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1 Introduction

Over the last few years, remarkable progress has been made in our understanding of su-

persymmetric partition functions and precision tests of AdS/CFT beyond leading order in

the large-N expansion. In addition to super-Yang-Mills theories in four dimensions, there

is much interest in three dimensional Chern-Simons-matter theories generalizing ABJM

theory [1]. Such theories generally fall into two classes, the first being ABJM-like and with

N3/2 scaling, where the sum of Chern-Simons levels ka of the gauge groups vanishes, and

the second, with N5/3 scaling when the sum does not. While ABJM-like theories have

been extensively studied, less is known about those with N5/3 scaling. The aim of the

present paper is to explore the structure of subleading corrections in such theories through

a numerical evaluation of the sphere partition function in a particularly simple model.

From a holographic point of view, the sum of Chern-Simons levels is related to the

Romans mass, 2πlsF0 =
∑

a ka [2, 3], and hence ABJM-like theories with F0 = 0 can often

be associated with M-theory duals. Remarkably, the sphere partition function for such

theories takes the form of an Airy function [4–9]. Expansion in the M-theory limit then

immediately gives the structure of free energy beyond the leading order

F (N, ka) = f0(ka)N
3/2 + f1(ka)N

1/2 +
1

4
logN + f2(ka) +O(N−1/2), (1.1)

where we take F = − logZ. In general, the coefficients are model dependent. However, the

coefficient of logN is universal, and can be reproduced exactly by a one-loop computation

in the dual supergravity on AdS4 ×X7 [10]. Similarly, the topologically twisted index for

ABJM theory [11, 12], which has been used to count the microstates of BPS black holes
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in AdS4, has a universal (ie independent of chemical potentials) subleading logN contri-

bution [13, 14] that can be reproduced from a one-loop computation in eleven-dimensional

supergravity [15, 16].

Here we extend some of the numerical investigations into the case of theories with N5/3

scaling. In particular, we consider N = 2 Chern-Simons gauge theory with gauge group

SU(N) at level k coupled to three adjoint chiral multiplets (denoted X, Y and Z) and with

superpotential W = TrX[Y, Z]. This theory was first described in [17] as the dual to a

particular compactification of massive IIA theory on AdS4×S6. The topologically twisted

index for this theory was used for black hole microstate counting in [18–20] and studied

numerically in [21]. In this case, the subleading structure has the form

Re log I(N, k = 1) = f0N
5/3 + f1N

2/3 + f2N
1/3 − 7

18
logN + f3 +O(N−1/3), (1.2)

where again the logN term was numerically observed to be universal.

In this paper, we focus on the sphere partition function of the same model and obtain

numerical evidence for an expansion of the form

ReF (N, k) = f0N
5/3k1/3 +

(
1

2
log 2π − 1

)
N + f1N

2/3k4/3 + f2N
1/3k−1/3

+
2

9
logN + f3(k) +O(N−1/3). (1.3)

The structure of this subleading expansion is similar to that of the topologically twisted

index, although we find an additional term of O(N) which we confirm analytically. Nev-

ertheless, we suggest that it is an artifact of the truncated saddle point approximation

that we employ since a similar linear-N term appears numerically for ABJM-like necklace

quivers, even though it is known to be absent in both the M-theory and ’t Hooft limits.

We have also explored the free energy in the ’t Hooft limit where λ = N/k is held fixed

and found

ReF (N,λ) = N2(f0λ
−1/3 + f1λ

−4/3) +

(
1

2
log 2π − 1

)
N +

1

6
logN

+

(
f2λ

1/3 +
1

18
log λ+ f̃3(λ)

)
+O(N−1), (1.4)

which is compatible with the expansion in the fixed k limit. Note that the (1/6) logN term

is a contribution to the exact partition function that is not visible in the genus expansion.

Although our main results are obtained numerically, we provide partial analytic sup-

port for the structure of the sub-leading terms in the free energy. In particular, within the

framework of the saddle point expansion, we demonstrate that the leading term includes a

−(2/3)N logN contribution which is, however, canceled by an equal but opposite contribu-

tion from the one-loop determinant. This term arises from the log divergent short distance

behavior as adjacent eigenvalues approach each other, and is also present in the individual

Bethe potential and Jacobian determinant components of the corresponding topologically

twisted index [21]. Unlike the index, however, where the linear-N term is not present, the
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short distance contribution is only partially cancelled, leaving the factor ((1/2) log 2π−1)N

in the free energy when truncated at the level of the one-loop determinant.

In the next section, we briefly review the sphere partition function for the model we are

considering and summarize its leading order behavior. We then highlight the results of the

numerical investigation, including the determination of the (2/9) logN term, in section 3.

In section 4, we provide a partial justification of the form of the expansion, (1.3). Finally,

we conclude in section 5 with a conjecture on the universality of the log corrections to the

sphere partition function.

