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1 Introduction

The aim of the swampland program [1] is to understand what subset of the infinite space of

possible effective field theories can arise at low energies from theories of quantum gravity.

This requires finding simple criteria for classifying these theories; those that admit UV

completions including quantum gravity are in the landscape, and those that do not are

in the swampland. Such criteria are far more useful if they are detectable in the infrared

without any knowledge of the particulars of the UV completion. In practice, one fruitful

source of such IR intuition is the physics of black holes, which are believed to conform to

general relativity and the laws of black hole thermodynamics in the semiclassical regime.

So far a number of criteria have been proposed (see e.g. [2] for a review of the program).

One that has attracted considerable interest is the Weak Gravity Conjecture (WGC),

which roughly states that there are states whose mass is smaller than their charge [3] —

hence, they are states for which “gravity is the weakest force.” Such states are labelled

“superextremal,” and may be provided by fundamental particles or non-perturbative states

such as black holes. The original motivation was to provide a mechanism for black holes

to decay. These black holes are believed to obey an “extremality bound” on its mass to

charge ratio,

M

Q
> 1 , (1.1)

which arises from requiring that the solution does not contain a naked singularity. It was

believed that if a theory of gravity did not have a superextremal particle in its spectrum,

then simple conservation of charge would prevent it from decaying to lighter components

without violating cosmic censorship. This, in turn, would be problematic because it would

lead to an infinite number of stable states or remnants.

Another mechanism for the decay of nearly extremal black holes in flat space was

pointed out in [4]. Generically, the low-energy limit of a theory of quantum gravity should

include higher-derivative corrections that encode the UV physics in a highly suppressed

way. Such corrections can change the allowed charge to mass ratio of Reissner-Nordström

black holes so that they can decay to smaller black holes. In particular, the classical

extremality bound would be corrected into a form that schematically may look like

M

Q
> 1− 1

Q2
(2c1 + 8c2 + . . .) , (1.2)

shifted slightly by the Wilson coefficients ci of the higher-derivative operators. It then

becomes possible for the nearly extremal black holes to decay as long as this combina-

tion of coefficients is positive. The statement that black holes can always decay through

these higher-derivative corrections is sometimes called the “Black Hole Weak Gravity Con-

jecture.” This idea has inspired a large amount of work [5–11] on bounding the EFT

coefficients, thereby proving the conjecture. While no existing proof is completely general,

the work so far covers a large number of possibilities and assumptions.

One intriguing proof of the WGC in flat space relates the extremality shift to the

shift in the Wald entropy [7]. The authors first show that, near extremality, the shift
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to the extremality bound at fixed charge and temperature is proportional to the shift

in entropy at fixed charge and mass. They then present an argument that the higher-

derivative corrections should increase the entropy, thereby proving the Black Hole WGC.

The argument for the entropy shift positivity is not expected to be fully general; it applies

to higher-derivative corrections that arise from integrating out massive particles at tree-

level. Nonetheless, it is curious that the entropy shift is proportional to the extremality

shift. This fact was given a simple thermodynamic proof in [12], where no assumptions

were made about the particulars of the background.

So far, however, these ideas have not fully made their way to Anti-de Sitter space.

From the WGC point of view, it is easy to see why: the relationship between mass and

charge of an extremal black holes in AdS is already non-linear at the two-derivative level.1

Therefore it is not at all clear what is gained by studying the higher-derivative corrections

to the extremal mass-to-charge ratio.2 Furthermore, massive particles emitted from a black

hole cannot fly off to infinity in AdS as they can in flat space, so if the WGC allows for

the instability of black holes in AdS, it must be through a completely different mechanism.

(See the Discussion for more commentary on this possibility).

Regardless, the entropy-extremality relationship is expected to hold in AdS as it does

in flat space (and indeed, an example in AdS4 was given in [12]). Therefore, this paper

addresses two main issues in Anti-de Sitter space. First, we check the purported relationship

between the entropy shift and the extremality shift, and indeed we find that it holds for

the AdS-Reissner-Nordström backgrounds. Second, we examine the conjecture that the

entropy shift is positive when the leading-order solution is a minimum of the action. By

computing the entropy shift explicitly, we see that its positivity for stable black holes

implies that the coefficient of Riemann-squared is universally positive. This has interesting

consequences for the structure of η/s, as we comment on in section 6.

This paper is organized as follows. In section 2 we introduce the theory we will examine,

and find the solutions to the equations of motion at first order in the EFT coefficients. In

section 3 we use the solution to compute the shift to extremality, considering the result

both at fixed charge and fixed mass. We then compute the shift to the Wald entropy, and

we find that the conjectured relationship of [7, 12] between the shift to mass and shift to

entropy is valid for AdS-Reissner-Nordström black holes. Furthermore, we notice that both

the mass shift and entropy shift are also proportional to the charge shift, which allows us

to extend the relationship to3

(∆M)Q,T=0 = −T0 (∆S)Q,M = −Φ0 (∆Q)M,T=0 . (1.3)

We present a simple thermodynamic derivation of these relationships in appendix B.

In section 4, we reproduce these results from a thermodynamic point of view. It has

recently been shown [17] that the first-order corrections to the solutions are not needed

1By “extremal,” we mean that the temperature is zero. This is not the same as the BPS limit in AdS.
2Other aspects of the WGC have been discussed in AdS. See e.g. [13–16].
3This form of the entropy-extremality relation is valid away from extremality, but a slightly modified

form is required for black holes which are very close to extremality. The subtleties involved in this limit

are discussed in detail at appendix C.
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to compute the first order corrections to thermodynamic quantities. In this section, we

verify that this is the case for AdS-Reissner-Nordström backgrounds by computing the four-

derivative corrections to the renormalized on-shell action. From this we may compute the

free energy and other thermodynamic quantities. We find that the results of this calculation

match the results from section 3 in even dimensions, while in odd dimensions the free energy

and associated thermodynamic quantities are renormalization scheme dependent, and agree

with the geometric calculation in a physically motivated zero Casimir scheme.

In section 5, we first review the argument given in [7] for the positivity of the entropy

shift, and comment on a potential issue with applying it to AdS. The positivity of the

entropy shift requires that the black hole solutions are local minima of the path integral,

so we compute the specific heat and electrical permittivity to determine the regions of

parameter space where the black holes will be stable. Finally, we determine the constraints

placed on the EFT coefficients by assuming that the entropy shift is positive for all stable

black holes. We compare this to the results obtained by requiring that the entropy shift

is positive for only extremal black holes, which is equivalent to the condition that the

extremality shift at fixed charge and temperature is positive. The constraints include

the requirement that the coefficient of Riemann-squared is positive. As this coefficient

is proportional to the difference c − a between the central charges of the dual CFT, we

conclude that the positivity of the entropy shift will be violated in theories where c−a < 0.

We summarize our results in the section 6, where we comment on the implications

of our results for the behavior of η/s, as well as the nature of the WGC in AdS. We

relegate to appendix A the specific form of the entropy shifts and bounds on the EFT

coefficients for AdS5 through AdS7. In appendix B, we present a general proof of the

entropy-extremality relation of [12], and in appendix C we comment on some subtleties

involving the extremal limit.

Note added: after completing this work, we noticed that the revised version of [12]

obtains the same form of the entropy-extremality relation that we argue for in this paper.

2 Corrections to the geometry

We consider Einstein-Maxwell theory in the presence of a negative cosmological constant in

a (d+ 1)-dimensional AdS spacetime of size l. The first non-trivial terms in the derivative

expansion of the effective action arise at the four-derivative level, and by appropriate field

redefinitions we may choose a complete basis of dimension-independent operators:

I = − 1

16π

∫
dd+1x

√
−g
[
d(d− 1)

l2
+R− 1

4
F 2

+ l2ε
(
c1RabcdR

abcd + c2RabcdF
abF cd + c3(F 2)2 + c4F

4
)]
.

(2.1)

Note that additional CP-odd terms can arise in specific dimensions, but will not contribute

to the static, stationary spherically symmetric black holes that we are considering here.

This basis parallels that of [18], which used the same set of dimensionless Wilson coeffi-

cients, but focused on the (4 + 1)-dimensional case. Depending on the origin of the AdS
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length scale l, one may expect these coefficients to be parametrically small, of the form

ci ∼ (Λl)−2, where Λ denotes the scale at which the EFT breaks down. In particular, this

will be the case in order for the action (2.1) to be under perturbative control. We have also

introduced the small bookkeeping parameter ε, which will allow us to keep track of which

terms are first order in the ci coefficients.

2.1 The zeroth order solution

At the two-derivative level, this action admits a family of AdS-Reissner-Nordström black

holes parametrized by uncorrected mass m and charge q,

ds2 =− f(r)dt2 + g(r)−1dr2 + r2dΩ2
d−1,k , f(r) = g(r) = k − m

rd−2
+

q2

4r2d−4
+
r2

l2
,

A =

(
−1

c

q

rd−2
+ Φ

)
dt, c =

√
2(d− 2)

(d− 1)
, Φ =

1

c

q

rd−2
h

. (2.2)

Here rh is the outer horizon radius, and the parameter k = 0,±1 specifies the horizon

geometry, with k = 1 corresponding to the unit sphere. The constant Φ is chosen so that

the At component of the gauge field vanishes on the horizon, and represents the potential

difference between the asymptotic boundary and the horizon.

Typically, we will consider lower case letters (m, q, . . .) to be parameters in the theory,

while upper case letters (M,Q, S, T, . . .) will denote physical quantities that may or may

not receive corrections. We will add a subscript zero (e.g. M0) to denote the uncorrected

contribution to quantities that do receive order ci corrections. The shifts, which are equal

to the corrected quantities minus the uncorrected ones, will be denoted by the ε deriva-

tive. However, we will sometimes use ∆ when it is convenient, with subscripts indicating

quantities held fixed, for example, we have

(∆M)T ≡ lim
ε→0

(M(T, ε)−M0(T )) ≡ lim
ε→0

(
∂M

∂ε

)
T

. (2.3)

Finally, in sections 4 and 5 we will use dimensionless quantities (ν, ξ) for convenience.

These are defined by ν = (rh)0/l and Q = (1− ξ)Qext.

2.2 The first order solution

We now turn to the first order solution in terms of the Wilson coefficients ci. We follow the

procedure outlined in ref. [19], but work in an AdSd+1 background. While general (d+ 1)-

dimensional results may be worked out analytically, we took a shortcut of working with

explicit dimensions four through eight and then fitting the coefficients to extract results

for arbitrary dimension. Since the four-derivative terms are built from tensors with eight

indices and hence four metric contractions, the resulting expressions will scale at most as

d4. The coefficients are hence fully determined by working in five different dimensions.

Following [19], we start with the effective stress tensor, where corrections come from

two sources. The first is from substituting in the corrected Maxwell field to the zeroth order

electromagnetic stress tensor, and the second is from the explicit four-derivative corrections
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to the stress tensor evaluated on the zeroth order solution. The result of computing both

of these contributions to the time-time component of the stress tensor is

Tt
t = − (d− 1)(d− 2) q2

4 r2d−2
+
d(d− 1)

l2

+ c1

(
(d− 2)(8d3 − 24d2 + 15d+ 3) q4l2

8r4d−4
− (d− 1)(d− 2)(4d2 − 9d+ 3)mq2l2

r3d−2

+ k
4d(d− 1)(d− 2)2 l2q2

r2d
− d(d− 1)(d− 2)(d− 3) l2m2

r2d

+
(d− 2)(2d− 3)(2d2 − 5d+ 1) q2

r2d−2
+

2d(d− 3)

l2

)
+ c2

(
(d− 1)3(d− 2) q4l2

r4d−4
− (d− 1)2(3d2 − 8d+ 4) q2ml2

r3d−2

+ k
2d(d− 1)2(d− 2) q2l2

r2d
+

2(d− 1)3(d− 2) q2

r2d−2

)
+ (2c3 + c4)

(
(d− 1)2(d− 2)2q4l2

2 r4d−4

)
. (2.4)

The shift to the geometry may be obtained from the corrections to the stress tensor [19],

∆g =
1

(d− 1)rd−2

∫
dr rd−1∆Tt

t , (2.5)

and after integrating the O(ci) terms in (2.4), we find

∆g(r) = c1

(
− (d− 2)(8d3 − 24d2 + 15d+ 3) q4l2

8(d− 1)(3d− 4)r4d−6
+

(d− 2)(4d2 − 9d+ 3)mq2l2

2(d− 1)r3d−4

− k4(d− 2)2 l2q2

r2d−2
+

(d− 2)(d− 3) l2m2

r2d−2

− (2d− 3)(2d2 − 5d+ 1) q2

(d− 1)r2d−4
+

2(d− 3)r2

(d− 1)l2

)
+ c2

(
− (d− 1)2(d− 2) q4l2

(3d− 4)r4d−6
+

(3d2 − 8d+ 4) q2ml2

2r3d−4

− k2(d− 1)(d− 2) q2l2

r2d−2
− 2(d− 1)2 q2

r2d−4

)
+ (2c3 + c4)

(
− (d− 1)(d− 2)2q4l2

(6d− 8)r4d−6

)
.

