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Summary

We consider survival data that combine three types of observations: uncensored,
right-censored, and left-censored. Such data arises from screening a medical condi-
tion, in situations where self-detection arises naturally. Our goal is to estimate the
failure-time distribution, based on these three observation types. We propose a novel
methodology for distribution estimation using both semiparametric and nonparamet-
ric techniques. We then evaluate the performance of these estimators via simulated
data. Finally, as a case study, we estimate the patience of patients who arrive at
an emergency department and wait for treatment. Three categories of patients are
observed: those who leave the system and announce it, and thus their patience time
is observed; those who get service and thus their patience time is right-censored by
the waiting time; and those who leave the system without announcing it. For this
third category, the patients’ absence is revealed only when they are called to service,
which is after they have already left; formally, their patience time is left-censored.
Other applications of our proposed methodology are discussed.
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1 INTRODUCTION

We study the estimation of failure time distribution where the failure times can be either observed directly, or be right-censored or
left-censored. This type of survival data arises, for example, in estimation of time to the appearance of a medical condition where
characteristic symptoms may or may not appear when the condition exists. Specific medical settings include relapse in childhood
brain tumors, which may be observed due to clinical symptoms, or right-censored due to periodic screening with negative result
(no tumor), or left-censored due to periodic screening with a positive result.1 Another medical setting is melanoma cancer,
which is observed if self-detected, or is right censored due to a negative screening (no melanoma), or left-censored if it goes
undetected until screening. Additional examples can be found in Whitehead.2

The motivating example for this work comes from estimating customer patience in service system which is a challenging
problem.3 In our study, we focus on patients who wait for treatment in an emergency department (ED). Three categories of
patients are observed. The first category consists of patients who get service and thus their patience time is right-censored by the
waiting time. The second category comprises those who leave the system and announce it, and thus their patience time is observed
while the waiting time is right-censored. The third category consists of patients who leave the system without announcing it;
their absence is hence revealed only when they are called to service, which is after they have already left; formally, their patience
time is left-censored. Note that the data structure is a special case of interval-censored data.4 Here, interval-censored data is a
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general data structure which many popular survival data settings are special cases of, including both right-censored data and
left-censored data.5 The specific setting that is considered here includes both left-censored and right-censored observations as
well as complete observations.

Estimating the patience time is of importance as the decision of patients to leave the system before getting served might have a
strong effect on their physical well-being. There has been considerable research on the reasons why patients leave an ED before
being served,6–9. However, these and other authors have not proposed a model by which ED patience time - namely the duration
that a potential patient is willing to wait for ED service - can be estimated, and this is our goal here.

We propose novel semiparametric and nonparametric estimators of the unknown survival function for this 3-type survival data.
We then study their rates of convergence. The semiparametric estimator is based on both full and partial likelihoods. We provide
condition under which the semiparametric estimator is a linear asymptotic normal (LAN) estimator and converges to a normal
distribution in a root-𝑛 rate. The nonparametric estimator is based on nonparametric kernel estimators for density functions and
on a novel estimator of the cumulative probability function that has some similarities to the Nelson–Aalen estimator.10 We show
that, under some regularity conditions, the nonparametric estimator point-wise converges to the normal distribution.

We perform a simulation study and compare the proposed semiparametric and nonparametric estimators. For the semipara-
metric model, we study both correct and misspecified models and show the different corresponding results. We show how the
accuracy changes with sample size. We then carry out a case study that is based on data of patients waiting for treatment in an ED,
in the U.S. in 2008. We analyzed separately different severity levels (15106 observations in the emergency group, 43600 in the
urgent group, and 26541 in the semi-urgent group). We conclude with a comparison of the semiparametric and nonparametric
estimators for the three different severity levels of this dataset.

2 BRIEF LITERATURE REVIEW

Developing screening methods for medical conditions, such as breast and melanoma cancers, has a long history.11,12 In the
classical setting, the medical condition either already exists at the time of screening and is thus left-censored, or does not exist,
and is thus right-censored. The setting in which self-detection is possible, and thus the condition time is observed, has been
surprisingly mostly ignored in the literature. For example, Minn et al.1 treat both self-detection times and screening times as
event times, ignoring the censoring. The closest model to the one that we present here appears in Whitehead.2 It is assumed there
that the condition can be detected at screening or before screening due to symptoms. In both cases, the condition already exists
at the time of detection. It is also assumed that screenings take place at a sequence of fixed time points. Whitehead2 recommends
to ignore the extra knowledge gained due to self-reporting and to replace these times with the time of the next screening. The
survival function is then estimated only at the discrete fixed screening times using standard techniques.13

There has been considerable research effort, dedicated to modeling and analysis of customer (im)patience while waiting
for service. Here we describe several papers that, together with references therein, provide what is required for a historical
background and state-of-art perspective. First, we recommend the recent literature review9 (Section 3) in Batt and Terwiesch,
accompanied by Gans et al.14 These survey patience-research from an operational/queueing view point (mainly Section 6.3.3
in the latter), while connecting it to the medical literature on patients who are left without being seen (LWBS) (mainly Section
3 in the former); see also Aksin et al.15 who expand on managerial challenges. Next we mention Mandelbaum and Zeltyn16,
which is an Explanatory Data Analysis of (im)patience in telephone call centers (that appears in a special issue that is devoted
to models of queues abandonment). Finally, and the most related to the present study, are the following two studies. Brown et
al.17 applies, in Section 5, the Kaplan–Meier estimator18 to estimate the survival functions and consequently hazard rates, of
both virtual waiting time and impatience; the data is that of a call center, in which times of abandonment are all recorded hence
the data is right-censored. Then Wiler et al.,19 which is also the source of our present ED data case study, estimate LWBS rates
as a function of ED patient arrival rates, treatment times, and ED boarding times. There was no attempt in that work to estimate
the patience-time distribution.

We conclude this brief survey with the observation that the estimation of customer (im)patience is relevant beyond screening,
call centers, and EDs. For example, Nah20 studies tolerance of Web users (during information retrieval). Yom-Tov et al.21

analyzes chat services, in which customers abandon at any phase during chat-exchanges with a service center: one expects that
such services give rise to the same options as in EDs: some customers receive service, others abandon without letting anyone
know, and the rest announce their abandonment time.
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3 THE MODEL

In the standard setting of right-censored data one observes, for each patient, either the failure time or the censoring time. In
terms of our motivating example, failure time is patience time while censoring time is the waiting time. Patience time is observed
when patients leave the ED while informing the system of their departure; waiting time is observed when a patient is called for
service. However, unlike in standard right-censored data and like in current status data, there are also patients who leave without
informing; in this case their absence is observed only when they are called for service, and this latter time provides an upper
bound for their patience time. In other words, the (virtual) waiting time is observed, and the only information on patience time
is that it is less than this observed waiting time. Hence, in this case, the patience time is left-censored.

More formally, let 𝑇 be the patient’s failure time, i.e., the time until the patient loses patience. Let 𝑊 be the censoring time,
i.e., the waiting time until the patient gets (or could have gotten) service. We assume that 𝑇 has a cumulative distribution function
(cdf) 𝐹 and a probability density function (pdf) 𝑓 , and that𝑊 has cdf 𝐺 and pdf 𝑔. Let Δ be the indicator Δ ≡ 1{𝑇 < 𝑊 }; i.e.,
Δ = 1 if the patient loses patience before being called to service, and Δ = 0 otherwise.

Let 𝑌 be the indicator that is 1 for a patient who leaves and informs when leaving, and 0 otherwise. Denote by 𝑞(𝑡) the
conditional probability that a patient reports leaving given that the waiting time equals to 𝑡. In other words, 𝑞(𝑡) = 𝑝𝑟(𝑌 = 1 ∣
𝑇 = 𝑡). The assumption that patience time 𝑇 and waiting time 𝑊 are independent is common in survival analysis, for example,
when using the Kaplan-Meier estimator.18 Since 𝑇 and 𝑊 may be dependent, one can use strata to overcome this challenge as
was done in the case study in Section 7. The announcement indicator 𝑌 depends on the time through the function 𝑞(𝑡). In other
words, given the patience time 𝑇 = 𝑡, the decision on announcement does not depend on actual waiting time 𝑊 . However, due
to censoring, the decision on the announcement is observed only when 𝑡 < 𝑊 . Summarizing, we assume that the pair (𝑌 , 𝑇 )
is independent of the waiting time 𝑊 . When this assumption does not hold, different theoretical tools are needed for a valid
estimation.

Let 𝑈 be the recorded time: 𝑈 ≡ 𝑌 𝑇 +(1−𝑌 )𝑊 . The observed data consist of the triplets (𝑈𝑖, 𝑌𝑖,Δ𝑖), 𝑖 = 1,… , 𝑛, and there
are three categories of patients:

 = 1: The patient gets service, hence the waiting time is observed, which serves as a lower bound on the patience time; thus
the patience time is right censored. Formally, Δ = 0, 𝑌 = 0, and 𝑈 = 𝑊 .

