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1 Introduction

The study of defects and interfaces in field theories is of considerable interest. One of the

first examples in holography was the Janus solution [1] which is a deformation of the AdS5×
S5 solution of Type IIB supergravity describing a planar interface in N = 4 SYM across

which the coupling constant jumps. Subsequently, Janus solutions have been generalized

in many ways, see e.g. [2–12]. Another way to construct defects in holographic theories is

by embedding probe branes in the supergravity dual and neglecting their backreaction [13].

This approximation is often justified if the number of probe branes is small compared to the

number of branes which created the background spacetime. Defects of various dimensions

and in various field theories are described holographically by probe branes with AdSp×Sq

worldvolume, where the AdSp is embedded inside the AdS part of the background and the

Sq can either be embedded inside the AdS part or in the internal space [14–18]. In many

cases BPS defects can be realized, which preserve part of the background supersymmetries

and may involve additional worldvolume fluxes.

In this paper we present a deformation of defect probe branes inspired by the Janus-

within-Janus solution of [19]. The original Janus solution [1] is based on an AdS4 slicing
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of AdS5, with the dilaton depending on the slicing coordinate. In [19] this solution was

generalized by using an AdS3 slicing for AdS4 and making the dilaton dependent also

on the second slicing coordinate. Consequently, this solution describes a defect within a

defect. We apply this idea to probe branes with an AdSp worldvolume by using an AdSp−1

slicing of AdSp and making the embedding of the branes into the background spacetime

dependent on the slicing coordinate. Hence we name the resulting solutions “Janus on the

brane”. These embeddings describe codimension-two defects in the dual field theories with

an interface on the defect across which certain parameters characterizing the defect jump.

The solutions generically break all supersymmetries preserved by the undeformed defect.

The remainder of this paper is organized as follows: In section 2 we discuss, as our main

example, two-dimensional surface defects in N = 4 SYM which are described by probe D3-

branes with AdS3 × S1 worldvolume in AdS5 × S5. We find numerical and perturbative

Janus-on-the-brane solutions and discuss their interpretation as surface defects in N = 4

SYM. In section 3 we generalize the construction to probe M2-branes with AdS2 × S1

worldvolume in the AdS4 × S7 vacuum of M-theory, probe M5-branes with AdS5 × S1

worldvolume in AdS7 × S4, and probe D4-branes with AdS4 × S1 worldvolume in the

AdS6 × Ŝ4 Brandhuber-Oz solution of massive Type IIA. We close with a discussion and

outlook in section 4.

2 Surface operators in N = 4 SYM

Surface operators of disorder type in N = 4 SYM were constructed in [20] in a semiclas-

sical approximation. The half-BPS surface operators preserve a PSU(1, 1|2)× PSU(1, 1|2)

subgroup of the PSU(2, 2|4) superconformal symmetry of N = 4 SYM. In [20] the sur-

face operator is realized as a vortex configuration and a singular gauge field transverse to

Σ2 = R1,1 in R1,3. In this paper we will use an equivalent description introduced in [21],

which maps four-dimensional Minkowski space conformally to AdS3 × S1 with metric

ds2 = ds2
AdS3

+ dψ2 (2.1)

The surface operator is located at the conformal boundary of AdS3 and corresponds to

a non-trivial state on AdS3 × S1. It is characterized by a choice of Levi-Group L =∏m
n=1 U(Nn) ∈ U(N) and a vortex configuration for the gauge field

A =


α11N1 0 · · · 0

0 α21N2

. . .
...

...
. . .

. . . 0

0 · · · 0 αm1Nm

 dψ (2.2)

Among the six scalars of N = 4 SYM only the combination Φ = 1√
2
(φ1 + iφ2) is non-

vanishing and has the following behavior

Φ =
e−iψ√

2


(β1 + iγ1)1N1 0 · · · 0

0 (β2 + iγ2)1N2

. . .
...

...
. . .

. . . 0

0 · · · 0 (βm + iγm)1Nm

 (2.3)

– 2 –



J
H
E
P
0
7
(
2
0
2
0
)
2
4
3

There is a further set of parameters ηn, n = 1, 2, · · · ,m specifying theta angles for unbroken

U(1) factors.

In this paper we will use the holographic description of surface operators as probe

branes in AdS5 × S5 [21, 22].1 With an AdS3 × S1 slicing of AdS5 and an S1 × S3 slicing

of S5 the AdS5 × S5 background metric reads

ds2 = du2 + cosh2 u ds2
AdS3

+ sinh2 u dψ2 + dθ2 + cos2 θ ds2
S3 + sin2θ dφ2 (2.4)

with u ∈ [0,∞). The conformal boundary at u → ∞ is AdS3 × S1, and this choice is

natural for describing N = 4 SYM on AdS3 × S1. The four-form potential is given by2

C4 = (cosh4u− 1) volAdS3 ∧ dψ + . . . (2.5)

where the dots denote components along the S5 and volAdS3 is the volume form of unit-

radius AdS3. As shown in [21], a probe D3-brane with worldvolume parameterized by the

AdS3 coordinates and ψ and the embedding

u = u0 φ = −ψ + ψ0 θ =
π

2
(2.6)

extremizes the action

SD3 = TD3

∫
d4ξ
√
−det(γab + Fab)− TD3

∫
C4 (2.7)

and preserves the same PSU(1, 1|2)× PSU(1, 1|2) superalgebra as the surface operator. A

single D3-brane corresponds to a Levi group U(1) × U(N − 1), and the relation to the

parameters of the defect operator in N = 4 SYM proposed in [21] is

β + iγ =

√
λ

2π
sinhu0e

iφ0 α =

∮
A

2π
η =

∮
Ã

2π
(2.8)

For any non-zero u0 the parameter β+ iγ is of O(
√
λ). More general Levi groups L can be

realized by considering multiple D3-brane probes at different locations u. The backreaction

can be neglected as long as the number of probe branes is small compared to N .