(2.6)

The time component of the metric can then be obtained using the relation [19]

f(r) = (1 + γ(r))g(r), (2.7)

where γ(r) is defined by4

γ(r) = − 1

(d− 2)

∫
drr

(
Tt
t − Trr

)
. (2.8)

4We note that the definition of γ implies that it is positive provided that the null energy condition holds.
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For our particular case we find:

γ(r) =

(
c1

(d− 2)(2d2 − 5d+ 1)

(d− 1)
+ c2d(d− 2)

)
q2l2

r2d−2
. (2.9)

Finally, we have

Ftr =

√
(d− 2)(d− 1)

2

[
(1− 8c2)

q

rd−1
+ 4c2(d− 1)(d− 2)

qml2

r2d−1

+

(
c1

2

(2d2 − 5d+ 1)

(d− 1)
− c2

2
(7d− 12)− 4 (2c3 + c4) (d− 1)

)
(d− 2)

q3l2

r3d−3

]
,

(2.10)

which we note is independent of the geometry parameter k, as was the case in [20].

2.3 Asymptotic conditions and conserved quantities

The first order solution can be summarized as

ds2 = − (1 + γ(r)) g(r)dt2 + g(r)−1dr2 + r2dΩ2
d−1,k , (2.11)

where

g(r) = k − m

rd−2
+

q2

4r2d−4
+
r2

l2
+ ∆g. (2.12)

The corrected metric functions, ∆g and γ(r), are given in (2.6) and (2.8), respectively. In

addition, the full electric field is given in (2.10). For a given zeroth order AdS radius l,

this solution is specified by two parameters, m and q, which correspond to the mass and

charge of the uncorrected black hole. At the same time, the corrected solution includes a

number of integration constants, two of which we have implicitly set to zero in the integral

expressions for ∆g and γ(r). The constant related to ∆g can be absorbed by a shift in m,

and a third constant from the corrected Maxwell equation can be absorbed by a shift in q.

The constant related to γ(r) can be absorbed at the linearized level by a rescaling of the

time coordinate, and hence can be thought of as a redshift factor.

In order to make the correspondence between the parameters of the solution, m and

q, and the physical mass and charge of the black hole more precise, consider the part of

∆g that is leading in r. We can see that there is a term that goes like c1
r2

l2
that dominates

over all other terms in the correction. Therefore, for large values of r, the solution takes

the form

f(r) ≈ g(r) = k − m

rd−2
+

(
1 + c1

2(d− 3)

d− 1

)
r2

l2
+ · · · ,

Ftr =

√
(d− 2)(d− 1)

2
(1− 8c2)

q

rd−1
+ · · · . (2.13)

Our first observation is that the AdS radius gets modified because the Riemann-squared

term is non-vanishing on the original uncorrected background. This suggests that we define

an effective AdS radius

l2 = λ2l2eff, λ2 =

(
1 + c1

2(d− 3)

(d− 1)

)
. (2.14)
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This shift by λ is unavoidable when turning on the c1 Wilson coefficient. However, in

principle we still have a choice of whether we hold l or leff fixed when turning on the

four-derivative corrections.

In what follows, we always choose to keep l fixed. Then, since the effective AdS

radius is shifted, the asymptotic form of the metric is necessarily modified as well. From a

holographic point of view, this leads to a modification of the boundary metric

ds2 ∼ r2

(
dt2

l2
+ dΩ2

d−1,k

)
−→ ds2 ∼ r2

(
dt2

l2eff

+ dΩ2
d−1,k

)
. (2.15)

This is generally undesirable, as we would like to compare thermodynamic quantities in a

framework where we hold the boundary metric fixed while turning on the Wilson coeffi-

cients. One way to avoid this shift in the boundary metric is to introduce a ‘redshift’ factor

t = t̄/λ, (2.16)

to compensate for the shift in leff. In terms of the time t̄, the solution now takes the form

ds2 = −f̄(r) dt̄2 + g(r)−1dr2 + r2dΩ2
d−1,k,

Ft̄r = λ−1Ftr =

√
(d− 2)(d− 1)

2
(1− 8c2)

q/λ

rd−1
+ · · · , (2.17)

where

f̄(r) = λ−2(1 + γ(r))g(r) = k/λ2 − m/λ2

rd−2
+
r2

l2
+ · · · ,

g(r) = k − m

rd−2
+
r2

l2eff

+ · · · . (2.18)

We now turn to the charge and mass of the solution measured with respect to the

redshifted t̄ time. For the charge Q, we take the conserved Noether charge

Q =
1

16π

∫
Σd−1

∗F , (2.19)

where F is the effective electric field

Fµν = Fµν + l2
(
−4c2RµνρσF

ρσ − 8c3Fµν(F 2)− 8c4FνρF
ρσFσµ

)
. (2.20)

The result is

Q =
1 + 8c2

16π
ωd−1λr

d−1Ft̄r

∣∣∣∣
r→∞

=

√
(d− 2)(d− 1)

2

ωd−1

16π
q, (2.21)

where ωd−1 is the volume of the unit Sd−1. The 1/16π factor arises from the prefactor in

the action (2.1) where we have set Newton’s constant G = 1.

Unlike in the asymptotically Minkowski case, some care needs to be taken in obtaining

the mass of the black hole. With an eye towards holography, we choose to define the mass
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from the boundary stress tensor [21]. The standard approach to holographic renormaliza-

tion involves the addition of appropriate local boundary counterterms so as to render the

action finite. This was performed in [20] for R2-corrected bulk actions, and since only the

c1RabcdR
abcd term in (2.1) leads to an additional divergence, we can directly use the result

of [20]. The result is

M =
ωd−1

16π
(1 + 4c1(d− 3))

(d− 1)m

λ
, (2.22)

where we have taken into account the scaling of the mass by the redshift factor λ. Substi-

tuting in λ from (2.14) then gives

M =
ωd−1

16π
(d− 1)(1 + ρ)m, (2.23)

where

ρ = c1
(d− 3)(4d− 5)

d− 1
. (2.24)

Note that we are taking the mass here to exclude the Casimir energy that is normally

part of the boundary stress tensor. This will be important when comparing with the ther-

modynamic quantities extracted from the regulated on-shell action in section 4. Work-

ing in the setup of holographic renormalization ensures that the mass M and charge

Q defined in (2.23) and (2.21), respectively, yield a consistent framework for black hole

thermodynamics.

3 Mass, charge, and entropy from the geometry shift

Given the first-order solution, we now consider shifts to the mass, ∆M , and entropy, ∆S,

of the black hole induced by the four-derivative corrections. In these computations it is

important to keep in mind what is being held fixed as we turn on the Wilson coefficients ci.

The main parameters we consider here are the mass M and charge Q, which are related to

the two parameters, m and q, of the solution by (2.23) and (2.21), respectively. In addition

we consider the thermodynamic quantities T (temperature) and S (entropy), although

they are not all independent. Note that we always consider the AdS radius l to be fixed,

although interesting results have been obtained by mapping it to thermodynamic pressure.

Singly-charged, non-rotating black holes may be described by any two of mass M ,

charge Q and the horizon radius rh. Of course, any number of other parameters may be

used as well, such as the temperature T or an extremality parameter, such as was used in [7].

If we further impose the extremality condition T = 0 on the solution, then only a single

parameter is needed. Clearly this is only true for non-rotating black holes with a single

gauge field, as more general solutions may have additional charges or angular momenta.

Here we mainly focus on the effect of higher-derivative corrections on extremal or near

extremal black holes. In particular, we consider the extremality shift ∆(M/Q) and the

entropy shift ∆S. However, it is important to keep in mind what is being held fixed when

we turn on the higher-derivative corrections, as the results will depend on this choice. For

example, we will see below that the shift to M/Q depends on whether the mass, charge or

horizon radius is held fixed when comparing the corrected with uncorrected quantities.

– 8 –
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3.1 Mass, charge, and extremality

Recall that, in our first-order solution, the geometry is essentially given by the radial

function

grr = g(r) = k − m

rd−2
+

q2

4r2d−4
+
r2

l2
+ ∆g , (3.1)

where ∆g denotes the contributions of the higher-derivative corrections to the geometry,

and ε is a small parameter we use to keep track of where O(ci) corrections come in. Using

the fact that both g(rh) and g′(rh) vanish at extremality, we may express the extremal

mass and charge as a function of the horizon radius,

Mext = 2V (d− 1)rd−2
h

((
k +

d− 1

d− 2

r2
h

l2

)
(1 + ερ) + ε∆g +

rh
2(d− 2)

ε∆g′
)
,

Q2
ext = 2V 2(d− 1)(d− 2)r

2(d−2)
h

(
k +

d

d− 2

r2
h

l2
+ ε∆g +

rh
d− 2

ε∆g′
)
,

(3.2)

where M and Q are the asymptotic quantities defined in (2.23) and (2.21), and we have

defined V = ωd−1/16π. Though we have expressed M and Q as functions of rh, these

expressions are valid regardless of which of the three quantities is being held fixed. For

example, if we work at fixed charge, then Q gets no O(ε) corrections, in which case M and

rh will both receive corrections.

3.1.1 Extremality at leading order

Before discussing the extremality and entropy shifts, we consider the leading order relations

between M0, Q0 and (rh)0 for extremal black holes. We will suppress the 0 subscripts in

this subsection, but we mean the uncorrected quantities. Setting ε = 0 in (3.2) immediately

gives the relations

Mext = 2V (d− 1)rd−2
h

(
k +

d− 1

d− 2

r2
h

l2

)
,

Q2
ext = 2V 2(d− 1)(d− 2)r

2(d−2)
h

(
k +

d

d− 2

r2
h

l2

)
.

(3.3)

In principle, we can eliminate rh from these equations to obtain the relation between mass

and charge for extremal AdS black holes. However, for general dimension d, there is no

simple expression that directly encodes this relation. Nevertheless, we can consider the

limit of small and large black holes.

For small black holes (rh � l), we take k = 1 (i.e. a spherical horizon) and find

Mext ∼ Qext ∼ rd−2
h , (3.4)

so one recovers the simple M ∼ Q scaling that appears in flat space. (Note that asymp-

totically Minkowski black holes necessarily have spherical horizons.) For large black holes

(rh � l), on the other hand, the scaling is very different from that of flat space,

Mext ∼ rdh , Qext ∼ rd−1
h ⇒ Mext ∼ (Qext)

d
d−1 . (3.5)

In fact, this is precisely the scaling behavior expected based on the relationship between

minimal scaling dimension and charge for boundary operators with large global charges [22].
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3.1.2 Mass shift at fixed charge

Now we consider the effect of four-derivative corrections. If we hold the charge fixed, then

the shift to extremality is entirely due to the change in the mass. This may computed

from the expression (3.2) for the mass by taking a derivative with respect to ε, which

parametrizes the higher-derivative corrections, leading to(
∂M

∂ε

)
Q,T=0

=V (d− 1)rd−2
h

(
2∆g +

1

d− 2
rh∆g′ + 2ρ

(
k +

d− 1

d− 2

r2
h

l2

)
+

2

(d− 2)rh

(
(d− 2)2k + d(d− 1)

r2
h

l2

)(
∂rh
∂ε

))
,

(3.6)

where we have taken into account the fact that when the charge is fixed, we must allow

the horizon radius rh to vary with ε. To compute the shift ∂rh/∂ε, we use the fact that

we are holding Q fixed. Then we use the expression for Qext in (3.2) and demand that

(∂Q/∂ε)T=0 = 0 to obtain an equation for ∂rh/∂ε. This procedure leads to the rather

simple result (
∂M

∂ε

)
Q,T=0

= V (d− 1)rd−2
h

(
∆g + 2ρ

(
k +

d− 1

d− 2

r2
h

l2

))
. (3.7)

Note that the dependence on ∆g′ has vanished. From the geometric point of view, this

non-trivial cancellation is crucial for the extremality-entropy relation to hold.