 = 2: The patient leaves without being treated and reports departure. The patience time is thus revealed: 𝑌 = 1, Δ = 1, and
𝑈 = 𝑇 .

 = 3: The patient leaves without reporting, hence virtual waiting time (the time that the patient would have waited had he
stayed in the ED) is observed, which provides an upper bound for the patience time, thus the patience time is left-censored.
Formally, 𝑌 = 0, Δ = 1, and 𝑈 = 𝑊 .

A graphical diagram of these categories appears in Figure 1.

Lemma 1. The following equalities hold:

i) 𝑝𝑟(𝑈 ≤ 𝑡, = 1) = ∫ 𝑡
0 𝑔(𝑤)𝐹 (𝑤)𝑑𝑤.

ii) 𝑝𝑟(𝑈 ≤ 𝑡, = 2) = ∫ 𝑡
0 𝑞(𝑤)𝑓 (𝑤)𝐺(𝑤)𝑑𝑤.

iii) 𝑝𝑟(𝑈 ≤ 𝑡, = 3) = ∫ 𝑡
0 𝑔(𝑤) ∫

𝑤
0 {1 − 𝑞(𝑥)} 𝑓 (𝑥)𝑑𝑥𝑑𝑤.

Here, 𝐹 (𝑡) = 1 − 𝐹 (𝑡) and 𝐺(𝑡) = 1 − 𝐺(𝑡) are the survival functions of the patience time and the waiting time, respectively.
See the proof in A.1.
For 𝑖 = 1, 2, 3, we introduce the following sub-stochastic density functions

ℎ𝑖(𝑡) ∶=
𝑑
𝑑𝑡
𝑝𝑟(𝑈 ≤ 𝑡, = 𝑖). (1)

From Lemma 1 above, we deduce that

ℎ1(𝑡) = 𝑔(𝑡)𝐹 (𝑡), ℎ2(𝑡) = 𝑞(𝑡)𝑓 (𝑡)𝐺(𝑡), ℎ3(𝑡) = 𝑔(𝑡)

𝑡

∫
0

{1 − 𝑞(𝑥)} 𝑓 (𝑥)𝑑𝑥.
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FIGURE 1 The three patient categories. Category 1 includes patients that received service. Category 2 includes patients that
left without being seen and announced before leaving. Category 3 includes patients that left without being seen but did not
announce leaving.

Define

𝑟1(𝑡) ≡
ℎ1(𝑡)

𝑝𝑟(𝑊 ≤ 𝑇 )
, 𝑟2(𝑡) ≡

ℎ2(𝑡)
𝑝𝑟(𝑌 = 1,𝑊 > 𝑇 )

, 𝑟3(𝑡) ≡
ℎ3(𝑡)

𝑝𝑟(𝑌 = 0,𝑊 > 𝑇 )
. (2)

Then 𝑟𝑖 is the density function of the observed time 𝑈 given  = 𝑖. Our model assumes that all denominators are positive.
To summarize, what is known and what is to be estimated, there are two unknown distributions in our setting, 𝐺 and 𝐹 ,

and we aim to estimate them using both semiparametric and nonparametric techniques. For each patient, the waiting time is
either observed or right censored. If the patient reports and then leaves, the waiting time is longer than the observed patience
time. Hence, the waiting time is right-censored. Therefore, semiparametric and nonparametric estimation for the distribution of
waiting time 𝑊 can be done by standard techniques for right-censored data. However, estimation of the distribution of patience
time 𝑇 , is more complicated and is discussed in Sections 4 and 5.

4 SEMIPARAMETRIC ESTIMATION

Assume now that the distributions of both the patience time and the waiting time belong to some parametric families. More
formally, let  = {𝑓 (⋅; 𝜃), 𝜃 ∈ Θ} where Θ ⊆ ℝ𝑑 ,  = {𝑔(⋅; 𝛾), 𝛾 ∈ Γ} where Γ ⊆ ℝ𝑝. We assume that the density of the
patience time can be written as 𝑓 (𝑡; 𝜃0) ∈  . We also assume that the density of the waiting time can be written as 𝑔(𝑡; 𝛾0) ∈ .
Write ℎ1(𝑡; 𝜃, 𝛾) ≡ 𝑔(𝑡; 𝛾)𝐹 (𝑡; 𝜃), and similarly ℎ2(𝑡; 𝜃, 𝛾) ≡ 𝑞(𝑡)𝑓 (𝑡; 𝜃)𝐺(𝑡; 𝛾) and ℎ3(𝑡; 𝜃, 𝛾) ≡ 𝑔(𝑡; 𝛾) ∫ 𝑡

0 {1 − 𝑞(𝑥)} 𝑓 (𝑥; 𝜃)𝑑𝑥.
The likelihood of the observed data 𝐷 = {(𝑈𝑖, 𝑌𝑖,Δ𝑖), 𝑖 = 1,… , 𝑛} can be written in terms of the functions ℎ1, ℎ2, and ℎ3, as

follows:

𝐿(𝐷; 𝜃, 𝛾) =
𝑛

∏

𝑖=1

{

ℎ1(𝑈𝑖; 𝜃, 𝛾)
} 1−Δ𝑖

{

ℎ2(𝑈𝑖; 𝜃, 𝛾)
} Δ𝑖𝑌𝑖

{

ℎ3(𝑈𝑖; 𝜃, 𝛾)
} Δ𝑖(1−𝑌𝑖).

Using the explicit representations of ℎ1, ℎ2, ℎ3, we obtain that 𝐿(𝐷; 𝜃, 𝛾) is given by
𝑛

∏

𝑖=1

({

𝑔(𝑈𝑖; 𝛾)𝐹 (𝑈𝑖; 𝜃)
}

1−Δ𝑖

{

𝑞(𝑈𝑖)𝑓 (𝑈𝑖; 𝜃)𝐺(𝑈𝑖; 𝛾)
}

Δ𝑖𝑌𝑖

×
⎡

⎢

⎢

⎣

𝑔(𝑈𝑖; 𝛾)

𝑈𝑖

∫
0

{1 − 𝑞(𝑠)} 𝑓 (𝑠; 𝜃)𝑑𝑠
⎤

⎥

⎥

⎦

Δ𝑖(1−𝑌𝑖)
)

.

The value of 𝛾 that maximizes this likelihood is independent of 𝜃. Therefore, a maximum likelihood estimator (MLE) 𝛾̂𝑛 to 𝛾0
can be constructed from this likelihood.
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Maximizing the likelihood with respect to 𝜃 is difficult. Even if 𝛾0 is given or estimated, the maximizer of 𝜃 depends on the
unknown function 𝑞(𝑡). To address this challenge, we propose using a partial likelihood approach22 which avoids the need to
estimate 𝑞(𝑡). The partial likelihood that we use here is the likelihood calculated only for a specific category while ignoring
the data for the other categories. In Theorem 1 below we show that, under standard regularity conditions, the maximizer of the
partial likelihood is a consistent and asymptotically normal estimator for 𝜃0.

We consider the partial likelihood 𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐷; 𝜃; 𝛾) of category  = 1,
𝑛

∏

𝑖=1

{

𝑔(𝑈𝑖; 𝛾)𝐹 (𝑈𝑖; 𝜃)

∫ ∞
0 𝑔(𝑠; 𝛾)𝐹 (𝑠; 𝜃)𝑑𝑠

}

1−Δ𝑖 .

The value of 𝜃 that maximizes this partial likelihood depends on 𝛾 . We plug the MLE 𝛾̂𝑛 into this partial likelihood. Clearly, the
resulting estimator for 𝜃 does not depend on the function 𝑞(𝑡) and thus no estimation of 𝑞(𝑡) is needed. Finding an estimator for
the announcement probability function 𝑞(𝑡) is an interesting and challenging research question that is beyond the scope of this
paper.

We need the following assumptions:

(A1) The derivative 𝜕
𝜕𝜃
𝑓 (𝑡; 𝜃) is continuous in 𝑡 for each 𝜃 ∈ Θ, 𝜕

𝜕𝛾
𝑔(𝑡; 𝛾) is continuous in 𝑡 for each 𝛾 ∈ Γ.

(A2) For all 𝜃 ∈ Θ, argmax𝛾∈Γ 𝐿(𝐷; 𝜃, 𝛾) is unique, hence denote
𝛾̂(𝜃) ≡ argmax𝛾∈Γ 𝐿(𝐷; 𝜃, 𝛾). It is assumed as well that for each 𝜃 ∈ Θ, 𝜕

𝜕𝛾
𝐿
{

𝐷; 𝜃, 𝛾̂(𝜃)
}

= 0.