2 Leading order free energy in the dual of massive IIA string theory

We are interested in the sphere partition function for the N = 2 Chern-Simons-matter

theory presented in [17]. This theory has gauge group SU(N)k and three adjoint chiral

multiplets, and its partition function can be obtained via localization [17, 22–24], with the

result

Z =

∫ N∏
i=1

dλi
2π

N∏
i<j

(
4 sinh2

(
λi − λj

2

))
exp

3

N∑
i,j

`

(
1

3
+

i

2π
(λi − λj)

)
+
ik

4π

N∑
i

λ2i

 ,

(2.1)

where the function `(z) arises from the one-loop matter determinant and satisfies ∂z`(z) =

−πz cot(πz) and can be integrated to give [23, 24]

`(z) = −z log(1− e2πiz) +
i

2

(
πz2 +

1

π
Li2(e

2πiz)

)
− iπ

12
. (2.2)

Before examining the higher-order corrections to the sphere free energy, we first review

the leading order result [17]. In the large-N limit, it is natural to make a saddle point

approximation. The solution to the saddle point equations is generally complex, so we

take λ = Nα(x+ iy(x)) where x is real and y(x) is a real function. Here we have assumed

that the eigenvalues scale with N with exponent α. In the large-N limit, the distribution

of x and y becomes dense and we use ρ(x) to describe the density of the real part of the

eigenvalues. Then, at leading order, the saddle-point approximation to (2.1) gives Z = e−S

where the effective action takes the form [6, 17, 25],

S =
N1+2α

4π
k

∫
dxρ(x)(2xy(x)− i(x2 − y2)) +

16

27
π2N2−α

∫
dx

ρ2(x)

1 + iy′(x)
. (2.3)

In order to obtain a non-trivial solution for the saddle point, we require that both terms

scale similarly in N , and this determines α = 1/3.

The leading order free energy can be obtained by extremization of the effective ac-

tion subject to the normalization constraint
∫
dxρ(x) = 1. This can be performed by

introducing a Lagrange multiplier µ and adding a contribution

δS = −µ
(∫

dxρ(x)− 1

)
, (2.4)
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to (2.3). Varying with respect to y(x) and ρ(x) and normalizing the eigenvalue density

then gives the leading-order result

y0(x) =
1√
3
x, ρ0(x) =

3

4x∗

(
1− (x/x∗)

2
)
, where x∗ =

22/3π

31/6k1/3
. (2.5)

Finally, inserting this solution into the effective action, and using the convention F =

− logZ, gives the leading order behavior of the S3 free energy [17]

F = e−iπ/6
24/3π

5 · 31/3
k1/3N5/3 ⇒ ReF =

21/3 · 31/6π
5

k1/3N5/3, (2.6)

which has the expected N5/3 scaling.

3 Numerical investigation of the free energy

While the large-N results are straightforward to obtain, the higher order contributions

have proven to be a challenge to obtain analytically. Thus, to provide guidance on the

structure of the higher order terms, we turn to a numerical investigation. Note that, unlike

the cases where there is a Bethe ansatz like approach, such as the topologically twisted

index on Σg × Tn [11, 26] or the rewriting of the S3 × S1 partition function in a Bethe

ansatz form [27], here the exact partition function (2.1) involves integrals over the matrix

eigenvalues λi.

Instead of performing these integrals numerically, we limit our investigation to the

large-N limit and the saddle-point expansion. Note, however, that the Chern-Simons-

matter theory is governed by two parameters, N and k, and there are complementary ways

of taking the large-N limit. The natural ’t Hooft expansion of (2.1) corresponds to the

genus expansion

F (gs, t) =

∞∑
g=0

g2g−2s Fg(t) =
1

g2s
F0(t) + F1(t) + · · · , (3.1)

were gs = 2πi/k and the ’t Hooft coupling t = gsN = 2πiN/k is held fixed. Here, F0(t) is

the leading-order saddle point term, and F1(t) is evaluated by the one-loop determinant.

On the other hand, the massive IIA limit is generally treated with the Romans mass or

equivalently Chern-Simons level k held fixed. In this case, the numerical expansion takes

the form

F (N, k) = F0(N, k) + F1(N, k) + · · · , (3.2)

where F0(N, k) is the saddle point contribution at fixed k and F1(N, k) arises from the

Gaussian determinant around the saddle point.

In principle, both expansions ought to be equivalent. However it is well known that

there are non-perturbative effects (such as worldsheet and membrane instantons) that

may not be visible in one or the other expansion [9, 28–32]. Of course, numerically, we

only evaluate the partition function for finite N and k (and only up to the Gaussian

determinant). Nevertheless, we can probe both of the limits by holding either N/k fixed
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Figure 1. Numerical solution for the eigenvalues λi = N1/3(xi + iyi) (left) and eigenvalue density

ρ(x) (right) for N = 30 and k = 1. The leading order solution, (2.5), is shown by the dotted line.

or k fixed when extrapolating to large N . We mainly focus on the fixed k limit, although

we have also compared our numerical results with those obtained by holding t fixed.

The first term in the expansion of the free energy comes directly from the partition

function (2.1)

F0(N, k;λi) = − ik
4π

∑
i

λ2i −
∑
i<j

log

(
4 sinh2

(
λi − λj

2

))
−
∑
i,j

3`

(
1

3
+

i

2π
(λi − λj)

)
.

