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ABSTRACT: We propose and study a BCJ double-copy of massive particles, showing that
it is equivalent to a KLT formula with a kernel given by the inverse of a matrix of mas-
sive bi-adjoint scalar amplitudes. For models with a uniform non-zero mass spectrum we
demonstrate that the resulting double-copy factors on physical poles and that up to at
least 5-particle scattering, color-kinematics duality satisfying numerators always exist. For
the scattering of 5 or more particles, the procedure generically introduces spurious singu-
larities that must be cancelled by imposing additional constraints. When massive particles
are present, color-kinematics duality is not enough to guarantee a physical double-copy. As
an example, we apply the formalism to massive Yang-Mills and show that up to 4-particle
scattering the double-copy construction generates physical amplitudes of a model of dRGT
massive gravity coupled to a dilaton and a two-form with dilaton parity violating cou-
plings. We show that the spurious singularities in the 5-particle double-copy do not cancel
in this example, and the construction fails to generate physically sensible amplitudes. We
conjecture sufficient constraints on the mass spectrum, which in addition to massive BCJ
relations, guarantee the absence of spurious singularities.
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1 Introduction

The essence of the double-copy is the existence (or conjectured existence) of a map from
the physical observables O of a pair of models A and B, each with a non-Abelian internal
symmetry structure, to physical observables in some other model A ® B, without such a

symmetry
04 xOp— OygzB. (1.1)

The original and best-studied example of such a map is given by the construction of Kawai-
Lewellen-Tye (KLT), relating tree-level open and closed string scattering amplitudes [1],



and the associated field theory limit (o/ — 0) relating Yang-Mills and Einstein gravity. For
example at 4-point

Mfrav (17 27 374) — _514A4YM [1’ 2’ 3’4] A4YM [1’37 2’ 4] . (12)

The double-copy has subsequently been extended to non-Abelian gauge theories with mat-
ter fields in non-adjoint representations [2, 3], to non-linear sigma models and D-brane
worldvolume EFTs [4], generalized to loop-level [5] and even extended to classes of clas-
sical solutions [6]. See [7] and references therein for a comprehensive review of recent
developments. More than a theoretical curiosity, there are often significant practical ad-
vantages to making use of such a map whenever it is available. Recent use of a generalized
double-copy construction for Feynman integrands in N/ = 8 supergravity allowed the first
explicit calculation of 4-point, 5-loop scattering amplitudes [8], a feat that is practically
impossible to replicate by other, presently available means.

It is therefore a timely and relevant theoretical problem to understand the potential
scope for generalizing the double-copy, and demarcating the boundary between those mod-
els which admit a double-copy structure and those which do not. In this paper we will be
concerned with the problem of generalizing the field theory double-copy relation for tree-
level scattering amplitudes to models with massive particles in the spectrum. Our central
result is the demonstration that, when massive particles are present, color-kinematics du-
ality is not enough to guarantee a physically well-defined double-copy. We present in detail
an explicit example, massive Yang-Mills, for which color-kinematics duality satisfying nu-
merators exist (up to at least n = 5, where n is the number of external partucles), but for
which the BCJ double-copy prescription generates expressions with non-physical spurious
singularities.

To understand the generalization we propose in this paper, it is useful to first re-
view the well-known construction of the double-copy for tree-level scattering amplitudes in
pure Yang-Mills first described by Bern, Carrasco and Johansson (BCJ) [9]. We begin by
organizing tree-level scattering amplitudes as a sum over trivalent graphs!

C127112 C13M13 C14M14
+ + .

Ay (101,202 393 4%4) =
512 513 514

(1.3)

This form of the amplitude reveals the remarkable, hidden property of color-kinematics
duality, the numerators satisfy a sum rule

n12 + ni3 +nig = 0, (1.4)
mirroring the Jacobi relation of the color factors
c12 + c13 + c14 = 0. (1.5)

Perhaps even more remarkably, making the replacement ¢; — n; gives an expression

2 2

My (1,2,3,4) = M2 | Ms | M4 (1.6)
512 513 514

2
n13

We will use the following convention cjp = f0192b 33040 oy — fairasbgaaasb gnq oy = farasb pazash

We also use Mandelstam invariants with all outgoing momenta, i.e. s;; = (ps —|—pj)2,



which coincides with a scattering amplitude in a model of Einstein gravity coupled to a
massless dilaton and Kalb-Ramond two-form. At higher multiplicity (n > 5) there will
be multiple, independent color Jacobi relations, corresponding to various different choices
of triples of trivalent graphs with related topology, the generalization of (1.4) being that
the (signed) sum of the numerators of these triples must vanish. The fundamental result
of BCJ was to prove this BCJ double-copy and the property of color-kinematics duality
persist at all multiplicity [9].

The BCJ numerators given by the trivalent organization of the amplitude are non-
unique; as a consequence of the color Jacobi relation (1.5), the amplitude (1.3) is unchanged
by a so-called generalized gauge transformation. For example for n = 4

ni2 — N2 + 51248, ni3 = i3 + 5134, nig — nig + s, (1.7)

where A is an arbitrary function of the Mandelstam invariants. The BCJ numerators
given by constructing the amplitude using standard Feynman rules, in general, do not
satisfy the kinematic Jacobi relations. The challenge in applying the double-copy is to find
an appropriate set of generalized gauge transformations which produce numerators which
do satisfy the kinematic Jacobi relation. However, there is no a priori guarantee that such
a generalized gauge can be found. This can be illustrated in the simplest case at n = 4,

suppose the Feynman-rule constructed numerators satisfy
niz +niz +nig = &, (1.8)
for some £. Then making a generalized gauge transformation
nig + ni3 + nig — nig + i3 +nia + A (si2 + s13 + s14) =€, (1.9)

where we have used the kinematic identity s12 + s13 + s14 = 0. We conclude that if £ # 0,
then there exists an obstruction to finding a generalized gauge in which the numerators
satisfy the kinematic Jacobi relation (1.4). As we will review in section 2, at all multiplicities
such obstructions are absent only if the color-ordered partial amplitudes of the model satisfy
an infinite set of (generalized) gauge-invariant identities known as the BC/J relations. Color-
kinematics duality is therefore a special property enjoyed by some models and not others.

This statement can be clearly illustrated in the context of an explicit example, first
described in [10]. Consider a model of a U(N) Yang-Mills theory coupled to a massless, ad-
joint, Majorana fermion in d-dimensions. For n = 4 scattering with four external fermions
we find

& x ('VM)alaz (7“)(13(14 + ('Yu)azag ("")aras + ('Yu)asm (7")azass (1.10)

where «,, form some representation of the d-dimensional Clifford algebra. This expression
is zero only in dimensions d = 3,4, 6 and 10, and therefore only in those dimensions does
the model described satisfy color-kinematics duality. Said another way, in d # 3,4,6 or 10
the scattering amplitudes are perfectly physical, but there is an obstruction to finding a
generalized gauge in which the BCJ numerators satisfy the kinematic Jacobi relation, and
consequently there is no well-defined notion of a double-copy.



While beautifully simple, it is not at all obvious that expressions like (1.6), and more
importantly its generalizations to higher multiplicity, are actually physical scattering am-
plitudes. In particular, this construction fails to manifest locality in the form of the ab-
sence of spurious, non-propagator-like, singularities and the factorization of amplitudes on
propagator-like, physical singularities. For n > 5 the generalized gauge functions needed to
bring the local form of BCJ numerators generated by Feynman rules, to a color-kinematics
duality satisfying representation, can in principle be arbitrarily complicated, non-local
functions. There is an indirect argument that the result of the double-copy should be
an expression with the locality properties of a scattering amplitude. Here we must make
two additional assumptions about the color structure: the gauge group is U(N) and all
of the external states are in the adjoint representation.? This covers pure Yang-Mills and
its supersymmetrizations, but excludes other known examples of the double-copy, such as
QCD-like models with matter fields in the fundamental representation [2, 3]. Throughout
this paper we will always make these assumptions, leaving possible generalizations to future
work. As shown explicitly in [9] it is possible to prove that, with these additional assump-
tions, the BCJ double-copy is equivalent to the KLT double-copy. By making a convenient
choice of the basis of partial amplitudes in the KLT sum, this form of the double-copy
manifests the absence of spurious singularities.?

Clearly however, the BCJ form of the double-copy (1.3) would manifest locality if we
could find a generalized gauge in which all of the numerators are simultaneously local func-
tions. While it may be an empirical fact that among the diverse range of color-kinematics
duality compatible models, such local numerators can often be found, we are not aware of
a general argument that this should always be possible. The existence of local numerators
is then possibly a stronger assumption than color-kinematics duality, but at least for those
models which admit a KLT representation of the double-copy, it is also an unnecessary
assumption. The proof of the equivalence of the BCJ and KLT double-copies requires only
that the numerators satisfy the kinematic Jacobi, and makes no assumption about the
locality structure thereof; if duality satisfying numerators can only be found in a non-local
form then this just means that any spurious singularities must cancel in the sum over
trivalent graph contributions. In the context of the familiar massless double-copy we con-
clude that, in addition to the usual S-matrix axioms of locality, unitarity (factorization),
Lorentz invariance, as well as the assumption that the model has the required color or
flavor symmetry structure to admit a KLT form of the double-copy (1.3), the property of
color-kinematics duality is a necessary and sufficient condition for the double-copy to be a
physical scattering amplitude. One of the main results of this paper is an explicit demon-
stration that when, in addition to the above assumptions, massive states are present in
the spectrum, color-kinematics duality is no longer a sufficient condition to avoid spurious,
non-physical, singularities in the double-copy.

20One can also apply this argument to SU(N) gauge groups, but here we need the additional assumption
that there are no multi-trace contributions to tree-level scattering amplitudes. For simplicity, for the
remainder of the paper we will assume that the gauge group is U(N).

3Equation (1.2) illustrates the main idea. The only possible non-physical singularity that could appear
in this expression is a possible doubling of the s14 = 0 pole, but this is clearly removed by a corresponding
zero in the KLT kernel.



The BCJ construction has a natural extension to models containing massive states, for
which various special cases have been considered previously [3, 11-20]. To our knowledge,
no completely general description of a massive BCJ double-copy, and the associated con-
straints, has been given. In particular, the case of double-copying amplitudes in theories
with no massless particles has not been studied before. This paper is a first step towards
such a description, and an exploration of the various problems that may arise.

The direct analogue of the BCJ form of the amplitude for models with a uniform,

non-zero mass spectrum is*

ATFO (1, 92, gm0, qou) — S GBS, AUEM (1.11)
sig+m?  s;3+m? sy +m?

To construct the massive double-copy of such a model, we will follow closely the discussion
above, and try to construct numerators which satisfy the kinematic Jacobi relation nis +
ni3+mn14 = 0. If we succeed, we make the replacement ¢; — n; and construct the would-be
massive double-copy

MT#0(1,2,3,4) = My oMy L M (1.12)
P 812—|—m2 813+m2 Sl4+m2

The central problem in this paper will be to understand the conditions under which expres-
sions such as (1.12) and its natural generalization to higher multiplicity, define physical
scattering amplitudes. At this point we make a simple observation: if we suppose that
a BCJ representation of our massive model is constructed, perhaps using Feynman rules,
with numerators satisfying

ni2 + nig + nig = &, (1.13)

then by making the following generalized gauge transformation
N 1 2
niz = 12 = niz + W(SH +m*)E
. 1
ni3 = fug =z + W(sl?’ +m?)E
1
Ny g = na o+ —g(s1a + m?)E, (1.14)
the amplitude (1.11) is invariant but the transformed numerators satisfy
N2 + A1z + g = 0. (1.15)

This generalized gauge transformation is well-defined for all m # 0 and all £, so we can
always find a generalized gauge that realizes color-kinematics duality! Since this argument
relied only on knowledge of the spectrum, it applies independently of the details of the
interactions. Contrary to the m = 0 case where color-kinematics duality was a special
property only found in a subset of models, usually with various special constraints on the
spectrum of states and the associated interactions, for m # 0 it is no constraint at all. As
we will see, this situation is indeed too good to be true. In section 2 we will rewrite the

4Throughout this paper we will use the mostly-plus metric convention Nuw = diag (—1,4+1,+1,+1).



would-be double-copy (1.12) in a KLT-like form with a kernel given by the inverse of a
matrix of massive bi-adjoint scalar amplitudes [21, 22|, we find that: (¢) the double-copy
generically introduces non-local, spurious singularities for n > 5, and (i) for n = 4, gives
a physical scattering amplitude, but fails to reduce to the standard double-copy in an
appropriate m — 0 decoupling limit.

These two major conclusions are not quite on equal footing. The result (7) is fatal for
any would-be double-copy with n > 5, it means that the result of applying the proposed
massive generalization of the BCJ double-copy is an expression that could not have been
calculated as a tree amplitude of a local quantum field theory. In section 4 we will extend
our analysis to allow for a more complicated spectrum of states with possibly different
masses, and provide evidence that if, in addition to the assumptions enumerated above,
the masses satisfy a certain quadratic constraint then the problems with violations of
locality are removed. The result (4) is interesting, but does not mean that the massive
double-copy for n = 4 is non-physical. That something dramatic happens as m — 0
could have been anticipated from the fact that the generalized gauge transformation (1.14)
is singular in this limit. In the double-copied expression these inverse powers of mass
will appear as coupling constants multiplying certain higher-derivative interactions that
diverge as m — 0. There is nothing illegal about this, indeed as we review in appendix A,
interactions involving massive particles with spin > 1 generically diverge in the massless
limit as some inverse power of the mass. In such cases a non-singular massless limit may be
defined as an appropriate double-scaling or decoupling limit in which the coupling constants
of the model are chosen to vanish with an appropriate positive power of the mass. Result
(7)) can then be more accurately stated as the observation that the decoupling limit does
not commute with the massive double-copy. Interestingly, under the additional constraints
on the spectrum postulated in section 4 to ameliorate the non-locality in n > 5 particle
scattering, we find that the decoupling limits and the massive double-copy do commute.

As a theoretical laboratory for making explicit calculations, we consider the physically
motivated example of a model of massive Yang-Mills. As we explain in detail in section 3.1,
by considering the reduction to the familiar massless double-copy in the high-energy or
Goldstone boson equivalence limit, there is a plausible expectation that massive Yang-Mills
double copies to a model of de Rham-Gabadadze-Tolley or dRGT massive gravity [23]
coupled to a massive dilaton and a massive two-form. The primary conclusion of the
analysis of this example is that no miraculous cancellation of the spurious singularities
takes place, and the proposed massive double-copy fails to generate physical scattering
amplitudes for n > 5. We will conclude by revisiting the logic of the above argument in
section 4 and demonstrate that if, in addition to color-kinematics duality, the spectrum of
masses satisfies certain constraints, then a local massive double-copy does indeed exist.