2.1 Janus on the D3-brane

For the Janus-on-the-brane configurations to be discussed in the following it is convenient

to further foliate AdS3 by AdS2 slices, such that the AdS3 metric in (2.4) is given by

ds2
AdS3

= dξ2 + cosh2ξ ds2
AdS2

(2.9)

with ξ ∈ R. The AdS2 slices may be taken either as Poincaré or global (Euclidean) AdS2.

The former case will describe an interface R on a surface operator supported on the two

1Backreacted Type IIB solutions were constructed in [22], based on a double analytic continuation of

LLM solutions [23, 24].
2This C4 differs from the choice in [21] by a gauge transformation. It is regular at u = 0 and leads to

the correct anomaly, to be discussed briefly in section 2.2. We thank Kristan Jensen for pointing this out

to us.
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copies of Poincaré AdS2 obtained for ξ → ±∞ and joined at their boundaries, which is

conformally related to R2. The latter case will describe an S1 interface on a surface operator

supported on two copies of global AdS2 joined at their boundaries, which is conformally

related to S2. An ansatz for embeddings that preserve the AdS2 isometries, corresponding

to the defect conformal symmetry of the one-dimensional interface, is then obtained by

allowing the AdS3 ↪→ AdS5 slicing coordinate u to depend on the AdS2 ↪→ AdS3 slicing

coordinate ξ

u = u(ξ) φ = φ(ψ) θ =
π

2
(2.10)

The action for a D3-brane embedded in such a way is given by

SD3 = TD3VolAdS2

∫
dξdψ cosh2ξ

[
cosh2u

√(
sinh2u+ φ̇2

)(
cosh2u+ (u′)2

)
− cosh4u+ 1

]
(2.11)

where VolAdS2 is the (renormalized) volume of AdS2. The Euler-Lagrange equation for φ

derived from this action is

sinh2u(ξ)
d2φ(ψ)

dψ2
= 0 (2.12)

It is solved by a generic linear function. The solutions we will use in the following are3

φ = φ0 − ψ (2.13)

Using them in the Euler-Lagrange equation for u(ξ) leads to

u′′ − 5u′2 tanhu+ 2 tanh ξ
(
u′ + sech2u u′3

)
− 2 sinh(2u)

+(4 sinhu+ 4 sechu tanhu u′2)
√

cosh2 u+ u′2 = 0 (2.14)

A sample of numerical solutions is shown in figure 1. For the non-constant solutions

the embedding coordinate u(ξ) approaches different values as the AdS2 slicing coordinate

approaches ξ → ±∞. This behavior is reminiscent of Janus solutions, where it is now

the embedding coordinate u which jumps. Note that the coordinate u in the AdS5 × S5

metric (2.4) only takes non-negative values — the solutions where u(ξ) changes sign can

be interpreted as brane embeddings consisting of two branches with u = |u(ξ)| and phase

shifts in (2.13) differing by π that are joined at the location where u(ξ) changes sign.4 The

natural generalization of the identification between the parameters of the surface operator

and those of the D3-brane embedding in (2.8) is

(β + iγ)± = lim
ξ→±∞

√
λ

2π
sinhu(ξ) eiφ0 (2.15)

3Solutions with constant u = u0 exist for φ = aψ+φ0 if either a2 = 1 and u0 arbitrary, or if a2 ≤ 1
9

and

cosh2 u0 = 9
8
(1− a2). We focus here on deformations of the BPS embeddings with a2 = 1.

4The D3-brane wraps a curve with winding number (1, 1) in the torus S1
ψ × S1

φ. At u = 0 the S1
ψ

degenerates but S1
φ does not, so the D3-brane does not cap off. The AdS5 × S5 metric near u = 0 is

ds2 ≈ du2 +u2dψ2 + dξ2 + dφ2 + . . .. An embedding where u(ξ) changes sign at ξ = ξ0, with u = |u(ξ)| and

φ = φ0−ψ+πΘ(−u(ξ)), near ξ0 describes a straight line through the origin of the plane R2
(u,ψ) for each φ.
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Figure 1. Sample of solutions to (2.14) with u(0) = 1 and u′(0) ∈ {0, 0.2, 0.4, . . . , 1}. Their

qualitative behavior is well captured by the leading-order perturbative solution (2.18).

The Janus-on-the-brane solution thus describes two 1+1 dimensional surface defects with

different parameters (β + iγ)± glued together at a 0 + 1 dimensional interface. As shown

in appendix A.1 these solutions break all supersymmetries.