(3.3)

The eigenvalues λi are determined by solving the saddle point equations

∂F0

∂λi
= − ik

2π
λi −

∑
j 6=i

coth

(
λi − λj

2

)
+
∑
j

2 sinh(λi − λj)− 3
√
3

2π (λi − λj)
1 + 2 cosh(λi − λj)

= 0. (3.4)

We use Mathematica, and in particular the built-in FindRoot function, to solve these

equations numerically. For a given value of N and k, FindRoot is first called with Work-

ingPrecision set to MachinePrecision, and with an initial set of eigenvalues determined by

the large-N distribution, (2.5). The solution is then refined with a second call to Find-

Root with WorkingPrecision set to 100. All solutions are checked for convergence before

evaluation of the free energy. An example of a generated eigenvalue distribution is shown

in figure 1. Although we work with a range of N from 100 to 600 in steps of 20, the figure

is presented with N = 30 and k = 1 to highlight the discrete nature of the eigenvalues

and its deviation from the leading-order large-N solution. (The eigenvalue density ρ(x) is

obtained by taking finite differences.)

As can be seen from the numerical N = 30 solution, the eigenvalues deviate somewhat

from the leading order solution. To get a sense of the higher order corrections, we can

examine the differences ∆y(x) = y(x)− y0(x) and ∆ρ(x) = ρ(x)− ρ0(x) where the leading

order functions y0(x) and ρ0(x) are given in (2.5). An example of the subleading behavior

is given in figure 2 for N = 100 and k = 1. To be somewhat more quantitative, we plot the

difference ∆ρ(0) at the midpoint of the distribution as a function of N in figure 3. A fit to

the numerical data demonstrates that the first subleading correction scales as O(N−2/3).

This result will be useful in guiding our analytic approximations below.
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Figure 2. The numerical solution for y(x) and ρ(x) with the leading order behavior subtracted

out. The dotted lines correspond to the subleading solution, (4.23), with the unknown constants

determined numerically. Here we have taken N = 100 and k = 1.

Figure 3. The difference ∆ρ(0) as a function of N for k = 1. The dotted line is the numerical fit

∆ρ(0) = 0.0440/N2/3.

Once the eigenvalues are determined numerically from the saddle point equation, (3.4),

they may be directly inserted into the expression (3.3) for F0. We also compute the one-

loop determinant contribution

F1(N, k;λi) =
1

2
log det

(
∂2F0

∂λi∂λj

)
+
N

2
log 2π, (3.5)

and evaluate the free energy at the level of F0 + F1. Note that the factor (N/2) log 2π

arises for each eigenvalue from a combination of
√

2π from the Gaussian integral and 1/2π

from the normalization of the integration region in (2.1). In addition, we only consider the

real part of the free energy, as there are potential branch issues leading to 2πi ambiguities

in the numerical evaluation of F = − logZ.

At leading order, the numerical data reproduces the O(N5/3) behavior, (2.6), very well,

so we naturally subtract it out to highlight the subleading corrections. The next term we

find is linear in N , and has a coefficient that is numerically very close to (1/2) log 2π − 1.

– 6 –
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k c1 c2 c3 c4

1 −0.01108 −0.61301 0.22247 0.69630

2 −0.02793 −0.48662 0.22342 0.64921

3 −0.04795 −0.42514 0.22390 0.62474

4 −0.07037 −0.38630 0.22423 0.61010

5 −0.09476 −0.35863 0.22446 0.60140

6 −0.12083 −0.33751 0.22465 0.59699

7 −0.14841 −0.32062 0.22482 0.59587

Table 1. The numerical fit for the coefficients of {N2/3, N1/3, logN, 1} in the saddle point evalu-

ation of the free energy. The fit is performed independently for each fixed value of k with N from

100 to 600.

Below, we show analytically that it is in fact a precise match, and we remove this term as

well before fitting for the remaining subleading corrections.

Numerically, we take integer values of k from 1 to 7. For a fixed k, we then generate

data for N = 100 to 600 in steps of 20 and perform a linear least squares fit to the expansion

F (N, k) = f0(k)N5/3 +

(
1

2
log 2π − 1

)
N

+ c1(k)N2/3 + c2(k)N1/3 + c3(k) logN + c4(k) +

5∑
i=1

di(k)

N i/3
, (3.6)

where the leading order coefficient f0(k) = 21/3 · 31/6πk1/3/5 is taken from the analytic

result, (2.6). Our main interest is in the coefficients ci(k) of terms that do not vanish in

the N → ∞ limit. However, for fitting purposes, we include a set of terms that scale as

1/N to some power in order to account for higher order terms in the expansion of the

free energy. We do not expect the di(k) coefficients to be numerically reliable, although

their magnitudes tend to be of order unity so they are under reasonable control. The fit

coefficients are displayed in table 1.

A quick glance at table 1 suggests that the coefficient c3 of the logN term is nearly

constant, although it increases slightly with k. Assuming this is a numerical artifact, we

are led to conjecture that c3 = 2/9 exactly. This is in line with other examples where the

coefficient of the logN term is known either exactly or numerically to be a simple rational

number. The other coefficients in table 1 are more obviously k-dependent. However, a

numerical fit suggests that the coefficient c1 of the N2/3 term scales exactly as k4/3 and

likewise that the coefficient c2 of the N1/3 term scales as k−1/3, both with small residuals.

This leads us to conjecture the large-N but fixed k expression for the free energy

ReF (N, k) = f0(k)N5/3 +

(
1

2
log 2π − 1

)
N

− 0.01108N2/3k4/3 − 0.61315N1/3k−1/3 +
2

9
logN +O(1), (3.7)

where the numerical coefficients are obtained by a least squares fit to c1(k) = c̄1k
4/3 and

c2(k) = c̄2k
−1/3, respectively.