3.1.3 Charge shift at fixed mass

If we instead hold the mass fixed, the entire shift in the extremality is due to the shift in

charge. Following the same procedure as in the fixed charge case, but this time demanding

∂Mext/∂ε = 0, we find the relation:(
∂Q2

∂ε

)
M,T=0

= −2V 2(d− 1)(d− 2)r2d−4
h

(
∆g + 2ρ

(
k +

d− 1

d− 2

r2
h

l2

))
. (3.8)

Here we also find a cancellation of all ∆g′ terms. Moreover, this shift is proportional to

the mass shift at fixed charge(
∂Q2

∂ε

)
M,T=0

= −2V (d− 2)rd−2
h

(
dM

dε

)
Q,T=0

. (3.9)

This relationship more clear when we write this as the shift of Q rather than Q2. Using

∆Q2 = 2Q∆Q, we find

Q

(
∂Q

∂ε

)
M,T=0

= −V (d− 2)rd−2
h

(
∂M

∂ε

)
Q,T=0

. (3.10)

Finally, we use Φ = Q/(d− 2)V rd−2 to write:(
∂M

∂ε

)
Q,T=0

= −Φ

(
∂Q

∂ε

)
M,T=0

. (3.11)

– 10 –
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So we see that the mass shift is related to the charge shift times the potential. In ap-

pendix B, we derive this statement for a general thermodynamic system and show that it

holds for any extensive charge and its conjugate.

One physical consequence of this fact is that the entropy-extremality relationship (with

a different proportionality factor) will hold regardless of whether the mass or charge is held

fixed. As far as we know, this has not been noticed before in the literature.

3.1.4 Summary of extremality shifts

The shifts to extremality may be obtained from these mass and charge shifts. For com-

pleteness, we also present calculation at fixed horizon radius, as this extremality shift has

previously been considered in the literature as well [18, 20],

(
M

Q

)
Q,T=0

=

(
M

Q

)
0

1 + ρ+ ∆g
1

2
(
k + d−1

d−2

r2h
l2

)
 ,

(
M

Q

)
M,T=0

=

(
M

Q

)
0

1 + ρ
k + d−1

d−2
r2h
l2

k + d
d−2

r2h
l2

+ ∆g
1

2
(
k + d

d−2

r2h
l2

)
 ,

(
M

Q

)
rh,T=0

=

(
M

Q

)
0

1 + ρ+
∆g
(
k + d+1

d−2
r2h
l2

)
+ rh∆g′ 1

(d−2)2
r2h
l2

2
(
k + d−1

d−2

r2h
l2

)(
k + d

d−2

r2h
l2

)
 ,

(3.12)

where the corrections are encoded in ρ and ∆g given in (2.24) and (2.6), respectively (and

∆g′ as well for the fixed rh case). For these final results, we have set ε = 1. However, the

expressions are only valid to first order in the Wilson coefficients ci. Here the uncorrected

charge to mass ratio may be obtained from (3.3), and takes the form

(
M

Q

)
0

=

√
2(d− 1)

d− 2

k + d−1
d−2

r2h
l2√

k + d
d−2

r2h
l2

. (3.13)

Note that, in (3.12), the horizon radius rh may be taken to be the uncorrected radius, and

can be obtained from either M or Q using the leading order expressions (3.3). In (3.13),

the leading order expression for rh should be used. Finally, note that ∆g depends on the

parameters m and q as well as the radius r. The m and q parameters are directly obtained

from M and Q using (2.23) and (2.21), and again the leading order horizon radius can be

used in ∆g.

3.2 Wald entropy

We now compare the shift in mass at fixed charge and temperature to the shift in entropy

at fixed mass and charge. The entropy for black holes in higher-derivative theories is given

by the Wald entropy [23]:

S = −2π

∫
Σ

δL
δRµνρσ

εµνερσ . (3.14)
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For spherically symmetric backgrounds, the integral over the horizon Σ gives a factor of

the area A. The two-derivative contribution to the entropy is simply S(2) = A/4, while the

four-derivative terms yield

S(4) = −2πA
δ∆L
δRµνρσ

εµνεµν

∣∣∣∣
∂4

= −A
4
l2(4c1Rtrtr + 2c2FtrFtr) . (3.15)

The total entropy is the sum of these terms,

S =
A

4

(
1− ε

(
4c1l

2Rtrtr + 2c2l
2FtrFtr

))∣∣∣∣
rh

, (3.16)

where we once again introduced ε to parametrize the expansion. Here the horizon area is

given by A = ωd−1r
d−1
h , where rh is the corrected horizon radius. On the other hand, the

Rtrtr and FtrFtr terms need only be computed on the zeroth-order background,

Rtrtr =
1

l2
+

(2d− 3)(Q/V )2

2(d− 1)r2d−2
− (d− 2)M/V

2rd
,

FtrFtr =
(Q/V )2

r2d−2
.

(3.17)

It does not matter whether we use the corrected or uncorrected quantities here because

they already show up in a term that is order ε. Note also that, while the expression for the

Wald entropy (3.16) is given in terms of M , Q and rh of the fully corrected solution, only

two of these quantities are independent.

We now examine the entropy shift for a given solution at fixed mass M and charge Q.

For the moment, we work at arbitrary M and Q, and not necessarily at extremality. The

general expression for the entropy shift is then(
∂S

∂ε

)
Q,M

=
A

4

(
(d− 1)

(
1

rh

∂rh
∂ε

)
Q,M

−
(
4c1l

2Rtrtr + 2c2l
2FtrFtr

))
, (3.18)

where the first term was obtained by

1

A

∂A

∂ε
= (d− 1)

1

rh

∂rh
∂ε

. (3.19)

Here, it is important to note that the horizon radius rh receives a correction when working

at fixed M and Q. If, on the other hand, we were to keep the horizon radius fixed (as is

done in [18]), we would find only the second (interaction) term in (3.18), and the entropy

shift would be independent of c3 and c4.

To compute ∂rh/∂ε, we start with the horizon condition g(rh) = 0 where g(r) is given

by (3.1) with m and q rewritten in terms of M and Q. Taking a derivative and solving for

∂rh/∂ε then gives

1

rh

∂rh
∂ε

= −
ρM + V (d− 1)rd−2

h ∆g

(d− 2)(M − (Mext)0)
. (3.20)

where (Mext)0 is the leading order extremal mass given in (3.3). As we can see, this

expression diverges if the leading order solution is extremal. This is in fact not a surprise, as
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leading order extremality implies a double root at the horizon. The higher order corrections

will lift this double root and hence cannot be parametrized as a linear shift in ε. The correct

shift will be proportional to
√
ε; however, this will not affect the bounds implied on the

EFT coefficients. For a discussion of the entropy shift of very-near extremal black holes,

see appendix C.

In order to avoid the divergence, we can instead consider a leading order solution taken

slightly away from extremality. As long as we are sufficiently close to extremality, the first

term in (3.18) will dominate the entropy shift. Noting further that, at extremality, the

numerator of (3.20) becomes proportional to the mass shift (3.7) at fixed charge, we can

rewrite (3.18) as(
∂S

∂ε

)
Q,M

= − A

4

(
d− 1

(d− 2)(M − (Mext)0)

(
∂M

∂ε

)
Q,T=0

+
d− 1

d− 2
ρ+ 4c1l

2Rtrtr + 2c2l
2FtrFtr

)
. (3.21)

The deviation away from extremality can be written in terms of the leading order

temperature,

4πT0 = |g′((rh)0)|ε=0 =
(d− 2)(M − (Mext)0)

V (d− 1)(rh)d−1
0

. (3.22)

The total shift to the entropy is then given by(
∂S

∂ε

)
Q,M

= − 1

T0

(
∂M

∂ε

)
Q,T=0

− A

4

(
d− 1

d− 2
ρ+ 4c1l

2Rtrtr + 2c2l
2FtrFtr

)
. (3.23)

Finally, as T0 → 0 we reproduce the relation [7, 12](
∂M

∂ε

)
Q,T=0

= −T0

(
∂S

∂ε

)
Q,M

. (3.24)

Note that this relation was obtained using only the general feature that the corrected

geometry may be written in terms of a shift ∆g to the radial function g(r). In particular,

we never had to use the explicit form of ∆g given in (2.6).

3.3 Explicit results for the entropy shifts

In order to compare with the next section, we include some explicit results for the mass

shifts. In section 5, we will see what constraints may be placed on the EFT coefficients by

imposing that entropy shift is positive. We’ll use the mass shift here, to remove the factor

of T0. The entropy shift is positive when the mass shift at constant charge is negative. It

is easy to see that the shifts here are positive when all the coefficients are positive.

For AdS4, we find:

T0∆S =
1

5rhl2

(
4c1(l2 + 3r2

h)2 + 2c2(l2 + 3r2
h)(l2 + 18r2

h) + 8(2c3 + c4)(l2 + 3r2
h)2
)
.

(3.25)
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For AdS5, we get:

T0∆S =
π

16l2

(
c1(31l4 + 128l2r2

h + 138r4
h)

+ c224(l2 + 2r2
h)(l2 + 6r2

h) + (2c3 + c4)72(l2 + 2r2
h)2
)
.

(3.26)

AdS6:

T0∆S =
2π

99l2

(
c1rh(369l4 + 1263l2r2

h + 1124r4
h)

+ c24rh(3l2 + 5r2
h)(27l2 + 100r2

h) + (2c3 + c4)96rh(3l2 + 5r2
h)2
)
.

(3.27)

AdS7:

T0∆S =
π2

224l2

(
c1 (1384l4r2

h + 4236l2r4
h + 3345r6

h)

+ c2 40(2l2 + 3r2
h)(16l2 + 45r2

h) + (2c3 + c4) 800(2l2 + 3r2
h)2
)
.

(3.28)

4 Thermodynamics from the on-shell Euclidean action

The ultimate goal of this paper is to determine the leading higher-derivative corrections

to relations between certain global properties of black hole solutions. These relations are

of a thermodynamic nature, and arise by taking various derivatives of the free-energy

corresponding to the appropriate ensemble. As is well-known [24], the classical free-energy

of a black hole can be calculated using the saddle-point approximation of the Euclidean

path integral with appropriate boundary conditions. In the Gibbs or grand canonical

ensemble, the appropriate quantity is the Gibbs free-energy, which may be calculated from

the on-shell Euclidean action

βG(T,Φ) = IE [gEµν (T,Φ) , AEµ (T,Φ)], (4.1)

where β = T−1, and gEµν (T,Φ) and AEµ (T,Φ) are Euclideanized solutions to the classi-

cal equations of motion with temperature T and potential Φ. Similarly in the canonical

ensemble the corresponding quantity is the Helmholtz free-energy, given by

βF (T,Q) = IE [gEµν (T,Q) , AEµ (T,Q)], (4.2)

where gEµν (T,Q) and AEµ (T,Q) are Euclideanized solutions with temperature T and electric

charge Q. In both expressions, IE is the renormalized Euclidean on-shell action.

The Euclidean action with cosmological constant is IR divergent when evaluated on a

solution. However, it may be given a satisfactory finite definition by first regularizing the

integral with a radial cutoff R. To render the variation principle well-defined on a spacetime

with boundary we must add an appropriate set of Gibbons-Hawking-York (GHY) [25, 26]
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(in the case of the canonical ensemble, also Hawking-Ross [27]) terms in addition to a set of

boundary counterterms. The complete on-shell action then consists of three contributions

IE = Ibulk + IGHY + ICT. (4.3)

If the counterterms are chosen correctly, they will cancel the divergence of the bulk and

Gibbons-Hawking-York terms, rendering the results finite as R → ∞. In AdS there is

a systematic approach to generating such counterterms via the method of holographic

renormalization [21, 28, 29]; since the logic of this approach is well-described in detail

elsewhere (see e.g. [30]) we will not review it further, but simply make use of known results.

Explicit expressions for the needed GHY and counterterms (including the four-derivative

corrections used in this paper) valid in AdSd, d = 4, 5, 6 can be found in [20, 31].

Once the free-energy is calculated, the remaining thermodynamic quantities can be

determined straightforwardly by using the definitions of the free-energies and the first-law

of black hole thermodynamics

F = E − TS, G = E − TS − ΦQ, dE = TdS + ΦdQ. (4.4)

The expressions calculated using these Euclidean methods should agree with the Lorentzian

or geometric calculations in the previous section. Note, however, that there is a bit of a

subtlety with the notion of black hole mass here, as the thermodynamic relations are for the

energy E of the system. In holographic renormalization, there is always an ambiguity in

the addition of finite counterterms that shift the value of the on-shell action. The standard

approach is to fix the ambiguity by demanding that even-dimensional global AdS has zero

vacuum energy while odd-dimensional global AdS has non-zero vacuum energy that is

interpreted as a Casimir energy in the dual field theory. In this case the thermodynamic

energy is the sum of the black hole mass and the Casimir energy

E = M + Ec, (4.5)

and the mass M of the black hole is only obtained after subtracting out the Casimir energy

contribution, as we did in section 2.