(A3) For all 𝛾 ∈ Γ, argmax𝜃∈Θ 𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐷; 𝜃, 𝛾) is unique, hence denote
𝜃(𝛾) ≡ argmax𝜃∈Θ 𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐷; 𝜃, 𝛾). It is assumed as well that for each 𝛾 ∈ Γ, 𝜕

𝜕𝜃
𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙

{

𝐷; 𝜃(𝛾), 𝛾
}

= 0.

Theorem 1. Let 𝛾̂𝑛 be the maximizer of 𝐿(𝐷; 𝜃; 𝛾) and let 𝜃𝑛 be the maximizer of 𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐷; 𝜃; 𝛾̂𝑛). Then, as 𝑛→ ∞,

i) 𝛾̂𝑛 → 𝛾0 in probability.

ii)
√

𝑛
(

𝛾̂𝑛 − 𝛾0
)

→ 𝑁
(

0, 𝑉𝛾0
)

in distribution.

iii) 𝜃𝑛 → 𝜃0 in probability.

iv)
√

𝑛
(

𝜃𝑛 − 𝜃0
)

→ 𝑁
(

0, 𝑆𝜃0,𝛾0
)

in distribution.

Here 𝑉𝛾0 , 𝑆𝜃0 , 𝛾0 are covariance matrices as defined in Appendix A.1.

The proof appears in Appendix A.1.

Example 1. Assume that 𝑇 follows an exponential distribution with rate 𝜃 and 𝑊 follows an exponential distribution with rate
𝛾 . Then

𝛾̂𝑛 =
𝑛 − Σ𝑛𝑖=1Δ𝑖𝑌𝑖

Σ𝑛𝑖=1𝑈𝑖

𝜃𝑛 =
Σ𝑛𝑖=1(1 − Δ𝑖)
Σ𝑛𝑖=1𝑈𝑖(1 − Δ𝑖)

− 𝛾̂𝑛 =
Σ𝑛𝑖=1(1 − Δ𝑖)
Σ𝑛𝑖=1𝑈𝑖(1 − Δ𝑖)

−
𝑛 − Σ𝑛𝑖=1Δ𝑖𝑌𝑖

Σ𝑛𝑖=1𝑈𝑖
..

The details of the computation appears in Appendix A.5

5 NONPARAMETRIC ESTIMATION

In this section we propose nonparametric estimators for the survival function of the patience time 𝐹 and study its theoretical
properties. For simplicity, we restrict the estimation to an interval [0, 𝜏] for some 𝜏 > 0, such that the probability of 𝑊 and 𝑇
being larger than 𝜏 is positive. This is a standard condition in survival estimation23 (Chapter 4.2).Note that for observations of
Categories 1 and 3, the waiting-time is observed. For Category 2, only a lower bound of the waiting time is observed. Hence,
the waiting time is either observed or right-censored. Therefore, estimating the waiting time distribution can be done by using
standard survival analysis estimators such as the Kaplan–Meyer estimator. On the other hand, estimating the distribution of the
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patience time is more challenging since we cannot distinguish between the density function 𝑓 and the unknown function 𝑞. Our
goal is thus to estimate the distribution of the patience time 𝐹 .

Assume that over all positive numbers, the waiting time density function 𝑔 is strictly positive. Recall that ℎ1(𝑡) = 𝑔(𝑡)𝐹 (𝑡),
ℎ3(𝑡) = 𝑔(𝑡) ∫ 𝑡

0 {1 − 𝑞(𝑠)} 𝑓 (𝑠)𝑑𝑠, where the functions ℎ1, ℎ3 are defined as in (1). Therefore,

ℎ1(𝑡)
ℎ3(𝑡)

=
𝐹 (𝑡)

𝐹 (𝑡) − ∫ 𝑡
0 𝑞(𝑠)𝑓 (𝑠)𝑑𝑠

. (3)

which is well defined as 𝑔(𝑡) > 0. Reordering the terms in (3), we get that
⎧

⎪

⎨

⎪

⎩

𝐹 (𝑡) −

𝑡

∫
0

𝑞(𝑠)𝑓 (𝑠)𝑑𝑠

⎫

⎪

⎬

⎪

⎭

ℎ1(𝑡)
ℎ3(𝑡)

= 1 − 𝐹 (𝑡).

Hence,

𝐹 (𝑡) =
ℎ3(𝑡) + ℎ1(𝑡) ∫

𝑡
0 𝑞(𝑠)𝑓 (𝑠)𝑑𝑠

ℎ3(𝑡) + ℎ1(𝑡)
.

From the definitions in (2), it follows that

𝐹 (𝑡) =
𝑝𝑟(𝑌 = 0, 𝑇 < 𝑊 )𝑟3(𝑡) + 𝑝𝑟(𝑊 ≤ 𝑇 )𝑟1(𝑡) ∫

𝑡
0 𝑞(𝑠)𝑓 (𝑠)𝑑𝑠

𝑝𝑟(𝑌 = 0, 𝑇 < 𝑊 )𝑟3(𝑡) + 𝑝𝑟(𝑊 ≤ 𝑇 )𝑟1(𝑡)
. (4)

Therefore, we propose to estimate 𝐹 (𝑡) by estimating the following terms:
(i) 𝑝𝑟(𝑊 ≤ 𝑇 ) and 𝑝𝑟(𝑌 = 0, 𝑇 < 𝑊 ),
(ii) 𝑟1(𝑡) and 𝑟3(𝑡),
(iii) 𝐴(𝑡) ≡ ∫ 𝑡

0 𝑞(𝑠)𝑓 (𝑠)𝑑𝑠.
Estimating the expression in (i) can be done by the empirical estimators: 𝑝𝑟(𝑇 ≤ 𝑊 ) = 𝑛−1Σ𝑛𝑖=1(1 − Δ𝑖), 𝑝𝑟(𝑌 = 0,𝑊 <

𝑇 ) = 𝑛−1Σ𝑛𝑖=1Δ𝑖(1 − 𝑌𝑖). These estimators converge, by the central limit theorem (CLT), to 𝑝𝑟(𝑊 ≤ 𝑇 ) and 𝑝𝑟(𝑌 = 0, 𝑇 < 𝑊 ),
respectively, at the rate of 𝑛1∕2.

Since 𝑟1 and 𝑟3 are density functions, they can be estimated using a kernel estimator24 (Chapter 1.2). Let 𝑟̂1 and 𝑟̂3 be kernel
estimators of 𝑟1 and 𝑟3, respectively. Assume that both 𝑟1 and 𝑟3 belong to a Sobolev function class of order 𝛽. Then for each
𝑡 > 0, both 𝑟̂1(𝑡) and 𝑟̂3(𝑡) converge at a rate of 𝑛𝛽∕(2𝛽+1). Here, the parameter 𝛽 ≥ 1 is an integer that represents the smoothness
of a function. Specifically, if 𝛽 > 𝑘 for some integer k, then the function is at least k-time differentiable.24.

We now turn to estimate the term 𝐴(𝑡) = ∫ 𝑡
0 𝑞(𝑠)𝑓 (𝑠)𝑑𝑠. A nonparametric estimator that we created for this term is defined

and proven to be consistent in the following lemma.

Lemma 2. Let

𝑁̂𝑛(𝑡) ≡
1
𝑛

𝑛
∑

𝑖=1
𝑌𝑖Δ𝑖1{𝑈𝑖 ≤ 𝑡}, 𝑌𝑛(𝑡) ≡

1
𝑛

𝑛
∑

𝑖=1
1{𝑈𝑖 ≥ 𝑡} .

Define 𝐷̂𝑛(𝑡) ≡ ∫ 𝑡
0
𝑑𝑁̂𝑛(𝑠)
𝑌𝑛(𝑠)

. Then 𝐴(𝑡) ≡ 1 − exp
{

−𝐷̂𝑛(𝑡)
}

converges pointwise to 𝐴(𝑡), at a rate of 𝑛1∕2, for every 𝑡 ∈ [0, 𝜏].

The proof is given in Appendix A.3.
By plugging in the estimators

𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 ), 𝑝𝑟(𝑇 ≤ 𝑊 ), 𝑟̂3(𝑡), 𝑟̂1(𝑡), 𝐴(𝑡),

to the equation in (4), we get that

𝐹𝑛(𝑡) =
𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟̂3(𝑡) + 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟̂1(𝑡)𝐴(𝑡)
𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟̂3(𝑡) + 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟̂1(𝑡)

, (5)

is an estimator of 𝐹 (𝑡).

Theorem 2. The estimator 𝐹𝑛(𝑡) converges pointwise to 𝐹 (𝑡) at a rate of 𝑛𝛽∕(2𝛽+1),
for every 𝑡 ∈ [0, 𝜏].