We have not found an analytic solution to (2.14), but a perturbative solution for small

deviations from the supersymmetric embedding with constant u can be found straightfor-

wardly. In view of the identification with field theory parameters in (2.15), a natural ansatz

for a perturbative expansion is

sinhu(ξ) = sinhu0 + εu1(ξ) +
1

2
ε2u2(ξ) +

1

3!
ε3u3(ξ) + . . . (2.16)

Solving (2.14) order by order in ε leads at leading order to the equation

u′′1(ξ) + 2 tanh ξ u′1(ξ) = 0 (2.17)

which is solved by

u1 = α1 tanh ξ + α2 (2.18)

Since α1 and α2 can be absorbed into a redefinition of ε and u0, respectively, we set

α1 = 1 α0 = 0 (2.19)

in the following. By similar reasoning the integration constants appearing in the higher-

order solutions can be fixed, by demanding that

lim
ξ→±∞

sinhu(ξ) = sinhu0 ± ε (2.20)

That is, the higher orders should not redefine the expansion parameter (the difference

between (β + iγ)±) or u0 (the average of (β + iγ)±). This leads to

u2(ξ) = 0

u3(ξ) =
4 cosh2ξ + 3

5 cosh4ξ cosh4u0

tanh ξ

u4(ξ) = 2 sinhu0
19− 2 cosh2ξ − 8 cosh4ξ

5 cosh6ξ cosh6u0

(2.21)
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and higher-order terms can be obtained straightforwardly. The expansion for u(ξ) is in-

variant under simultaneous sign reversal of ε and ξ, which dictates the parity of ui.

2.2 Defect expectation value

The holographic description of the surface operator OΣ allows to compute many observables

at strong coupling, such as correlation functions, entanglement entropy or the central charge

associated with the conformal defect. In this section we focus on the expectation value,

which is computed from the D3-brane on-shell action via

〈OΣ〉 = e−SD3,on−shell (2.22)

For a two-dimensional defect there can be a conformal anomaly, which, as discussed in [21],

is characterized by three curvature invariants with independent coefficients. For a defect

supported on R2 the curvature invariants vanish, while for a defect on S2 one of them

is non-zero. The anomaly was studied and shown to be non-vanishing in [25, 26] (see

also [27]), amending the previous conclusion in [21] that the anomaly vanishes.5

We now compute the defect contribution to the expectation value. The Janus-on-

the-brane solutions asymptotically approach the constant embedding, and the integrand

in (2.11) falls off sufficiently fast for large |ξ| that there are no new divergences associated

with large |ξ|; the conformal anomaly is unchanged. For the perturbative solution (2.16)

one can calculate the on shell action as a power series in ε. The first terms following

from (2.18) and (2.21) (and further terms in the expansion) are

SD3 = S
(0)
D3 + 2πTD3VolAdS2

{
ε2 − 2ε4

15 cosh4u0

−
4ε6
(
75 sinh2u0 − 23

)
1575 cosh8u0

−
2ε8
(
375375 sinh4u0 − 564330 sinh2u0 + 55751

)
3378375 cosh12u0

+O(ε10)

}
(2.23)

where S
(0)
D3 is the action for the undeformed defect. As expected it is invariant under

ε → −ε. In general a finite on-shell action is obtained by including a hierarchy of holo-

graphic counterterms associated with the conformal boundaries of the AdS slices of various

dimensions (as discussed for example in [28]). Including counterterms on the boundary of

the AdS2 slices leads to the renormalized volumes of Poincaré and global AdS2,

VolAdS2 = −2π (global AdS2) VolAdS2 = 0 (Poincaré AdS2) (2.24)

The renormalized expectation value vanishes for an interface R separating two copies of

Poincaré AdS2. For an S1 interface separating two copies of global AdS2 it does not

necessarily vanish. The contribution from the undeformed defect, S
(0)
D3 in (2.23), is divergent

and encodes the anomaly discussed in [25, 26]. The holographic counterterms needed to

render it finite break the bulk diffeomorphisms corresponding to conformal transformations

on the boundary and introduce scheme dependence. This is related to the availability of

5We thank the authors of [25, 26] for making us aware and explaining their work to us.
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finite counterterms on the boundary of AdS3: cutting off the integral in (2.11) at large

|ξ|, and following the logic for the holographic renormalization of probe branes of [29],

one may supplement the action by boundary terms of the form
√
γRγf(u), where γ is

the induced metric on the cut-off surface, Rγ its Ricci scalar, and f an arbitrary function

of u. A scheme can be fixed by demanding the on-shell action to vanish for arbitrary

supersymmetric constant embeddings. For an S1 interface separating two copies of global

AdS2 we then find

〈OΣ〉 = exp

[
2N

{
ε2 − 2ε4

15 cosh4u0

−
4ε6
(
75 sinh2u0 − 23

)
1575 cosh8u0

−
2ε8
(
375375 sinh4u0 − 564330 sinh2u0 + 55751

)
3378375 cosh12u0

+O(ε10)

}]
(2.25)

We used the relation TD3 = N/(2π2) for unit-radius AdS5 [21], and u0 is related to the

field theory parameters characterizing the defect by (2.8).