– 7 –
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So far, we have examined the free energy in the large-N limit while holding k fixed.

In contrast, the ‘t Hooft limit is taken by holding t = 2πiN/k fixed. Note that, although

the Chern-Simons level k is integer quantized, the numerical solution to the saddle point

equations, (3.4), and hence the numerical free energy can be obtained for arbitrary real

values of k. This allows us to more directly examine the genus expansion of the free

energy. For convenience, we remove the factor of 2πi from the ‘t Hooft coupling, and

define λ = N/k. We can then compute the free energy numerically following the procedure

outlined above with N = 100 to 600 in steps of 20, but this time holding λ fixed from 50

to 300 in steps of 50. A least squares fit for the free energy then gives

ReF (N,λ) = N2

(
21/3 · 31/6π

5
λ−1/3 − 0.01104λ−4/3

)
+

(
1

2
log 2π − 1

)
N

+
1

6
logN +

1

18
log λ− 0.612λ1/3 + · · · , (3.8)

where there is numerical uncertainty in the last digit of the final term. Note that the

numerical coefficients match those in the fixed k expansion, (3.7), provided we take k=N/λ.

At this point, several comments are in order. Firstly, we always subtract the known

leading order behavior, which in this case corresponds to the N2λ−1/3 term. Secondly,

for each fixed value of λ, a numerical fit is performed to a function composed of integer

powers of N from N2 down to N−3. After this, the coefficients of each monomial are fitted

as a function of λ. Finally, we have written down analytic coefficients for the logN and

log λ terms. The coefficient of logN was initially obtained numerically by including such a

term in the linear least squares fit. Since the resulting fit was numerically close to 1/6 we

conjectured that it is precisely this value. Making this compatible with the 2/9 factor in

the fixed k expansion, (3.7), in the regime when both expansions are valid then demands

the addition of the (1/18) log λ term. With this conjecture, the analytic terms are in fact

subtracted out before fitting for the numerical coefficients in (3.8).

The expression (3.8) for the free energy is naturally organized according to the genus

expansion, (3.1), which can be rewritten as

F (N,λ) = N2F0(λ) + F1(λ) + · · · . (3.9)

In particular, we find

ReF0(λ) =
21/3 · 31/6π

5
λ−1/3 − 0.01104λ−4/3, ReF1(λ) =

1

18
log λ− 0.612λ1/3 + · · · ,

(3.10)

where numerically we find no additional terms in F0(λ) but are less certain about F1(λ).

Note, however, that we find an additional contribution

Re F̃ =

(
1

2
log 2π − 1

)
N +

1

6
logN, (3.11)

which is not captured by the genus expansion.

– 8 –
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4 The structure of the large-N expansion

As we have seen numerically, with k held fixed the large-N free energy receives subleading

corrections with various powers of N . We now take a closer look at the structure of the

large-N expansion and provide support for the numerical fitting function that was used

in (3.6). The starting point is of course the matrix partition function (2.1), which we

write as

Z(N, k) =

∫ N∏
i=1

dλi
2π

e−F0(N,k;λi), (4.1)

where

F0(N, k;λi) = − ik
4π

N∑
i

λ2i −
N∑
i,j

f(λi − λj), (4.2)

with

f(z) =
1

2
log(4 sinh2(z/2)) + 3`

(
1

3
+

i

2π
z

)
. (4.3)

Note that the log term is divergent for z = 0 and should not be included in the sum when

i = j.

We take the large-N limit by assuming the eigenvalues condense on a single cut and

then converting the sums into integrals using the Euler-Maclaurin formula

N∑
i=1

fi =

∫ N

1
di f(i) +

1

2

(
f(N) + f(1)

)
+

1

12

(
f ′(N)− f ′(1)

)
+ · · · ,

= (N−1)

∫ x2

x1

ρ(x)dx f(x) +
1

2

(
f(x2) + f(x1)

)
+

1

12(N−1)

(
f ′(x2)

ρ(x2)
− f ′(x1)

ρ(x1)

)
+ · · · ,

(4.4)

where we have introduced the eigenvalue density di = (N − 1)ρ(x)dx. Note that this

provides a formal 1/N expansion of the action S(N, k), even though its saddle point value

is only associated with genus zero in the ‘t Hooft expansion.

The first term in the action, (4.2), is easily dealt with, and we find

S1 = − ik
4π
N1+2α

[(
1− 1

N

)∫ x∗

−x∗
dx ρ(x)(x+ iy(x))2 +

1

N
(x∗ + iy(x∗))

2 +O(1/N2)

]
,

(4.5)

where we have made the substitution

λi → λ(x) = Nα(x+ iy(x)). (4.6)

Although we always take α = 1/3, we prefer to keep it in these expressions to highlight

the nature of the expansion both in powers of 1/N from the genus expansion and Euler-

Maclaurin terms and in powers of 1/Nα from the large ‘t Hooft parameter λ = N/k

limit. Note that we assume the eigenvalues are symmetrically distributed in the interval

x ∈ [−x∗, x∗] with y(x) an odd function of x.

The second term in (4.2) is a bit more delicate as we must handle the log divergence

of the function f(z). Although this is excluded from the discrete sum, in the large-N limit

– 9 –
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the eigenvalues become dense and hence λi−λj becomes vanishingly small for i close to j.