The purpose of introducing this alternative approach is not just to give a cross-check

on the results of the previous section, but also to verify a recent general claim by Reall

and Santos [17]. In this paper, the O(ε) corrections we are considering can be calculated

by first evaluating the free-energy or on-shell action at the same order. Naively, this would

require evaluating three contributions

IE [gEµν , A
E
µ ] = I

(2)
E [g(2)E

µν , A(2)E
µ ] + ε

(
∂

∂ε
I

(2)
E [g(2)E

µν + εg(4)E
µν , A(2)E

µ + εA(4)E
µ ]

)∣∣∣∣
ε=0

+ εI
(4)
E [g(2)E

µν , A(2)E
µ ] +O

(
ε2
)
, (4.6)

where (2) and (4) denote two and four derivative terms in the action and their corresponding

perturbative contributions to the solution. The central claim in [17] is that the first term

at O(ε) is actually zero, and that therefore we do not need to explicitly calculate the O(ε)
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corrections to the equations of motion. For black hole solutions of the type considered

in this paper, we can evaluate the leading corrections without much difficulty, but for

more general situations with less symmetry this may not be possible. In such a case the

Euclidean method is more powerful, as has recently been demonstrated with calculation of

corrections involving angular momentum [32] or dilaton couplings [33].

Although the result of [17] was demonstrated in the grand canonical ensemble, it is

straightforward to see that it implies an identical claim about the leading corrections in

the canonical ensemble. While the quantities of interest can be extracted from either, the

explicit expressions encountered in the latter are usually far simpler and therefore more

convenient. Recall that we can change ensemble by a Legendre transform of the free-energy

F (T,Q) = G(T,Φ(Q)) + Φ(Q)Q, Q = −
(
∂G

∂Φ

)
T

, (4.7)

where the right-hand-side is defined in terms of the implicit inverse function Φ(Q). At

fixed T and Q, the potential Φ receives corrections from the higher-derivative interactions,

and so, expanding the right-hand-side to O(ε), we have

F (T,Q) = G(2)(T,Φ(2)(Q)) + ε

(
∂

∂ε
G(2)(T,Φ(2)(Q) + εΦ(4)(Q))

)∣∣∣∣
ε=0

+ εG(4)(T,Φ(2)(Q)) + Φ(2)(Q)Q+ εΦ(4)(Q)Q+O
(
ε2
)
. (4.8)

Recognizing that(
∂

∂ε
G(2)(T,Φ(2)(Q) + εΦ(4)(Q))

)∣∣∣∣
ε=0

= Φ(4)(Q)

(
∂G(2)

∂Φ

)
T

∣∣∣∣
Φ=Φ(2)(Q)

= −Φ(4)(Q)Q,

(4.9)

we see that the leading correction to the Helmholtz free energy is simply given by

F (T,Q) = F (2)(T,Q) + εG(4)(T,Φ(2)(Q)) +O
(
ε2
)
. (4.10)

In terms of the on-shell Euclidean action, using the result of Reall and Santos, this is then

equivalent to

F (4)(T,Q) =
1

β
I

(4)
E

(
g(2)E
µν (T,Q) , A(2)E

µ (T,Q)
)
, (4.11)

where here I
(4)
E denotes the contribution of the four-derivative terms to the renormalized

on-shell action. Note that this includes potential four-derivative Gibbons-Hawking-York

terms, but as this argument makes clear, will not include any additional Hawking-Ross

terms. This expression is the analogue of the Reall-Santos result, but in the canonical

ensemble. It says that the leading correction to the Helmholtz free-energy is given by

evaluating the four-derivative part of the renormalized on-shell action on a solution to the

two-derivative equations of motion with temperature T and charge Q.

Below we will give a brief review of the well-known thermodynamic relations at two-

derivative order, and then using the above result we will calculate the leading corrections

and verify explicitly that they agree with the results of the previous section.
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4.1 Two-derivative thermodynamics

As described above, the regularized on-shell action has a bulk as well as various boundary

contributions. At two-derivative order and in d-dimensions these have the explicit form

I
(2)
bulk = − 1

16π

∫
dd+1x

√
g
(d(d− 1)

l2
+R− 1

4
F 2
)
,

I
(2)
GHY = − 1

8π

∫
ddx
√
hK,

I
(2)
CT =

1

8π

∫
ddx
√
h

(
d− 1

l
+

l

2(d− 2)
R
)
, (4.12)

where hab andRab are the metric and Ricci tensor of the induced geometry on the boundary

at r = R. Note that in I
(2)
CT we have included the minimal set of counterterms necessary

to cancel the IR divergence in d = 3 and d = 4. For d > 4, additional counterterms

beginning at quadratic order in the boundary Riemann tensor are necessary to cancel

further divergences.

The regularized bulk action has a well-defined variational principle provided that δAa =

0 at r = R. This amounts to holding Φ fixed, and thus it corresponds to boundary

conditions compatible with the grand canonical ensemble. For many applications, we will

want to hold the charge fixed. From a thermodynamic point of view, we want to use

the extensive quantity Q instead of the intensive Φ, so we must compute the Helmholtz

free energy instead of the Gibbs free energy. Holding Q fixed requires different boundary

conditions, and in particular the further addition of a Hawking-Ross boundary term [27]

I
(2)
HR =

1

16π

∫
ddx
√
hnµF

µbAb , (4.13)

where nµ is the normal vector on the boundary and Aa is the pull-back of the gauge

potential. To summarize, the total two-derivative on-shell action

I
(2)
E = I

(2)
bulk + I

(2)
GHY + I

(2)
HR + I

(2)
CT, (4.14)

evaluated on the Euclideanized solution to the two-derivative equations of motion

ds2
E = f(r)dτ2 + g(r)−1dr2 + r2dΩ2

d−1 , f(r) = g(r) = 1− m

rd−2
+

q2

4r2d−4
+
r2

l2
,

AE = i

(
−1

c

q

rd−2
+ Φ

)
dτ, c =

√
2(d− 2)

(d− 1)
, Φ =

1

c

q

ld−2νd−2
, (4.15)

is equal to βF (2)(T,Q), where F (2) is the two-derivative contribution to the Helmholtz

free-energy. In the above we have introduced the dimensionless variable ν ≡ (rh)0/l, where

(rh)0 is the location of the outer-horizon of the two-derivative solution with temperature T

and charge Q. Note also that here, and for the remainder of this section, we will consider

only spherical k = 1 black holes. Since ν satisfies f(ν) = 0, we can solve for the parameter

m as

m = νd−2 +
q2

4νd−2
+
νd

l2
. (4.16)
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In the Euclidean approach to calculating the leading corrections to the thermodynamics,

it will prove natural to continue to use ν and q to parametrize the space of black hole

solutions, even when the four-derivative corrections are included. This means that it is

also natural to write all thermodynamic quantities in these variables, which requires the

use of standard thermodynamic derivative identities to rewrite derivatives. Recall that

the parameter q and the physical charge Q are not the same, but are related by an overall

constant given in (2.21). Therefore holding Q fixed is the same as holding q fixed. Explicitly,

the two-derivative free-energy calculated in this way in AdS4 is given by

F
(2)
d=3(q, ν) = − lν

3

4
+
lν

4
+

3q2

16lν
, (4.17)

and in AdS5 by

F
(2)
d=4(q, ν) = −1

8
πl2ν4 +

1

8
πl2ν2 +

5πq2

32l2ν2
+

3πl2

32
. (4.18)

Once the free-energy is calculated, the entropy and energy are given by

S = −
(
∂F

∂T

)
Q

, E = F + TS. (4.19)

In terms of our natural variables, we can re-express the entropy as

S(q, ν) =

(
∂F

∂ν

)
q

[(
∂T

∂ν

)
q

]−1

, (4.20)

where the temperature is given by

T (q, ν) =
(d− 2)q2l1−dν1−d

4π
+

(d− 1)ν2 + d− 2

4πl
. (4.21)

Note that this expression is exact, meaning it does not receive corrections when we include

the four-derivative interactions. It is therefore useful to introduce the function

q2
ext(ν) = −

2
(
dν2 + d− ν2 − 2

)
(lν)d−2

(d− 2)
, (4.22)

such that taking the limit q2 → q2
ext(ν) is equivalent to taking the extremal limit T → 0.

If we extract the energy E = F + TS from the expressions (4.17) and (4.18), we find

that it agrees with the mass, (2.23), for AdS4 but not AdS5. This is not surprising as

the thermodynamic energy E and mass M of the black hole in AdS5 differ by a Casimir

energy contribution that is independent of q and ν. We can, of course remove the Casimir

energy by the addition of finite boundary counterterms, or equivalently by a change in

holographic renormalization scheme. The expression (4.18) is calculated in a minimal

subtraction scheme, in which the possible finite counterterms are zero and the Casimir

energy is present.

Physically, it is useful work in a scheme in which the energy E coincides with the mass

M of the black hole, without a Casimir contribution. In such a zero Casimir scheme, the

energy of pure AdS5 is defined to be zero. Calculating the free-energy from the on-shell
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action of pure AdS5 with generically parametrized four-derivative counterterms we find that

this scheme requires the following modification from the minimal subtraction counterterms

I
(2)
CT −→ I

(2)
CT +

1

8π

∫
d4x
√
h

(
− l

3

96

)
R2. (4.23)

The free energy calculated with this modified on-shell action agrees exactly with the expec-

tation using (2.23). Note that the entropy, since it is given by a derivative of the free-energy,

is independent of the choice of scheme. The zero Casimir scheme is a physically motivated

choice, but certainly not unique.

4.2 Four-derivative corrections to thermodynamics

To evaluate the four-derivative corrections we make use of the result (4.11). As in the

two-derivative contribution, the on-shell action is properly defined by a regularization and

renormalization procedure. For the operators in (2.1) with Wilson coefficients c2, c3 and

c4 the required I
(4)
bulk contribution is actually finite, while for the term in (2.1) proportional

to c1, we must again regularize and renormalize by adding infinite boundary countert-

erms. The required explicit expressions, as well as the complete set of four-derivative GHY

terms, can be found in [20, 31]. The calculation is otherwise identical to the two-derivative

contribution described above, and in AdS4 we find

F
(4)
d=3(q, ν) =c1

(
−
(
20l4ν4 − 5l2ν2q2 + q4

)
20l5ν5

− 3ν

l

)
+
c2q

2
(
l2
(
20l2ν2 − 7q2

)
− 60l4ν4

)
80l7ν5

− c3q
4

5l5ν5
− c4q

4

10l5ν5
. (4.24)

The complete free-energy, up to O(ε2) contributions, is then given by

Fd=3(q, ν) = F
(2)
d=3(q, ν) + εF

(4)
d=3(q, ν) +O(ε2). (4.25)

From this explicit expression we can then calculate the entropy

Sd=3 = πl2ν2 −
4πc1ε

(
4l4ν4

(
1− 3ν2

)
− 3l2ν2q2 + q4

)
4l2 (3ν2 − 1) ν4 + 3ν2q2

−
πc2q

2ε
(
12l2ν2

(
ν2 − 1

)
+ 7q2

)
4l2 (3ν2 − 1) ν4 + 3ν2q2

− 16πc3q
4ε

4l2 (3ν2 − 1) ν4 + 3ν2q2
− 8πc4q

4ε

4l2 (3ν2 − 1) ν4 + 3ν2q2
+O(ε2), (4.26)

and mass (which coincides with the thermal energy)

Md=3 =
1

2
l
(
ν3 + ν

)
+

q2

8lν
+
c1q

4ε
(
q2 − 4l2ν2

(
9ν2 + 2

))
40l5 (3ν2 − 1) ν7 + 30l3ν5q2

+
c2q

2ε
(
80l4ν4

(
−9ν4 + 6ν2 + 1

)
− 8l2ν2

(
39ν2 + 7

)
q2 + 7q4

)
40l3ν5 (4l2ν2 (3ν2 − 1) + 3q2)

+
2c3q

4ε
(
q2 − 4l2ν2

(
9ν2 + 2

))
5l3ν5 (4l2ν2 (3ν2 − 1) + 3q2)

+
c4q

4ε
(
q2 − 4l2ν2

(
9ν2 + 2

))
5l3ν5 (4l2ν2 (3ν2 − 1) + 3q2)

+O(ε2). (4.27)
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Taking the extremal limit we find the following expression for the mass shift

(∆Md=3)Q,T=0 =−
4c1l

(
3ν2 + 1

)2
5ν

− 2c2l(3ν
2 + 1)(18ν2 + 1)

5ν

−
16c3l

(
3ν2 + 1

)2
5ν

−
8c4l

(
3ν2 + 1

)2
5ν

, (4.28)

which agrees exactly with (3.25). Strictly, the two expressions are parameterized in terms

of different variables (ν the uncorrected horizon vs. rh the corrected horizon), but these

differ by O(ε), and so when we take ε→ 0 the two functions are the same.