2.3 Janus interface in field theory

We will consider the simplest case of a Janus defect, which is a deformation of the scalar

field defect (2.3) with αi and ηi vanishing, from the field theory perspective. For N = 4

SYM with only a single complex field Φ = 1√
2
(φ1 + iφ2) nontrivial, the action reduces

to [21]

S =
1

g2
YM

∫
d4x
√
g tr

(
|DΦ|2 +

R

6
|Φ|2

)
(2.26)

The scalars are conformally coupled, which leads to the second term. For an AdS3 × S1

background (2.1) we have R = −6 and the equation of motion becomes

D2Φ + Φ = 0 (2.27)

It is satisfied for the surface defect scalar field given in (2.3). A Janus like deformation of

the surface defect in AdS3 × S1 can be obtained by using an AdS2 slicing of AdS3

ds2 = dξ2 + cosh2ξ ds2
AdS2

+ dψ2 (2.28)

and allowing the parameters βi, γi in the scalar field Φ defined in (2.3) to depend on the

slicing coordinate ξ, leading to

Φ =
e−iψ√

2

 (β1(ξ) + iγ1(ξ))1N1 0
. . .

0 (βm(ξ) + iγm(ξ))1Nm

 (2.29)

Since Φ commutes with itself and the other fields are vanishing, the equations of motion

reduce to

β′′i (ξ) + 2 tanh ξβ′i(ξ) = 0 γ′′i (ξ) + 2 tanh ξγ′i(ξ) = 0 (2.30)

– 7 –
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which is solved by

βi(ξ) = bi + ci tanh ξ γi(ξ) = fi + gi tanh ξ (2.31)

This solution corresponds to an interface between two surface operators with different

values of Φ. Namely,

Φ± =
e−iψ√

2

 (b1 + if1 ± (c1 + ig1))1N1 0
. . .

0 (bm + ifm ± (cm + igm))1Nm

 (2.32)

Note that the linearized probe brane equation (2.17) has the same form as the Yang-Mills

equation (2.30), and it may be tempting to interpret the nonlinear corrections to the probe

embedding in (2.30) as strong coupling corrections to the semiclassical solution given above.

The expectation value of the defect is again computed from the on-shell action. The

action (2.26) reduces on shell to a boundary term, given by

S =
1

g2
YM

∫
d4x ∂ξ

[√
g tr

(
Φ̄∂ξΦ

)]
=

2π

g2
YM

VolAdS2

[√
g tr

(
Φ̄∂ξΦ

)]ξ=+∞
ξ=−∞ (2.33)

Using Φ in (2.29) with βi, γi in (2.31) now leads to a non-zero on-shell action

S =
2π

g2
YM

VolAdS2

∑
i

(c2
i + g2

i )Ni (2.34)

Similar to the discussion below (2.23), finite counterterms could be added on the boundary

of AdS3, but are fixed to be absent by demanding the on-shell action to vanish for the

supersymmetric configurations with constant βi, γi. The expectation value for the surface

defect operator is thus given by

〈OΣ〉 = exp

[
− 2π

g2
YM

VolAdS2

∑
i

(c2
i + g2

i )Ni

]
(2.35)

Identifying the field theory and supergravity parameters via (2.15) leads to λε2 = (c2
i +

g2
i )/(2π)2. The (renormalized) volumes of AdS2 were given in (2.24). For the leading

non-trivial order in ε and an interface separating two copies of global AdS2, we thus find

a factor 2 discrepancy between the holographic computation at strong coupling, leading

to (2.25), and the semi-classical field theory computation leading to (2.35). We note in that

context that even small ε amounts to large values for the scalar field in the field theory,

due to the factor of
√
λ in the identification (2.15), such that a semi-classical analysis for

non-supersymmetric configurations may not be expected to be accurate at strong coupling.

2.4 More general Janus on the D3-brane

The ansatz of section 2.1 may be generalized by allowing the phase φ0 and the gauge field

holonomy Aψ to dependent on the AdS2 slicing coordinate ξ as well

u = u(ξ) ψ = −φ+ f(ξ) Aψ = a(ξ) (2.36)

– 8 –



J
H
E
P
0
7
(
2
0
2
0
)
2
4
3

For this embedding the D3-brane action is given by

SD3 = TD3VolAdS2

∫
dξdψ LD3

LD3 = cosh2 ξ

[
cosh2u

√
cosh4u+ (a′)2 + sinh2u (f ′)2 + cosh2u (u′)2 − cosh4u+ 1

]
(2.37)

The action depends on f and a only through their derivatives, such that f ′ and a′ are

determined in terms of u by conservation laws. Together with the equation of motion for u

following from the variation of (2.37) this leads to Janus-type solutions, which interpolate

between different constant values for u, φ0 and Aψ as ξ → ±∞. With the identification

of these parameters with those of the surface operator given in section 2, these solutions

realize an interface which interpolates between different values of β, γ and α.6

A perturbative solution can once again be obtained straightforwardly. For solu-

tions with

lim
ξ→±∞

sinhu(ξ) = sinhu0 ± ε lim
ξ→±∞

f(ξ) = φ0 ± δf lim
ξ→±∞

a(ξ) = a0 ± δa (2.38)

where δf and δa are of O(ε), the first terms in the perturbative solution are

sinhu = sinhu0 + ε tanh ξ − δf2 sinhu0

2 cosh2ξ
+O(ε3)

a = a0 + δa tanh ξ +O(ε3)

f =φ0 + δf tanh ξ +
ε δf

cosh2ξ sinhu0

+O(ε3) (2.39)

These perturbative solutions are clearly of Janus form at the leading order, and this be-

havior again extends to the non-linear solutions. The on-shell action evaluates to