An outline of this paper is as follows. In section 2 we show that the massive BCJ
double-copy can be equivalently formulated as a KLT-like product with a kernel given
by the inverse of a (n — 2)! x (n — 2)! matrix of massive bi-adjoint scalar amplitudes.
Here we use the Del Duca-Dixon-Maltoni (DDM) basis [24]. It is show that the KLT
product does not smoothly reduce to the massless KLT product as m — 0. For n > 5 the
massive KLT kernel is shown to contain spurious singularities that cannot be associated



with a factorization channel for any physical state, indicating the failure of the would-be
double-copy to correspond to a scattering amplitude in a local field theory. In section 3
we present our primary explicit example, the double-copy of a mass-deformed version of
Yang-Mills. At n = 3 and n = 4, the double-copy gives physically sensible results that
can be interpreted as scattering amplitudes of a model of dRGT massive gravity coupled
to a dilaton and two-form with a Ag cutoff scale. At n = 5, we numerically evaluate the
residue on the spurious singularities, and confirm that they are non-zero, demonstrating
that the BCJ double-copy does not produce a physical scattering amplitude. In section 4
we consider models with a general spectrum of masses. We show that if a certain condition
is imposed on the spectrum, then the rank of the bi-adjoint scalar matrix is reduced and
implies massive versions of the fundamental BCJ relations. It is shown that if the rank is
reduced to (n—3)! then the massive double-copy takes a manifestly local form which reduces
smoothly to the massless double-copy. In section 5 we conclude and describe important
future directions.

While this work was in its final stages, the preprint [25] by Momeni, Rumbutis and
Tolley appeared with some overlapping results at 4-point level.

2 Massive KLT formula

Under the assumptions outlined in the Introduction (U(N) symmetry, external states in
the adjoint representation, color-kinematics duality and the usual S-matrix axioms) it is
possible to rewrite the BCJ double-copy as a KLT formula. In section 2.1 we show how this
well-known argument can be extended to the proposed massive double-copy. This provides
us with a different representation of the would-be double-copy in which the analysis of the
singularity structure is more transparent. In section 2.2 we show that, term-by-term, the
massive KLT sum contains spurious singularities and argue that a miraculous cancellation
would need to take place for the final expression to contain only physical singularities.

2.1 [Equivalence of massive BCJ and massive KLT

For any model with U(N) symmetry, with asymptotic states in the adjoint representation,
there exists a convenient decomposition of tree-amplitudes into single trace or color-ordered
partial amplitudes of the form

Ay (19, ny = 3 Tr[T9T%@ . T%0| A, [10(2)...0(m)].  (21)

oESp—1

Without any further assumptions, the resulting (n — 1)! partial amplitudes are generically
independent.

The existence of a BCJ representation of the form (1.3) requires us to make the some-
what artificial assumption that the only color tensors which appear in vertex functions are
contractions of the U(NN) structure constants f2¢, as is the case for example in Yang-Mills.
Various generalizations of the BCJ double-copy relaxing this assumption have been consid-
ered in the literature [7], but in this paper we will analyze only this simple Yang-Mills-like
case.



Assuming that such a BCJ representation exists, then the number of linearly indepen-
dent partial amplitudes can be shown to be reduced to at least (n — 2)!. This reduction
is accomplished by an additional set of linear constraints, known as the Kleiss-Kuijf (KK)
relations [26]. If we further assume that the model satisfies color-kinematics duality, then
by following the kinematic Jacobi analogue of the construction of the Dixon-Del Duca-
Maltoni (DDM) basis [24], the number of linearly independent BCJ numerators is likewise
seen to be (n —2)L.

If both representations exist, then since there are equal numbers of BCJ numerators
and partial amplitudes, we should be able to translate between them by a linear trans-
formation. For example, for n = 4 for some arbitrary choice of numerators and partial

1 1 1
A2 (e s St? 2 9.9
Ag1324)) ——1 -t ' (22)
4 s14-+m? s1i3tm?  s1a+m? ni3

If m # 0, then the propagator matrix has full-rank and so we can solve for the kinematic

amplitudes

Jacobi-satisfying numerators

1 1 1 -1
2 — [ s12+m? + s14+m? s1a+m? A4[1234] . (2.3)
n13 i _813im2 - ; A4[1324]

s14+m? s14+m?

When m = 0 however, the propagator matrix has rank 1, and no such inversion is possible.
In this case, the massless propagator matrix has a null-vector, and so we can make the

n13 n13 n13 S13

for any function A. The existence of such null-vectors is indicative of an important differ-

replacement

ence between the massive and massless cases. For m # 0 the construction of numerators
satisfying the kinematic Jacobi relations requires a complete fixing of the generalized gauge
freedom. For m = 0, this requires only a partial fixing. We can use this residual freedom
to impose the gauge-fixing conditions 713 = 0, and solve for 712. From (2.2) with m = 0,
we have two different expressions for 7112 which must be equal, leading to the so-called
fundamental BCJ identity

s12.44 [1234] = s13.44[1324]. (2.5)

In general, the BCJ identities reduce the number of linearly independent partial amplitudes
to (n—3)! [21, 27]. We can run this argument in both directions, reaching the well-known
conclusion that the fundamental BCJ relations are necessary and sufficient conditions for
the existence of color-kinematics duality satisfying BCJ numerators. In the massive case,
due to the absence any residual generalized gauge freedom, there is no analogue of these
identities. This is another way of saying that the constraint of color-kinematics duality is
trivialized for models with a uniform massive spectrum.

This analysis generalizes naturally to n-point. For a model with uniform mass spectrum
and m # 0 there is a linear relation of the form (2.2) relating the (n — 2)! DDM bases of
partial amplitudes and the kinematic numerators with an (n — 2)! x (n — 2)! propagator



matrix. We believe that this matrix is always of full-rank, but do not have a proof of this
fact. An explicit expression for the 6 x 6 massive propagator matrix at n = 5 is given in
appendix B, from which the rank can be verified to be 6.

We will now proceed to derive a KLT form of the double-copy for the m # 0 case. We
first rewrite the BCJ double-copy (1.11) in matrix form

1 1 1 B

A®B _ A A s12+m? + s14-+m? T s14+m?2 USP)
Ape7(1,2,3,4) = (”12 ”13) ( R 1 li 1 nB |’ (2.6)

s14+m? s13+m? T sia+m? 13

where we have already used the assumed kinematic Jacobi relations to express nijy =
—n12 — n13. Combining this with our solution for the numerators (2.3) gives

A®B(1,2,3,4)

1 1 1 —1 B
+ — s 1234
(«42{‘[1234] Af[1324]) (sm+m2 ek st > (A% [ ])7 o
_314+m2 s13+m?2 + S14+m2 -/4-4 [1324]

which is of KLT form, with the matrix in the middle acting as a massive KLT kernel.

A similar calculation can be performed at 5-point, both to calculate the 6 independent
BCJ numerators from a DDM basis of 6 partial amplitudes and to calculate the 5-point
KLT kernel. The details of this calculation are presented in appendix B.

While we are in principle finished, to illustrate the robustness of this proposed general-
ization of the double-copy, we will now derive the same formula through a different line of
argument. Somewhat recently, the massless KLT kernel was understood to be the inverse of
a (n—3)! x (n—3)! matrix of tree-level scattering amplitudes of the following U(N) x U(N)
invariant model of massless scalars transforming in the bi-adjoint representation [21, 22]

1 ! 2 ~ T A I / 7
L= _5 (aluqbaa ) _ gfabc]ca b'c ¢aa ¢bb ¢cc ) (28)
These amplitudes admit a double color-ordering

AP (1a1a/1,...,na"“%) = > Tr {T’“T“a(% ...T‘Mm}Tr {T“llf%(z) ...T“:B(n)] AP [0)8].
a,BES, -1

(2.9)
The partial amplitudes A?” [o|3] are indexed by two orderings and can be constructed
efficiently via a simple diagrammatic procedure [22]. Regarding A¢°[o|f] as an (n — 1)! x
(n—1)! matrix of all possible orderings not related by a cyclic permutation, it can be shown
to have rank (n — 3)! [21]. The null vectors correspond to separate row and column KK
and BCJ relations. For example at 4-point

s12A7 [1234]1234) = 51347 [1324]1234]. (2.10)

The central result of [21] was to prove that a BCJ-independent (n—3)! x (n—3)! sub-matrix
has full-rank, and moreover has an inverse which is precisely equal to the KLT kernel in
the given BCJ basis. The massless KLT formula can then be succinctly formulated as

ARB(,2, n) = Y Ala] (A7) [al8lAB[A), (2.11)
a,B



where a and 3 range over, possibly distinct, BCJ bases of orderings of length (n—3)!. This
suggests a second, a priori independent, massive generalization of the KLT formula. Let
us now investigate what happens in a massive bi-adjoint scalar theory

]. 4 2 1 / ! ~al W A / / /
L= _5 <8u¢aa) . §m2¢aa ¢aa _gfabCfabc (;saa ¢bb ¢cc ) (212)

Amplitudes in the massive theory are constructed using the same diagrammatic rules used
for the massless theory [22], but with the massless propagators replaced with their massive
counterparts. For example,

1 1

3
A9 11234]1234] = , 2.13
il | ] 512+m2+514+m2 (2.13)
3 1
AL [1234[1324] = ——— 2.14
§ [1234]1324] Py (2.14)

The 5-point matrix of bi-adjoint scalar amplitudes can be found in appendix B. The
primary difference between the massless and massive bi-adjoint scalar amplitudes is in
the number of independent color-orderings. In the massive theory, DDM orderings are
independent and the (n—2)! x (n—2)! matrix of bi-adjoint scalar amplitudes has full-rank.
Since this matrix is invertible, there is a natural conjecture for a massive KLT formula. At
4-point this takes the explicit form

AL®B(1,2,3,4)

AL [1234/1234] Af3[1234\1324]>_1 (Aff [1234])

Af1234] A[1324 :
(Adizsd] Affs) (Af[1234\1324] A2 [1324]1324] AB[1324]

= %Af[lQ?A] (m? + s12) (AP[1234] (22 + 512) — AP[1324] (m? + 513))
+ %Af[mm] (m? + s13) (~AP[1234) (m? + s15) + AP[1324] (2m2 + 513) ) . (2.15)

Remarkably, this formula coincides exactly with the one we arrived at from the massive
BCJ double-copy in (2.7).

Proceeding to 5-point, the explicit comparison of KLT and BCJ forms of the double-
copy can be repeated using the results of appendix B. We find that, again, the KLT kernel
from the massive BCJ double-copy is precisely the inverse of massive bi-adjoint scalar
amplitudes.

Generalizing this result to n-particle scattering, the KLT formulation of the massive
double-copy takes the form

ALB,2, ) = 3 AR) (A2) Tal) AZIB) (2.16)
a,B

where « and 3 now range over all (n — 2)! DDM color orderings and A%"[a|f] is a matrix
of amplitudes of massive bi-adjoint scalar theory.

We will now close this subsection with a brief discussion about the relation between the
massless KLT formula (2.11) and the m — 0 limit of the new massive KLT formula (2.16).

~10 -



Before doing so there is a subtlety in this discussion we should address. For generic massive
field theories, in particular those containing particles with spin > 1, the naive massless
limit, with m — 0 and all couplings held fixed, may not exist. As reviewed in detail in
appendix A, for any model, a regular massless limit may be defined as an appropriate
double-scaling or decoupling limit. Throughout this paper, this is simply referred to as the
massless limit.

Expanding the kernel of the n = 4 formula around the m = 0 limit gives

AA®B(1,2.3,4) :% (s1044 [1234] — 51547 [1324]) (124 [1234] — 51347 [1324))
+ (351241 [1234] AP [1234] + 351347 [1324] AF [1324]
+s14 (A7 [1234] AT [1324] + A{ [1324] AP [1234)) ) + O(m?) . (2.17)

The coefficient of the leading O(m~2) term is recognizable as a product of factors that would
vanish if the models A and B were massless and satisfied the fundamental BCJ relations.
If we take the massless limit of models A and B, which is finite as m — 0 by assumption,
then this term in the KLT formula is divergent. There are then two logical possibilities: (7)
this leading term is non-zero, and so the double-scalings needed to regularize the massless
limit before and after the double-copy do not agree, or (7) this term is zero because at
least one of the models A or B satisfy the fundamental BCJ identity in the massless limit.
In the latter case, if both A and B satisfy the fundamental BCJ identity in the massless
limit, then the massive KLT formula reduces to the familiar massless KLT relation,

AN®B(1,2,3,4) = — 514.A44[1234].AP[1324] + O(m?) (2.18)

and we see that the double-copy and the massless limit commute. Since this required an
additional assumption, we conclude that this property does not follow from color-kinematics
duality alone.

2.2 Spurious singularities

We have seen so far that our proposed massive KLT formula (2.16) does not require BCJ-
type constraints in order to define a double-copy. In appendix C we prove that, assuming
models A and B have the usual locality and factorization properties, the formula (2.16)
contains only simple poles at the locations of physical singularities and the resulting double-
copy amplitudes factor correctly into the product of lower point amplitudes. These prop-
erties might suggest that (2.16) can double-copy any massive theory into a different local
theory, but this is not the case. Locality requires not only that the amplitude should
contain physical singularities, but also that there are no additional spurious singularities.
Since these do not occur in the partial amplitudes of models A and B by assumption, they
can only appear in the KLT kernel, which we will now analyze in detail.

In general the inverse of a matrix, M ~!, equals the matrix of cofactors times 1/detM,
where the cofactors are sums of products of elements of M. In the massive (massless)
KLT kernel, M = Aﬁ?’, and the elements are physical scattering amplitudes of the mas-
sive (massless) bi-adjoint scalar theory, which have only physical singularities. Thus, any
spurious singularities in the kernel must be a result of zeros of det Aﬁg.
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Let us first understand how such potential spurious singularities are avoided in the
massless KLT kernel. Here the BCJ relations restrict us to a subset of the DDM basis, and
as a result, not all physical poles are present in Aﬁs [a|5]. Thus some physical poles must
appear as zeros of the determinant of Aﬁg [cr| 5], while others will appear in the matrix of
cofactors. For example at 4-point we have
513

AL [1234)1234] = — (2.19)
512814

= det A7’ [1234[1234] = -2 (2.20)
512514

Thus there is one zero of the determinant s;3 = 0 and it is a physical pole. Due to the
color-ordering constraints, consistency with locality requires that .44[1234] does not have
a pole at s;3 = 0. The missing pole in the double-copied amplitude is therefore provided
by the zero of the determinant at sy3 = 0.