Similarly we can calculate the shift in the microcanonical entropy, which will be impor-

tant in the subsequent section for analyzing conjectured bounds on the Wilson coefficients.

The actual expression is given in (5.10), and can be calculated straightforwardly using

standard thermodynamic derivative identities

(∆S)Q,E = lim
ε→0

[(
∂S

∂ε

)
q,ν

−
(
∂E

∂ε

)
q,ν

(
∂S
∂ν

)
q(

∂E
∂ν

)
q

]
. (4.29)

The calculation for AdS5 is similar, but in this case we have to be cautious about the

Casimir energy. We calculate the free-energy in the physically motivated zero Casimir

scheme. To do so, we again fix the finite counterterms by evaluating the four-derivative

on-shell action on pure AdS5. Requiring the Casimir energy to vanish requires the following

modification from the minimal subtraction counterterm action

I
(4)
CT −→ I

(4)
CT +

1

8π

∫
d4x
√
h

(
−5c1l

3

48

)
R2. (4.30)

Using this we calculate the four-derivative contribution to the renormalized free-energy

F
(4)
d=4 =

1

256
πc1

(
− 43q4

l8ν8
+

24
(
5ν2 + 8

)
q2

l4ν4
− 32

(
13ν4 + 41ν2 + 18

))
+

3πc2

(
8l4ν4q2 − 3q4

)
32l8ν8

− 9πc3q
4

16l8ν8
− 9πc4q

4

32l8ν8
. (4.31)

We also obtain the entropy

Sd=4 =
1

2
π2l3ν3 +

π2c1ε
(
8l8
(
26ν2 + 41

)
ν10 + 6l4

(
5ν2 + 16

)
ν4q2 − 43q4

)
4l3ν3 (4l4 (2ν2 − 1) ν4 + 5q2)

+
6π2c2ε

(
4l4ν4q2 − 3q4

)
l7 (8ν9 − 4ν7) + 5l3ν3q2

− 36π2c3q
4ε

l7 (8ν9 − 4ν7) + 5l3ν3q2

− 18π2c4q
4ε

l7 (8ν9 − 4ν7) + 5l3ν3q2
+O

(
ε2
)
, (4.32)

and mass

Md=4 =
3π
(
4l4
(
ν2 + 1

)
ν4 + q2

)
32l2ν2

+ c1

[
πε
(
384l12

(
ν2 + 1

) (
26ν4 + 23ν2 + 6

)
ν12 − 32l8

(
27ν4 + 32ν2 + 18

)
ν8q2

)
256l8ν8 (4l4 (2ν2 − 1) ν4 + 5q2)
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+
πε
(
−4l4

(
684ν2 + 253

)
ν4q4 + 129q6

)
256l8ν8 (4l4 (2ν2 − 1) ν4 + 5q2)

]

+
3πc2q

2ε
(
32l8

(
10ν2 + 3

)
ν8 − 4l4

(
54ν2 + 19

)
ν4q2 + 9q4

)
32l8ν8 (4l4 (2ν2 − 1) ν4 + 5q2)

+
9πc3q

4ε
(
3q2 − 4l4ν4

(
18ν2 + 7

))
16l8ν8 (4l4 (2ν2 − 1) ν4 + 5q2)

+
9πc4q

4ε
(
3q2 − 4l4ν4

(
18ν2 + 7

))
32l8ν8 (4l4 (2ν2 − 1) ν4 + 5q2)

+O
(
ε2
)
. (4.33)

The extremal mass shift is given by

(∆Md=4)Q,T=0 =− 1

16
πc1

(
138ν4 + 128ν2 + 31

)
− 3

2
πc2

(
2ν2 + 1

) (
6ν2 + 1

)
− 9πc3

(
2ν2 + 1

)2 − 9

2
πc4

(
2ν2 + 1

)2
, (4.34)

which agrees exactly with the result (3.26). Likewise we can calculate the correction to the

microcanonical entropy using (4.29), the explicit expression is given in (A.2).

5 Constraints from positivity of the entropy shift

Having derived the general entropy shift at fixed mass, we may now determine what con-

straints on the EFT coefficients are implied by the assumption that it is positive. Recall

that the argument of [7] for the positivity of the entropy shift assumes the existence of

a number of quantum fields φ with mass mφ, heavy enough so that they can be safely

integrated out. In particular, such fields are assumed to couple to the graviton and pho-

ton in such a way that, after being integrated out, they generate at tree-level the higher-

dimension operators we are considering (with the corresponding operator coefficients scaling

as ci ∼ 1/mφ). This assumption is essential to the proof; it may be that the entropy shift

is universally positive (see [32] for a number of examples), but proving such a statement for

non-tree-level completions would require a different argument from the one laid out here.

We revisit the logic of [7] in the context of flat space, before discussing how it may be

extended to AdS asymptotics, and denote the Euclidean on-shell action of the theory that

includes the heavy scalars φ by IUV[g,A, φ]. First, note that when the scalars are set to zero

and are non-dynamical, the action reduces to that of the pure Einstein-Maxwell theory,

IUV[g,A, 0] = I(2)[g,A] . (5.1)

This is a statement relating the value of the functionals IUV and I(2) (the two-derivative

action) when we pick particular configurations for the fields. These fields may or may not be

solutions to the equations of motion. Next, consider the corrected action, IC = I(2) + I(4),

and note that it obeys

IC [g + ∆g,A+ ∆A] ' IUV[g,A, φ] . (5.2)

Here we have in mind that the fields are valid solutions of the respective theories, i.e. [g,A, φ]

is a solution of the UV theory and [g + ∆g,A + ∆A] is a solution to the four-derivative
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corrected theory. The UV theory and that with an infinite series of higher-derivative

corrections should have exactly the same partition function; therefore, this expression is an

equality up to quantum corrections and corrections that are O(ε2). Finally, let us choose

[g,A, φ] to be solutions of the UV theory with charge Q and temperature T , and [g0, A0]

to be field configurations in the pure Einstein-Maxwell theory with the same charge and

temperature as those of the UV theory. One then finds the following inequality,

IC [g + ∆g,A+ ∆A]T,Q ' IUV[g,A, φ]T,Q < IUV[g0, A0, 0]T,Q = I(2)[g0, A0]T,Q . (5.3)

Since [g,A, φ] is a solution of the UV theory, it extremizes the action. To ensure the

inequality that appears in (5.3), one must further require that this solution is a minimum

of the action. The inequality then follows because [g0, A0, 0] is not a solution to the

equations of motion, for the same charge and temperature. Finally, as long as one works in

the same ensemble, the boundary terms will be the same for both actions and thus don’t

affect the argument.

In general, different theories will have different relationships between mass, charge, and

temperature. We are interested in the entropy shift at fixed mass and charge. Therefore

we must compare the two action functionals at different temperatures. For simplicity, we

use T4/T2 for the temperature that corresponds to mass M and charge Q for the theory

with/without higher-derivative corrections, respectively. Then we have:

FC(Q,T4) < F2(Q,T4),

FC(Q,T4) < F2(Q,T2) + (T4 − T2)∂TF2(Q,T2),

FC(Q,T4) < F2(Q,T2)− (T4 − T2)S2,

M − S4T4 < M − S2T2 − (T4 − T2)S2,

−S4T4 < −T4S2,

∆S > 0,

(5.4)

at fixed M and Q (and in the zero Casimir energy scheme).

Now that we have outlined the argument in flat space, we can ask whether it can be

immediately extended to AdS. One subtle point in the derivation outlined above is that the

free-energy is only finite after the subtraction of the free-energy of a reference background.

In the flat space context, the contributions of such terms to the two actions are identical

because the asymptotic charges are the same. Thus, this issue does not affect the validity

of the argument.

In AdS, the story is a little different– the free-energy is computed using holographic

renormalization. Different counterterms are required to render the two-derivative action

I(2) and the corrected action IC finite. Moreover, IUV may also require a different set

of counterterms involving contributions from the scalar, and unlike the bulk contribution,

there is no reason to expect that their on-shell values are less than their off-shell values.

This is a potential hole in the positivity argument in AdS. Apart from this issue, the rest

of the argument can be immediately applied to AdS.
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5.1 Thermodynamic stability

As we’ve seen, the above proof requires that the uncorrected backgrounds are minima of the

action. Thermodynamically, this amounts to the condition that the black holes are stable

under thermal and electrical fluctuations. This translates to the following requirements on

the free-energies,(
∂2F

∂T 2

)
Q

≤ 0,

(
∂2G

∂T 2

)
Φ

≤ 0, εT =

(
∂2F

∂Q2

)
T

≥ 0 . (5.5)

These conditions may be rewritten in terms of the specific heat and permittivity of the

black hole, which can be used to determine, respectively, the thermal stability and electrical

stability of the black hole [34, 35]. We’ll ignore the specific heat at constant Φ now, as we

are interested in the stability in the canonical ensemble, and consider

CQ = T

(
∂S

∂T

)
Q

≥ 0, εT =

(
∂Q

∂Φ

)
T

≥ 0 . (5.6)

Positivity of the specific heat is equivalent to the statement that larger black holes should

heat up and radiate more, while smaller ones should become colder and radiate less. When

the quantity εT is negative the black hole is unstable to electrical fluctuations, meaning

that when more charge is placed into it, its chemical potential decreases. We expect that it

should instead increase, to make it more difficult to move a charge from outside to inside

the black hole — thus making it harder to move away from equilibrium [35]. We may

compute these quantities using the results of the previous section. For AdS4, we find

CQ =
2πl2ν2(1 + 3ν2)(2− ξ)ξ

2− 6ξ + 3ξ2 + 3ν2(4− 6ξ + 3ξ2)
, εT =

(ξ − 2)ξ + 3ν2(2− 2ξ + ξ2)

νl (2− 6ξ + 3ξ2 + 3ν2(4− 6ξ + 3ξ2))
,

(5.7)

where we recall that ν = rh/l and Q = (1 − ξ)Qext. These results have been obtained

previously e.g. in [36]. We find that both of these coefficients are positive when either

ν < ν∗ =
1√
3
, ξ < ξ∗ = 1−

√
1− 3ν2

1 + 3ν2
, (5.8)

holds, or when

ν > ν∗ =
1√
3
, 0 < ξ < 1 , (5.9)

is satisfied.

Thus, for small black holes stability requires that the extremality parameter be less

than some function of the radius, ξ < ξ∗. In particular, extremal black holes, for which ξ →
0, are stable while neutral black holes, which correspond to ξ → 1, are not. The implication

of (5.9) is that above a certain radius (rh > l/
√

3) all black holes are thermodynamically

stable. This behavior is visible from figure 1, where we have plotted the allowed parameter

space based on the CQ and εT conditions separately. This raises an interesting point in

making contact with the flat space limit: if we require both parameters to be positive, there
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Figure 1. Blue represents the regions of parameter space where each quantity is positive.

are no stable black holes at ν = 0. Note that in [7] only CQ was considered. However,

in applications involving AdS/CFT, we believe that both the specific heat and electrical

permittivity should be taken into account.

Here we have only considered the leading-order stability. The higher-derivative correc-

tions will shift the point where the specific heat crosses from positive to negative. However,

in proving the extremality-entropy relation, we are only interested in the extremal limit,

which is not affected by this consideration. In principal we could compute the order ε shifts

to the stability conditions to obtain small corrections to the entropy bounds.

5.2 Constraints on the EFT coefficients

The entropy shift in AdS4 for a black hole with an arbitrary size and charge takes the

following form,(
∂S

∂ε

)
Q,M

=
l(1 + 3ν2)

5νT

(
c1

(
4− 6ξ + 19ξ2 − 16ξ3 + 4ξ4 + 12ν2(ξ − 1)4

)
+ c2(ξ − 1)2

(
2− 14ξ + 7ξ2 + 3ν2(12− 14ξ + 7ξ2)

)
+ 8(2c3 + c4)(1 + 3ν2)(ξ − 1)4

)
,

(5.10)

where the temperature is given by the expression

T (rh, ξ) = −(1 + 3ν2)(ξ − 2)ξ

4πνl
.