SD3,on−shell = S
(0)
D3 + 2πTD3VolAdS2

{
ε2 + δa2 + δf2 sinh2u0 −

2(ε2 + δa2 + δf2 sinh2u0)2

15 cosh4u0

− ε2δf2 − 1

3
δf4 sinh2u0 +O(ε6)

}
(2.40)

For δf = δa = 0 it reduces to (2.25). For u0 = 0 the S1
ψ degenerates, which is reflected

in the appearance of δf in combination with sinh2u0. Within this more general ansatz

for D3-brane embeddings it might be possible to find solutions which preserve some su-

persymmetry. In a preliminary analysis we found configurations that solve the non-linear

equations of motion and are supersymmetric, but they are complex and their physical

interpretation is unclear. These complex solutions are discussed briefly in appendix A.2.

6The remaining parameter η is associated with the holonomy of the dual gauge field, which we do not

consider here.
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3 Janus on other branes

The Janus-on-the-brane solution found in the previous section can be generalized to probe

branes of other dimensions in different AdS backgrounds. In this section we discuss three

cases: M2-branes in the AdS4 × S7 solution of M-theory with ABJM as dual field theory,

M5-branes in the AdS7 × S4 solution of M-theory with 6d N = (2, 0) theories as holo-

graphic duals, and D4-branes in the AdS6 × S4/Z2 vacuum of massive Type IIA found by

Brandhuber and Oz [30] with 5d USp(N) theories as dual.

We will show that the aforementioned probe branes with p-dimensional worldvolume

admit Janus-on-the-brane embeddings into the AdSp+2 ×MD−p−2 backgrounds. For the

AdSp+2 part of the background we will use an AdSp × S1 slicing, with AdSp in turn sliced

by AdSp−1, such that the metric takes the form

ds2
AdSp+2

= du2 + cosh2u ds2
AdSp + sinh2u dψ2

ds2
AdSp = dξ2 + cosh2ξ ds2

AdSp−1
(3.1)

The probe branes can be embedded in such a way that they wrap AdSp−1×S1
ψ in AdSp+1,

and that upon going around the S1
ψ in AdSp+1 they wind around an S1 in the internal

space. The remaining worldvolume coordinate is ξ, and the embeddings are characterized

by a function u(ξ). We show that for appropriate winding numbers the brane Lagrangian

reduces to

L = T̃p coshp−1ξ
[

coshp+1u
(√

1 + u′2 sech2u− 1
)

+ 1
]

(3.2)

with a constant T̃p, and with all other equations of motion satisfied. The D3-brane in

AdS5×S5 discussed in the last section corresponds to p = 3, the M2-brane to be discussed

in section 3.1 to p = 2, the M5-brane to be discussed in section 3.2 to p = 5, and the

D4-brane to be discussed in section 3.3 to p = 4. Janus-on-the-brane solutions will be

discussed based on this general form of the Lagrangian in section 3.4.

3.1 M2-brane in AdS4 × S7

For a probe M2-brane in the AdS4×S7 solution of M-theory we utilize an AdS2×S1 slicing

of AdS4 and an S1 × S5 slicing of S7,

ds2 = L2ds2
AdS4

+ 4L2
(
dθ2 + sin2 θdφ2 + cos2 θds2

S5

)
(3.3)

The metric on AdS4 is given by (3.1) with p = 2; the AdSp−1 degenerates for this case and

we simply have

ds2
AdS2

= dξ2 − cosh2ξ dt2 (3.4)

The three-form potential C3 is given by

C3 = L3(cosh3u− 1) volAdS2 ∧dψ (3.5)

The action for a single probe M2-brane is given by

SM2 = T2

∫
d3ξ
√
−det (g)− T2

∫
C3 (3.6)
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The world-volume coordinates of the M2-brane in static gauge are ξ, t, φ and we choose the

following ansatz for the embedding

u = u(ξ) φ = φ(ψ) θ =
π

2
(3.7)

The action (3.6) becomes

SM2 = L3T2

∫
dξdtdψ cosh ξ

{
coshu(ξ)

√
cosh2u(ξ) + u′(ξ)2

√
sinh2u(ξ) + 4φ̇(ψ)2

− cosh3u(ξ) + 1

}
(3.8)

The equation of motion of φ is solved by

φ =
1

2
ψ + φ0 (3.9)

This solution is the analog of (2.13) for the D3-brane. Here the embedding of the brane

into S1
φ × S1

ψ winds twice around S1
φ. For other choices of windings no BPS solution with

constant u exists. The action for u reduces to

SM2 = L3T2

∫
dξdtdψ cosh ξ

[
cosh3u(ξ)

(√
1 + u′(ξ)2 sech2u(ξ)− 1

)
+ 1

]
(3.10)

As advertised, this is of the form (3.2) with p = 2. Solutions to the resulting equation of

motion with constant u(ξ), corresponding to a probe M2-brane with AdS2 × S1 worldvol-

ume, have been identified in [31] with duals of vortex loop operators, mainly in the case of

S7/Zk orbifolds dual to ABJM theories. Janus-on-the-brane solutions will be discussed in

section 3.4.