The proof appears in Appendix A.4. Since that 𝐹𝑛 is based on density estimation, it is not necessarily monotonic, we therefore
replace it with a monotonic approximation. The monotonic approximation is by taking the cumulative sup.
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FIGURE 2 The difference between the semiparametric estimator of 𝜃0 and 𝜃0. Setting 1: The patience time 𝑇 follows an expo-
nential distribution with expectation of 16 hours and the waiting time 𝑊 follows and exponential distribution with expectation
of 2 hours. Setting 2: The patience time 𝑇 follows a Weibull distribution with scale 16 and shape 1.5 while the waiting time 𝑊
follows an exponential distribution with expectation of 2 hours.

Setting 1: Exponential Setting 2: Weibull
Semiparametric Nonparametric Semiparametric Nonparametric

N Mean Median Std Mean Median Std Mean Median Std Mean Median Std
100 1.014 0.432 1.44 1.428 0.804 1.812 0.474 0.228 0.618 0.216 0.114 0.264
200 0.51 0.21 0.828 1.062 0.672 1.11 0.414 0.252 0.492 0.072 0.036 0.12
500 0.162 0.084 0.198 0.462 0.288 0.474 0.378 0.294 0.288 0.03 0.018 0.03
1000 0.078 0.042 0.102 0.246 0.186 0.186 0.342 0.312 0.204 0.018 0.012 0.018
2000 0.054 0.03 0.066 0.168 0.132 0.12 0.348 0.318 0.132 0.012 0.0006 0.012

TABLE 1 MSE for Settings 1 and 2. The table summarizes the MSE that was calculated (100 times) for each of the sample
sizes. For Setting 1, the patience time 𝑇 follows an exponential distribution with expectation of 16 hours and the waiting time𝑊
follows an exponential distribution with expectation of 2 hours. In Setting 2 the patience time 𝑇 follows a Weibull distribution
with scale 16 and shape 1.5, while the waiting time 𝑊 follows an exponential distribution with expectation of 2 hours. The
estimates are given in minutes. As can be seen the nonparametric estimator responded with a lower MSE.

6 SIMULATIONS

We study the performance of both the semiparametric and nonparametric estimators that were proposed in Sections 4 and 5,
respectively. Based on the setting of the case study discussed in Section 7, we consider two simulation settings. In the case study,
both the exponential and Weibull distributions seem to fit well the waiting time and patience time distributions, respectively.
Thus, we chose parameters based on the fit for the urgent level, which is the middle severity level.

Specifically, the two simulation settings consist of samples from exponential and Weibull distributions in which the waiting
time has a smaller mean then the patience time mean, as was observed in the case study. In the first setting, following the data
from the case study, a sample was taken from the model in which the patience time 𝑇 follows an exponential distribution with
expectation of 16 hours, and the waiting time 𝑊 follows an exponential distribution with expectation of 2 hours. In the second
setting a sample was taken from a model in which the patience time 𝑇 follows a Weibull distribution with scale 16 and shape 1.5,
which closely related to the observed data; and where the waiting time 𝑊 follows an exponential distribution with expectation
of 2 hours as before. In both settings, the unknown probability of announcement is 𝑞(𝑡) = exp(−𝑡). Taking the probability of
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FIGURE 3 Setting 1. The blue, red, and black curves represent the nonparametric, semiparametric, and true survival functions,
respectively, for 𝑁 = 100, 200, 500, and 1000.

announcement to be the increasing function 𝑞(𝑡) = 1−exp(−𝑡) or the constant function 𝑞(𝑡) = 0.5 yields similar results which are
omitted. Moreover, we experimented with additional numerical values. The behavior and conclusions, as reported here, remain
consistent across these experiments.

In each setting, we calculated the semiparametric estimator for the scale of 𝑇 for five different sample sizes (𝑁 =
100, 200, 500, 1000, 2000). For each sample size, we repeated the simulation 100 times. When using the semiparametric method,
it was assumed that both 𝑇 and𝑊 follow an exponential distribution with unknown parameters. Note that this assumption holds
for the first setting but does not hold for the second one. In other words, the second setting is carried out under a misspecified
model. The results are shown in Figure 2.

We compare 𝐹 𝑛, the estimator of the survival function of 𝑇 , to the true survival function 𝐹 0. For the semiparametric estima-
tion, 𝐹 𝑛(𝑡) = exp(−𝜃̂𝑡), while for the nonparametric estimator 𝐹 𝑛(𝑡) is given by (5). The comparison is done using mean square
error (MSE), which is defined by

𝑀𝑆𝐸(𝐹 𝑛, 𝐹 0) ≡

∞

∫
−∞

{

𝐹 𝑛(𝑡) − 𝐹 0(𝑡)
}2

𝑓0(𝑡)𝑑𝑡 ,

where 𝑓0 is the density of 𝑇 . The semiparametric and nonparametric survival function estimators are demonstrated in Figures
3 and 4. Figure 3 represents the results of the first setting in which 𝑇 follows an exponential distribution with scale 13 and
𝑊 follows an exponential distribution with scale 2. Figure 4 represents the results of the second setting in which 𝑇 follows a
Weibull distribution with scale 13 and shape 1.5, and 𝑊 follows an exponential distribution with scale 2. Summaries of the
MSE are given in Table 1. Not surprisingly, for Setting 1, since the semiparametric model is correct, the MSE is smaller for
the semiparametric estimator. Similarly, since in Setting 2 the semiparametric model is incorrect, the MSE is smaller for the
nonparametric estimator.
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FIGURE 4 Second setting. The blue, red, and black curves represent the nonparametric, semiparametric, and true survival
functions, respectively.

7 CASE STUDY

As leaving without being seen by a physician may have a strong effect on patient well-being and satisfaction, estimating the
time that patients are willing to wait in the emergency department (ED) is an important and challenging question.19,25 While
there has been considerable research in this field,6–9 due to the special structure of the data, the duration that a potential patient
is willing to wait for ED service has not been thoroughly investigated.

We analyze data from all patient presentations to triage at an urban, academic, adult-only emergency department (ED) with
visits in calendar year 2008. This data was used for the analysis in Wiler et al.19 The data consist of the waiting time of patients
arriving at the emergency room stratified by acuity levels. We focused on the three main levels of acuity: emergency, urgent, and
semi-urgent. For each acuity level, we categorized each visit into one of the three categories: received service, left without being
seen and announced, and left without being seen and did not announce. We considered only patients that were not served upon
arrival, or left without waiting at all. The characteristics of the dataset appear in Table 2. As can be seen, the are considerably
fewer emergency visits and only 1.2% of these left without being seen. In comparison, in the urgent and semi-urgent acuity
levels, about 10% left without being seen. The distribution of the observed times for each acuity levels, stratified by the patient’s
category, appears in Figure 5. Overall, the distribution of the three categories is similar in each acuity level.

We analyzed the data using the semiparametric and nonparametric estimators for the distribution of the patience time proposed
in Sections 4 and 5. Since our model assumes that all patients follow the same distribution, we calculated the estimators for each
level of acuity separately. The data consist of the triple variables (𝑈𝑖,Δ𝑖, 𝑌𝑖) described in Section 3 such that each observation is
categorized to one of the three possible categories. The results of these estimators are given in Figures 6 and 7. As can be seen
from Figure 6, the results of the semiparametric and nonparametric estimators agree, which suggests that modeling the patience
time using the exponential distribution is reasonable. Figure 7 shows that the patience times are stochastically ordered by levels
of acuity. In other words, patients at the severe acuity level are less probable to lose patience than patients at the urgent level,
who in turn are less prone to lose patience than patients at the semi-urgent level, as expected.
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Emergency Urgent Semi-Urgent
n 8579 36249 26036
Category (%)
Service 8478 (98.8%) 32607 (90.0%) 23788 (91.4%)
LWBS & Announcement 69 (0.8%) 1908 (5.3%) 1019 (3.9%)
LWBS & No Announcement 32 (0.4%) 1734 (4.8%) 1229 (4.7)%
Mean Observed Time (SD) 25.11 (24.26) 111.73 (108.21) 82.18 (72.92)

TABLE 2 The characteristics of the different visits stratified by acuity level.

FIGURE 5 The distribution of the observed time stratified by acuity levels and category.

8 DISCUSSION

In this paper, we consider survival data that combine observed, right-censored, and left-censored data. The setting we analyzed
was that of patients who wait for treatment in an emergency department, where some patients may leave without being seen. We
proposed both semiparametric and nonparametric estimators for the distribution of the patience time.

Using simulation, we showed that when the semiparametric model holds, the semiparametric estimator estimates the patience
time well. However, when the model is misspecified, the nonparametric estimator behaves better. While in our case study, both
estimators behave similarly, it is of importance to further investigate when each of these estimators is preferable. So far, no
baseline covariates were given. Novel semiparametric and nonparametric estimators are needed for addressing settings that
include baseline covariates.
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FIGURE 6 Compression of the nonparametric and semiparametric estimators for the survival of the patience time by different
levels of acuity.