We can see from the ξ dependence of the latter that in the ξ → 0 limit the shift to the

entropy blows up. If we examine the leading part in 1/ξ, we find that it is proportional to
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the mass shifts we have computed above. Thus, in the extremal limit we have(
∂S

∂ε

)
ξ→0

=
l2

5rhT

(
4c1(1 + 3ν2)2 + 2c2(1 + 3ν2)(1 + 18ν2) + 8(2c3 + c4)(1 + 3ν2)2

)
.

(5.11)

It is also interesting to note that in the chargeless limit ξ → 1 the dependence of (5.10) on

c2, c3 and c4 drops out entirely, and we are left with an entropy shift of the simple form(
∂S

∂ε

)
ξ→1

=
l

νT
c1

(
1 + 3ν2

)
. (5.12)

Our results above show that large black holes are stable in the chargeless limit. Therefore,

under the assumption that the four-derivative corrections yield a positive entropy shift for

all possible stable black hole backgrounds, we find

c1 ≥ 0 . (5.13)

In figure 2, we have graphed the constraints on the coefficients that arise from de-

manding that the entropy shift is positive. We have included both the constraints from the

extremal entropy shift and from considering the shift of all stable black holes. Considering

only extremal black holes may be interesting because it is equivalent to the condition that

the extremality shift, ∆(M/Q), is negative. Thus we may look at the constraints implied

by positive entropy shift and by negative extremality shift independently. Note that we

have divided by c1, which we have already proven to be positive. We may write out the all

the constraints obtained:

c1 ≥ 0,

c2 ≥ 0,

c3 ≥ −
1

8
c1(2 + c2).

(5.14)

We have computed the corresponding bounds for AdS5 through AdS7. The results

may be found in appendix A. We would, however, like to comment on AdS5, where the

positivity of the coefficient of the Riemann-squared term is of particular interest. The

stability analysis yields results that are qualitatively similar to (5.8) and (5.9), but with

the following definitions

ξ∗ = 1−
√

1− 2ν2

1 + 2ν2
, ν∗ =

1√
2
. (5.15)

Once again, we see that large black holes are stable for all values of the charge.

When we examine the entropy shift in the neutral limit, we find

πl2

32T
c1

(
87 + 164ν2 + 52ν4

)
, (5.16)

whose overall sign is completely determined by that of c1. This means that there are stable

black holes where the sign of the entropy shift is the same as the sign of the coefficient of
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Figure 2. Blue regions are allowed after imposing that the entropy shift is positive. (Left): allowed

region after imposing that extremal black holes have positive entropy shift (Right): allowed region

after imposing that all stable black holes have positive entropy shift,

R2
abcd. Thus, a positive entropy shift for stable black holes implies that c1 is positive. In

fact, a positive value of c1 was the necessary ingredient in [4] for obtaining the violation of

the KSS bound.5 It is also interesting to note that in d > 3, this sign constraint was shown

to follow from the assumption of a unitary tree-level UV completion [37]. The entropy

constraints given in this paper are then strictly stronger since they also apply in d = 3.

In closing, we stress that we are not claiming that the entropy shift should be univer-

sally positive; the proof outlined above only applies when the higher-derivative corrections

are generated by integrating out massive fields at tree-level (and relies on assuming that the

corresponding solutions minimize the effective action). However, it is interesting that the

conjecture that the entropy shift is universally positive appears to suggest that violations

of the KSS bound are required to occur. Our results extend and make more precise the

earlier claim by some of us [20] of a link between the WGC and the violation of the KSS

bound. We will come back to this point in section 6.

5.3 Flat space limit

As we have pointed out above, we can not compare the results we have given above to

the flat space limit. This is because if we impose both CQ > 0 and εT > 0, we find that

there are no stable black holes in the flat space limit ν → 0 (as suggested by figure 1).

In AdS/CFT, we expect that both conditions are necessary to ensure thermodynamic

stability; nonetheless, we may remove the condition εT > 0 in order to compare with the

flat space limit. In this case, we find that stability requires

ξ∗ = 1− 1√
3

√
1− 3ν2

1 + 3ν2
, ν∗ =

1√
3
, (5.17)

5We have checked the calculation with a different basis, choosing to use Gauss-Bonnet instead of Riemann

squared. As expected, we find that the coefficient of the Gauss-Bonnet term is positive.
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Figure 3. The blue regions are allowed in flat space and the orange in AdS– note that the AdS

regions are a subset of those from flat space.

for the AdS4 black holes, and

ξ∗ = 1− 1√
2

√
1− 2ν2

1 + 2ν2
, ν∗ =

1√
2
, (5.18)

for the AdS5 black holes. This allows for a more direct comparison between the two cases.

In figure 3, we contrast the bounds obtained in AdS and flat space. The bounds in AdS

are stronger, as they should be given that there is an extra parameter’s worth of stable

black holes. Note also that c1 > 0 is implied by positivity in AdS, but not in flat space,

because in flat space there are no stable neutral black holes.

6 Discussion

In this paper, we have examined the relationship between the higher-derivative correc-

tions to entropy and extremality in Anti-de Sitter space. As we have seen, extremality

is considerably more complicated in AdS because the relationship between mass, charge,

and horizon radius at extremality is non-linear. Nonetheless, we have verified the rela-

tion [7, 12] between the entropy shift at fixed charge and mass and the extremality shift

at fixed charge and temperature. There is a sharp dependence on which quantities are

held fixed in AdS. This is in contrast to flat space, where the linear relationship between

mass, charge, and horizon radius removes this issue. We have also provided a more general

proof of this relation in appendix B, and extended the result to show that there is a third

proportional quantity, which is the extremality shift at fixed mass and temperature.

When viewed geometrically, these statements seem almost accidental. In section 4,

we performed the same calculation from a thermodynamic point of view by computing

the free energy from the renormalized on-shell action. From this point of view, issues

concerning “which quantity is held fixed” translate to “which ensemble is used.” In addition

to providing an additional check on the results from section 3, this provides a non-trivial

confirmation of the results of [17], which states that the shifted geometry is not needed to

compute the thermodynamic quantities.
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Assuming that the entropy shift is positive places constraints on the Wilson coefficients.

However, a crucial difference appears in AdS when compared to flat space. The stability

criterion depends on the horizon radius over the AdS length, and goes to zero at large

horizon radius. This means that there are stable neutral black holes that are asymptotically

AdS. For neutral black holes, the entropy shift is dominated by c1, which is the coefficient

of the Riemann squared term, so the positivity of the entropy shift implies the positivity

of this coefficient. In AdS5, this coefficient may be related to the central charges of the

dual field theory [28, 38, 39] by

c1 =
1

8

c− a
c

. (6.1)

Thus, the positivity of the entropy shift appears to be violated in theories where c−a < 0.

In [40], a number of superconformal field theories were examined, and all were found to

satisfy c− a > 0. It is worth noting there are non-interacting theories where c− a < 0; for

example, a
c = 31

18 for a free theory of only vector fields [41]. However, such theories do not

have weakly curved gravity duals.6

The question of whether holographic theories with gravity and gauge fields necessarily

correspond to c − a non-negative is interesting for a number of reasons — both from a

fundamental point of view and for phenomenological applications.

In particular, recall that the range of the Wilson coefficients and the sign of c − a

played an important role in the physics of the shear viscosity to entropy ratio η/s and how

it deviates from its universal 1/4π result [42, 43], as discussed extensively in the literature

(see [44] for a review of the status of the shear viscosity to entropy bound). Indeed, it is

interesting to compare our results to the higher-derivative corrections to η/s, which (for

the AdS5 case of interest to us here) were shown [18] to be given by

η

s
=

1

4π

(
1− 8c1 + 4(c1 + c2)

q2

r6
0

)
, (6.2)

where r0 is a parameter of the solution defined in [18]; the factor q2/r6
0 goes from 0 (for

neutral black holes) to 2 (at extremality). Our bounds on c1 imply that neutral black holes

will necessarily have a negative viscosity shift, violating the KSS bound. Models where this

is realized are known to exist — the first UV complete counter-example to the KSS bound

was given in [19]. For extremal black holes, the dependence on c1 drops out and only the

sign of c2 matters, η/s = 1
4π (1 + 8c2). For AdS5, the c2 coefficient may have both positive

and negative values. However, imposing the null energy condition implies an additional

constraint on the range of c2, which in AdS5 takes the form

13

12
c1 + c2 > 0 . (6.3)

6In fact, there are holographic theories with c < a. These are the TN theories, which arise as M5 branes

wrapping punctured Riemann surfaces. As these theories enjoy N = 2 supersymmetry on the boundary,

their bulk duals necessarily include massless scalars in the graviton multiplet. Therefore our analysis does

not include this case, and it may be interesting to try to extend our work to include scalars in the massless

spectrum. We thank Eric Perlmutter for making us aware of this interesting example.
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This may be seen by first noticing that the definition of the parameter γ in equation (2.8)

implies γ > 0 as long as the null energy condition holds. Then the bound in (6.3) may be

derived from the specific form of γ given in (2.9). This alone is sufficient to bound c2 from

below, when c1 is non-negative. Thus, one can see that utilizing such constraints it is at

least in principle possible to bound η/s from below, in specific cases. To what extent this

can be done generically is still an open question.

It might be interesting to try to relate the extremality bounds to the transport coef-

ficients of the boundary theory in a more concrete way. As the corrections to η/s depend

only on c1 and c2 in five dimensions, it is clear that the shift to extremality is not captured

by the physics that controls η/s alone. One might wonder, however, if some other linear

combination of transport coefficients, such as the conductivity or susceptibility,7 might be

related to the extremality shift. From a purely CFT point of view, this is certainly not

that strange; the philosophy of conformal hydrodynamics is that scaling symmetry ties to-

gether ultraviolet quantities (a, c) that characterize the CFT to the transport coefficients,

which characterize the IR, long-wavelength behavior of the theory. If we believe that EFT

coefficients in the bulk are related to these UV quantities (as is known in the case of c1),

then a correspondence between higher-derivatives and hydrodynamics is very natural. The

question is to what extent this can be used to efficiently constrain IR quantities. Finally,

we should note that extending our analysis to holographic theories that couple gravity to

scalars would be useful to make contact with the efforts to generate non-trivial temperature

dependence for η/s (see e.g. the discussion in [46, 47]), which is expected to play a key role

in understanding the dynamics of the strongly coupled quark gluon plasma.

Our results also have potential to make contact with the work on CFTs at large global

charge [48]. As we’ve seen above, the extremality curve for AdS-Reissner-Nordström black

holes is non-linear even at the two-derivative level. In an analysis of the minimum scaling

dimension for highly charged 3D CFTs states of a given charge, it was found [22] that

∆ ∼ q3/2. This is in striking agreement with the extremality relationship m ∼ q3/2 that

holds for large black holes. The large charge OPE may be powerful because it offers an

expansion parameter, 1/q, which may be used even for CFTs which are strongly coupled. In

principle, it should be possible to match our higher-derivative corrections to the extremality

bound with corrections to the minimum scaling dimension that are subleading in 1/q. This

might allow one to use the large charge OPE to compute the EFT coefficients of the bulk

dual of specific theories where the minimum scaling dimensions are known.

6.1 Weak gravity conjecture in AdS

One of the motivations for this work is to address to question of to what extent the WGC is

constraining in Anti-de Sitter space. It is not obvious that it should be. In flat space, one

looks for higher-derivative corrections to shift the extremality bound m(q) to have a slope

that is greater than one. In that case, a single nearly extremal black holes is (kinematically)

allowed to decay to two smaller black holes, which can fly apart off to infinity and decay

further if they wish.

7These have been considered in [45], which already in 2008 had an interesting comment about a possible

relation to the WGC.
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In AdS, the extremality bound m(q) has a slope that is greater than one at the two-

derivative level. Therefore one might expect that large black holes are already able to

decay without any new particles or higher-derivative corrections. This picture may be too

naive, however; the AdS radius introduces a long range potential that is proportional to
r2

l2
. This causes all massive states emitted from the black hole to fall back in, contrary to

the situation in flat space.

A different decay path is provide by the dynamical instability [49–52], whereby charged

black branes are unstable to formation of a scalar condensate. This occurs only if the theory

also has a scalar with charge q and dimension ∆ that satisfies

(mφl)
2 ≤ 1

2
(qφgMPll)

2 − 3

2
. (6.4)

Note that, even in the limit of large AdS-radius l, this does not approach the bound we have

for small black holes, which is m ≤ q. Numerical work in [50] suggests that the endpoint

of the instability is a state where all the charge is carried by the scalar condensate. Similar

requirements appear for the superradiant instability of small black holes [53, 54]. For

a more thorough review, see [13]. In either case, it is curious that in AdS, a condition

similar to the flat space WGC allows for black holes to decay through an entirely different

mechanism.