A similar structure exists at 5-point. Consider BCJ orderings like that in [7], [13524]
and [13542]. This gives

det A2 [a]f] = — 227171 (2.21)
512513514524545535525

Again we find that zeros of the determinant so3 = s15 = s34 = 0, all correspond to physical
poles. In addition, the color-ordering requires A5[13524] and A5[13542] to have no poles
at these locations. Thus, also at 5-point, the zeros of the determinant contribute simple
physical poles at locations otherwise excluded by color-ordering constraints.

Let us now investigate what happens to our proposed massive KLT formula at 4-point.
We begin by choosing a DDM basis of orderings ([1234], [1324]). This gives,

m2

(s12 + m?)(s13 + m2)(s14 + m?)’

which has no zeros and thus no spurious pole can arise from the 4-point double-copy. The

det A$"[a)8] = (2.22)

reciprocal of this determinant does contain a 1/m? factor in the double-copied amplitude.
This is exactly the factor we found at the end of the previous subsection in the expansion
around the m — 0 limit (2.17), and is responsible for the failure of the double-copy and
massless decoupling limit to commute.

The absence of any additional kinematic zeroes in the determinant has the interesting
consequence that any massive theory, satisfying the assumptions enumerated in the Intro-
duction, can be inserted into the massive KLT formula to obtain a 4-point amplitude of a
local theory.

At 5-point, we are less lucky. Consider a basis of DDM orderings [130(245)] where o
runs over all 6 permutations of (2,4,5), also used in [7]. Here we find

det A?S [a|f] = (si7,m?), (2.23)

m3
o
where
HDZ- = (m2 + 512)2 (m2 + 813)2 (m2 + 814)2 (m2 + 823)2 (m2 + 824>

i

2

<m2 + 815)2 (m2 + 545)2 <m2 + 535)2 (m2 + 825)2 (m2 + 834)2 , (2.24)
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and

P(sij,mz) =320m®+36m5(9s12+4(s513+ 514+ 523+ 524))

Tm? (1173%2+108312(313+sl4+323+324)+4(313(13314+4323+17324)
+4s35+457,+ 17514523 +4514524+4s§3+13523sg4+4s§4))

+2m? (98?2—1—138%2(5134—814+823+824)+512 (s13(10s14+6523+17524)
4453, +43%4+814(17823+6824)+2(2823+824)(823+2824))
+2 (3%3(514+2324)+513 (5%4—1—514(5234—524)+524(323+2324)>
+523 (824(514+823)+2814(514+523)+834)>)

+25924 (823 (8%2-1-812(813-1-814)—813814) +S12(812+813)(812+813+814))

+(s12(s12+ 513 514) + 523 (124 514) ) + 854 (512 513) % (2.25)

Here, D; contains all the physical poles and P is a quartic polynomial in Mandelstams.
Allowing one of the five independent Mandelstam variables to vary, holding the other four
fixed, we find that there are four zeros of the determinant that do not correspond to physical
poles. As a result, unless the amplitudes A5[130(245)] conspire to cancel these spurious
poles when we sum over the whole DDM basis, the proposed massive KLT formula will not
give us amplitudes of a local theory. We expect that the presence of spurious poles will
persist at higher-point.

It is interesting to note that quartic polynomial P vanishes when the external momenta
p; are restricted to three dimensions, pointing to possible relations between amplitudes
in the DDM basis. Thus one cannot immediately conclude that spurious singularities
arise when double-copying three-dimensional massive theories via the construction in this
section.

This analysis of the equivalent KL T form of the proposed massive double-copy reveals
a dangerous tension with locality. As we have argued, color-kinematics duality satisfying
BCJ numerators exist (at least up to n = 5) for generic models with uniform non-zero
mass spectra. But such a double-copy will contain spurious singularities unless magical
cancellations take place to remove them. Such cancellations will necessarily require addi-
tional relations among the DDM basis of partial amplitudes. Since there is no analogue of
the usual BCJ relations, themselves a consequence of color-kinematics duality in massless
models, these relations must be genuinely new constraints.

3 Massive gravity and (Massive Yaurlg—l\/lills)2

To definitively establish that color-kinematics duality is not a sufficient condition for a
double-copy to be physical, it is enough to construct a single explicit counterexample. In
this section we analyze in detail the massive Yang-Mills EFT and demonstrate that a
BCJ representation of the scattering amplitudes with color-kinematics duality satisfying
numerators exists, at least up to 5-point. We see that 3- and 4-point scattering amplitudes
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generated by the double-copy can be interpreted as coming from a theory of dRGT massive
gravity and show that at 5-point the would-be double-copied amplitude contains spurious
singularities.

3.1 Physical motivation

To understand the model we consider and the independent physical arguments that suggest
a massive double-copy should be sensible, it is useful to begin with a slightly more general
class of models. We consider models with a global U(N) symmetry with a spectrum of
spin-1 states of mass m transforming in the adjoint representation. To ensure the existence
of a standard BCJ representation (1.11), we will restrict to interactions in which the color
indices are contracted using only the (totally anti-symmetric) structure constants f2¢. The
most general such model with parity-conserving interaction terms of mass dimension up to
four is given by the Lagrangian®

_1 a212aa abc qa Ab cv 1/abecdea c b pvd
E——Z(ﬁ[MAVO — mPALAY = g AL AL A — g fo e AL AV AL AV (3.0)

Models of this kind with massive spinning states are generically only valid as low-energy
effective descriptions. The associated scattering amplitudes violate perturbative unitarity
bounds at a parametrically low energy scale unless special tunings of couplings are made or
additional states such as Higgs bosons are introduced to soften the UV behaviour. An effi-
cient way to observe this is to study high-energy fixed angle, 2-to-2 scattering amplitudes.
Here we use explicit center-of-mass frame kinematics with polarization vectors,

e (p') = (0, F cos 0", —i, £sin ")
(3.2)

. 1 . )
61(10) (') = E(p, Esin6,0, Ecos"),
and momenta
pL = (E,psin6’,0,pcos?), (3.3)

with i = 1,2, 3,4 labeling the external particles scattering at angles §' = 0, 6% = 7, 3 = 0,
6* = § — 7. The worst behaved choice for the polarizations is given by purely longitudinal
scattering®

A (0000) = 4%”4 (92 — g') [612 (252 + 2st — t2> + c13 <s2 — 2st — 2t2)}

1
e [612(49’(23 +3t) — g*(8s + 13t)) + c135(4g' — 392)} + 0O (so) , (3.4)

where we have parametrized the expression in terms of the m — 0 limit of the Mandelstam
invariants

s=4F% t=2F%cos() —1). (3.5)

®In this paper we will use the Lie algebra conventions [T%,T%) = i f**°T° and Tr[T°T"] = 5°°.
SHere we are using a shorthand notation A(s1528354) = Ag (151,252 — 353,451), where a; are adjoint
indices and s; = 4, —, 0 is the polarization.
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We see that for generic values of ¢’ the scattering amplitudes grow like E4 at high-energies,
but for a specific tuning, ¢’ = ¢2, this is improved to E?. If this tuning is made, the generic
Lagrangian (3.1) simplifies to

_ 1 a 2 1 2 fqa pap
L=— (Fa) - S ALA, (3.6)
where
F, = 0, A% + g f**° A AS, (3.7)

and defines the model we will study in this section under the name massive Yang-Mills.

The improved high-energy behaviour of this tuning has a nice physical explanation.
The massive Yang-Mills model has a simple (perturbative) UV completion as a particular
limit of a Higgsed gauge theory. We begin with a model of scalar fields ¢ transforming
in the bi-adjoint representation of U(N)y x U(N)r with a Higgs potential

L= _1 (8 ¢aa’)2 + )\v2¢aa’¢aa’ _ i (¢aa’¢aa’)2 ) (38)
2 \H 2

When A > 0 and v? > 0, the U(N); x U(N)g symmetry is spontaneously broken to a
U(N) subgroup. Without loss of generality the vacuum expectation value can be taken to
have the form

(6°) = 30", (3.9)
for which the unbroken subgroup U(N )y is generated by the “vector-like” combinations”
(T‘i/)aa’bb’ _ (Ti)ab(sa’b’ + 5ab(TIi%)a’b’_ (3.10)

If we gauge the orthogonal, broken “axial-like” subgroup U(N)4 generated by
(Tz)aa’bb’ _ (Tz)abéa’b/ _ 5ab(T]i%)a/b’7 (3.11)

then in unitary gauge the associated U (V)4 gauge bosons acquire masses my ~ gv, while
preserving the unbroken global U (N )y symmetry under which they transform in the adjoint
representation. The remaining N2(N? — 1) Higgs scalars have masses my ~ A?v, and in
the limit A — oo with v held fixed, decouple, with the low-energy dynamics of the massive
vector bosons described by the massive Yang-Mills EFT.

The Goldstone boson equivalence theorem [28] tells us that the high-energy scattering
of longitudinal vector modes of a spontaneously broken gauge theory must match the high-
energy limit of a coset sigma model describing the same symmetry breaking pattern. In
this case the coset is (U(N)r, x U(N)gr)/U(N)y, which is coincidentally the coset defining
Chiral Perturbation Theory (xPT) [29], with the well-known Lagrangian

L= fﬂ [0,U10°U],  U(e) = exp (éTW(@) . (3.12)

"Here the adjoint generators are defined as (T})* = £ and (T}c)a,b, = fila't
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The 2-to-2 scattering amplitude in this model is given by the simple expression

1
Ay (1, 2,3, 4) = 47]02 (—Cut + 0138) , (3.13)
P

which precisely matches (3.4) in the limit ¢’ = g2, if the pion decay constant is identified
as fr ~m/g.

Massive Yang-Mills is not only a special EFT because it has softer than expected high-
energy growth. As the above discussion indicates, in the high-energy limit the scattering
amplitudes coincide with those of yPT, which is among the special class of massless models
exhibiting color-kinematics duality [4, 27], as can be verified explicitly using (3.13). As a
consequence, in the high-energy limit the massive Yang-Mills amplitudes can be double-
copied to give the scattering amplitudes of the special Galileon [30],

E>m E>m

( lim A;;”M> ® ( lim AgYM> _ Gl (3.14)

Galileons were originally discovered in the context of the DGP model of modified grav-
ity [31], but were later found to arise naturally in the decoupling limit of ghost-free massive
gravity [32]. On the basis of this observation, it seems natural to speculate that there ex-
ists some model of a massive spin-2 or massive gravity, which matches the special Galileon
amplitudes at high-energies and can be constructed as a double-copy

MrﬁlGrav = AI#YM Qm AleM (315)

An immediate problem with this is that we do not know what the symbol ®,,, denoting
a massive double-copy, is supposed to mean. One property it should have, if this story is
self-consistent, is that it commutes with the high-energy limit, meaning

Jim, (A AP L (i A 0 (o 47), a6
where ® on the right-hand-side is the familiar massless double-copy. In the Introduc-
tion (1.11), we described a natural generalization of the BCJ double-copy based on color-
kinematics duality, to models with massive states, and in section 2 constructed an equiv-
alent KLT-like formula. In this section we will demonstrate explicitly that such a double-
copy does not have the property (3.16) and moreover, for n > 4 does not produce a physical
scattering amplitude that can be matched to a local Lagrangian.

3.2 3-point amplitudes and asymptotic states

Before considering the dynamical content of the double-copy, we first need to understand
the mapping of states in the asymptotic Hilbert space. Massive Yang-Mills is a model of
a massive vector boson, with 3 on-shell degrees of freedom in d = 4. The Hilbert space
of asymptotic one-particle states is spanned by the space of plane-wave solutions to the
linearized equations of motion. In the present context it is convenient to represent the basis
of linearly independent plane-wave solutions using the massive spinor formalism of [33]. In
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this approach, the 3 independent spin states are collected together into a rank-2, totally
symmetric SU(2) little group tensor. Explicitly,

‘ 1 - .
1J 1J : IJ I_—coyJ
AL () = e, (p)e™,  where €, (p) = —2—\/5)\& Uzo‘Aa). (3.17)
The double-copy of such a plane-wave solution is given simply by replacing the color factor
c¢® with a second copy of the polarization vector,

AL () @ AR () = 0570 (2) = e (D)e) F (p)e. (3.18)

Where (3.17) transforms in an irreducible representation of SU(2), the double-copy (3.18)
transforms in a reducible representation. Such a plane-wave double-copy is equivalent
to a tensor product of one-particle Hilbert spaces, for which standard decomposition of
representations of SU(2) gives the physical spectrum of the double-copy

303=5®31. (3.19)

Hence we expect the double-copy of massive Yang-Mills to describe a model of a massive
graviton hy, (spin-2) coupled to a massive Kalb-Ramond two-form B,, (spin-1) and a
massive dilaton ¢ (spin-0). It is most convenient to first calculate the scattering amplitudes
for the reducible h-states, and project out the physical states as needed. To extract the
physical spectrum of the double-copy we use the following projection operators®

1 1
K1K2K3Ky (K1 K2K3Ky) KKy, (K1K32)
(Pneds = 50nnmnn (PB)L ofr s = EEAA%JQ ;
1
(P¢)III2J1J2 = ﬁellflelzt]g‘ (320)
The physical polarization tensor of the two-form is antisymmetric eg) = —61(/5), and conse-

quently gives a non-vanishing contribution to amplitudes in the double-copy only if there
are an even number of such states. Equivalently, the two-form has a Z, symmetry, which
allows us to form a consistent truncation containing only the graviton and dilaton modes.

Since the polarization tensors in the truncated model are symmetric we can represent
the amplitudes using a convenient shorthand. We suppress the little-group indices by
making the replacement e{jli (pi) — z/Z; the amplitude is then a rational function of the
following elementary building blocks:

pij = pipj“, Zij = szzj“, 2pij = zﬁpj”. (3.21)

Extracting the physical graviton and dilaton states amounts to the replacement rules,

zflz,i/ — €u(Di) (Massive Graviton)
o 1 .