FIGURE 7 Compression of the estimator for the survival function of the patience time at the three different levels of severity.
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APPENDIX

A PROOFS

A.1 Proof of Lemma 1

𝑝𝑟(𝑈 ≤ 𝑡, = 1) =𝑝𝑟(𝑈 ≤ 𝑡,𝑊 ≤ 𝑇 )
=𝑝𝑟(𝑊 ≤ 𝑡,𝑊 ≤ 𝑇 )

=

𝑡

∫
0

𝑝𝑟(𝑊 ≤ 𝑇 ∣ 𝑊 = 𝑠)𝑔(𝑠)𝑑𝑠

=

𝑡

∫
0

𝑝𝑟(𝑠 ≤ 𝑇 )𝑔(𝑠)𝑑𝑠

=

𝑡

∫
0

𝑔(𝑠)𝐹 (𝑠)𝑑𝑠,

where in the fourth equality we use the independence between 𝑊 and (𝑌 , 𝑇 ).
This establishes i). For ii), we have

𝑝𝑟(𝑈 ≤ 𝑡, = 2) =𝑝𝑟(𝑈 ≤ 𝑡, 𝑌 = 1, 𝑇 < 𝑊 )
=𝑝𝑟(𝑇 ≤ 𝑡, 𝑌 = 1, 𝑇 < 𝑊 )

=

𝑡

∫
0

𝑝𝑟(𝑠 < 𝑊 ∣ 𝑌 = 1, 𝑇 = 𝑠)𝑞(𝑠)𝑓 (𝑠)𝑑𝑠

=

𝑡

∫
0

𝑝𝑟(𝑠 < 𝑊 )𝑞(𝑠)𝑓 (𝑠)𝑑𝑠

=

𝑡

∫
0

𝑞(𝑠)𝑓 (𝑠)𝐺(𝑠)𝑑𝑠,

where in the fourth equality we use the independence between 𝑊 and (𝑌 , 𝑇 ).
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Finally, for iii),

𝑃 (𝑈 ≤ 𝑡, = 3) =𝑝𝑟(𝑈 ≤ 𝑡, 𝑌 = 0, 𝑇 < 𝑊 )
=𝑝𝑟(𝑊 ≤ 𝑡, 𝑌 = 0, 𝑇 < 𝑊 )

=

𝑡

∫
0

𝑝𝑟(𝑌 = 0, 𝑇 < 𝑠 ∣ 𝑊 = 𝑠)𝑔(𝑠)𝑑𝑠

=

𝑡

∫
0

𝑔(𝑠)𝑝𝑟(𝑌 = 0, 𝑇 < 𝑠)𝑑𝑠

=

𝑡

∫
0

𝑔(𝑠)

𝑠

∫
0

𝑝𝑟(𝑌 = 0 ∣ 𝑇 = 𝑥)𝑓 (𝑥)𝑑𝑥𝑑𝑠

=

𝑡

∫
0

𝑔(𝑠)

𝑠

∫
0

{1 − 𝑞(𝑥)} 𝑓 (𝑥)𝑑𝑥𝑑𝑠,

where in the fourth equality we use the independence between 𝑊 and (𝑌 , 𝑇 ).

A.2 Proof of Theorem 1
The log of the full likelihood is

‴(𝐷; 𝜃, 𝛾) =
𝑛
∑

𝑖=1

[

(

1 − Δ𝑖
)

(

log 𝑔(𝑈𝑖; 𝛾) + log𝐹 (𝑈𝑖; 𝜃)
)

+ Δ𝑖𝑌𝑖
(

log 𝑞(𝑈𝑖) + log 𝑓 (𝑈𝑖; 𝜃) + log𝐺(𝑈𝑖; 𝛾)
)

+ Δ𝑖(1 − 𝑌𝑖)

⎧

⎪

⎨

⎪

⎩

log 𝑔(𝑈𝑖; 𝛾) + log

𝑈𝑖

∫
0

(1 − 𝑞(𝑠))𝑓 (𝑠; 𝜃)𝑑𝑠

⎫

⎪

⎬

⎪

⎭

]

.

Given the data 𝐷,

1
𝑛
𝑙(𝐷; 𝜃, 𝛾) = ℙ𝑛

{

𝑚𝛾 (𝑈,Δ, 𝑌 ) + 𝑐(𝑈,Δ, 𝑌 ; 𝜃)
}

≡ 1
𝑛

𝑛
∑

𝑖=1

{

𝑚𝛾 (𝑈𝑖,Δ𝑖, 𝑌𝑖) + 𝑐(𝑈𝑖,Δ𝑖, 𝑌𝑖; 𝜃)
}

(A1)

where 𝑚𝛾 ∶ ℝ+ × {0, 1}2 → ℝ is defined by

𝑚𝛾 (𝑢, 𝛿, 𝑦) ≡ (1 − 𝛿) log 𝑔(𝑢; 𝛾) + Δ𝑦 log𝐺(𝑢; 𝛾) + 𝛿(1 − 𝑦) log 𝑔(𝑢; 𝛾).

and

𝑐(𝑢, 𝛿, 𝑦; 𝜃) ≡(1 − 𝛿) log𝐹 (𝑢; 𝜃)

+ 𝛿𝑦 (log 𝑞(𝑢) + log 𝑓 (𝑢; 𝜃)) + 𝛿(1 − 𝑦) log

𝑢

∫
0

{1 − 𝑞(𝑠)} 𝑓 (𝑠; 𝜃)𝑑𝑠.

From assumption A1 we obtain that, for each 𝜃 ∈ Θ, argmax𝛾∈Γ 𝑙(𝐷; 𝛾, 𝜃) = argmax𝛾∈Γ ℙ𝑛(𝑚𝛾 ). The 𝛾 that maximizes
𝐿(𝐷; 𝜃, 𝛾) does not depend on the value of 𝜃 or the function 𝑝. Define𝑀𝑛(𝛾) ≡ ℙ𝑛𝑚𝛾 and𝑀(𝛾) ≡ 𝑃𝑚𝛾 .If, for a general function
ℎ, 𝑃ℎ ≡ ∫ ℎ(𝑥)𝑑𝑃 (𝑥) and ℙ𝑛ℎ ≡ 𝑛−1

∑𝑛
𝑖=1 ℎ(𝑋𝑖) then by Assumptions A1–A3, Theorem 5.7 in van der Vaart26 can be applied.

Therefore 𝛾̂𝑛 → 𝛾0, in probability, which concludes the proof of i).
Given the data 𝐷, the term 𝜕𝑙(𝐷;𝜃,𝛾)

𝜕𝛾
is a function of 𝛾 and does not depend on the unknown function 𝑝. We also have

1
𝑛
𝜕𝑙(𝐷; 𝜃, 𝛾)

𝜕𝛾
= ℙ𝑛𝜓𝛾 (𝑈,Δ, 𝑌 ) ≡

1
𝑛

𝑛
∑

𝑖=1
𝜓𝛾 (𝑈𝑖,Δ𝑖, 𝑌𝑖),
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where 𝜓𝛾 ∶ ℝ+ × {0, 1}2 → ℝ is defined as

𝜓𝛾 (𝑢, 𝛿, 𝑦) ≡ (1 − 𝛿)
𝜕
𝜕𝛾
𝑔(𝑢; 𝛾)

𝑔(𝑢; 𝛾)
− 𝛿𝑦

𝜕
𝜕𝛾
𝐺(𝑢; 𝛾)

𝐺(𝑢; 𝛾)
+ 𝛿(1 − 𝑦)

𝜕
𝜕𝛾
𝑔(𝑢; 𝛾)

𝑔(𝑢; 𝛾)
.

By Assumptions (A1)–(A3), 𝜓𝛾 satisfies the conditions of Theorem 5.41 in van der Vaart26 and, therefore,

√

𝑛(𝛾̂𝑛 − 𝛾0) = −(𝑃 𝜓̇𝛾0)
−1 1
√

𝑛

𝑛
∑

𝑖=1
𝜓𝛾0(𝑈𝑖,Δ𝑖, 𝑌𝑖) + 𝑜𝑝(1),

where 𝜓̇𝛾 (𝑥) =
𝜕
𝜕𝛾
𝜓𝛾 (𝑥). Hence 𝛾̂𝑛 is a linear asymptotically normal (LAN) estimator with influence function 𝜑 ≡ −(𝑃 𝜓̇𝛾0)

−1𝜓𝛾0
. From all of the above we get that ii) is proved with 𝑉𝛾0 = (𝑃 𝜓̇𝛾0)

−1𝑃𝜓𝛾0𝜓
𝑡
𝛾0
(𝑃 𝜓̇𝛾0)

−1.
To prove iii), note that due to the term log ∫ 𝑈𝑖

0 (1 − 𝑞(𝑠))𝑓 (𝑠; 𝜃)𝑑𝑠 that appears in 𝑙(𝐷; 𝜃, 𝛾), the term 𝜕𝑙(𝐷;𝜃,𝛾)
𝜕𝜃

depends on the
unknown function 𝑝. We therefore consider a partial likelihood function such that its derivative with respect to 𝜃 does not depend
on 𝑝. The partial likelihood that satisfies this request is the partial likelihood of  = 1:

𝑛
∏

𝑖=1

{

𝑔(𝑈𝑖; 𝛾)𝐹 (𝑈𝑖; 𝜃)

∫ ∞
0 𝑔(𝑠; 𝛾)𝐹 (𝑠; 𝜃)𝑑𝑠

}

1−Δ𝑖

The log of the partial likelihood is

‴𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐷; 𝜃, 𝛾) =
𝑛
∑

𝑖=1

(

1 − Δ𝑖
)

⎧

⎪

⎨

⎪

⎩

log 𝑔(𝑈𝑖; 𝛾) + log𝐹 (𝑈𝑖; 𝜃) − log

∞

∫
0

𝑔(𝑠; 𝛾)𝐹 (𝑠; 𝜃)𝑑𝑠

⎫

⎪

⎬

⎪

⎭

.