One way to handle this is to introduce a regulated f(z) function

f̃(i, j) =

f(λi − λj)− log(|i− j|α(j)), i 6= j;

3`
(
1
3 + i

2πz
)
, i = j,

(4.7)

where

α(j) =
j − 1

N − 1
(λj − λj−1) +

N − j
N − 1

(λj+1 − λj) (4.8)

is an interpolated difference of adjacent eigenvalues that remains valid at the endpoints.

We now have

S2 = −
N∑
i,j

f̃(i, j)−
N∑
i 6=j

log(|i− j|α(j)). (4.9)

The first sum is taken over i and j without restriction as the regulated f̃(i, j) is well behaved

even when i approaches j. Note that the regulator log(|i− j|αj) grows logarithmically for

i well separated from j, so it cannot be ignored. However, the sum over log |i− j| can be

performed to yield

S2 = −
N∑
i,j

f̃(i, j)− (N − 1)
N∑
j

logα(j)− 2 logG(N + 1), (4.10)

where G(N + 1) is the Barnes G function.

At this stage, the two sums in (4.10) can be converted to integrals through Euler-

Maclaurin summation. Working only to the first non-trivial order, we obtain

S2 = −
∫ N

1
di

∫ N

1
djf̃(i, j)− 1

2

∫ N

1
di
(
f̃(i, 1) + f̃(1, i) + f̃(i,N) + f̃(N, i)

)
− (N − 1)

(∫ N

1
di logα(i) +

1

2

(
logα(1) + logα(N)

))
− 2 logG(N + 1). (4.11)

Although it was important to work with the regulated function f̃(i, j) when converting

the first sum into an integral, now that the expression is written as an integral, we can

split f̃(i, j) back into its original and regulator components since log divergences can be

integrated. Integrating the regulator then gives a result which nearly cancels the second

line of (4.11). However, the cancellation is not perfect, and we are left with

S2 =−
∫ N

1
di

∫ N

1
djf(i, j)− 1

2

∫ N

1
di
(
f(i, 1) + f(1, i) + f(i,N) + f(N, i)

)
+

∫ N

1
di log

(
α(i)

2π

)
, (4.12)

up to terms of O(1). The log term that shows up here is essentially a result of transforming

the sum of a log divergent expression into an integral.
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We now convert the integrals over i and j into integrals along the cut where the

eigenvalues condense. Along with the replacement di = (N − 1)ρ(x)dx, we also need an

expression for α(i), which can be obtained in the continuum limit as

α(i) =
dλ

di
=

dλ/dx

(N − 1)ρ(x)
=
Nα(1 + iy′(x))

(N − 1)ρ(x)
, (4.13)

where we made use of (4.6). As a result, we find

S2 =−N2

[(
1− 2

N

)∫ x∗

−x∗
dx

∫ x∗

−x∗
dx̃ ρ(x)ρ(x̃)f(x, x̃) +

1

N

∫ x∗

−x∗
dx ρ(x)

(
f(x, x∗) + f(x∗, x)

)
+

1

N

∫ x∗

−x∗
dx ρ(x) log

(
2πρ(x)

1 + iy′(x)

)]
− (1− α)N logN +O(1), (4.14)

where

f(x, x̃) = f(Nα((x− x̃) + i(y(x)− y(x̃)))), (4.15)

and f(z) was defined in (4.3).

So far, the contribution S2 is formally expanded in integer powers of 1/N . The first

term in the square brackets is the bulk action, while the second term is an endpoint

correction. The final term in the square brackets, along with the N logN term arises from

the bulk, and can be traced to the log divergence when λi approaches λj . Note, however,

that additional powers of 1/Nα will be obtained when expanding the bulk action in the

large-N limit.

The leading order effective action, (2.3), is obtained by noting that the function f(x, x̃)

in (4.15) becomes highly peaked at x ≈ x̃ in the large-N limit. Based on the form of this

function, we make the substitution

w = Nα(1 + iy′(x))(x̃− x). (4.16)

In addition, since the first term in (4.14) is integrated symmetrically in x and x̃, we may

consider the symmetrical combination f(x, x̃)+f(x̃, x). The expansion then takes the form

ρ(x̃)fs(x, x̃) =

ρfs(w) +N−α
[

ρ′

1 + iy′
wfs(w) +

i

2

ρy′′

(1 + iy′)2
w2f ′s(w)

]
+N−2α

[
1

2

ρ′′

(1 + iy′)2
w2fs(w) +

i

6

3ρ′y′′ + ρy′′′

(1 + iy′)3
w3f ′s(w)− 1

8

ρy′′2

(1 + iy′)4
w4f ′′s (w)

]
.

+O(N−3α) (4.17)

Here fs(z) = 1
2(f(z) + f(−z)) where f(z) is given in (4.3) is explicitly symmetric in z,

and we have suppressed the explicit x dependence of the functions ρ and y for notational

convenience.