2,2, = —= | M + Pipbiv Massive Dilaton). 3.22
nev \/g I m2

8The normalization constants can be fixed by requiring that the completeness relation for polarizations
gives the same sum over states before and after projecting onto physical states.
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We begin with the double-copy of 3-point scattering amplitudes. This is of course uncon-
strained by color-kinematics duality, but will be important for reconstructing the massive
gravity Lagrangian from the 4-point amplitudes. A local BCJ representation of the mas-
sive Yang-Mills amplitudes can be efficiently constructed using the Feynman rules given in
appendix D. The cubic Yang-Mills amplitude is given by

A = 2g(2232p12 + 2132p23 + 2122p31)- (3.23)

The gravitational amplitude is given by squaring the Yang-Mills amplitude and replacing
the coupling constants as g% — ﬁ, giving

2 2
M3z = ﬁ(zzzazplz + z132p23 + z122P31) - (3.24)
P
Using (3.22) we can extract from this the cubic amplitudes for physical states. The on-shell
cubic amplitude for 3 gravitons is formally identical to the massless case, given by:

M(1p,2p,3p) = ]\f,p (61W62W63a,3291apl’8 +2 pater e esasp1”
+ cyclic permutations of (1,2, 3)) (3.25)
The amplitude for 2 gravitons and 1 dilaton is given by
M3z (14,24,34) = v3 m261W62“”. (3.26)

- 2M,
We see that this expression vanishes as m — 0, recovering the expected massless amplitude.
It is interesting to note that the Zs dilaton parity of the massless double-copy only emerges
in the massless limit. Therefore when m # 0 we cannot make a further consistent truncation

to the gravity sector. The on-shell cubic amplitudes for 1 graviton and 2 dilatons is given
by

3
M3 (1h,2¢,34) = mﬂuum“m”- (3.27)
P

This vertex appears in both the massive and massless cases. The on-shell cubic amplitude

11V3
. 2
SM, m (3.28)

This cubic dilaton vertex is also unique to the massive case and does not appear in the

for 3 dilatons is given by

M3 (14,2¢,3¢) = —

massless case.

3.3 4-point amplitudes and high energy behavior

A BCJ representation of the 4-point amplitude is straightforwardly generated from the
Feynman rules in appendix D. This gives the following massive kinematic numerators

(—=p1, — p2,) (P3y, + Pay)
2

n1s =[(e1 - ) + 2(er - pa)el — (1 6 2)] (gw 4

x [(e3 - €4)p3” + 2(e3 - pa)es” — (3 > 4)] (3.29)

+ (s +m?)[(e1 - e3)(e2 - €4) — (€1 - ea)(ea - €3)],
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with the first two lines coming from the exchange diagrams and the third line coming from
the contact diagram. The other numerators are found by taking

N3 = N12l1535251,  N14 = N12|1525351- (3.30)

The 1/m? term in the massive vector propagator vanishes, and so these numerators are
formally identical to the Feynman rule-generated expressions for massless Yang-Mills. As
a consequence of this formal equivalence, together with the fact that at 4-point in massless
Yang-Mills, all generalized gauges satisfy the kinematic Jacobi identity, we find that this
Feynman rule generated expression for the mass deformed numerators (3.29) and (3.30),
just happens to be in the unique generalized gauge to satisfy the massive kinematic Jacobi
relation

ni2 +n13 +ng = 0. (3.31)

The 4-point massive gravity amplitude is then given by

1 niy ns iy
= . 3.32
Mi= (812+m2+513+m2 +814+m2> (3.32)

The explicit expressions for the physical scattering amplitudes are rather complicated and
are given explicitly in appendix E.?

We expect the double-copy procedure for massive Yang-Mills to give a ghost-free theory
of massive gravity.'® Generic ghost free massive gravity without coupling to a dilaton, also
known as dRGT, propagates 5 degrees of freedom, has two free parameters in D = 4, and
is given by the action

D—-2
5= 22— [aPs [(V=gR) — V=W (9.6 (3.33)

where

Wi(g,K) = %ancgf’(ic), (3.34)
n=2

brackets mean trace with respect to the full metric, as = —4, and the rest of the coefficients
are arbitrary [23, 35]. The tensor KK(g, H) is given by

b su s MZOO . _ (2n)!
KCH =6t — /o — H, nz::ldn(H o d, (1 2n) (n)2a"" (3.35)

where indices are raised by the full metric g#f = ~# + h¥, the background metric is 4%, and

HF = gl — 44 is the Stiickelberg replacement for h#. The quantity £17(II) can be written
as total derivatives when II = 0,,0,¢. These total derivative combinations are unique up
to an overall constant and can be found using the recursion relation

n

£ = = 3 (-1

n! m pTD
mﬂwﬁn—m(r{% (3.36)

with £IP = 1.

9These results are in agreement with those that appeared recently in [25].
198ee [34] for a review of massive gravity.
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Massive gravity with the most generic potential without the dRGT tuning has an
extra scalar degree of freedom that is ghostly and 4-point scattering amplitudes that grow
with center-of-mass energy like E'°. However, the dRGT tuning, which leaves only 2 free
parameters, removes the ghostly degree of freedom and improves the high energy behavior
to scale with energy as E° [36, 37]. Another common parameterization of dRGT massive
gravity is given in [38]. The leading high energy behavior in this parameterization, for the
tree-level 4-point amplitude for ARGT massive gravity, is given by:

3

M1ttty = —5(1 — 4c3)s° (3.37)
M@AT1IT1IT1T) = M(1717 171 = 3%(1 — 4cg)?st(s + 1) (3.38)
M(25000) = ——(c3 + 8d5)st(s + 1) (3.39)

V6

1
M(1T1700) = 333(2(1 — 83 + 48¢3 + 64ds)t(s + 1) — 3(1 — 463)282) (3.40)

MIF1700) = %5((1 +12¢3)° + 384d5) st (s + 1) (3.41)
M(0000) = é(1 1 des(9¢s — 1) + 64ds)st(s + 1), (3.42)

where the polarization tensors, efff,), have been split into two tensor modes (a = 2%,27),

two vector modes (a = 17,17), and one scalar mode (a = 0), the relation between the free
parameters of dRGT are given by:

a3 = —2c3 and ay = —4ds, (3.43)

and the polarization tensors are chosen to be:

1
1+) _ +) (0 0) (+
45 = 590 + ) (3.44)
1
4= (egﬁew + el ze,gwegw).
Indeed the 3-point amplitude (3.24) corresponds to dRGT massive gravity with
1 1
az=—5 OF €3=_. (3.45)

This value is also the one picked out in the eikonal approximation analysis needed to avoid
superluminal propagation as shown in [39] and is the “partially massless” ag [23, 40].
With the new cubic vertices that appear in the massive case, there are new scattering
channels that appear in the quartic amplitudes that would not appear in the massless case.
In agreement with the general discussion in section C, we find that all quartic amplitudes
factorize properly on the poles into products of the corresponding 3-point amplitudes.
For example, in the 4-graviton scattering amplitude, we find contributions from diagrams
corresponding to the s, ¢, u channels mediated by both a massive graviton and a dilaton,
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due to the non-vanishing cubic coupling with 2 gravitons and 1 dilaton. The 4-graviton
amplitude matches that of massive gravity with the coefficients

7

— 4
192’ (3.46)

Qg =2 or ds = —
plus the additional channels mediated by the dilaton.

At first glance, it may appear that a field redefinition could mix the cubic hh¢ vertex
and massive gravity quartic interactions, leading to the choice of a4 to not be uniquely
specified. Since amplitudes are unaffected by field redefinition, we consider the difference
between the double-copied amplitude and the dRGT massive gravity amplitude with ag =
—% and ay left unspecified. We find terms proportional to ~ (48cy — 7)T'r[€1 - €2 - €3 - €4].
This structure cannot be altered by introducing scalar channel diagrams and thus, requiring
that it vanish picks out the remaining parameter to be a4y = %.

The leading high energy behavior of the amplitudes for graviton-graviton scattering in
the massive double-copy goes as:

1

M(27000) = —24\/6315(84—25) (3.47)
M(1t1700) = —%st(s +1) (3.48)
M(1t1700) = 4—183t(s+t) (3.49)

M(0000) = stt(s +1). (3.50)

For the value of c3 picked out by the double-copy, the high energy behavior of the 4-
point amplitudes for massive gravity, (3.37) through (3.42), is improved for amplitudes
where all the polarizations of the external particles are vector modes, scaling as F* rather
than ES. The dilaton affects the coefficient of M (0000), the amplitude where all the
external particles are scalar modes. Without the dilaton, this amplitude would behave as
M(0000) = —+5st(s +t). All other amplitudes behave as they would without the dilaton
and are consistent with the above ¢z and ds values in expressions (3.37) through (3.42).

One immediate and important result from (3.47) is that the conjectured property (3.16)
does not hold for the BCJ double-copy. In the Goldstone boson equivalence limit for massive
Yang-Mills, only the spin-1 longitudinal mode contributes at E2. If (3.16) held, we would
expect only the scattering of a single scalar mode to contribute at ES in the double-copy.
From (3.47), we see explicitly that this is not the case.

In the 4-point amplitude where all the external particles are dilatons, there will be
s,t,u channels mediated by a massive graviton, as well as s, ¢, u channels mediated by a
dilaton, and a 4-dilaton contact term. The massless case only has the channels mediated
by the massless graviton.

The 4-point amplitude with 2 gravitons and 2 dilatons exists in the massless and
massive case. In the massless case, this 4-point amplitude has graviton exchange channels
via the h¢¢p and hhh vertices and dilaton exchange channels via two h¢¢ vertices, plus
a contact term hh¢o. In the massive case, there will be additional graviton exchange
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channels via two hh¢ vertices, as well as dilaton exchange channels via the vertices hh¢
and ¢po.

The 4-point amplitudes with 3 gravitons and 1 dilaton or 1 graviton and 3 dilatons
are unique to the massive case and involve all possible exchange diagrams with dilaton
propagators, as well as graviton propagators, and with additional hhh¢ and hopeo contact
terms.

The high energy behavior of all the amplitudes scales with energy like ~ E° or less and
the amplitudes that scale like ES take the special galileon form st(s + t) [30]. As another
example, the leading high energy behavior of h¢¢¢p amplitudes is shown below:

st(s +1)
963

11st(s + 1)
C288v2

M(27p99) = (3.51)

M(0pg¢) = (3.52)
All the 4-point graviton and dilaton amplitudes resulting from the double-copy are given
in appendix E.

3.4 5-point amplitudes and non-physical singularities

As discussed in section C, 5-point massive gravity amplitudes constructed via the massive
KLT formula are guaranteed to factorize correctly into 4- and 3-point amplitudes (listed
in appendix E and section 3.2 respectively). Nonetheless as we saw at 4-point, checking
factorization at 5-point is a good cross-check of our more general results, in particular those
of appendix C.

We begin by choosing a DDM basis of orderings [13 ¢(2,4,5)] where ¢ runs over all
possible permutations. Using the Feynman rules of massive Yang-Mills, we then calculate
partial amplitudes and use the inverse of bi-adjoint scalar matrix (B.3) to construct 5-point
all-graviton amplitudes. The inverse of (B.3) is unwieldy so we do the following numerical
tests of factorization.

One can choose an independent basis of building blocks from the set of all (e; - €;),
(€; - pj) and (p; - p;). We then assign numeric values to all these kinematic structures
except one, without loss of generality let’s call this (p; - p2). One can then evaluate the
5-point amplitude on this set of kinematic data and check that the residue on physical pole

(p1-p2) = —mTQ is exactly what one would expect
Res  M;5(12345) = > M (12(—Pi2)x) x Mu ((Pr2) 5 345) (3.53)
S12=—mM X

where X can either be a dilaton or a graviton. As expected from the general discussion in
appendix C we find that the would-be 5-point amplitude factors as expected on physical
poles.

While the correct factorization of the 5-point amplitude is promising, we saw in sec-
tion 2.2 that the KLT kernel suffers from non-physical poles arising from the determinant of
the matrix of bi-adjoint scalar amplitudes. These singularities (2.24) can only be removed
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if special cancellations occur between amplitudes in the theory we are double-copying and
the KLT kernel.

In the context of this explicit example, we can proceed with our numerical analysis to
check for example, whether all poles in (p;-p2) are physical. This can be done by evaluating
the KLT formula on an incomplete set of kinematic data that leaves (p; - p2) unspecified.
One can then check if all singularities in (p; - p2) are accounted for by locality. We find
that this is not the case and that the resulting 5-point amplitude M35 does have spurious
poles. The singularity structure takes exactly the form (2.24) which can be recast as

P(sij, m2) :als‘ﬁ + ags‘;’Q + ags%Q + ay812 + a5, (3.54)

where «; are functions of the mass and other Mandelstam variables. Since this polynomial
does not easily factor into rational roots, it is useful to choose special kinematic configura-
tions where it factors more readily. In these cases, the exact locations of the spurious poles
can be found and the amplitude evaluated on such a non-physical pole gives a nonzero
residue.

Thus, no miraculous cancellations occur in massive Yang-Mills to get rid of spurious
singularities. In particular this means that in its current form, massive Yang-Mills does
not sensibly double-copy to massive gravity.

Furthermore, if we attempt to save the double-copy, by for example, adding a 5-point
contact contribution to cancel these non-physical poles, we find no improvement. Consider
for example adding a new operator at 5-point, such that

B 3
As[13542] = A5[13245] + %(m ce3)(er - €)(e3 - €3), (3.55)

with contributions to the other orderings determined by relabeling. Here « is a free coef-
ficient. The powers of m? have been introduced to correct the mass dimension, this would
correspond to adding a term ~ 9A5 to the massive Yang-Mills Lagrangian.

We find that there is no way to tune « to remove any of the spurious singularities.
Since it is unclear whether this statement still holds for arbitrary combinations of the other
28 possible OA® structures, we cannot strictly rule out the possibility of a massive Yang-
Mills 5-point operator removing non-physical poles from the KLT product. Nonetheless,
our calculation is indicative that this may not be possible.

4 Locality and the spectral condition

We have seen that the proposed massive KLT construction (2.16) is in serious tension with
locality. In general, the inverse of the matrix of KK independent massive bi-adjoint scalar
amplitudes contains spurious, non-physical singularities (2.24). For the full KLT sum to be
free of these non-physical singularities, additional non-trivial constraints must be imposed.
These conditions are not met in the case of massive Yang-Mills, because as we saw in
section 3.4, the resulting 5-point massive gravity amplitude is not local. Thus, despite the
existence of color-kinematics duality satisfying numerators for all KK satisfying models,
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the resulting would-be double copies only correspond to physical amplitudes if additional
constraints are imposed.

To better understand these additional constraints, let us first look at the massless case.
Here the additional constraints are the fundamental BCJ relations and color-kinematics
duality satisfying numerators can only be found in theories whose amplitudes are BCJ-
compatible. In the language of bi-adjoint scalar theory, the double-copy formulation gives
rise to physical amplitudes only if the (n—2)!x (n—2)! matrix of bi-adjoint scalar amplitudes
A% [a|B] has rank (n — 3)!, which we will refer to as minimal rank.*' In addition, only
theories whose amplitudes satisfy the fundamental BCJ relations, which arise as null vectors
of the singular matrix of bi-adjoint scalar amplitudes, can be double-copied.