Given the data 𝐷, the term 𝑙𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐷; 𝜃, 𝛾) is a function only of the parameters 𝜃 and 𝛾 . We also have

1
𝑛
𝑙𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐷; 𝜃, 𝛾) = ℙ𝑛𝑟𝜃,𝛾 (𝑈,Δ, 𝑌 ) ≡

1
𝑛

𝑛
∑

𝑖=1
𝑟𝜃,𝛾 (𝑈𝑖,Δ𝑖, 𝑌𝑖),

where 𝑟𝜃,𝛾 ∶ ℝ+ × {0, 1}2 → ℝ is given by

𝑟𝜃,𝛾 (𝑈,Δ, 𝑌 ) ≡ (1 − Δ)

⎧

⎪

⎨

⎪

⎩

log 𝑔(𝑈 ; 𝛾) + log𝐹 (𝑈 ; 𝜃) − log

∞

∫
0

𝑔(𝑠; 𝛾)𝐹 (𝑠; 𝜃)𝑑𝑠

⎫

⎪

⎬

⎪

⎭

.

Define 𝑀𝑛(𝜃, 𝛾) ≡ ℙ𝑛𝑟𝜃,𝛾 , and 𝑀(𝜃, 𝛾) ≡ 𝑃𝑟𝜃,𝛾 . Then, Theorem 5.7 in van der Vaart26 can be applied. Therefore
(

𝜃𝑛, 𝛾̂𝑛
)

→
(

𝜃0, 𝛾0
)

in probability, and in particular 𝜃𝑛 → 𝜃0 in probability, and iii) is proven.
In order to prove iv), note that

1
𝑛
𝜕𝑙𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐷; 𝜃, 𝛾)

𝜕𝛾
= ℙ𝑛𝜙𝜃,𝛾 (𝑈,Δ, 𝑌 ) ≡

1
𝑛

𝑛
∑

𝑖=1
𝜙𝜃,𝛾 (𝑈𝑖,Δ𝑖, 𝑌𝑖),

where 𝜙𝜃,𝛾 ∶ ℝ+ × {0, 1}2 → ℝ is defined as

𝜙𝜃,𝛾 (𝑢, 𝛿, 𝑦) ≡ (1 − 𝛿)

⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝜃
𝐹 (𝑢; 𝜃)

𝐹 (𝑢; 𝜃)
−

𝜕
𝜕𝜃

∫ ∞
0 𝑔(𝑠; 𝛾)𝐹 (𝑠; 𝜃)𝑑𝑠

∫ ∞
0 𝑔(𝑠; 𝛾)𝐹 (𝑠; 𝜃)𝑑𝑠

⎫

⎪

⎬

⎪

⎭

.

Using Assumptions A1–A3, together from Theorem 5.41 in van der Vaart26, we obtain that
√

𝑛(𝛾̂𝑛 − 𝛾0) =
1
√

𝑛

𝑛
∑

𝑖=1

{

−(𝑃 𝜓̇𝛾0)
−1𝜓𝛾0(𝑈𝑖,Δ𝑖, 𝑌𝑖)

}

+ 𝑜𝑝(1).

Define Φ𝑛(𝜃, 𝛾) ≡ ℙ𝑛𝜙𝜃,𝛾 and note that Φ(𝜃0, 𝛾0) ≡ 𝑃𝜙𝜃0,𝛾0 = 0 (since under the true parameters 𝑃𝜙𝜃0,𝛾0 =
𝜕
𝜕𝜃

∫ 𝑑ℎ0 =
𝜕
𝜕𝜃
1 = 0,

where 𝑑ℎ0 is the true distribution of category 1).
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By Talyor’s theorem,

0 = Φ𝑛(𝜃𝑛, 𝛾̂𝑛) = Φ𝑛(𝜃0, 𝛾0) +
{ 𝜕
𝜕𝜃

Φ𝑛(𝜃0, 𝛾0)
}𝑇

(𝜃𝑛 − 𝜃0) +
{

𝜕
𝜕𝜙

Φ𝑛(𝜃0, 𝛾0)
}𝑇

(𝛾̂𝑛 − 𝛾0) + 𝑜𝑝
(

𝑛−1∕2
)

⇒0 =
√

𝑛Φ𝑛(𝜃0, 𝛾0) +
{ 𝜕
𝜕𝜃

Φ𝑛(𝜃0, 𝛾0)
}𝑇

√

𝑛
(

𝜃𝑛 − 𝜃0
)

+
{

𝜕
𝜕𝛾

Φ𝑛(𝜃0, 𝛾0)
}𝑇

√

𝑛
{

𝛾̂𝑛 − 𝛾0
}

+ 𝑜𝑝(1).

=
√

𝑛Φ𝑛(𝜃0, 𝛾0) +
{ 𝜕
𝜕𝜃

Φ𝑛(𝜃0, 𝛾0)
}𝑇

√

𝑛
(

𝜃𝑛 − 𝜃0
)

−
{

𝜕
𝜕𝛾

Φ𝑛(𝜃0, 𝛾0)
}𝑇

(𝑃 𝜓̇𝛾0)
−1 1
√

𝑛

𝑛
∑

𝑖=1
𝜓𝛾0(𝑈𝑖,Δ𝑖, 𝑌𝑖) + 𝑜𝑝(1)

= 1
√

𝑛

𝑛
∑

𝑖=1

[

𝜙𝜃0,𝛾0(𝑈𝑖,Δ𝑖, 𝑌𝑖) −
{

𝜕
𝜕𝛾

Φ𝑛(𝜃0, 𝛾0)
}𝑇

(𝑃 𝜓̇𝛾0)
−1𝜓𝛾0(𝑈𝑖,Δ𝑖, 𝑌𝑖)

]

+
{ 𝜕
𝜕𝜃

Φ𝑛(𝜃0, 𝛾0)
}𝑇

√

𝑛(𝜃𝑛 − 𝜃0) + 𝑜𝑝(1).

Elementary arithmetic leads to
√

𝑛
(

𝜃𝑛 − 𝜃0
)

= −
(

𝐸𝐸𝑇 )−1 1
√

𝑛

𝑛
∑

𝑖=1

{

𝜙𝜃0,𝛾0(𝑈𝑖,Δ𝑖, 𝑌𝑖) − 𝐵𝑇 (𝑃 𝜓̇𝛾0)
−1𝜓𝛾0(𝑈𝑖,Δ𝑖, 𝑌𝑖)

}

+ 𝑜𝑝(1),

where 𝐵 ≡ 𝜕
𝜕𝛾
Φ(𝜃0, 𝛾0), and 𝐸 ≡ 𝜕

𝜕𝜃
Φ(𝜃0, 𝛾0). Hence, 𝜃𝑛 is a LAN estimator with the influence function

𝜑 = −
(

𝐸𝐸𝑇 )−1 1
√

𝑛

{

𝜙𝜃0,𝛾0 − 𝐵
𝑇 (𝑃 𝜓̇𝛾0)

−1𝜓𝛾0
}

.

Summarizing,
√

𝑛(𝜃𝑛 − 𝜃0) → 𝑁(0, 𝑆𝜃0,𝛾0) in distribution, where 𝑆𝜃0,𝛾0 = 𝑃𝜑𝜑𝑇 , hence, iv) is proven.

