, for r, r′ = 0, 1, by Tay-

lor expansion,

ES̃ℓ,r = trf(t) +
h2

2

υ2ℓ,2 − υℓ,1υℓ,3

υℓ,0υℓ,2 − υ2ℓ,1
(2rf (1)(t) + trf (2)(t)) + o(h2);

ERℓ,0 = µ(t)f(t) +
h2

2

υ2ℓ,2 − υℓ,1υℓ,3

υℓ,0υℓ,2 − υ2ℓ,1
(µ(t)f (2)(t) + 2µ(1)(t)f (1)(t) + µ(2)(t)f(t))

+ o(h2);

Cov(S̃ℓ,r, S̃ℓ,r′) =

∑n
i=1miw

2
i

h
‖K∗

ℓ ‖2tr+r′f(t) + o

(∑n
i=1miw

2
i

h

)
;

Var(Rℓ,0) =

∑n
i=1miw

2
i

h
‖K∗

ℓ ‖2(µ(t)2 +R(t, t) + σ2)f(t) + (
n∑

i=1

mi(mi − 1)w2
i )R(t, t)f(t)

2

+ o

(∑n
i=1miw

2
i

h
+

n∑

i=1

mi(mi − 1)w2
i

)
;

Cov(Rℓ,0, S̃ℓ,r) =

∑n
i=1miw

2
i

h
‖K∗

ℓ ‖2trµ(t)f(t) + o

(∑n
i=1miw

2
i

h

)
.

Then, the asymptotic normality of µ̂ℓ(t) follows from the delta method,

Ω̃−1/2

[
µ̂ℓ(t)−

1

2
h2
υ2ℓ,2 − υℓ,1υℓ,3

υℓ,0υℓ,2 − υ2ℓ,1
µ(2)(t) + op(h

2)

]
d−→ N (0, 1), (A.21)
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where

Ω̃ =

∑n
i=1miw

2
i

h
‖K∗

ℓ ‖2
R(t, t) + σ2

fT (t)
+

(
n∑

i=1

mi(mi − 1)w2
i

)
R(t, t).

From (A.7) in Lemma 2 and
∑n

i=1wimi = 1, we have

Sℓ,r(t) = fT (t)υℓ,r +O(h+ ςn(h)).

Then,

µ̂ℓ(t) =
n∑

i=1

wi

mi∑

j=1

Sℓ,2 − Sℓ,1{(Tij − t)/h}
Sℓ,0Sℓ,2 − S2

ℓ,1

Kh,ℓ(Tij − t)Yij

=
1

fT (t)

n∑

i=1

wi

mi∑

j=1

υℓ,2 − υℓ,1

(
Tij−t

h

)

υℓ,0υℓ,2 − υ2ℓ,1
Kh,ℓ (Tij − t)Yij +O(h+ ςn(h)).

By the definition ∆n(t) = µ̂+(t)− µ̂−(t), we have

E[∆n(t)] = O(h+ ςn(h)). (A.22)

Note that min (h/
∑n

i=1miw
2
i , 1/

∑n
i=1Niw

2
i ) (h + ςn(h))

2 → 0, from (A.21) and

(A.22), we have

Ω−1/2 [∆n(t)−O(h+ ςn(h))]
d−→ N (0, 1),

where

Ω =
2
∑n

i=1miw
2
i

hτ
‖K∗

+‖2
R(t, t) + σ2

fT (t)
+ 2

(
n∑

i=1

mi(mi − 1)w2
i

)
R(t, t),

which completes the proof.
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Aue, A., R. Gabrys, L. Horváth, and P. Kokoszka (2009). Estimation of a change-

point in the mean function of functional data. Journal of Multivariate Analy-

sis 100 (10), 2254–2269.

54

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t
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Górecki, T., L. Horváth, and P. Kokoszka (2018). Change point detection in het-

eroscedastic time series. Econometrics and Statistics 7, 63–88.
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