In the massive case, a matrix of bi-adjoint scalar amplitudes that has minimal rank can
be constructed if a specific condition on the masses, given by the equation det A% [a|B8] =0
is met. We will call this the spectral condition. The null vectors of this matrix will then give
rise to massive BCJ relations. On the basis of this observation, we propose the following:

Conjecture: the KLT prescription for double-copying models with massive states gener-
ates physical amplitudes without spurious singularities, and reduces smoothly to the mass-
less double-copy in an appropriate m — 0 decoupling limit, if the associated bi-adjoint
scalar matriz has minimal rank.

In this section we will illustrate the consequences of imposing these conditions on
models at n = 4 and n = 5. We will see how this alternative construction has both a
commuting decoupling limit and the absence of spurious singularities, providing evidence

in support of our conjecture above.

4.1 4-point spectral condition

We will begin with a model that has a more general spectrum of massive or massless
states. We denote the external states m; and the intermediate masses being exchanged on
a factorization channel as m;;. The only assumption we will make is the existence of a
BCJ representation of the form

C12M12 C13M13 C14M14

.A4 (1a1’2a2’3a3’4a4) = ’
2 2 2
S12 +miy  S13+mi3  S14+miy

(4.1)

Implicitly built into this expression is the assumption that only states with mass m?2,
are exchanged in the sjs-channel and so forth. This is not completely general and an
interesting open problem is to construct an appropriate generalization of the BCJ form for
models with multiple mass states exchanged in a single channel. We now choose a DDM
basis ([1234],[1324]), in which the matrix of bi-adjoint scalar amplitudes is

B 1
Af3[@’,3]: s124+m7, 1814+m§4 ) 814+m§41 ) (4.2)

514+m%4 813+m%3 814+mf4

11p this work we only consider states that transform in the adjoint representation. The value (n—3)!
for the minimal rank may be modified if particles in other representations are present.
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Taking the determinant, gives

2 2 2 2 2 2 2
miy + Mmi3 +mijy —my —mj —mz—my

3
det A =
4 (s12 +miy)(s13 + mis)(s1a +miy)

(4.3)

Clearly A%’ [a|3] is full-rank and non-singular, i.e. det A%’ [a| 3] does not vanish, for generic
mass spectra. In keeping with our conjecture, we want to reduce the rank of A9 [a|A] to
(4-3)!=1, which is the minimal rank at 4-point order. This is achieved by imposing the
following condition on the mass spectrum of the theory,

miy +mis +miy = mi +m3 +m3 +mj. (4.4)

This is the 4-point spectral condition. It is interesting to note that the spectrum of massive
Yang-Mills does not satisfy this condition. We will see later that this is what led the
double-copy and decoupling limit to fail to commute when studying massive (Yang-Mills)2.

On imposing the spectral condition, AP [a|B] becomes singular and is no longer in-
vertible. As a result, we must eliminate one row and one column to produce an invertible
matrix of bi-adjoint scalar amplitudes. This is consistent only if all such choices give the
same result. For example, we could remove the second row and second column, the resulting
KLT formula is then

(s12 + miy)(s14 + miy)
s13 4+ (m? +m3 +m3 +m3 —mi, —mi,)

My (1,2,3,4) = — A4l1,2,3,4]2. (4.5)

If however, we choose to eliminate the second row and the first column, we find
My (1,2,3,4) = —(s14 +m?2,) Ag[1,2,3,4]A4[1, 3,2, 4]. (4.6)
Equating these formulae constructs a massive version of the fundamental BCJ relation
(512 + mip)A4[l1,2,3,4] = (s13 + mis).A4ll,3,2,4], (4.7)

where we have used the spectral condition to rewrite the relation in a more compact form.
As we prove in appendix F, an equivalent way to derive the massive BCJ relation is
by studying the null vector of AP [cr| 8] which is

e 2
= 12T (4.8)
513 + m13
Setting the dot product of this vector with the DDM basis to zero then gives the BCJ
relation,

il - (As[1234]  A5[1324]) = (s12 + miy)A4[1,2,3,4] — (s13 + m35)Aq1,3,2,4] = 0. (4.9)

We are now in a position to study the singularity structure of the KLT formula (4.5).
The first aspect of the formula that we note is the absence of spurious poles, i.e. all poles are

— 95—



at physical locations. To ensure locality, we can study the amplitude in the neighbourhood
of its three physical poles. For example,

(s14 4+ miy)

Res My (1,2,3,4) = -2 4,112, —P5]2A3[ P12, 3, 4)?
Sm:giné 4 ) 15 1 m%?) n 12]° A3 [ P12 ]
= A4[1,2, —P15]2A3[ P12, 3, 4)?
= M3 (1,2, —Pia) M3 (P12,3,4) , (4.10)
where we have used si3 —i—m%?) = —S14— m%4 on the s19 pole. Thus the amplitude factorizes

correctly on the s19 pole. Factorization on the s;3 and s14 pole follow in a similar manner.

It is easy to see that these forms of the massive BCJ relations and KLT formula
smoothly reduce to the massless ones when all external and intermediate masses, m; and
m;; are taken to zero. As a result, this version of the massive double-copy does commute
with the decoupling limit. Thus for any pair of massive BCJ-compatible theories A™) and
B(™) that satisfy the spectral condition, one can construct a local theory,

cm =AM g B (4.11)
where ®,, is our conjectured massive KLT formalism. This will reduce in the decoupling
limit to

lim €0 = lim (A @, B™) = (nm A<m>) ® ( lim B(m)> L @12
m—0 m—0 m—0 m—0

where ® denotes the massless KLT double-copy.

As we saw in section 2.1, the massive KLT and massive BCJ double copies are equiva-
lent. Let us now understand our conjecture from the perspective of the BCJ double-copy.
We begin by considering the effect of a generalized gauge transformation on the BCJ rep-
resentation. The amplitude is invariant under the following replacements

N1 — ni2 + (s12 + miy)A
niz — nig + (s13 + miz) A
n1g — n1g + (514 +miyA, (4.13)

for any function A. Putting these together we find the kinematic Jacobi sum of numerators
transforms as

N2 +n13 +nia — nig +n13 +n1a + (m%Q + m%?) + mi — m% — m% — m§ — mi) A. (4.14)

If the spectral condition is not satisfied then we can always find a generalized gauge in
which the numerators satisfy color-kinematics duality by using,

n12 + N3 + nig

2 2 2

A=—
3 9] 9 7
(mfy +mis +miy —mi —m3 —m3z —mj)

(4.15)

If the spectral condition is satisfied, however, then there is no choice of A that can
construct numerators that satisfy the kinematic Jacobi relations from ones that do not.
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Hence the existence of kinematic Jacobi-satisfying numerators is a non-trivial constraint
on the space of BCJ-like models, equivalent to imposing the massive fundamental BCJ
relations.

At 4-point, we saw that there is a well-chosen BCJ basis in which the KLT kernel is
polynomial, and therefore together with the discussion in section 2.2, the resulting formula
defines an amplitude with only physical singularitites. The BCJ version of this statement is
that if the spectral condition is satisfied, and there exist color-kinematics duality satisfying
numerators, then the BCJ double-copy is free of spurious singularities.

It is clear that a model with a uniform mass spectrum like massive Yang-Mills could
only satisfy the 4-point spectral condition if all of the states have zero mass. For more
complicated models, with states of multiple masses, the constraints are very restrictive.
We will now illustrate these constraints with a few examples.

Example 1: Compton scattering. Consider a model such as Yang-Mills minimally
coupled to a complex adjoint scalar with mass m # 0. There are three factorization
channels contributing to the Compton amplitude g + ¢ — g + ¢:

The first diagram contributes twice, corresponding to exchanging the labels on the gluons.
Here the spectral condition is satisfied since for the external states

m3 4+ m3 +m3 +m3 = 2m?, (4.16)
while for the internal states
miy +mis +miy = 2m*. (4.17)

We must keep in mind that the spectral condition is only a conjectured necessary condition
for the existence of a local double-copy, not a sufficient one. For a theory to produce a local
double-copy, it must also satisfy the BCJ relations. The fact that a sensible double-copy
of Compton scattering amplitudes can be defined only if the theory satisfies the massive
BCJ relations (4.7) was first observed in [12].

Explicitly the color-ordered amplitudes [11]

o Bl
Ay [1¢, 24,34 ’4¢} - S93(s12 + m?)
R 1
Ay [1¢73g72g’4¢}_ s23(s13 + m?)’ -

satisfy the massive BCJ relation (4.7). According to our conjecture the double-copy and
the massless limit should commute in such a case. Indeed, taking the massive double-copy
and then the massless limit

(3[pa|2]* m=0, (3|p1[2)*
(512 +m?)(s13 +m?) 512513

MYP0 (14,2135, 45) = , (4.19)
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compared to taking the massless limit and then the double-copy

(3|py|2]*

, 4.20
512513 ( )

514AT=0 1¢,2;,3g—,4$} AT=0 [1¢,3;, 2;,44 —

gives the same result.

Example 2: Bhabha scattering. In the same model as the previous example we can
consider Bhabha scattering ¢+¢ — ¢+ ¢ which has two contributing factorization channels
related by relabelling:

> 4
> ¢
A 4
N k|
A .
A 4
LIS
.
’, N
¥ *
. Y'\
ya A
’ N

Here the spectral condition is not satisfied since for the external states
m3 4+ m3 +m3 +m3 = 4m?, (4.21)
while for the internal states
miy +mis +mi, = 0. (4.22)

Since the spectral condition is not satisfied, there are no associated fundamental BCJ con-
ditions. Similar to the 4-point massive Yang-Mills calculation, we can find color-kinematics
duality satisfying numerators and take a massive double-copy, but such an amplitude should
not have a smooth m — 0 limit. It is instructive to see this explicitly. We begin with the
tree-amplitude calculated using ordinary Feynman rules for a minimally coupled scalar

513 — S14 S12 — S13
191 992 393 494 — . 4.23
A4(¢7¢7¢7¢> c12 - + c1a " (4.23)
The corresponding BCJ numerators,
n12 = S13 — S14
niz = 0
N14 = S12 — S13, (424)

do not satisfy the kinematic Jacobi relation. We can construct numerators which do,
however, by making a generalized gauge transformation

1
N2 = 813 — S14 + msu(slz - 814)
A1 = —5 13 )
n13 = ——=S13(S12 — s
13 2 13(S12 14
N14 = S12 — S13 + 7814(812 — 814). (4.25)

4m?
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Forming the massive BCJ double-copy, we find

(513 — s14)° N (s12 — 513)?
S12 S14

1
+4m? + 4819 + 2813 + ) (45%2 + 4819813 + S%3> . (4.26)

My (14,25,34,45) =

While this is a perfectly physical scattering amplitude, the massive double-copy has gen-
erated a contact contribution corresponding to a local operator of the form W(@qb)‘l,
which diverges as m — 0. ’

Example 3: Kaluza-Klein theory. An important class of examples arises from the
dimensional reduction of the massless KLT relations in higher dimensions, some of which
have already been discussed in [13-16, 20]. This has the effect of generating a Kaluza-Klein
tower of states and vertices that conserve Kaluza-Klein number. This conservation law
manifests as a conservation of mass at each vertex. For concreteness, consider a d = 5 scalar
model compactified on R* x S', and take for example the scattering process 142 — 3+ 4,
where all of the external states are right-moving (p} = +m;) states. At the vertices the
masses satisfy the sum rules

m1 + mg = mi2
mip —m3=mi3
m1p — Mg = Mig

mi + me = Mms + Mmy. (4.27)
In this case as well, the spectral condition holds with no further constraints,

= miy +mis +m2; = 3mT +m3 +mi+m3 4+ 2mimg — 2mimy — 2myms
2 2 2 2 2
= 3m1 —|—m2—|—m3—|—m4 —2m1

=m? +mj +m3 +mj. (4.28)

Thus any theory that arises as a dimensional reduction of a massless BCJ-compatible theory
will automatically satisfy the spectral condition and thus it will give a local double-copy.
Such a model gives a complete example, for which every scattering amplitude satisfies the
spectral constraints, and moreover, if the higher-dimensional model satisfies the massless
BCJ relations then so too will the lower-dimensional Kaluza-Klein model. We leave as
future work the problem of determining if there are additional complete examples which
are not obtained by dimensional reduction.

4.2 5-point spectral conditions

Locality places the strongest constraints on the massive double-copy. As was exempli-
fied in section 3.4, demanding the existence of color-kinematics duality satisfying 5-point
numerators is not a strong enough condition to ensure locality of double-copied 5-point
amplitudes. A natural question is what conditions need to be satisfied at 5-point in order
for the resulting double-copied amplitude to be local.
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We set the calculation up in a manner similar to the 4-point case. We assume the
existence of a BCJ representation and allow for general external and intermediate masses,
m; and m;; respectively. Here the masses m;; are exchanged on the ij 2-particle channel.
We can then write down a bi-adjoint scalar matrix (B.3) where each propagator s;; + m?
is now replaced by s;; + m?]

We know that 5-point amplitudes need to factorize on 2-particle channels to give 4-
point amplitudes. At 4-point, we saw that locality is only ensured by requiring that the
matrix of bi-adjoint scalar amplitudes is singular. This is achieved via the so-called spectral
condition (4.4). On demanding that this condition is satisfied on every possible 4-point
amplitude that could result on a factorization channel, we come up with the following set
of conditions,

m? —i—mzk—kmjk—m +m —i—mk—i-m (4.29)

for each triplet ¢, j, k and where p, ¢ are the leftover elements in {1,2,3,4,5}. There
are 5C3 = 10 such relations, but they are not all independent. We can reduce them to 5
independent conditions,

2 2 2 2 2 2 2 2 2
mis = 2Mj — miy — Miz — Miy +my + m3 +my +ms

2 9 2 2 2 2 2 2 2
Mas = M1 — Mg + 2My — Ma3 — Myy + M3 + My +mj

2 2 2 2 2 2 2 2 2 2 2
m3y = 2my — Mig — Mz — My + 2M5 — Mz — Mayy + 2m3 + 2mjy + mj

2 _ 2 2 2 2 2 2
mss = —MMy + mi9 + miy — My + Moy — My
2 _ 2 2 2 2 2 2
Mys = —m] + miy + mij3 — ms + mss — m3. (4.30)

We will refer to these as the 5-point spectral conditions. These conditions indeed make
the bi-adjoint scalar matrix singular. Further, they reduce the rank of the (n—2)!x(n—2)! =
6 x 6 matrix from full-rank to minimal rank, (n — 3)! = 2.