A.3 Proof of Lemma 2
Proof. We use similar arguments to those in the proof of the convergence of the Nelson–Aalen estimator to a cumulative hazard
function, see Kosorok23, page 240. Hence we have that

√

𝑛

{

𝑁̂𝑛(𝑡) −𝑁(𝑡)
𝑌𝑛(𝑡) − 𝑌 (𝑡)

}

= 𝑂𝑝(1),

where 𝑁(𝑡) = 𝑝𝑟(𝑌 = 1, 𝑇 ≤ 𝑊 ,𝑇 ≤ 𝑡) and 𝑌 (𝑡) = 𝑝𝑟(𝑈 ≥ 𝑡).
Since, by Section 3,

{𝑈 > 𝑡} = {𝑌 = 0,𝑊 > 𝑡} ∪ {𝑌 = 1,𝑊 > 𝑡, 𝑇 > 𝑡}.

Hence,

𝑝𝑟(𝑈 > 𝑡) = 𝑝𝑟(𝑌 = 0,𝑊 > 𝑡) + 𝑝𝑟(𝑌 = 1,𝑊 > 𝑡, 𝑇 > 𝑡)
= 𝑝𝑟(𝑊 > 𝑡) {𝑝𝑟(𝑌 = 0) + 𝑝𝑟(𝑌 = 1, 𝑇 > 𝑡)}
= 𝑝𝑟(𝑊 > 𝑡)

(

𝑝𝑟(𝑌 = 0) + 𝑝𝑟(𝑌 = 1) − 𝑝𝑟(𝑌 = 1, 𝑇 ≤ 𝑡)
)

= 𝑝𝑟(𝑊 > 𝑡) {1 − 𝑝𝑟(𝑌 = 1, 𝑇 ≤ 𝑡)}

= 𝐺(𝑡)

⎧

⎪

⎨

⎪

⎩

1 −

𝑡

∫
0

𝑞(𝑠)𝑓 (𝑠)𝑑𝑠

⎫

⎪

⎬

⎪

⎭

,

where in the second equality we use the independence between 𝑊 and (𝑌 , 𝑇 ).
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By Lemma 1

𝑝𝑟(𝑌 = 1, 𝑇 ≤ 𝑊 ,𝑇 ≤ 𝑡) =

𝑡

∫
0

𝑞(𝑠)𝑓 (𝑠)𝐺(𝑠)𝑑𝑠.

Using the continuity of the derivative operator and of the integral operator, we get that

𝐷̂𝑛(𝑡) →

𝑡

∫
0

𝑞(𝑠)𝑓 (𝑠)𝐺(𝑠)

𝐺(𝑠)
{

1 − ∫ 𝑠
0 𝑞(𝑥)𝑓 (𝑥)𝑑𝑠

}

𝑑𝑠

in probability.
Note that

𝑡

∫
0

𝐺(𝑠)𝑞(𝑠)𝑓 (𝑠)

𝐺(𝑠)
{

1 − ∫ 𝑠
0 𝑞(𝑥)𝑓 (𝑥)𝑑𝑥

}

𝑑𝑠 =

𝑡

∫
0

𝑞(𝑠)𝑓 (𝑠)
{

1 − ∫ 𝑠
0 𝑞(𝑥)𝑓 (𝑥)𝑑𝑥

}𝑑𝑠

= −

𝑡

∫
0

𝜕
𝜕𝑠

log

⎧

⎪

⎨

⎪

⎩

1 −

𝑠

∫
0

𝑞(𝑥)𝑓 (𝑥)𝑑𝑥

⎫

⎪

⎬

⎪

⎭

𝑑𝑠 = − log

⎧

⎪

⎨

⎪

⎩

1 −

𝑡

∫
0

𝑞(𝑠)𝑓 (𝑠)𝑑𝑠

⎫

⎪

⎬

⎪

⎭

.

Hence, by the delta method, see Kosorok23 Chapter 12.2.2.2, we get that

𝐷̂𝑛(𝑡) → − log

⎧

⎪

⎨

⎪

⎩

1 −

𝑡

∫
0

𝑞(𝑠)𝑓 (𝑠)𝑑𝑠

⎫

⎪

⎬

⎪

⎭

in probability, with convergence at rate 𝑛1∕2.
Since 𝑦 = − log (1 − 𝑥) ⇔ 𝑥 = 1 − exp (−𝑦) and by the continuous mapping theorem, see Theorem 7.7 of Kosorok23, we get

that 𝐴(𝑡) = 1 − exp(−𝐷̂𝑛(𝑡)) is an estimator of ∫ 𝑡
0 𝑞(𝑠)𝑓 (𝑠)𝑑𝑠, at the rate of 𝑛1∕2 as desired.

A.4 Proof of Theorem 2
For the proof of Theorem 2, we need the following lemma, which is elementary hence stated without proof.

Lemma 3. Let (𝑎𝑛)∞𝑛=1, (𝑏𝑛)
∞
𝑛=1 be positive sequences. If 𝑋𝑛 −𝑋 = 𝑂𝑝(𝑎𝑛) and

𝑌𝑛 − 𝑌 = 𝑂𝑝(𝑏𝑛), as well as 𝑃 (|𝑋| > 𝑙) = 1 for some 𝑙 > 0. Then we have:

i) 𝑋𝑛 + 𝑌𝑛 − (𝑋 + 𝑌 ) = 𝑂𝑝(𝑎𝑛 ∨ 𝑏𝑛),

ii) 𝑋𝑛𝑌𝑛 −𝑋𝑌 = 𝑂𝑝(𝑎𝑛 ∨ 𝑏𝑛),

iii) 1
𝑋𝑛

− 1
𝑋
= 𝑂𝑝(𝑎𝑛).

Proof of Theorem 2. Recall that

𝐹𝑛(𝑡) =
𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟̂3(𝑡) + 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟̂1(𝑡)𝐴(𝑡)
𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟̂3(𝑡) + 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟̂1(𝑡)

is an estimator of 𝐹 (𝑡).
For all 𝑡 > 0,

𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 ) − 𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 ) = 𝑂𝑝(𝑛−1∕2) ,

and

𝑝𝑟(𝑇 ≤ 𝑊 ) − 𝑝𝑟(𝑇 ≤ 𝑊 ) = 𝑂𝑝(𝑛−1∕2) ,

as both are empirical distribution estimators. By Chapter 1.7 of Tsybakov24,
for all 𝑡 > 0, 𝑟̂𝑗(𝑡) − 𝑟𝑗(𝑡) = 𝑂𝑝(𝑛−𝛽∕(2𝛽+1)), for 𝑗 = 1, 3. By Lemma 2, 𝐴(𝑡) − 𝐴(𝑡) = 𝑂𝑝(𝑛−1∕2).
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By Lemma 3.ii)

𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟̂3(𝑡) − 𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟̂3(𝑡) = 𝑂𝑝(𝑛−𝛽∕(2𝛽+1)) ,

and

𝑝𝑟(𝑇 ≤ 𝑊 )𝑟̂1(𝑡)𝐴(𝑡) − 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟̂1(𝑡)𝐴(𝑡) = 𝑂𝑝(𝑛−𝛽∕(2𝛽+1)) .

Therefore, by Lemma 3.i),

𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟̂3(𝑡) + 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟̂1(𝑡)𝐴(𝑡) − 𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟3(𝑡) − 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟1(𝑡)𝐴(𝑡)
= 𝑂𝑝(𝑛−𝛽∕(2𝛽+1)) .

Similarly,

𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟̂3(𝑡) + 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟̂1(𝑡) − 𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟3(𝑡) − 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟1(𝑡)
= 𝑂𝑝(𝑛−𝛽∕(2𝛽+1)).

By Lemma 3.iii),
1

𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟̂3(𝑡) + 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟̂1(𝑡)
− 1
𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟3(𝑡) + 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟1(𝑡)

= 𝑂𝑝(𝑛−𝛽∕(2𝛽+1)).

By Lemma 3.i) again,

𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟̂3(𝑡) + 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟̂1(𝑡)𝐴(𝑡)
𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟̂3(𝑡) + 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟̂1(𝑡)

−
𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟3(𝑡) + 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟1(𝑡)𝐴(𝑡)
𝑝𝑟(𝑌 = 0,𝑊 < 𝑇 )𝑟3(𝑡) + 𝑝𝑟(𝑇 ≤ 𝑊 )𝑟1(𝑡)

= 𝑂𝑝(𝑛−𝛽∕(2𝛽+1)).

In other words, 𝐹𝑛(𝑡) − 𝐹 (𝑡) = 𝑂𝑝(𝑛−𝛽∕(2𝛽+1)), which complete the proof of Theorem 2.

A.5 Details on Example 1
Assuming that 𝑇 follows an exponential distribution with rate 𝜃 and 𝑊 follows an exponential distribution with rate 𝑔𝑎𝑚𝑚𝑎
then the likelihood 𝐿(𝐷; 𝜃, 𝛾) is

𝑛
∏

𝑖=1

(

{

𝛾 exp (−𝛾𝑈𝑖) exp (−𝜃𝑈𝑖)
} 1−Δ𝑖

{

𝑞(𝑈𝑖)𝜃 exp (−𝜃𝑈𝑖) exp (−𝛾𝑈𝑖)
} Δ𝑖𝑌𝑖

×
⎡

⎢

⎢

⎣

𝛾 exp (−𝛾𝑈𝑖)

𝑈𝑖

∫
0

{1 − 𝑞(𝑠)} 𝜃 exp (−𝜃𝑠)
⎤

⎥

⎥

⎦

Δ𝑖(1−𝑌𝑖)
)

.