3.2 M5-brane in AdS7 × S4

One can obtain an analogous construction for a probe M5-brane in AdS7×S4, utilizing an

AdS5 × S1 slicing of AdS7 and an S1 × S2 slicing of S4,

ds2 = 4L2ds2
AdS7

+ L2
(
dθ2 + sin2θ dφ2 + cos2θ ds2

S2

)
F4 = 3L4 sin θ cos2θ dθ ∧ dφ ∧ volS2 (3.11)

with the AdS7 metric given by (3.1) with p = 5 and volS2 the volume form on unit-radius

S2. The M5-brane action involves a WZ-coupling to the potential C6 for the dual field

strength F7 = dC6 = ∗11F4. The potential is given by

C6 = 26L6(cosh6u− 1) volAdS5 ∧ dψ (3.12)

where volAdS4 is the volume form of unit-radius AdS4. The action for an M5-brane is given

by [32, 33]

SM5 =

∫
d6ζ

(√
−det

(
gmn + iH̃mn

)
−

√
−g

4∂ma∂ma
∂lH

∗lmnHmnp∂
pa

)

−
∫ (

Ĉ6 +
1

2
F ∧ C(3)

)
(3.13)
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where Ĉ6 is the pull back of C6 to the worldvolume of the M5-brane. For an M5-brane in

AdS7 × S4 with vanishing self-dual antisymmetric tensor field the action reduces to

SM5 =

∫
d6ζ
(√
−det (g)− Ĉ6

)
(3.14)

The M5 brane has worldvolume coordinates ξ, ψ and those of AdS4, and we choose the

embedding

u = u(ξ) φ = φ(ψ) θ =
π

2
(3.15)

The action (3.14) becomes

SM5 = 16L6 VolAdS4

∫
dξdψ cosh4ξ

(
cosh4u(ξ)

√
4 sinh2u(ξ) + φ̇(ψ)2

√
cosh2u(ξ) + u′(ξ)2

− 2 cosh6u(ξ) + 1

)
(3.16)

The equation of motion for φ is solved by

φ = −2ψ + φ0 (3.17)

As in the previous cases, only this choice of winding leads to a BPS embedding with

constant u. The action for u(ξ) becomes

SM5 = 32πL6 VolAdS4

∫
dξ cosh4ξ

[
cosh6u(ξ)

(√
1 + u′(ξ)2 sech2u(ξ)− 1

)
+ 1

]
(3.18)

This is of the form (3.2) with p = 5, as advertised. A solution with constant u describes a

codimension-two defect in the 6d N = (2, 0) theory, and Janus-on-the-brane solutions will

be discussed in section 3.4.

3.3 D4-brane in AdS6 × S4/Z2

The Brandhuber-Oz background [30] is a solution of massive Type IIA supergravity which

has the form of AdS6 warped over a half S4. We will use it in the following form: with

ls = 1 the metric in string frame is given by

ds2 =

(
3

2

) 5
3

√
q4

(C m sinα)
1
3

{
ds2
AdS6

+
4

9

(
dα2 + cos2αds2

S3

)}
(3.19)

and we take the AdS6 metric as given by (3.1) with p = 4. The dilaton φ and five-form

potential for the dual six-form field strength F6 = dC(5) are given by

e−φ =
(q4)

1
4

C

(3

2
Cm sinα

) 5
6

C(5) =
35(q4)3/2

25C
(cosh5u− 1) volAdS4 ∧ dψ (3.20)

With the embedding

u = u(ξ) φ =
9

4
ψ + φ0 α = 0 θ1 = θ2 = π/2 (3.21)

– 12 –
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the Born-Infeld and WZ action

SD4 =

∫
d5ζe−φ

√
−det g −

∫
C(5) (3.22)

produces the following action for the embedding function u(ξ)

SD4 =
35q

3
2
4

25C
2πVolAdS3

∫
dξ cosh3ξ

[
cosh5u(ξ)

(√
1 + u′(ξ)2 sech2u(ξ)− 1

)
+ 1

]
(3.23)

Note that the probe brane is located at α = 0 where the dilaton blows up and the geometry

is singular. However, as remarked in [34] the D4-brane action is nevertheless well behaved.

As advertised, the action (3.23) is of the form (3.2) with p = 4. It would be interesting

to investigate whether probe branes with an analogous form and corresponding solutions

exist for the AdS6 solutions of Type IIB supergravity constructed in [35–37].

3.4 Janus on the brane for M2, D4, M5

We now discuss Janus-on-the-brane embeddings for the probe M2, D4 and M5 branes. We

have seen that the probe brane action reduces to (3.2), which we repeat for convenience

L = T̃p coshp−1ξ
[
coshp+1u

(√
1 + u′2 sech2u− 1

)
+ 1
]

(3.24)

The full equation of motion for u reads

∂ξ

[
u′(cosh ξ coshu)p−1√

1 + u′2 sech2u

]
+ coshp−1ξ coshpu sinhu

[
p+ 1− 1 + p(1 + u′2 sech2u)√

1 + u′2 sech2u

]
= 0

(3.25)

It in particular admits (arbitrary) constant embeddings u(ξ) = u0 as solutions. Following

the logic of section 2.1, perturbative solutions can again be constructed using the ansatz

sinhu(ξ) = sinhu0 + εu1(ξ) +
1

2
ε2u2(ξ) +

1

3!
ε3u3(ξ) + . . . (3.26)

and the leading-order perturbation is determined by

u′′1(ξ) + (p− 1) tanh ξ u′1(ξ) = 0 . (3.27)