As we show in appendix F, the null vectors of the bi-adjoint scalar matrix give us the
5-point massive BCJ relations,

2 2 2
A5[13452] = (T2 T2 | MBS T8 gygs)  (TIaT A4 4onssog) (4.31)
m3y + 834 M3+ 834 M3y, + 834

(mig + s12) (M35 + s45)
(mi5 + s15) (M3 + 534)

A5[13425] = ( ) A5[13542]

2 2 2
+ m%4 —|— 514 o (m;2 + 812) (777%4 + 814) A5[13524} 3 (432)
mis + 515 (mfs + s15) (M3 + s34)

m12 + 512) (mﬂ + 514)
mis + s15) (m33 + s23)

2

mis + S12
2

mis + S15

(
(
" ((mm + 514;

(m35 + s15

As[13245] = ( ) As[13542]

(
m3s + S25)
)

Em% E— ) As[13524] (4.33)

2
As[13254] = (—W) As[13542] + (— 252 j: z;z - ;”134 j: Zi;‘) As[13524], (4.34)
23 23 23
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with the understanding that mqs, maes, ms4, mss and mys are given by the spectral condi-
tions (4.30).

Choosing any 2 x 2 submatrix A?’ [o|8] of the bi-adjoint scalar matrix is now invertible
and can be used to define a local double-copy. For example,

AP (12345) = 3 Aéa] A% [alp] ™t AZ(B), (4.35)
a,8=[13542],[13524]
where
1 1 1 1 1 1 1
, Dy T Dn T D D T Ds D Dy
A [a|B] = : (4.36)
1 1 1 1 1 1 1
D T D D "D VDt D T Dy

and D; are as defined in appendix B.

To explicitly see that the resulting amplitude is local, we perform the following tests.
First, we look at the denominator of the resulting KLT formula,

(s15 + mi5)(mis + s23) (34 + M3y), (4.37)

again with the understanding that m;; satisfy the spectral conditions (4.30) and note that
the KLT formula only has poles in physical locations.

Second, we must check that AZ®P(12345) factorizes correctly on all poles. Let us look
at an example. Consider the pole s93 — —m3s,

Res A‘X®B(12345) = (mﬁ 514) (m% m%3 + 512 + 513)
5
2

A5[13542] (m% + 312)
2

= Ma3
S23=—m, (515 + m15) [

2
+ A5[18524] (i 4+ my + sz + 524 } . (4.38)

The massive BCJ relation (4.34) tells us that the expression in the square brackets is
A5[13254] which factorizes into A3[32(— Pag)] x A4[P23541] on the pole to give

Res AA®B(19345) — (M4t 514) (T + iy + 510 + 513)
sa=—niy (s15 + mi5)

= A5 %P (32(— Pa3)) x AL®P (P3541) (4.39)

(A3[32(—Pa3)] A4 Py3541])?

where we have used the 4-point KLT formula in the last step. Thus the amplitude factorizes
correctly on the so3 = —m3; pole.

One can proceed in a similar manner (either with or without the help of massive BCJ
relations) to determine that the 5-point KLT formula (4.35) factorizes correctly on all
poles. Thus, given a theory that satisfies the 5-point spectral conditions, the KLT formula
constructs local amplitudes, giving us a sensible definition of the 5-point double-copy.
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4.3 Non-minimal rank

There is a new possibility that arises at higher-point which is not present at 4-point. This
is the ability to reduce the rank of a bi-adjoint scalar matrix from full-rank (n — 2)! not
to minimal rank (n — 3)!, but somewhere in between (n — 2)! and (n — 3)!. Since this too
makes the (n — 2)! x (n — 2)! matrix singular, one might imagine this to be an alternate
approach to the massive double-copy that does not require all four BCJ relations to hold.
Indeed such a procedure does not give rise to local amplitudes. Let us understand how this
works at 5-point.

By imposing all-but-one of the spectral conditions (4.30), the rank of the 5-point bi-
adjoint scalar matrix reduces from 6 to 4, rather than minimal rank 2. For example, let
us choose not to impose the spectral condition on m§4. Since the resulting expressions
are difficult to manipulate analytically, we proceed in a particular kinematic configuration
where all-but-one (let us say s12) independent Mandelstam variables are fixed.

We can now check the behaviour of the double-copied amplitude as we approach the

pole s12 = —m2,. We want the double-copied amplitude to factorize as,
Res  AS9P(12345) = AP (12(= Pr2)) x A{®P (P12345). (4.40)
S12=—M7y

We find that this condition is not met unless,
m3, = 2m; — miy — miz — miy + 2m5 — miy — miy + 2m3 + 2mi + m, (4.41)

which is exactly the spectral condition that we left out. Thus, by not imposing all of the
BCJ relations, we do not construct local amplitudes.

This supports our conjecture: only by imposing all BCJ relations, i.e. reducing the
bi-adjoint scalar matrix to minimal rank, can we construct local amplitudes via the KLT
formula.

5 Discussion

The proposition of a KLT construction for the double-copy of massive particles opens up
many areas of exploration and application. In section 2.2, we noted that our argument for
the existence of spurious singularities in the proposed double-copy formula (2.11) does not
apply to three-dimensional theories. This suggests that the prescription (2.11) might be
healthy in 3d, despite suffering from spurious singularities in 4d and higher, with a possible
example being the conjectured double copy construction of topologically massive gravity
from topologically massive gauge theory [41].

In section 3, we see that a putative double-copy of massive Yang-Mills is not well-
behaved due to the presence of spurious singularities in the would-be double-copied 5-
point amplitude. Further work is needed to address the problems brought to light here.
For example, one could investigate the possibility of addition of 5-point operators or new
degrees of freedom to the massive Yang-Mills EFT to construct a local double-copy.

Another interesting question is what happens when the bi-adjoint Higgs model pre-
sented in section 3 is double copied with itself. It has been shown that the high energy
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behaviour of a theory of As massive gravity cannot be improved by introducing vector or
scalar interactions [42]. Therefore, we expect the double-copy of the bi-adjoint Higgs model
to fail. A better understanding of the precise nature of this failure would be interesting.

An important assumption that lead to the derivation of the mass spectral conditions
presented in section 4 was that a unique mass is exchanged in each factorization channel.
We know that a massless KLT formula can be constructed that allows for the exchange of
particles of multiple masses on each channel [22]. It would be interesting to see how this
construction generalizes to the case of massive external particles and more general spectra.

In addition, we would like to better understand the landscape of theories that produce
a local double-copy. We saw examples of dimensionally reduced BCJ-compatible theories in
which the Kaluza-Klein tower of massive states and interactions between them manifestly
satisfy the spectral condition and hence result in local double-copied amplitudes. We would
like to understand whether there are double-copy-compatible theories that do not result
from a dimensional reduction.

Finally, in section 4, we saw that spurious singularities are removed if the spectral
conditions and massive BCJ relations are satisfied. However, we know that massive bi-
adjoint scalar theory trivially provides an explicit counter-example to making the converse
statement, since it will produce a local, massive double-copy even if the spectral conditions
are not satisfied. It is therefore an interesting open problem to determine if there exist
further, non-trivial, examples of massive models which double-copy to physical scattering
amplitudes but do not satisfy the spectral condition. One pathway to such a construction
would be to try and find a model which admits a local, off-shell representation of the
kinematic algebra, similar to [43, 44]. Since the numerators of such a model are local
by construction, it is clear from the BCJ form of the double-copy that no spurious poles
can be generated. Even more interestingly, given such a set of local, kinematic Jacobi
satisfying numerators, we can always form a heterotic double-copy with the numerators of
a generic, spectral condition violating, massive model. Since the result does not depend on
the generalized gauge used for the numerators of the latter, they can always be taken to
be the local representation given by Feynman rules, and so even in this case, we see that
no spurious poles can be generated. We see then that constructing even a single example
of a model with a local, off-shell representation of the kinematic algebra, is sufficient to
generate an infinite number of examples of healthy, massive double-copies. We leave this
and similar investigations to future work.
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A Massless limits of massive theories

In this appendix, we will review taking massless limits of massive theories. If the massless
limit in the Lagrangian of a higher spin (> 1) particle is taken by just setting m — 0,
degrees of freedom can be lost causing the limit to be discontinuous. Here we show how
to take the massless limit in a continuous way that preserves the number of degrees of
freedom. More extensive reviews can be found in [34, 45].

Example 1: massive photon. To start with, we examine the Lagrangian of a massive
photon with a quartic interaction term,

L= —EFWF’“’ — %mZAMA“ + g(AMA“)Q. (A.1)
The mass term and interaction term break the U(1) gauge symmetry 04, = 9,A that
a massless photon would have. If we were to try to take the massless limit by setting
g, m — 0, the limit would not be continuous, as in 4 dimensions a massive photon has 3
degrees of freedom regardless of how small the mass, while a massless photon has 2 degrees
of freedom.

In order to properly take the massless limit, the limit must be taken in a way that
preserves the number of degrees of freedom. One way to explicitly see how the discontinuity
arises is by using the Stiickelberg trick. This involves introducing new fields in a way that
makes the theory gauge invariant, but is still dynamically equivalent to the original theory.
To do this, we make a replacement of the field patterned after the U(1) gauge symmetry
enjoyed by a massless photon:

1
Ay — A+ Eauqs. (A.2)
This gives an action,
L=—Yp, L2 (A + 19 ¢> (A“+18"¢> tg (A + 19 ¢> A“+ a%)
4 2 BomH m Bom
(A.3)

which is gauge invariant under the transformations:
0A, = 0uA, 0 =—mA. (A.4)

This action, although it contains more fields, is completely equivalent to (A.1) since (A.3)
is gauge invariant, and we can always choose unitary gauge, ¢ = 0 to recover the original

action. Expanding the action, we find:
1 1 1
L=—Fu P — s A A — mAD GA" — 20,60"6 + g(A, A“)2 +4 %AMA“AV(‘)VQS

5 (4 (4,0"9) +24,470,60"9) + 4T3 A,0"$0,60"6 + 7 (9,60"6)° . (A.5)

Now, when taking the massless limit, the lowest energy scale suppressing the interaction
terms is A = (m*/g)"/*. If we now take the massless decoupling limit,

m

4N\ 1/4
gm—0, A= (g) , Ay, ¢fixed, (A.6)
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we find all the interaction terms vanish except for the scalar self-interaction terms, giving

the Lagrangian,

1 , 1 1
L= = FuF™ = 50,0016 + 17 (0,00"9)", (A7)

the number of degrees of freedom is preserved, two in the form of a massless vector and
one in the form of a scalar with a quartic self-interaction term, and the action is gauge
invariant

§A, =0, 66 =0, (A.8)

In taking the massless limit this way, it is obvious that the limit is smooth and that the
massless limit of a massive vector is not just a massless vector, but is a massless vector
plus a scalar.

Example 2: linearized massive graviton. The linearized Lagrangian for ghost-free
massive gravity is given by the action:

1 1 1
Lo = = 500l 0" W + 0 by, O W' = OuhO WY + 20,hd"h — Sm? (hyw b = h?).
(A.9)

One can easily see that the linearized Lagrangian for general relativity can be recovered by
setting m = 0. However, when the massless limit is taken this way, just as in the massive
vector case, degrees of freedom are lost as a massive graviton has 5, while a massless
graviton only has 2 degrees of freedom. The gauge invariance that kills the extra degrees
of freedom only appears when the mass is exactly zero. We can use the Stiickelberg trick
to take the massless limit in a way that preserves the number of degrees of freedom. To
do this we make a replacement of the field patterned after the linearized diffeomorphism
gauge symmetry:

1 1 1
hyw — hyy + —0,A, + —0,A, + —0,0,0, A.10
u_>u+mu +m u+m2u¢ ( )
giving the Lagrangian:
1 12 v 14
L= Ly = G Fu " = 2m(hy 0" A” = hd A") = 2(hy 010" ¢ - hd% ). (A.11)
This action is invariant under the gauge transformations:

5hw, = a,ufz/ + au&,u» 5A,u = _mf,uv

0A, = OuA, 0 = —mA. (A.12)
This Lagrangian is dynamically equivalent to (A.9) since it is gauge invariant and we can
always choose the gauge A, = 0, ¢ = 0 to recover (A.9). Now if we take the massless

limit, the Lagrangian is

L=Lp—o— %FWF’“’ — 2(h, 010" ¢ — hd¢), (A.13)
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and the gauge transformations are

5huu = ,ugu + al/é,u
A, = O\ (A.14)
5 = 0. (A.15)

We find the degrees of freedom break up into 2 tensor modes, 2 vector modes, and 1 scalar
mode. So the massless limit of massive gravity is not massless gravity, but massless gravity
plus extra degrees of freedom. The tensor modes and scalar mode are coupled. They can
be decoupled using a field redefinition, h,, — hu, + 7n,,. However, if the graviton is
coupled to a stress-energy tensor this leads to non-minimal coupling to the stress energy
tensor, the so-called vDVZ discontinuity [46].

Example 3: massive Yang-Mills. The Stiickelberg trick can be extended to non-
Abelian theories as well. To demonstrate, we examine massive Yang-Mills,

_ 1 a 2 1 2 gqa pap
L= (F) - gmiaza, (A.16)
where
= 0 AL + gf AL A, (A.17)

Without the mass term, the action would be gauge invariant under: A, — RA;LRJr +
RaﬂRT, where R = e™™aT" T9 are the generators of the gauge group, and a,(x) are
gauge parameters, but the mass term breaks this gauge symmetry. Just as in the previous
examples, we can make a field replacement patterned after the gauge symmetry to create
a Lagrangian that is gauge invariant:

A, - UAUT+U8,UT, (A.18)

where U = e #m™T* and ma(x) are scalar fields. This can give interactions that go like:

g n—2 g n—2 g n—2
~ gdA®  ~ gPAY, ~ g2 () A%~ g () QAT ~ () o™,
m m m
(A.19)

For g < 1, the lowest energy scale suppressing the interaction terms is given by ~ %. We
can take the decoupling limit by sending;:

g,m — 0, g, Ay,  fixed. (A.20)
m
In this limit, the only terms that survive are the pure scalar interactions, given by the
Lagrangian
2
m
L="5Tr (a.Ut0rv), (A.21)

and the free vector fields.
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Example 4: non-linear massive gravity. As a final example, we will examine the
massless decoupling limit of full non-linear massive gravity. Using the ghost-free potential
for massive gravity, given by the action in (3.33), and assuming all fields are canonically
normalized, one finds generic terms with nj, powers of h,,, na powers of A,, and ng powers
of ¢ is given by

~ ASTTRTEATIRG (9 A)1A (9P ) (A.22)

where the term is suppressed by the scale

_ 3ng+2na+np —4

Ay = (Mpm M HYA A . A.23
r = (Mp ) Ng +na+np — 2 ( )
Looking at interaction terms suppressed by the smallest scale, we find
(0°9)°
~ A.24
oy (A.24)
corresponding to the decoupling limit:
m —0, Mp— o0, As, hu, A, ¢fixed, (A.25)

which corresponds to 4 point scattering amplitudes growing with energy like ~ E10.
However, miraculous cancellations occur and these all vanish with the ghost free poten-
tial [23, 47]. Similarly, interaction coming in at the next smallest scale, given by:

(@) 0A(0%9)
(Mpm3)2"  (Mpm3)’

(A.26)

which would correspond to 4 point scattering amplitudes growing with energy like E® also
vanish.
The non-vanishing terms with the smallest suppression scale that survive the massless
limit are given by:
h(0%¢)" (0A4)*(8%¢)"
T (M) (Mpm?)