Note that the change of variables from x̃ to w leads to an integral of the form∫ x∗

−x∗
dx̃ =

N−α

1 + iy′

∫ Nα(1+iy′)(x∗−x)

−Nα(1+iy′)(x∗+x)
dw. (4.18)
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As long as x is not near the endpoints, ±x∗, this integral can be extended to ±∞ since

fs(w) vanishes exponentially for large arguments (assuming we do not cross any Stokes

lines when deforming away from the real axis). In this case, the integral over w of the N−α

term vanishes because the integrand is odd. For the other terms, we may use the definite

integrals ∫ ∞
−∞

fs(w)dw = −16π2

27
,

∫ ∞
−∞

w2fs(w)dw = −32π4

243
, (4.19)

along with integration by parts (with vanishing endpoints) to obtain an effective action

F0= − ik
4π
N1+2α

[∫ x∗

−x∗
dxρ(x+ iy)2 +O(N−1)

]
+

16π2

27
N2−α

∫
dx

ρ

1+ iy′

[
ρ+

2π2

9
N−2α

(
1

2

ρ′′

(1+ iy′)2
− i

2

3ρ′y′′ + ρy′′′

(1+ iy′)3
− 3

2

ρy′′2

(1+ iy′)4

)
+O(N−4α)

]
−N

∫ x∗

−x∗
dxρ(x) log

(
2πρ

1 + iy′

)
− (1− α)N logN + (endpoints) +O(1), (4.20)

where we have included the S1 term, (4.5), obtained above. Taking α = 1/3, the leading

order contribution is at O(N5/3), and matches the expression (2.3) obtained previously

in [17]. More generally, we note that the large-N expansion includes competing powers of

N−α from the eigenvalues, (4.6), and N−1 from Euler-Maclaurin summation.

It should be noted that we have not included any endpoint corrections in the expression

for the effective action, (4.20). At the order we are considering, these include both the

second term in the square brackets of (4.14) and endpoint corrections when one of the

limits of integration in (4.18) cannot be extended to infinity. Since fs(z) is exponentially

suppressed away from zero, the endpoint corrections are only important in a region of width

O(N−α) near the endpoints. This will have no effect on the leading order calculation of

the free energy, but becomes important at subleading order.

4.1 The eigenvalue distribution at subleading order

Away from the endpoints, we can find the next order corrections to the eigenvalue den-

sity ρ(x) and imaginary components y(x) by varying the effective action (4.20) with the

inclusion of a Lagrange multiplier in order to enforce the constraint that ρ(x) is properly

normalized. Taking α = 1/3, the leading order contribution to the action is of O(N5/3),

and the first subleading correction is of O(N) and arises from a combination of the second

and final lines of (4.20).

As observed numerically, the first subleading corrections to ρ(x) and y(x) scale as

O(N−2/3), which is consistent with the structure of (4.20). As a result, we can take a

perturbative expansion

ρ(x) = ρ0(x) +N−2/3ρ1(x) +O(N−1),

y(x) = y0(x) +N−2/3y1(x) +O(N−1), (4.21)
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where ρ0(x) and y0(x) correspond to the leading order solution given in (2.5). Vary-

ing (4.20) with respect to ρ(x) and substituting in the leading order solution then gives

µ1 =
k

2π
(x+ iy0)y1 +

32π2

27

[
ρ1

1 + iy′0
− i ρ0y

′
1

(1 + iy′0)
2

+
π2

9

ρ′′0
(1 + iy′0)

3

]
− log

(
2πρ0

1 + iy′0

)
− 1,

(4.22)

where the subleading Lagrange multiplier µ1 may be complex. Note that this expression

has already been simplified for y0(x) = x/
√

3 being a linear function of x.

The equation (4.22) is in general a complex equation. However, we demand the func-

tions ρ1(x) and y1(x) to be real. This is now sufficient for us to obtain the solution

ρ1(x) =
9

16π2
log
(
1− (x/x∗)

2
)

+ C1,

y1(x) = −3
√

3

8π2
x log

(
1− (x/x∗)

2
)

+ 2x∗ tanh−1(x/x∗) + C2x

ρ0(x)
, (4.23)

where C1 and C2 are constants related to the Lagrange multiplier that we have been

unable to fix without a better understanding of the endpoint corrections. We note that

the subleading corrections ρ1(x) and y1(x) match the results of the numerical calculations

quite well (apart from the endpoints), as shown in figure 2. In addition, we have checked

that they are consistent with the second equation this is obtained by varying the effective

action (4.20) with respect to y(x).

4.2 The one-loop determinant and cancellation of the N logN term

As we have seen, the effective action, (4.20), contains a term of the form N logN , which

is not observed numerically in the free energy. This suggests that it ought to be cancelled

by a similar contribution from the one-loop determinant, (3.5). We now demonstrate

analytically that this is indeed what happens. To do so, we start with the components of

the Hessian matrix Bij = ∂2F0/∂λi∂λj

Bii = − ik
2π

+
∑
k 6=i

(
1

2
csch2 λik

2
+ h′(λik)

)
,

Bij = −1

2
csch2 λij

2
− h′(λij) (i 6= j), (4.24)

where

h(z) =
2 sinh z − 3

√
3

2π z

1 + 2 cosh z
. (4.25)

is a smooth function that is exponentially suppressed for large z. The dominant contri-

bution to the Hessian matrix comes from the csch2(λij/2) factors which are large on and

near the diagonal.

In order to evaluate the determinant, we can break up the B matrix into its diagonal

and off-diagonal components B = Bd +Bod = Bd(1 +B−1d Bod) so that

log detB = Tr logBd + Tr log(1 +B−1d Bod)

=
∑
i

logBii −
∞∑
n=1

1

n
Tr(−B−1d Bod)

n, (4.26)
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where we have formally expanded the log. In general, the full determinant does not appear

easy to work out. However, we are mainly interested in the dominant contribution. In this

case, the main feature of the B matrix is that it is large on and near the diagonal due to the

short distance behavior of csch2 λij/2. This will guide us in the following approximations.