This equation can be solved for general p in terms of hypergeometric functions.7 The

solution for p = 3 was given in (2.18), and the solutions for the cases discussed in this

section are

u1 =
4

π
α1 tan−1

(
tanh

ξ

2

)
+ α2 p = 2

u1 =
4

π
α1 tan−1

(
tanh

ξ

2

)
+

2

π
α1 tanh ξ sech ξ + α2 p = 4

u1 =
1

2
α1 tanh ξ

(
sech2ξ + 2

)
+ α2 p = 5 (3.28)

7While the solutions for p = 2, 3, 4, 5 stand out in having a natural interpretation as probe brane

embeddings, the equation can be studied for generic p. In fact, the solutions are of Janus form for generic

p > 1. For p = 1 the solution is linear, for large p it approaches a step function.
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These solutions are all of Janus form, interpolating between different finite values for ξ →
±∞. For α1 = 1 and α2 = 0 they satisfy limξ→±∞ sinhu(ξ) = sinhu0 ± ε. The Janus

behavior extends to the non-linear solutions, in parallel to the discussion of section 2.1.

Hence, interfaces on codimension-two defects can be realized in a form similar to the

D3-brane case. The M2-brane in AdS4 × S7 describes a vortex operator in ABJM theory,

and the Janus embedding corresponds to an interface point on this line defect. The D4-

brane describes a 3-dimensional defect in the 5d USp(N) theories, and the Janus embedding

corresponds to a 2-dimensional interface on the defect. Lastly, the M5-brane describes a

4-dimensional defect in 6d N = (2, 0) theories, and the Janus embedding describes a 3-

dimensional interface on the defect. The computation of holographic observables can be

done analogously to the D3-brane case. A noteworthy feature is that the renormalized

volume of AdSp−1, appearing e.g. in the expectation value in (2.25), is well defined only

for odd-dimensional interfaces. For even-dimensional interfaces the scheme-independent

information is in general in the logarithmic divergences, reflecting the presence of conformal

anomalies. We leave more detailed studies for future work.

4 Discussion

We have presented non-supersymmetric deformations of AdSp probe brane embeddings

that describe codimension-two defects in the dual field theory. The ansatz is based on an

AdSp−1 slicing of the AdSp part of the brane worldvolume, with the embedding dependent

on the slicing coordinate. Remarkably, this ansatz works for half-BPS defects in all max-

imally supersymmetric AdSp+2 × Sq vacua of Type IIB and M-theory, as well as in the

Brandhuber-Oz solution of massive Type IIA, and produces qualitatively similar solutions.

The equation determining the deformed solution is a nonlinear ODE which can be solved

numerically or perturbatively for small deformations of the supersymmetric embedding. In

the field theory these branes describe two halves of p − 1 dimensional defects, character-

ized by different values of the asymptotic embedding parameter, glued together at a p− 2

dimensional interface.

A semi-classical field theory analysis as well as the κ-symmetry of the probe brane show

that the Janus-on-the-brane solution breaks all supersymmetries. Since for large values

of the slicing coordinate the solution approaches the supersymmetric embedding, we do

not expect global instabilities. It would be interesting to investigate more systematically

whether a supersymmetric generalization of the Janus-on-the-brane solution can be found.

For the original Janus solution in Type IIB supergravity [1] such solutions were indeed

found in [3] and they are considerably more complicated than the nonsupersymmetric

ones. The supersymmetric solutions reported in this paper are complex and their physical

interpretation unclear, so one may have to consider more general embeddings.

Another interesting question is wether it is possible to describe more complicated junc-

tions of surface operators, which have been discussed for N = 4 SYM in a mathematical

setting in [38] and from the localization perspective recently in [39], using probe branes.

Such brane configurations, if they exist, would be analogs of multi-Janus solutions in su-

pergravity [40] which describe junctions of interfaces. Finally, it would be interesting to

– 14 –
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investigate whether there are fully backreacted solutions describing interfaces on defects,

generalizing the fully backreacted Type IIB solutions for BPS surface defects constructed

in [22]. We leave these and other interesting questions for future work.
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A D3-brane supersymmetry

We briefly discuss the supersymmetry of the Janus-on-the-brane solution for the D3 brane

in the AdS5 × S5 solution of Type IIB. We show that the Janus-on-the-brane solution

constructed in section 2.1 breaks all supersymmetries and briefly discuss complex super-

symmetric solutions within the ansatz of section 2.4. The supersymmetries preserved by

the D3-brane are singled out by a constraint on the AdS5 × S5 Killing spinors ε [41–43],

Γκε = ε (A.1)

We use complex notation for the Killing spinors with conventions as in [44, 45]. For AdS5

in AdS3 × S1 slicing and the S5 in S3 × S1 slicing we use coordinates such that

ds2
AdS5

= du2 + cosh2u
(
dr2 + cosh2r ds2

AdS2

)
+ sinh2u dψ2

ds2
S5 = dθ2 + sin2θ ds2

S3 + cos2θdφ2 (A.2)

where θ has been shifted compared to (2.4), and

ds2
S3 = dχ2

1 + sin2χ1(dχ2
2 + sin2χ2dχ

2
3) ds2

AdS2
= dx2 − e2xdt2 (A.3)