(A.27)

and the gauge symmetry reduces to their linear form (A.14). This is found by taking the
decoupling limit
m —0, Mp— o0, Az, hu, A,, ¢fixed. (A.28)

The remaining interactions give 4 point scattering amplitudes growing like ES [36]. In the
full non-linear theory, the tensor and scalar modes cannot be fully decoupled from one
another, and we get a scalar-tensor theory along with a scalar-vector theory.
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Figure 1. Color-dressed tree-level 5-point amplitude organized using graphs with only cubic ver-
tices.

C Factorization on physical poles

An essential property of amplitudes in local theories is the presence of simple poles when
intermediate momenta go on-shell and factorization of the amplitude into products of
lower-point amplitudes in the associated residue. In this appendix, we will discuss how
these properties are ensured in amplitudes generated by our proposed massive KLT for-
mula (2.16). We will begin by analyzing factorization of (2.16) on two-particle channels,
and then extend the result to multi-particle factorization.

We begin by assuming that theories A and B are local and that their amplitudes
factorize correctly on two-particle channels,

Ag[12, - Pio) AL | [Pia, 0]

A12,0] = P + O ((812 + mZ)O)
AB[12, —Ppp) AB [P,
AB[12,0] = 22 [ 31;2j— le[ 12, 0] +0 ((312 + m2)0) , (C.1)

where there is an implicit sum over states on the right-hand-side.

Next without loss of generality, let us choose to study factorization on the s1s pole.
We can further assume that we have chosen a DDM basis in which the first m elements
have the form [120(3,--- ,n)] where o is a permutation, and no other elements have 1 and
2 adjacent.'? Thus only orderings in the first m rows and columns admit poles in sy and

2For example, the basis [Lo(2,--- ,n — 1)n] where o runs over all (n — 2)! permutations is a DDM basis
with (n — 3)! elements of the form [120(3,--+ ,n —1)n]|. One can then choose an ordering of basis elements
such that the assumed property is fulfilled.
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we can resolve our matrix of bi-adjoint scalar amplitudes into blocks,
PQT
Q R)’

where P, Q and R are m x m, (n —m) x m and (n —m) X (n —m) matrices respectively.

Af 0] = ( (C2)

Since s12 poles are not admitted by the last (n — m) orderings, the P matrix contains all
the elements with an s12 pole and ) and R do not contain any elements with an sjs pole.
Locality and unitarity of bi-adjoint scalar theory then demands that elements of () and R
will have zero residue on the s12 pole, and a given element of P will have the form

@® /
Pio,0(3,-- ,1)|Pra,o'(3, - -
.A$3[12,0(3,... ,n)12,0'(3,--- ,n)] = An_1[P12, 063, )Pz, o' (3, )]

s12 +m?
+0 ((s12+m?)°), (C.3)
near the pole. We will now assume that the orderings [Py2,0(3, - ,n)] form a DDM basis

for n — 1 particles {Pi2,3,4,...,n}.12 Thus the blocks are characterized by their behavior
as they approach the s;2 pole,

P=0((s+m?)™), Q=0((s12+m?°), R=0((sn+m?)"). (C4)
Various useful corollaries can be drawn. For example,
PL=0((s2+m)), R'=0((s2+m?)"). (C.5)
In fact, (C.3) allows us to be more specific, for P71,
P~Y12,0(12,0"] = (s12 +m?) (Ajf’_ ) " Pry, 0| Pray 0’| + O (s2+m??),  (C6)

where we will use the shorthand o = ¢(3, -+ ,n) and ¢/ = 0/(3,--- ,n) for the rest of the
section. Finally, using the geometric series formula for matrices, we get

(1= PIQTRTQ) T =140 ((s12+m))?). (C.7)
These properties, along with the blockwise inversion formula
(A¢3)71 /6 _ P71(1 _ P*lQTRle)fl 7P71(1 _ P*lQTRle)leTRfl
n [Oé‘ ] = _R_lQP—l(l _ P—IQTR—IQ)—l R—l +R_1QP_1(1 — P_lQTR—lQ)—lQTR_l )
(C.8)
gives
(P QT) 7 ((s12+m?) (Aiil) - [Pi2,0]P12,0'] 0 (O ((s12 +m*)%) O ((s12 + m2)1)>
- + 231 2\0 .
Q R 0 0 O((512+m))0((312+m))

(C.9)
It is straightforward to see that only the elements in the top left block will multiply ampli-
tudes A4 [120] and AZ[120'] and hence only these could develop a pole at s1o. Thus the
suppressed terms on the right-hand-side will not contribute on the factorization channel.

13Returning to the example DDM basis [10(2,--- ,n — 1)n], we see that this condition is satisfied, i.e.
[Pi120(3,- -+ ,n — 1)n| forms a DDM basis.
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So in a neighborhood of the s1o pole,
-1
AL =3 o] (A2°)  [alB1AE ]
a7/8

-1
Ag 12, = Pio) Azt | [Pra, 0] (Aﬁil) [Pi2,0|Pia, 0’| AB[12, = P1o] AS | [Pra, 0]

2
/ 812+m

| + O ((812 + m2)0)

3 -1
AL [Pi2.0] (A7) [Pz 0| Pra o] AR [Paa, o]

= A[12, —Ppo)AS[12, - Pro] >

o,0’ 812+m2
210
+0 ((312+m ) )
AFOP (1,2, - Ppo) AS®P (Pro,3, .
_ A ( 12) n712( 12 n) +O((312+m2)0)7 (C.10)
S12t+m

where we have used the fact that for n = 3, the formula (2.16) takes the simple form,
AZ®B(1,2,3) = A [123]45123). (C.11)

Thus, on a two-particle channel, an n-point amplitude generated by the massive KL T
formula factorizes into lower-point amplitudes also generated by (2.16), i.e. these ampli-
tudes factorize into the correct lower-point amplitudes. Since we chose to study the sio
pole without loss of generality, this argument demonstrates factorization on all two-particle
singularities.

This argument generalizes straightforwardly to multi-particle factorization. Without
loss of generality we will consider factorization on the singularity

P? =m?, where Pt =pl 4+ ph + ... +ph_ |+ D (C.12)

A double-ordered bi-adjoint scalar amplitude will contain such a singularity only if both its
orderings have {1,2,...,k} cyclically adjacent. As above, we choose a DDM basis for the
n-point amplitudes in which the minimal number of amplitudes with a P? factorization
singularity appear. A natural choice is

(A1, 0,n[1,8,n) : o, BEP(2,3,...,n—1)}. (C.13)

2

The subset of these amplitudes which have a P? = m? singularity have the form

{Af[l,a,p,nﬂ,a',p',n] 0,0 €P(2,3,....k—1,k), p,p € P(k+1,k+2,...,n—1,n)}.
(C.14)
Near the singularity such amplitudes have the form

3 3
Af (1,0, ~P|1,0", ~ PLAY, | [P, p,n|P, o/ 1]
P2+ m?

A% (1,0,p,0|1,0, 0/, n] = +0 ((P?+m?)?).

(C.15)
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Placing all such amplitudes in the top-left-hand corner of the matrix of biadjoint-scalar
amplitudes, we obtain the same result as in section 2.2, that only amplitudes of this form
are important on the factorization channel when using the block decomposition inverse
formula (C.8). Here the associated subspaces are indexed by a pair of orderings (o, p) on
the left and (o, p') on the right. The required inverse is then given by

(Agj)_l [17 g, p7 n|17 0/7 pl7 TL}
3 —1 3 —1
:4ﬂ+m%@&o @m_mman@gJ mmmﬂmm+o«ﬁ+mwy
(C.16)

This is an application of a general result for the so-called Kronecker product of matrices
(PoQQ)'=P'eqQ (C.17)

Verifying that this is true is trivial in component form. We label the components as Py
and @j;, the Kronecker product is then defined component-wise as (P ® Q)iji = PirQji-
The right-inverse is defined to satisfy

> (P ®Q)ijmn(P ® Q) = Skt (C.18)

m,n
It is straightforward to see that this is satisfied by matrices of the form

(P @ Q)rnit = (P™H)mk(Q s (C.19)

and similarly for the left-inverse. Using this result, on the neighborhood of the P? = m?
pole,

AA®B (19 n)
- Al (AZS)_l 0l B1AZ15)

—1
=X (Ak+1[1 0, ~PLAL 1 [Popin) x (AD) T [Lo,p,ml1,0", )

a0’ pp’

x A1§+1[1’0—/’ _P]Af—k-&—l[P? pl7n]) +0 ((P2 + m2)0)

3 -1 ,
= ZZ P2 m ("4?-1-1[170—7 _P]Aé—k-i—l[Pa pan] (Ai—&—l) [1a07 _PH:J ’ _P]

a0’ pp’

1
(A" k+1) [P, p,n|P, o/, n] AP\, (1,0, —PIAT [P, Plan]) +0 ((P2 + m2)0)

1 -1
=P am? (ZAkH ](AkH) [1,0,—P|1,0',~PlAZ (1,0 P])

0,0

x (ZAﬁ_kH[Rp,n} (A2 1) [Pponl Py nAD [P, n1) +0((P*+m?)°)

A®B A®B
Akfl (7 7"-7k7_P)Ani®k+1(P,k+1,...,n)
P2 +m?

+0((P*+m?)°).
(C.20)
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So we find that the massive KLT formula generates expressions which factor correctly on

all singularities.

D Feynman rules for massive Yang-Mills

At low multiplicity it is efficient to calculate the scattering amplitudes of massive Yang-
Mills (3.6) using Feynman rules. The vertex functions are identical to those of standard

non-Abelian gauge theory:

H2, a2
p1 /‘ gferazes [ghik (ph® — pl*)
— D2
pi, ai — +g" (P — ph')
+g" (py® — py®)],
Ps\
H3, as
M1, ai M2, a2

2 2b b .
g fa1a fa3a4 (gﬂlﬂ3gﬂ2ﬂ4 gu1,u4g[l,2u3)
b rasaqb
fa1a3 fa a4 (gu1uggu3u4 gu1u4gu2u3)

_|_fa1a4bfa2a3b (gulu2gu3u4 _ nglNBgH2,Uf4):| )

K4, G4 mn3, as

Meanwhile the propagator is modified to take the Proca form:

p
—_— §ab G + PuPv ')
iy o RRRRRRY v, b = Zrmz \I e

E 4-point graviton-dilaton amplitudes from double-copy

The amplitudes given by the double-copy of massive Yang-Mills are given here:

1 1
Mhhhh ( — 214293mM% + 2132942 + 2219234m° + 2p122142
4 aMZ \m? — 2p12( 14223M° + 213224M° + 2212234M" + 2p12214223

— 2p12213224 — 2p12212234 — 4P13212234 + 42342D132P21 — 42342D122P23

+ 42942p122p31 — 42142p212p31 + 42042P122P32 — 42142D212D32 — 42232P122P41

+ 4z132p212pa1 + 4z122p322pa1 — 42032p122pa2 + 42132P212Pa2 — 421221?312])42)2

+(293)+(2<ﬁ4)).
(E.1)
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MO9S

Moo _

Mthﬁqﬁ _

1 (_ pis (T5m?p1a+34pi,+116m?)

2 72m* (m?—2p12)
+3 (—24m2p12+48p2 +115m4)( ! ! )
64 12 2p1a+m? - 2pi13+m?

L P (—41m*p1a—41m>p3, —34p3, +116m°)
72m4 (m? —2p12)
B —4751m4p12+744m2p%2+368p§2+3696m6)
288m?2 (m2 — 2p12) '
1

6v/3mAMZ (m?—2p12) (m? —2p13) (M2 —2(p14))
+ 19zp%3) —mb (p13 (1362]9%2 —53zp132p1a+ 76zp%3) +p12 (76219%2 —532p132p12
+1362p35) ) +mO (p2y (762pTy +612p132p12+1952pT3 ) +3p13p12(392p3,
—532p132p12+392p75) + 035 (195235 +612p132p12+T762p75) )

+m* (plo2p13(102p12+2p13) +p13pia(—412pta+102p132p1a—372pi;)
+pisp12(—372ply+102p132p1a —412pis) + piszpra (2p12+102p13) )

+2m® (ply2pis — 12p13pio 2p122p13 — 2013012 (2019 + 132p132p12+ 207 3)
—12pY3p122p122D13+D132P12) —4p12p13 (Pr2-+p13) (P13zp12 —p122p13) %))

(mlo (19zp%2 —432p132p12

(E.3)
1
6m2M5 (m2 — 2p12) (m2 — 2p13) (m2 — 2])14)

(19z%2m10

— 212(62p12212+92p13 212+ 2P122P21 — 352p132p21 + 1T2p122pas — 182p132pas) m®
+ (42T 275+ 156pT 527 +4p13 (2p12 (2p21 +212pag) — 32p13 (132pa1 +62p23) ) 212
+p12(180p13212+2p12 (42po1 +312p2s) — zp13 (121 2pa1 +902p23) ) 212+ 342pT32p5,
+2piy 233 —332p122P13 2Dy +332p3 2p21 2p23 — 352p122p132pa1 2p2z) m°
+(1327,p3y — 4212 (14p13212+ 2p12 (2P21 — 22p23) — 2p13 (25221 +272D23) ) Pia
— (200p33275+12p13 (2p12 (2p21 +102p23) —22p13 (142pa1 +92p23) ) 212+ 212 2D33
—22p122p132p23 (342p21 +332p23) +2p3, (100zp§1 +1322po32po1 +332p§3) )pi2
— 13 (128p35275 +4p13 (2p12 (2p21 +422p23) —62p13 (10221 +32pa3) ) 212
+372p392p3s —22p122p132p23 (T02p21 +332pa3 ) + 235 2pa1 (1032pa; +662p23) )m*
—2(279p1y+2212 (Ip13212 — 2P132P21 +2D122P23) Da + (— (322p3) +662p2s2par
+332p33) 2pis — 22P122P21 2P232P13 + 2P1o 2Dss + 213712 (212 (T2pas — 22p21)
+2p13(292p21 +362p23) ) ) pla — 2013 (24pT3215 + D13 (2p12 (22p21 +272p23)
—92p13(72p21 +42p23) ) 212 +332p13 (2p21 +2p23) (2p132D21 — 2p122P23) ) P12
—p13(32p73272— 68p13(2p132p21 — 2p122p23) 212+ 35 (2p132p21 — 2p122p2s) ) )m”
+4p12p13 (p12 +p13) (p12Z12 +2p13212 — 2P132P21 +Zp122p23) 2)) .