Another remarkable hint of the WGC comes from its connection to cosmic censorship.

In [55, 56], it is shown that a class of solutions of Einstein-Maxwell theory in AdS4 that

appear to violate cosmic censorship [57] are removed if the theory is modified to include a

scalar whose charge is great enough to satisfy the weak gravity bound.8

It may be possible to study these solutions in the presence of higher-derivative correc-

tions. One might ask whether there is a choice of higher-derivative terms such that the

singular solutions are removed. It would be interesting to check if this occurs when the

higher-derivative terms are those that are obtained by integrating out a scalar of sufficient

charge. It would also be interesting to compare constraints obtained by requiring cosmic

censorship with constraints due to positivity of the entropy shift.

A more general proof of the WGC in AdS was given in [16]. In that paper, it was

shown that, under mild assumptions, entanglement entropy for the boundary dual of an

extremal black brane should go like the surface area of the entangling subregion, which

is in tension with the volume law scaling predicted by the Ryu-Takayanagi formula. The

contradiction is removed when one introduces a WGC-satisfying state. This violates one

of the assumptions that imply the area law for the entropy– that is, the assumption that

correlations decay exponentially with distance.

This form of the WGC in particularly interesting to us because it makes no reference

to whether or not the WGC-satisfying state is a particle, or a non-perturbative object like

a black hole. Therefore, the contradiction pointed out in that paper may be lifted if the

higher-derivative corrections allow for black holes with charge greater than mass. Heavy

black holes in AdS have masses far greater than their charge– therefore we expect that

8The bound they consider is the bound for superradiance of small black holes, which requires ∆ ≤ ql.
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the WGC-satisfying states might be provided by small black holes whose higher-derivative

corrections shift the extremality bound to allow slightly more charge.
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A Entropy shifts from the on-shell action

In section 5, we computed the constraints on the coefficients in AdS4. Here we will present

the results of this calculation for AdS5 through AdS7 using the entropies computed in

section 3, which corresponds to working in the zero Casimir energy scheme. For com-

pleteness, we also present the Casimir energies for AdS5 and AdS7 that show up in the

thermodynamic energy of section 4 when using a minimal set of counterterms.

A.1 AdS5

In AdS5 we find that the stability condition obtained by demanding positive specific heat

and permittivity is given by ξ < ξ∗ for ν < ν∗, with

ξ∗ = 1−
√

1− 2ν2

1 + 2ν2
, ν∗ =

1√
2
, (A.1)

and that all black holes with ν > ν∗ are stable for all values of the charge. The full entropy

shift is simpler to express as a function of charge q than extremality parameter ξ. We find(
∂S

∂ε

)
M,Q

=
π

256l6ν8T

(
c1

(
43q4 − 24l4q2ν4(8 + 5ν2) + 32l8ν8(18 + 41ν2 + 13ν4)

)
+ 24c2q

2
(
3q2 − 8l4ν4

)
+ 72(2c3 + c4)q4

)
. (A.2)

Note that holographic renormalization in AdS5 with a Riemann-squared correction yields

a Casimir energy

Ec =
ω3

16π

(
3

4
l2 − 15

4
c1l

2

)
, (A.3)

where ω3 = 2π2. This Casimir energy must be removed from the thermodynamic energy in

order to obtain the mass M of the black hole. Alternatively, it can be cancelled right from

the beginning by adding an appropriate finite counterterm to the action, in which case the

thermodynamic energy would then correspond directly to the mass. If the Casimir energy

is not removed, then the thermodynamic energy shift becomes a combination of mass shift

and Casimir energy shift since Ec depends explicitly on the c1 Wilson coefficient.
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Figure 4. Allowed regions for AdS5 EFT coefficients.

We find the following expression for the extremal limit,(
∂S

∂ε

)
M,Q

=
πl2

16T

(
c1(31 + 128ν2 + 138ν4)

+ 24c2(1 + 2ν2)(1 + 6ν2) + 72(2c3 + c4)(1 + 2ν2)2
)
, (A.4)

while in the neutral limit we have(
∂S

∂ε

)
M,Q

=
πl2

16T
c1

(
18 + 41ν2 + 13ν4

)
. (A.5)

Once again, the entropy shift is proportional to c1 in this limit. It is interesting that we do

not find a positivity constraint on c2, as we did in AdS4. There is a lower bound on c3/c1

of about -0.5339. The general constraints obtained by the Reduce function of Mathematica

are extremely complicated and probably of little interest.

A.2 AdS6

In AdS6 the stability condition obtained by demanding positive specific heat and permit-

tivity is of the same general structure as in AdS5, but with the following identifications:

ξ∗ = 1−
√

3− 5ν2

3 + 5ν2
, ν∗ =

√
3

5
. (A.6)

The entropy shift is given by:(
∂S

∂ε

)
M,Q

=
π

264l9ν11T

(
c1

(
189q4 − 22l6q2ν6(36 + 29ν2) + 264l12ν12(8 + 17ν2 + 7ν4)

)
+ 2c2q

2
(
153q2 − 44l6ν6(9 + 5ν2)

)
+ 288(2c3 + c4)q4

)
,

(A.7)
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Figure 5. Allowed regions for AdS6 EFT coefficients.

and in the extremal limit takes the form:(
∂S

∂ε

)
M,Q

=
2νπl3

99T

(
c1(369 + 1263ν2 + 1124ν4) + 4c2(3 + 5ν2)(27 + 100ν2)

+ 96(2c3 + c4)(3 + 5ν2)2
)
. (A.8)

Finally, in the neutral limit we find(
∂S

∂ε

)
M,Q

=
νπl3

T
c1

(
8 + 17ν2 + 7ν4

)
. (A.9)

Note that no Casimir energy subtraction is needed in AdS6. We again find that c1 is

positive. The other bounds are displayed in figure 5. In AdS6 and AdS7, the Reduce

function of Mathematica was not able to find the general constraints over all stable values

of ξ and ν. However, we believe that the strongest constraints will come from the boundaries

of the region of stable black holes. Specifically, we imposed positivity at the neutral ξ → 1

limit, the extremal ξ → 0 limit, the planar limit ν → ∞ limit, and at ξ = ξ∗. We believe

this method should give the same answer, and we have checked explicitly that it does in

the case for AdS4 and AdS5.

A.3 AdS7

In AdS7 the stability window is determined by

ξ∗ = 1−
√

2− 3ν2

2 + 3ν2
, ν∗ =

√
2

3
, (A.10)

and the entropy shift is:(
∂S

∂ε

)
M,Q

=
π2

896l12ν14T

(
c1

(
556q4 − 14q2l8ν8(160 + 141ν2)

+ 56l16ν16(100 + 207ν2 + 8ν4)
)

+ 80c2q
2
(
11q2 − 7l8ν8(4 + 3ν2)

)
+ 800(2c3 + c4)q4

)
. (A.11)

– 33 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
3

Figure 6. Allowed regions for AdS7 EFT coefficients.

The Casimir energy that must be removed from the thermodynamic energy in AdS7 is

Ec =
ω5

16π

(
−5

8
l4 +

35

8
c1l

4

)
, (A.12)

where ω5 = π3.

We find the following expression for the extremal limit,(
∂S

∂ε

)
M,Q

=
π2ν2l4

224T

(
c1

(
1384 + 4236ν2 + 3345ν4

)
+ 40c2(2 + 3ν2)(16 + 45ν2) + 800(2c3 + c4)(2 + 3ν2)2

)
,

(A.13)

while in the neutral limit we find(
∂S

∂ε

)
M,Q

=
π2l2ν2

16T
c1

(
100 + 207ν2 + 93ν4

)
. (A.14)

Once again, c1 is positive. The other bounds are displayed in figure 6. Again, we used the

method of extremizing over the boundaries of the space of stable black holes.

B Another proof of the entropy-extremality relation

Recent work [7, 12] suggests a remarkable universal relationship between the corrections

to extremality and corrections to entropy. Here we will present a simple derivation of this

relation using standard thermodynamic identities, including a slight generalization of the

relation away from extremality. The statement itself is not specific to black holes, and is

in fact a relatively universal statement about infinitesimal deformations of thermodynamic

systems. As we explain in detail both here and in appendix C, the relation we obtain is

formally correct, but has a subtle physical interpretation.
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Consider a thermodynamic system, let E be the total thermal energy, T the tempera-

ture, S the entropy and X collectively label a set of extensive thermodynamic variables (for

black holes this could be the charge Q and spin J). Now consider a small deformation of

this system parametrized by a continuous parameter ε. The key assumption we will make

about this deformation is that it preserves the third law of thermodynamics in the form

lim
T→0

TS(T,X, ε) = 0, (B.1)

for all ε on an open neighbourhood of ε = 0. We begin with the first law of thermodynamics

in the form

1 = T

(
∂S

∂E

)
X,ε

. (B.2)

Making use of the triple product identity(
∂S

∂E

)
X,ε

(
∂E

∂ε

)
X,S

(
∂ε

∂S

)
X,E

= −1, (B.3)

we have (
∂E

∂ε

)
X,S

= −T
(
∂S

∂ε

)
X,E

. (B.4)

Formally inverting S(T,X, ε) gives T (S,X, ε). We can use this to write(
∂E

∂ε

)
X,S

=

(
∂E

∂ε

)
X,T

+

(
∂E

∂T

)
X,ε

(
∂T

∂ε

)
X,S

. (B.5)

Combining these (
∂E

∂ε

)
X,T

= −T
(
∂S

∂ε

)
X,E

−
(
∂E

∂T

)
X,ε

(
∂T

∂ε

)
X,S

. (B.6)

Next, we use (B.2) again(
∂E

∂ε

)
X,T

= −T
(
∂S

∂ε

)
X,E

−
(
∂E

∂T

)
X,ε

(
∂T

∂ε

)
X,S

= −T
(
∂S

∂ε

)
X,E

− T
(
∂S

∂E

)
X,ε

(
∂E

∂T

)
X,ε

(
∂T

∂ε

)
X,S

= −T
(
∂S

∂ε

)
X,E

− T
(
∂S

∂T

)
X,ε

(
∂T

∂ε

)
X,S

, (B.7)

one final application of the triple product identity gives a generalized entropy-extremality

relation (
∂E

∂ε

)
X,T

+ T

(
∂S

∂ε

)
X,E

= T

(
∂S

∂ε

)
X,T

. (B.8)

Next we make use of the assumption that the deformation does not violate the third law

of thermodynamics. Taylor expanding (B.2) we have

lim
T→0

[
TS(T,X, ε = 0) + εT

(
∂S

∂ε

)
T,X

∣∣∣∣
ε=0

+O
(
ε2
) ]

= 0. (B.9)
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By assumption this is true on an open neighbourhood of ε = 0 and so it must be true

order-by-order in the expansion. This gives

lim
T→0

lim
ε→0

T

(
∂S

∂ε

)
T,X

= 0 . (B.10)

Using this together with (B.8) gives the entropy-extremality relation [12]

lim
T→0

[(
∂E

∂ε

)
X,T

∣∣∣∣
ε=0

+ T

(
∂S

∂ε

)
X,E

∣∣∣∣
ε=0

]
= 0. (B.11)

For the specific application to black hole thermodynamics we identify E with the mass M of

the black hole, X with the black hole parameters measured at infinity such as charge Q or

angular momentum J , and ε with a Wilson coefficient of a four-derivative effective operator.