4.2.1 The diagonal contribution

We start with the diagonal contribution

F1,d =
1

2
Tr logBd =

1

2

∑
i

logBii. (4.27)

In order to evaluate the diagonal elements Bii, we convert the sum in (4.24) into an integral.

However, as in the evaluation of S2 in (4.9), we have to treat the λi → λj divergence with

care. In fact, we can apply the same regulation procedure as we did above by approximating

λik by (i− k)α(i) and then writing

Bii = − ik
2π

+
∑
k 6=i

2

(i− k)2α(i)2
+
∑
k

(
1

2
csch2 λik

2
+ h′(λik)−

2

(i− k)2α(i)2

)
+

1

6
. (4.28)

The factor of 1/6 is introduced to cancel the contribution from k = i in the unrestricted sum

on the right-hand side. Ignoring boundary effects, which lead to higher order corrections,

we can extend the limits of the first sum to infinity and convert the second sum to an

integral, with the result

Bii = − ik
2π

+
2π2

3α(i)2
+

∫
dj

(
1

2
csch2 λi+j − λi

2
+ h′(λi+j − λi)−

2

j2α(i)2

)
+O(1) . (4.29)

Given an eigenvalue distribution specified by ρ(x) and y(x), we can convert the integral over

the index j into an integral over x. However, to obtain the dominant N logN behavior,

it is sufficient to make the approximation λi+j − λi ≈ jα(i). The integral can then be

performed, with the result

Bii ≈
2π2

3α(i)2
= N2−2α 2π2ρ(x)2

3(1 + iy′(x))2
+ · · · , (4.30)

where we substituted in α(i) from (4.13) and dropped the −ik/2π term as it is subdominant

in the large-N limit.

The diagonal determinant contribution to the free energy is then

F1,d ≈
1

2

∑
i

logBii ≈
N

2

∫ x∗

−x∗
dxρ log

(
N2−2α 2π2ρ2

3(1 + iy′)2

)
= N

∫ x∗

−x∗
dxρ log

(
2πρ

1 + iy′

)
+ (1− α)N logN − N

2
log 6 + · · · .

(4.31)

Comparison with (4.20) demonstrates that not only the N logN term but also the integral

term, which is linear in N , cancels similar contributions in the effective action. However,

the cancellation is not complete as the −(N/2) log 6 term is left over. Actually, all of these

terms arise from the log divergence in F0 when λi approaches λj , so it is perhaps not a

surprise to see such a cancellation.
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4.2.2 The off-diagonal contribution

We now turn to the off-diagonal determinant contribution

F1,od =
1

2
Tr log(1 +B−1d Bod) = −1

2

∞∑
n=1

1

n
TrXn, (4.32)

where

Xij = −B−1ii Bij . (4.33)

Taking the approximation for Bii in (4.30) and using Bij from (4.24) gives

Xij ≈
3α(i)2

2π2

(
1

2
csch2 λij

2
+ h′(λij)

)
. (4.34)

The dominant elements of Xij are near the diagonal. In the large-N limit, we then take

λij ≈ α(i)(i− j)� 1 and drop h′(λi). This gives the rather simple looking approximation

Xij ≈
3

π2
1

(i− j)2
, (4.35)

so that

TrXn ≈
N∑

i1,i2,...,in=1

(
3

π2

)n 1

(i1 − i2)2
1

(i2 − i3)2
· · · 1

(in − i1)2
. (4.36)

Although the sums in (4.36) are over a finite range of integers, the leading behavior

is dominated by terms where the differences in the denominators are small. This allows

us to approximate the sum by extending the limits to infinity. Before doing so, however,

we have to be careful to account for the zero mode where all the ik’s can be shifted by a

constant. This can be handled by setting in = 0 and multiplying by a factor of N for the

zero mode

TrXn ≈ N
∞∑

i1,i2,...,in−1=−∞

(
3

π2

)n 1

i1

1

(i1 − i2)2
1

(i2 − i3)2
· · · 1

(in−1)2
. (4.37)

Following [21], this can be identified as a discrete convoluton, and can be computed by

discrete Fourier tranform. In particular, define

In(k) =

∞∑
i1,i2,...,in−1=−∞

f(i1)f(i2 − i1) · · · f(k − in−1), (4.38)

where

f(k) =
3

π2k2
. (4.39)

The discrete convolution theorem then gives

In(k) =
1

2π

∫ 2π

0
F (ω)neiωkdω, where F (ω) =

∑
n

f(n)e−iωn. (4.40)
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The discrete Fourier transform of (4.39) is readily obtained

F (ω) =
3

π2
(
Li2(e

iω) + Li2(e
−iω)

)
=

3ω2

2π2
− 3ω

π
+ 1, (4.41)

where the final expression is valid for ω ∈ [0, 2π]. Taking the convolution then gives

TrXn = NIn(0) = N

∫ 1

0
dx(6x2 − 6x+ 1)n, (4.42)

where we have used ω = 2πx. While this integral can be written in terms of the incomplete

beta function, we can skip this step and go directly to the trace log expression, (4.32)