Hence,

log𝐿(𝐷; 𝜃, 𝛾)

=
𝑛
∑

𝑖=1
(1 − Δ𝑖)(log 𝛾 − 𝛾𝑈𝑖) +

𝑛
∑

𝑖=1
Δ𝑖𝑌𝑖(−𝛾𝑈𝑖) +

𝑛
∑

𝑖=1
Δ𝑖(1 − 𝑌𝑖)(log 𝛾 − 𝛾𝑈𝑖) + 𝐶(𝑈1, 𝑈2, ..., 𝑈𝑛; 𝜃)

= (𝑛 −
𝑛
∑

𝑖=1
Δ𝑖𝑌𝑖) log 𝛾 − 𝛾

𝑛
∑

𝑖=1
𝑈𝑖 + 𝐶(𝑈1, 𝑈2, ..., 𝑈𝑛; 𝜃).

Therefore,
𝜕log𝐿(𝐷; 𝜃, 𝛾)

𝜕𝛾
=
𝑛 −

∑𝑛
𝑖=1 Δ𝑖𝑌𝑖
𝛾

−
𝑛
∑

𝑖=1
𝑈𝑖,

and hence, the value of 𝛾 which maximize 𝐿(𝐷; 𝜃, 𝛾) is 𝛾̂𝑛 =
𝑛−

∑𝑛
𝑖=1 Δ𝑖𝑌𝑖

∑𝑛
𝑖=1 𝑈𝑖

.
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The partial likelihood 𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐷; 𝜃; 𝛾) of category  = 1,
𝑛

∏

𝑖=1

{

𝑔(𝑈𝑖; 𝛾)𝐹 (𝑈𝑖; 𝜃)

∫ ∞
0 𝑔(𝑠; 𝛾)𝐹 (𝑠; 𝜃)𝑑𝑠

}

1−Δ𝑖

=
𝑛

∏

𝑖=1

{

𝛾 exp (−𝛾𝑈𝑖) exp (−𝜃𝑈𝑖)
∫ ∞
0 𝛾 exp (−𝛾𝑠) exp (−𝜃𝑠)𝑑𝑠

}

1−Δ𝑖 =
𝑛

∏

𝑖=1

{

𝛾 exp
(

−𝑈𝑖(𝛾 + 𝜃)
)

∫ ∞
0 𝛾 exp (−𝑠(𝛾 + 𝜃))𝑑𝑠

}

1−Δ𝑖

=
𝑛

∏

𝑖=1

{

𝛾 exp
(

−𝑈𝑖(𝛾 + 𝜃)
)

𝛾
𝛾+𝜃

}

1−Δ𝑖 =
𝑛

∏

𝑖=1
[(𝛾 + 𝜃) exp

(

−𝑈𝑖(𝛾 + 𝜃)
)

]1−Δ𝑖 .

Hence,

log𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐷; 𝜃; 𝛾) =
𝑛
∑

𝑖=1
(1 − Δ𝑖)

(

log (𝛾 + 𝜃) − 𝑈𝑖(𝛾 + 𝜃)
)

.

Therefore,
𝜕log𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐷; 𝜃, 𝛾)

𝜕𝜃
=

𝑛
∑

𝑖=1
(1 − Δ𝑖)(

1
𝛾 + 𝜃

− 𝑈𝑖).

The semiparametric estimator for 𝜃 is the maximizer of 𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝐷; 𝜃, 𝛾̂𝑛) by 𝜃 which is

𝜃𝑛 =
∑𝑛
𝑖=1(1 − Δ𝑖)

∑𝑛
𝑖=1 𝑈𝑖(1 − Δ𝑖)

− 𝛾̂𝑛 =
∑𝑛
𝑖=1(1 − Δ𝑖)

∑𝑛
𝑖=1 𝑈𝑖(1 − Δ𝑖)

−
𝑛 −

∑𝑛
𝑖=1 Δ𝑖𝑌𝑖

∑𝑛
𝑖=1 𝑈𝑖

.

References

1. Minn AY, Pollock BH, Garzarella L, et al. Surveillance neuroimaging to detect relapse in childhood brain tumors: a Pediatric
Oncology Group study. Journal of clinical oncology 2001; 19(21): 4135–4140.

2. Whitehead J. The analysis of relapse clinical trials, with application to a comparison of two ulcer treatments. Statistics in
Medicine 1989; 8(12): 1439–1454.

3. Mandelbaum A, Zeltyn S. Service engineering in action: The Palm/Erlang-A queue, with applications to call centers. In
Advances in Services Innovations, D. Spath and K. P. Fahnrich (eds.). Springer, New York, 2007: 17–45.

4. Peto R. Experimental survival curves for interval-censored data. Journal of the Royal Statistical Society: series C (Applied
Statistics) 1973; 22(1): 86–91.

5. Zhang Z, Sun J. Interval censoring. Statistical methods in medical research 2010; 19(1): 53–70.

6. Baker DW, Stevens CD, Brook RH. Patients who leave a public hospital emergency department without being seen by a
physician. Causes and consequences. JAMA 1991; 266(8): 1085–1090.

7. Hunt KA, Weber EJ, Showstack JA, Colby DC, Callaham ML. Characteristics of frequent users of emergency departments.
Annals of Emergency Medicine 2006; 48(1): 1–8.

8. Bolandifar E, DeHoratius N, Olsen T, Wiler JL. Modeling the Behavior of Patients Who Leave the ED Without Being Seen.
Chicago Booth Research Paper 2014(12–14).

9. Batt RJ, Terwiesch C. Waiting patiently: An empirical study of queue abandonment in an emergency department.
Management Science 2015; 61(1): 39–59.

10. Klein JP, Moeschberger ML. Survival Analysis: Techniques for Censored and Truncated Data. New York: Springer . 2013.

11. Wilson JMG, Jungner G, Organization WH, others . Principles and practice of screening for disease. 1968.

12. Zelen M, Feinleib M. On the theory of screening for chronic diseases. Biometrika 1969; 56(3): 601–614.



19

13. Prentice RL, Gloeckler LA. Regression analysis of grouped survival data with application to breast cancer data. Biometrics
1978: 57–67.

14. Gans N, Koole G, Mandelbaum A. Telephone call centers: Tutorial, review, and research prospects. Manufacturing &
Service Operations Management 2003; 5(2): 79–141.

15. Aksin Z, Armony M, Mehrotra V. The modern call center: A multi-disciplinary perspective on operations management
research. Production and operations management 2007; 16(6): 665–688.

16. Mandelbaum A, Zeltyn S. Data-stories about (im) patient customers in tele-queues. Queueing Systems 2013; 75(2-4): 115–
146.

17. Brown L, Gans N, Mandelbaum A, et al. Statistical analysis of a telephone call center: A queueing-science perspective.
Journal of the American statistical association 2005; 100(469): 36–50.

18. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. Journal of the American Statistical
Association 1958; 53(282): 457–481.

19. Wiler JL, Bolandifar E, Griffey RT, Poirier RF, Olsen T. An emergency department patient flow model based on queueing
theory principles. Academic Emergency Medicine 2013; 20(9): 939–946.

20. Nah F. A study on tolerable waiting time: how long are web users willing to wait?. Behaviour & Information Technology
2004; 23(3): 153–163.

21. Yom-Tov GB, Rafaeli A, Ashtar S, et al. Customer emotion in chat services: Automatic identification and new insights.
Under review 2018.

22. Wong WH. Theory of partial likelihood. The Annals of statistics 1986: 88–123.

23. Kosorok MR. Introduction to Empirical Processes and Semiparametric Inference. Springer, New York . 2008.

24. Tsybakov AB. Introduction to Nonparametric Estimation. Springer Science & Business Media, New York . 2008.

25. Shaikh SB, Jerrard DA, Witting MD, Winters ME, Brodeur MN. How long are patients willing to wait in the emergency
department before leaving without being seen?. Western Journal of Emergency Medicine 2012; 13(6): 463.

26. Vaart v. dAW. Asymptotic Statistics. Cambridge University Press, Cambridge . 2000.


	Self-reporting and screening: Data with right-censored, left-censored, and complete observations
	-
	Introduction
	Brief Literature Review
	The Model
	Semiparametric estimation
	Nonparametric estimation
	Simulations
	Case study
	Discussion
	Acknowledgement
	Data Availability
	Appendix
	Proofs
	Proof of Lemma 1
	 Proof of Theorem 1
	Proof of Lemma 2
	Proof of Theorem 2
	Details on Example 1

	References