The Killing spinors are given by

ε = RAdSRS5ε0 (A.4)

where, with Γ~χ := Γχ1Γχ2Γχ3 ,

RS5 = e
θ
2
iΓφΓ~χ e

φ
2
iΓ~χΓθ e

1
2
χ1Γ

θχ1
e

1
2
χ2Γ

χ1χ2
e

1
2
χ3Γ

χ2χ3
(A.5)

RAdS = e
i
2
uΓuΓAdS e

1
2
ψΓuψ e

ir
2

ΓrΓAdSRAdS2

RAdS2 = e
ix
2

ΓxΓAdS +
i

2
te

x
2 ΓtΓAdS(1− iΓxΓAdS) (A.6)
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A.1 Janus on the brane embedding

In the simplest Janus-on-the-brane solution discussed in section 2.1 the D3-brane wraps

AdS3 with coordinates (r, t, x) in AdS5 and the S1 with coordinate ψ in S5. We can redefine

coordinates to set the shift in (2.13) to zero and take, without loss of generality,

u = u(r) ψ = φ θ = χi = 0 (A.7)

The pullback of the Clifford-algebra matrices to the D3-brane, γi = Eaµ(∂iX
µ)Γa, is given by

γr = coshu Γr + u′Γu γφ = Γφ + sinhu Γψ

γt = coshu cosh rex Γt γx = coshu cosh r Γx (A.8)

and the induced metric on the D3-brane is

g =
(
cosh2u+ u′2

)
dr2 + cosh2u

(
dφ2 + cosh2r ds2

AdS2

)
(A.9)

The κ-symmetry constraint for this embedding is

Γκε = ε Γκ =
1√

−det (g)
γrtxφ (A.10)

For θ = χi = 0, the matrix RS5 defined in (A.5) simplifies on the D3-brane worldvolume to

RS5 = e
φ
2
iΓ~χΓθ (A.11)

and as a result the κ-symmetry condition simplifies to

−iγrφΓtxRAdSε0 = hRAdSε0 h = coshu

√
cosh2u+ (u′)2 (A.12)

A.1.1 κ-symmetry

To show that the Janus-on-the-brane embedding of section 2.1 is not supersymmetric we

set ψ = t = x = 0. The κ-symmetry condition (A.12) becomes

e−
i
2
uΓuΓAdS e−

ir
2

ΓrΓAdS(coshuΓr + u′Γu)(Γφ + sinhuΓψ)Γtxe
i
2
uΓuΓAdS e

ir
2

ΓrΓAdSε0 = ihε0

(A.13)

Evaluating this expression more explicitly leads to

coshu sinhu
(

cosh r
(
iΓφψ + Γrtxψ

)
− sinh r

(
iΓru + Γutxφ

))
ε0

+
(

cosh2uΓrtxφ − ih1
)
ε0

+u′
((

cosh rΓu + i sinh rΓtxψ

)(
Γtxφ + i sinh2uΓr

)
+ sinhu coshuΓutxψ

)
ε0 = 0 (A.14)

Consider now the limit r → ±∞ where limr→±∞ u = u± and limr→±∞ u
′e|2r| = const.

The leading terms in the first line of (A.14) are O(e|r|), those of the second line are O(1)
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and those of the third line O(e−|r|). At leading order, O(e|r|), the κ-symmetry condi-

tion becomes

ie|r| coshu± sinhu±

(
Γφψ ∓ Γru

)(
1 + iΓrtxφ

)
ε0 = 0 (A.15)

This condition is satisfied if

−iΓrtxφε0 = ε0 (A.16)

In fact, the entire first line in (A.14) vanishes with this constraint. Since h → cosh2u +

O(e−2|r|), the second line of (A.14) reduces to O(e−2|r|). For constant embeddings, the

second and third lines of (A.14) vanish altogether, showing that the constant embedding

preserves the supersymmetries characterized by (A.16) and is 1
2 -BPS. For non-constant

embeddings the next non-trivial order in (A.14) is O(e−|r|), due to terms in the third line.

The condition at that order becomes

e|r|u′ cosh2 u±

(
∓ Γφψ + Γru

)
ε0 = 0 (A.17)

It implies that for non-zero u′ there is no consistent projection condition which makes the

terms of order e−|r| in the κ-symmetry condition vanish both for large positive and negative

r. Hence the Janus-on-the-brane embedding of section 2.1 breaks all supersymmetries.

A.2 Supersymmetric embeddings

The embedding ansatz of section 2.1 can be generalized as in section 2.4, and within

this generalized ansatz we indeed found supersymmetric embeddings. They are complex,

however, making their physical interpretation unclear, and we will present them without

derivation. They are characterized by

u′(ξ) = ± sech2ξ sechu(ξ)

√
−p2 csch2u(ξ)− q2

f ′(ξ) = p sech2ξ csch2u(ξ)

a′(ξ) = q sech2ξ (A.18)

with constants p, q. The first equation can be integrated for u(ξ), and then a(ξ), f(ξ)

are given explicitly. These configurations solve the full non-linear equations of motion

derived from (2.37), and some of them are supersymmetric, for example for (p, q) = (±1, 0).

However, one can not make the embedding function u, the relation between φ and ψ, and

the flux on the D3-brane all real at the same time. We leave a physical interpretation open

and a more exhaustive analysis of κ-symmetry for more general embeddings for the future.
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