F1,od ≈ −
N

2

∞∑
n=1

1

n

∫ 1

0
dx(6x2 − 6x+ 1)n. (4.43)

Taking the sum inside the integral then gives

F1,od ≈
N

2

∫ 1

0
log[6x(1− x)]dx =

N

2
(log 6− 2). (4.44)

We now see that the log 6 factor in the off-diagonal contribution cancels against a

similar factor in the diagonal contribution, (4.31), giving the overall determinant factor

F1 = F1,d + F1,od +
N

2
log 2π

= N

∫ x∗

−x∗
dxρ log

(
2πρ

1 + iy′

)
+ (1− α)N logN +

(
1

2
log 2π − 1

)
N + · · · . (4.45)

The first two terms in this expression cancels the final line of the tree-level expres-

sion, (4.20), for F0, but the linear-N term remains and moreover is seen numerically.

Although we have worked in this particular theory dual to massive IIA, it is actually

straightforward to see that a linear-N term of the form Nr((1/2) log 2π − 1) for U(N)r

quiver theories is a general feature of this saddle point approximation truncated at the

level of the one-loop determinant. The universality of this term arises from the log diver-

gence of the effective action when two adjacent eigenvalues approach each other. Moreover,

it is this same log divergence that leads to the dominant behavior of the Hessian matrix,

and hence the Gaussian determinant. This behavior is distinct from that of the topolog-

ically twisted index, where the Bethe potential, which governs the Jacobian determinant,

and the effective action are not necessarily identified.

5 Discussion

Our main result is numerical evidence for a log contribution to the free energy of the form

ReF (N, k) = f0N
5/3k1/3 + · · ·+ 2

9
logN + · · · . (5.1)

Ideally, we would like to obtain an analytic understanding of the 2/9 coefficient. However,

this has proven to be a challenge, as the expansion to subleading order requires particular
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care near the endpoints. For example, as we have seen in (4.23), the eigenvalue density away

from the endpoints receives a correction of O(N−2/3). In contrast, the endpoint corrections

start at O(1) at the endpoints, but fall off exponentially within a distance of O(N−1/3)

from the endpoints. Of course, coefficients in front of logs can sometimes be obtained

without a full calculation, so there is still the possibility that a careful examination of the

large-N expansion including Euler-Maclaurin corrections can produce the log term in the

free energy.

It is important to note that we have obtained a linear-N term of the form

N((1/2) log 2π− 1) both numerically and analytically. However, we believe this is a result

of the approximation where we terminate the saddle point expansion at the level of the

Gaussian determinant. Formally, the one-loop determinant contributes at O(N0) in the

large-N expansion. However, we have seen that it actually has a leading N logN behavior

due to the short distance behavior of the saddle point action, so the formal power counting

in 1/N does not strictly hold. Thus we have to be cautious when considering the reliability

of the numerical large-N coefficients. Since the linear-N term does not fit the genus ex-

pansion, nor does it show up in the topologically twisted index for this model nor the free

energies of ABJM-like models, we expect that it is ultimately cancelled by higher order

terms that we have ignored in the truncated expression F0(N, k) + F1(N, k) for the free

energy. However, if the higher order terms are important enough to cancel the linear-N

term, then they may affect our determination of the 2/9 logN term as well. While we

believe these higher order terms will not scale logarithmically with N , we cannot fully rule

out this possibility. Demonstrating the robustness of the 2/9 coefficient remains an open

question.

Beyond the log term and questions about the linear term, we have been able to match

the structure of the ‘t Hooft expansion up to genus one. Since we only compute the saddle

point contribution and one-loop determinant, this is the limit of what we are able to probe

numerically. In principle, a full numerical analysis would go beyond a numerical saddle

point evaluation. (This was, for example, carried out using Monte Carlo integration in [29]

for ABJM theory.) Such a full analysis would also settle the issue of corrections at the

linear-N level and address the reliability of the 2/9 coefficient.

Just as the free energies of ABJM-like theories with N3/2 scaling have a universal

contribution of the form (1/4) logN (where k is kept fixed), we may expect theories with

N5/3 scaling to have a universal log contribution as well. This leads us to conjecture that

the (2/9) logN term, assuming it does not receive any further corrections, is universal

for a large class of Chern-Simons-matter theories dual to massive IIA theory. This 2/9

coefficient corresponds to the large-N limit where the Chern-Simons level k or levels ka are

held fixed.

In the case of ABJM-like theories, the universal (1/4) logN behavior is easily obtained

on the field theory side by writing the partition function as an Airy function [8, 9] and then

taking the large-N limit. For theories with N5/3 scaling, however, the general structure of

the full partition function is not yet known. Thus we do not have a similar justification

for universality of the logN term. Nevertheless, a basis for universality can be seen on

the supergravity side of the duality. The (1/4) logN behavior of ABJM-like theories can
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be obtained by a universal one-loop calculation in 11-dimensional supergravity [10], and

we suggest a similar argument can be made for universality of the one-loop log term in

massive IIA theory. This is not entirely straightforward, however, as the log term only

arises from zero modes in 11-dimensional supergravity, but could arise more generally in

the non-zero-mode part of a 10-dimensional heat kernel calculation. Thus it would certainly

be worthwhile to perform a one-loop massive IIA calculation, both as a test of precision

holography and as an indicator of universality of log corrections to the partition function.
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