In section 3, we have pointed out that shift in charge at fixed mass is also proportional

to the entropy shift and mass shift. This statement can be derived similarly. By the triple

product identity, (
∂E

∂ε

)
Xi,T

= −
(
∂Xi

∂ε

)
E,T

(
∂E

∂Xi

)
ε,T

. (B.12)

This holds for any extensive quantity. Now we choose Xi = Q, and we may identify(
∂E

∂Xi

)
ε,T

= Φ. (B.13)

So we find (
∂E

∂ε

)
Q,T

= −Φ

(
∂Q

∂ε

)
E,T

. (B.14)

For black holes, this means that the shift in charge is related to the shift in mass. Neither

of them is related to the entropy except at extremality. The result of this is that the

entropy shift at extremality may be related to the extremality shift at constant charge or

at constant mass,

lim
T→0

(
∂E

∂ε

)
Q,T

= − lim
T→0

Φ

(
∂Q

∂ε

)
E,T

= − lim
T→0

T

(
∂S

∂ε

)
Q,E

. (B.15)

While the derivation in this appendix is formally valid, the consequences of the ex-

pansion in (B.9) are subtle and require some commentary. Throughout we have made the

implicit assumption that the various thermodynamic quantities are differentiable functions

of ε, and moreover that TS(T,X, ε) is analytic on an open neighbourhood of ε = 0, per-

mitting the use of the Taylor series. In general this is a valid assumption for T 6= 0, but

may fail to be valid at T = 0. As a consequence, the limits in (B.10) fail to commute

lim
T→0

lim
ε→0

T

(
∂S

∂ε

)
T,X

6= lim
ε→0

lim
T→0

T

(
∂S

∂ε

)
T,X

, (B.16)
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making the physical interpretation of the relation problematic. The formally correct

entropy-extremality relation (B.11) and its corollaries (B.15), treats ε as a free parameter

in the model that is taken to zero at the end of the calculation. In a physical application of

the low-energy EFT (2.1), which is derived by matching onto a UV completion, the param-

eter ε takes a fixed finite value, and thermodynamic quantities at extremality are correctly

calculated by taking T → 0 before making a small ε expansion. In such a situation, the

entropy-extremality relation is only approximately valid in the near-extremal regime T ∼ ε.
A correct treatment at extremality for finite ε is described in detail in appendix C.

C Entropy shifts of very-near extremal black holes

The entropy shift in (3.24), which we rewrite as

(∆M)Q,T=0 = −T0 (∆S)Q,M (T0 > 0) , (C.1)

was derived at finite temperature, and as described in appendix B, is a valid approximation

in the near-extremal regime T0 ∼
√
ε. For black holes with T0 .

√
ε, which we will call

very-near extremal black holes, the shift in the horizon is not analytic in ε and (C.1) is

no longer valid. The presence of a double root at extremality implies that the shift to

the horizon radius, and therefore to the entropy, is proportional to
√
ε. Nonetheless, a

proportionality between the entropy shift and extremality shift still holds. This has been

stressed in [9, 33], where it was shown that, at extremality, the same combination of EFT

coefficients that appear in the extremality shift is required to be positive in order to ensure

that the entropy shift is real. In fact, near extremality the form of the entropy-extremality

relationship is nearly identical to the one of [12], up to an extra factor of 1/2. The correct

relation takes the form

(∆M)Q,T=0 = −1

2
T (∆S)Q,M (T0 = 0) , (C.2)

where now T is the temperature of the corrected black hole. In particular, while the leading

order temperature vanishes, the corrected solution is evaluated at fixed mass M and charge

Q, and hence is no longer extremal.

In order to see the transition between (C.1) and (C.2), we may revisit the derivation

of the mass and entropy shifts of section 3. Since the entropy shift is calculated at fixed

mass and charge, it is convenient to rewrite the geometry shift in terms of M and Q. In

this case, the radial function takes the form

g(r) = g0(r) + ∆g = k − M̂

rd−2
+

Q̂2

4r2(d−2)
+
r2

l2
+ ε∆g, (C.3)

where here ∆g takes into account the higher-derivative corrections to the geometry along

with the contribution of the ρ factor to the physical mass M in (2.23). Note that, to avoid

extra volume factors, we have defined

M =
ωd−1(d− 1)

16π
M̂, Q =

ωd−1

16π

√
(d− 2)(d− 1)

2
Q̂ . (C.4)
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The entropy shift at fixed (M,Q) can then be obtained from the horizon shift according

to (3.18)

(∆S)Q,M =
ωd−1(d− 1)

4
rd−2

0 ∆rh + · · · , (C.5)

where r0 is the leading order horizon location, and the ellipses denote the additional higher

order corrections to the Wald entropy. These additional terms will be unimportant in

either of the near extremal or very near extremal limits, where the shift to the horizon

radius dominates.

Our goal now is to rewrite the horizon shift ∆rh in terms of the mass shift and tem-

perature. For the mass shift, we always consider the shift of the extremal mass at fixed

charge, which can be taken from (3.7)

(∆M)Q,T=0 =
ωd−1(d− 1)

16π
rd−2

0 ε∆g . (C.6)

Note that the term in (3.7) proportional to ρ is absorbed into the shift ∆g in this expression.

In any case, we see that in order to connect the entropy shift (C.5) to the mass shift (C.6),

we would like to have a relation between ∆rh and ∆g. The first step here is to use the fact

that the radial function g(r) vanishes at the horizon

0 = g(rh) = g0(r0 + ∆rh) + ε∆g = g0(r0) + ∆rhg
′
0(r0) + 1

2(∆rh)2g′′0(r0) + · · ·+ ε∆g . (C.7)

Note that we have not expanded ∆g(rh) = ∆g(r0) + · · · since we already consider it to

be a small quantity. Since r0 is the uncorrected horizon, g0(r0) always vanishes. However,

we need to keep the next two terms in the expansion since g′0(r0) will vanish for a leading

order extremal black hole [9]. The horizon shift can then be obtained by solving

∆rhg
′
0(r0) + 1

2(∆rh)2g′′0(r0) = −ε∆g , (C.8)

or equivalently

∆rhg
′
0(r0) + 1

2(∆rh)2g′′0(r0) = − 16π

ωd−1(d− 1)
r−d+2

0 (∆M)Q,T=0 . (C.9)

In principle, we can now insert the horizon shift from (C.9) into the expression (C.5)

to obtain a general relation between the entropy shift and the mass shift. However, as it

stands, this result would depend on the derivatives g′0(r0) and g′′0(r0) of the radial function.

To replace this with more physical quantities, we note that the temperature of the corrected

black hole can be obtained from g(r) according to

T =
1

4π
g′(rh) =

1

4π
g′(r0 + ∆rh) =

1

4π

(
g′0(r0) + ∆rhg

′′
0(r0) + · · ·+ ε∆g′

)
. (C.10)

Although this depends on ∆g′, this term can be ignored as long as we are in the near (or

very near) extremal limit since either g′0(r0) or ∆rhg
′′
0(r0) will dominate. More precisely,

g′0(r0) = O(ε0) unless it vanishes, and when it does, (C.8) along with g′′0(r0) = O(ε0)

demonstrates that ∆rhg
′′
0(r0) = O(

√
ε). As a result, we can take

T =
1

4π

(
g′0(r0) + ∆rhg

′′
0(r0)

)
. (C.11)
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In the general case, this provides only a single relation between the derivatives g′(r0) and

∆rhg
′′(r0) and the temperature T . However, we can also introduce the temperature of the

uncorrected black hole, T0 = g′0(r0)/4π, which can be allowed to vanish. We now solve for

the derivatives

g′0(r0) = 4πT0 , ∆rhg
′′
0(r0) = 4π(T − T0) . (C.12)

Inserting this into (C.9) gives us the desired relation between the horizon shift and

mass shift

(∆M)Q,T=0 = −ωd−1(d− 1)

4
rd−2

0

T0 + T

2
∆rh , (C.13)

which yields

(∆M)Q,T=0 = −T0 + T

2
(∆S)Q,M , (C.14)

upon substitution of (C.5). Note that this relation is expected to break down away from

extremality where the various approximations taken above will no longer be valid.

The relation (C.14) encompasses both the near and very near extremal cases, (C.1)

and (C.2). When working somewhat away from extremality, we start with T0 > 0. In this

case, we have the scaling

∆rh ∼ ε , ∆S ∼ ε , ∆M ∼ ε , (C.15)

along with T = T0 + O(ε). Taking this into account then directly yields (C.1). On the

other hand, if we start from extremality, T0 = 0, we have instead

∆rh ∼
√
ε , ∆S ∼

√
ε , ∆M ∼ ε , (C.16)

and T = O(
√
ε), which leads to the extremal case (C.2). The transition between these two

cases occurs when ∆T ∼ T , which more precisely defines the very near extremal limit.

C.1 Entropy shift for heterotic black holes

The above discussion can be applied to an interesting example. Recent work has considered

the leading α′-corrections to dyonic Reissner-Nordström black holes embedded in heterotic

string theory [58, 59]. Though the four-dimensional backgrounds considered in these papers

are asymptotically flat, we would like to briefly comment on them in connection with the

universal entropy-extremality relationship.

To connect with the above, we would like to consider the corrections to the geometry.

These are given [59] by the radial function

g(r) = 1− 2M

r
+

p2

2r2
+ ∆g(r), ∆g(r) = −α′ p

2

4r4

[
1− 3M

2r
+

11p2

40r2

]
, (C.17)

where the constant p denotes the charge in the notation of [59]. With these variables, the

leading-order solution is extremal when M = p/
√

2. Using this expression and (C.6), we

can compute the shift in the extremal mass at a given charge p,

(∆M)p,T=0 =
1

2
r0∆g(r0) = −α′ 1

4(p/
√

2)

(
1− 3

2
+

22

40

)
= − 1

80

α′

p/
√

2
, (C.18)

where we have computed ∆g at extremality in the last equality. This agrees with [59].
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Next, we consider the entropy. In [59], this is shown to be

S = πr2
h

{
1 + α′

[
M

r3
h

− 3p2

8r4
h

]}
. (C.19)

Just as we have found in the body of the paper, this entropy includes corrections from

the higher-derivative terms in the Lagrangian; these are the explicit α′ terms that appear

in the expression above. It also includes corrections from the horizon radius, which are

implicit in the r2
h that appears in the first term. Thus, we may rewrite the entropy more

explicitly as

S = πr2
0

{
1 + 2

∆rh
r0

+ α′
[
M

r3
0

− 3p2

8r4
0

]}
. (C.20)

The corrections are then given by

(∆S)M,p = 2πr0∆rh + α′π

[
M

r0
− 3p2

8r2
0

]
. (C.21)

We need the temperature to complete the relation. Recall that

T =
1

4π

(
g′0(r0) + ∆rg′′0(r0) + · · ·

)
. (C.22)

The order of both of these corrections in α′ will depend on the order of ∆rh. Thus, to

determine the entropy-extremality relationship we need to compute the correction to the

horizon radius, which may be obtained from the geometry shift via equation (C.8). This

procedure gives different results away from extremality and near extremality. Away from

extremality, we have

T ∼ T0 =
1

4π
g′0(r0) , (C.23)

and the horizon shift is9

∆r = − ∆g

4πT0
. (C.24)

The corresponding entropy shift becomes

(∆S)M,p =
1

T0
α′
p2

8r3
0

[
1− 3M

2r0
+

11p2

40r2
0

]
+ α′π

[
M

r0
− 3p2

8r2
0

]
. (C.25)

If we then take this expression to extremality, we take the limit where T0 → 0. Since the

first term dominates in this limit, we may write the entropy shift as

T0(∆S)M,p =
1

80

α′

p/
√

2
, (C.26)

9it is not easy to compare this to (4.12) of [59] because they have numerically inverted the expression

to ensure that ∆r is only a function of M and p. However, both results for ∆r lead to the same entropy

shift at extremality.
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where we have made use of the extremal value of the mass. This gives the correct relation

away from extremality,

(∆M)p,T=0 = −T0(∆S)M,p . (C.27)

Now let us perform the same analysis in the very-near extremal limit. This is the limit

where T0 = 4πg′0 → 0, so that for the temperature we have

T =
1

4π
∆rhg

′′
0(r0) (C.28)

to leading order in α′. In this limit, we now extract a different result from (C.8),

∆rh =

√
−2

∆g

g′′0(r0)
. (C.29)

In this case, the first term of (C.21) still dominates the entropy corrections, but here this

is because it is O(
√
α′), rather than because the denominator diverges. Thus, very-near

extremality the entropy shift is

(∆S)M,p = 2πr0∆rh , (C.30)

and therefore in this limit we find

T (∆S)M,p =
1

2
r0 ∆r2

h g
′′
0(r0) = −r0 ∆g =

1

40

α′

p/
√

2
. (C.31)

This gives the very-near extremal relation:

(∆M)p,T=0 = −1

2
T (∆S)M,p . (C.32)

This agrees with the discussion of [59] and confirms their claim that this is the correct form

of the relationship in the extremal limit. It also confirms the scaling relations in (C.15)

and (C.16). In both cases, ∆M is order α′. However, in the very-near extremal limit we

see the non-analytic behavior discussed above, namely that T ∼
√
α′ and ∆S ∼

√
α′. It

is also important to note that in both cases, we took the extremal limit. However, the

relative size of T0 and α′ dictates the correct order of limits to take. The derivation “away

from extremality” remains valid for T0 ≥
√
α′. For very small temperatures — that is, for

T0 .
√
α′ — the additional subtleties discussed in this section arise, and we need to use

the “very-near extremal” derivation. Nonetheless, in both cases there is a proportionality

between the mass shift and the temperature times the entropy shift.
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