(E.4)
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1
2v/3M2(m?—2p12) (m? —2p13) (m? —2(p14)

— 2P 230 — 8231 2P32 23y +AP12213 203212 +4AP13 213223212 — T2232D122D31 212

8 2 2
(z12213203m° — (—142p3; 275

+132232p132p31212+ 132132p21 2P31 212 — T2132D232P31 212 + 2232P122D32212
+52032P132P32212 — T2132D21 2P32212 — L1 2132D232P32212 + 233 2D10 + 2532D73
—142732p5) —22732p53+ 10253 2p122p13+ 13213203 2p122p21 — T2132232P132P21
+52132032P122P23 + 2132232P132P23 — 82132p21 2p23) m° + (4212213223p7
+(—412p3) 27y — Bapiyziy — 142p31 2p32270 + 12p13213 223212 +402132p21 231 212
—282132p232p31212 — 162132p21 2p32.212 — 202132pa3 232212 — 4427523, — 2027325,
+ 253 (2pTy +222p132p12 — 112pT3) — 32275 2p21 2pag +4223 (213 (2012 (7221 +22p23)
+2p13(42p23 — 7Zp21)) + 212 (2p12 (2p32 —42p31) +2p13(132p31 +22p32) ) ) ) P12
+p13(—442p3) 215 — 202p3y 215 — 322p31 2psa2ia +4AP13 213223212 +402132p21 2P31 212
—162132p232p31 212 — 282132p21 2P32z12 — 202132pa3 2p32 212 — Al 215 2p3) —521s2p33
+ 233 (— 112ply +222p132p12+ 2pT3) — 142732p21 2p2s+ 4223 (213 (2p13 (2pas — 42p21)
+2p12(132p21 +22p23) ) + 212 (2013 (T2p31 +22p32) +2p12 (42psa — Tzpa1)) ) ) )m*
+2((132p3, 275+ 2P32 270 — 22P31 2psa2is — 4P13213 223212 — 142132p21 2p31 212
+142132p232P31 212+ 2213221 2P32212 — 22132P23 P32 212+ 16275205, +162752p34
—22z93(z13(2p12— T2p13) (2p21 — 2D23) + 2122p13 (13231 — 2P32)
+2z122p12(2p32— 2p31)) +Z§3 (ZP%Q —2zp132p12+ 13Zp%3) + 162%32]92121923)]?%2
—2p13(2p13212213223 — 3( (5203, +22D322p31 +2P52) 212 + 213 (32p23 (2p31 +2p32)
+2pa1 (32psa —52p31) ) 212 — 4233212213+ 213 (52p5) +22p23 2Pt +2p33)
—293(213(2p13 (2p23 — 32p21) + 2p12 (52p21 +2p23) ) + 212 (2p12 (2p32 — 32ps31)
+2p13(52p31+2p32))) ) ) Pra+p13 (16 (23 +2ps22ps1 +2p3s) 21
—2213(T2p21 — 2p23) (2p31 — 2p32) 212 +Z§3 (13219%2 —22p132p12 +ZP%3)
+ 273 (1325, —22p23zpa1 +2p33) — 2223 (213 (2p12 (132p21 — 2p23)
+2p13(2pas— 2pa1)) — 212 (Tzp12— 2p13) (2p31 — 2p32) ) ) ) m°

—4p12p13 (p12 +p13) (223 (Zplz —Zp13) + 213 (Zp23 —Zp21) +212 (Zp31 - Zp32) ) 2) .
(E.5)

F BCJ relations as null vectors

The BCJ relations can be obtained as null space relations of the matrix of bi-adjoint

scalar amplitudes. To show this, one must first notice a remarkable property about these

amplitudes. Just as in the massless case, bi-adjoint scalar theory acts as an identity for

the massive double-copy,'*

A®BS=A. (F.1)

141t is an interesting fact that this is true whether or not the spectral conditions hold.
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To express this in matrix notation, let us first choose an (n — 2)! DDM basis. From
this, we choose BCJ-independent (n — 3)! sub-bases «,  and v and use the KLT formula,

AP [a|8] A [B7] 7t AA] = A% al. (F.2)

The BCJ relations are consistency conditions that make the KLT formula basis-independent.
For example, consider another (n — 3)! sub-basis 4. We can then express a BCJ relation as

AP [a]B] A (BT AA) = A9 [al8] A2 (8177 A4 (F.3)

We now embed these matrices in our original (n—2)! DDM basis. The matrix A%’ [a|6]
is padded with the remaining bi-adjoint scalar amplitudes, while we pad the vector

(A2°[B87] LA [Y] — A% [B13] A4 H]) (F.4)
with zeros. This gives us the following null vector equation,
A% (0] 8] (A% [B]7] 1A%y — A2 [8]5] LA []) = 0. (F.5)

To connect this to the BCJ relations of theory A, we consider a double-copy of A with
itself,

A®A=B. (F.6)
Choosing the same sub-bases as previously, we can rewrite the KLT formula,
AABIT AT () AR = AP (F.7)
Again the BCJ relations are given by demanding basis-independence of this formula,
AABIT AT [B] Tt A = AMB)T AT 1) ARG
= AAB]T (AP [BR] LAY ] - AP (B3] LAY F]) = . (F.8)
We recognize this vector as being a null vector of A%’ [a|8]. Indeed this equation must

hold for all choices of v and 4. At 4- and 5-point, we observe that different choices of ~
and % span the null space of AP [a| 8], allowing us to generalize this equation to,

AA[B) -7 =0, (F.9)

where the vector 77 is any null vector of the matrix of bi-adjoint scalar amplitudes.

Thus (F.9) is an equivalent representation of the BCJ relations. Since the number of
null vectors of A% [a|f] is exactly the number of independent BCJ relations, we expect
this equivalence to continue to any n-point.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

47 —


https://creativecommons.org/licenses/by/4.0/

References

[1] H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and
Open Strings, Nucl. Phys. B 269 (1986) 1 [nSPIRE].

[2] H. Johansson and A. Ochirov, Pure Gravities via Color-Kinematics Duality for Fundamental
Matter, JHEP 11 (2015) 046 [arXiv:1407.4772] [INSPIRE].

[3] H. Johansson and A. Ochirov, Color-Kinematics Duality for QCD Amplitudes, JHEP 01
(2016) 170 [arXiv:1507.00332] [INSPIRE].

[4] F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To
Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].

[5] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double
Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

[6] R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12
(2014) 056 [arXiv:1410.0239] [INSPIRE].

[7] Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The Duality Between
Color and Kinematics and its Applications, arXiv:1909.01358 [INSPIRE].

[8] Z. Bern et al., Ultraviolet Properties of N'= 8 Supergravity at Five Loops, Phys. Rev. D 98
(2018) 086021 [arXiv:1804.09311] [INSPIRE].

[9] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes,
Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[10] M. Chiodaroli, Q. Jin and R. Roiban, Color/kinematics duality for general abelian orbifolds
of N =4 super Yang-Mills theory, JHEP 01 (2014) 152 [arXiv:1311.3600] [INSPIRE].

[11] S.G. Naculich, Scattering equations and BCJ relations for gauge and gravitational amplitudes
with massive scalar particles, JHEP 09 (2014) 029 [arXiv:1407.7836] [INSPIRE].

[12] H. Johansson and A. Ochirov, Double copy for massive quantum particles with spin, JHEP
09 (2019) 040 [arXiv:1906.12292] [INSPIRE].

[13] M. Chiodaroli, M. Giinaydin, H. Johansson and R. Roiban, Spontaneously Broken
Yang-Mills- Einstein Supergravities as Double Copies, JHEP 06 (2017) 064
[arXiv:1511.01740] [iNSPIRE].

[14] M. Chiodaroli, M. Giinaydin, H. Johansson and R. Roiban, Gauged Supergravities and
Spontaneous Supersymmetry Breaking from the Double Copy Construction, Phys. Rev. Lett.
120 (2018) 171601 [arXiv:1710.08796] INSPIRE].

[15] M. Chiodaroli, M. Giinaydin, H. Johansson and R. Roiban, Non-Abelian gauged
supergravities as double copies, JHEP 06 (2019) 099 [arXiv:1812.10434] [INSPIRE].

[16] Y.F. Bautista and A. Guevara, On the Double Copy for Spinning Matter, arXiv:1908.11349
[INSPIRE].

[17] Y.F. Bautista and A. Guevara, From Scattering Amplitudes to Classical Physics:
Universality, Double Copy and Soft Theorems, arXiv:1903.12419 [INSPIRE].

[18] D. Neill and I.Z. Rothstein, Classical Space-Times from the S Matriz, Nucl. Phys. B 877
(2013) 177 [arXiv:1304.7263] INSPIRE].

[19] N.E.J. Bjerrum-Bohr, A. Cristofoli, P.H. Damgaard and H. Gomez, Scalar-Graviton
Amplitudes, JHEP 11 (2019) 148 [arXiv:1908.09755] [INSPIRE].

48 —


https://doi.org/10.1016/0550-3213(86)90362-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB269%2C1%22
https://doi.org/10.1007/JHEP11(2015)046
https://arxiv.org/abs/1407.4772
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.4772
https://doi.org/10.1007/JHEP01(2016)170
https://doi.org/10.1007/JHEP01(2016)170
https://arxiv.org/abs/1507.00332
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.00332
https://doi.org/10.1007/JHEP07(2015)149
https://arxiv.org/abs/1412.3479
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.3479
https://doi.org/10.1103/PhysRevLett.105.061602
https://arxiv.org/abs/1004.0476
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.0476
https://doi.org/10.1007/JHEP12(2014)056
https://doi.org/10.1007/JHEP12(2014)056
https://arxiv.org/abs/1410.0239
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.0239
https://arxiv.org/abs/1909.01358
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.01358
https://doi.org/10.1103/PhysRevD.98.086021
https://doi.org/10.1103/PhysRevD.98.086021
https://arxiv.org/abs/1804.09311
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.09311
https://doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.3993
https://doi.org/10.1007/JHEP01(2014)152
https://arxiv.org/abs/1311.3600
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.3600
https://doi.org/10.1007/JHEP09(2014)029
https://arxiv.org/abs/1407.7836
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.7836
https://doi.org/10.1007/JHEP09(2019)040
https://doi.org/10.1007/JHEP09(2019)040
https://arxiv.org/abs/1906.12292
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.12292
https://doi.org/10.1007/JHEP06(2017)064
https://arxiv.org/abs/1511.01740
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.01740
https://doi.org/10.1103/PhysRevLett.120.171601
https://doi.org/10.1103/PhysRevLett.120.171601
https://arxiv.org/abs/1710.08796
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.08796
https://doi.org/10.1007/JHEP06(2019)099
https://arxiv.org/abs/1812.10434
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.10434
https://arxiv.org/abs/1908.11349
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.11349
https://arxiv.org/abs/1903.12419
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.12419
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://arxiv.org/abs/1304.7263
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB877%2C177%22
https://doi.org/10.1007/JHEP11(2019)148
https://arxiv.org/abs/1908.09755
https://inspirehep.net/search?p=find+doi%20%2210.1007%2Fjhep11%282019%29148%22

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Scattering Amplitudes
and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order,
Phys. Rev. Lett. 122 (2019) 201603 [arXiv:1901.04424] [INSPIRE].

F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and
Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].

S. Mizera, Inverse of the String Theory KLT Kernel, JHEP 06 (2017) 084
[arXiv:1610.04230] [NSPIRE].

C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Reuv.
Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at
tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].

A. Momeni, J. Rumbutis and A.J. Tolley, Massive Gravity from Double Copy, JHEP 12
(2020) 030 [arXiv:2004.07853] [INSPIRE].

R. Kleiss and H. Kuijf, Multi - Gluon Cross-sections and Five Jet Production at Hadron
Colliders, Nucl. Phys. B 312 (1989) 616 [InSPIRE].

G. Chen and Y.-J. Du, Amplitude Relations in Non-linear Sigma Model, JHEP 01 (2014)
061 [arXiv:1311.1133] [INSPIRE].

J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from
High-Energy Unitarity Bounds on the s Matriz, Phys. Rev. D 10 (1974) 1145 [Erratum dbid.
11 (1975) 972] [nSPIRE].

S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].

C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of
Scattering Amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [InSPIRE].

G.R. Dvali, G. Gabadadze and M. Porrati, 4 — D gravity on a brane in 5 — D Minkowski
space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].

C. de Rham and G. Gabadadze, Selftuned Massive Spin-2, Phys. Lett. B 693 (2010) 334
[arXiv:1006.4367] [INSPIRE].

N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering Amplitudes For All Masses and
Spins, arXiv:1709.04891 [INSPIRE}.

K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671
[arXiv:1105.3735] [INSPIRE].

S.F. Hassan and R.A. Rosen, Resolving the Ghost Problem in non-Linear Massive Gravity,
Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].

C. Cheung and G.N. Remmen, Positive Signs in Massive Gravity, JHEP 04 (2016) 002
[arXiv:1601.04068] [INSPIRE].

J.J. Bonifacio, Aspects of Massive Spin-2 Effective Field Theories, Ph.D. thesis, Oxford
Uiversity, U.K. (2017).

C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82
(2010) 044020 [arXiv:1007.0443] [INSPIRE].

J. Bonifacio and K. Hinterbichler, Bounds on Amplitudes in Effective Theories with Massive
Spinning Particles, Phys. Rev. D 98 (2018) 045003 [arXiv:1804.08686| [INSPIRE].

— 49 —


https://doi.org/10.1103/PhysRevLett.122.201603
https://arxiv.org/abs/1901.04424
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevlett.122.201603%22
https://doi.org/10.1007/JHEP07(2014)033
https://arxiv.org/abs/1309.0885
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.0885
https://doi.org/10.1007/JHEP06(2017)084
https://arxiv.org/abs/1610.04230
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.04230
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevLett.106.231101
https://arxiv.org/abs/1011.1232
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.1232
https://doi.org/10.1016/S0550-3213(99)00809-3
https://arxiv.org/abs/hep-ph/9910563
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9910563
https://doi.org/10.1007/JHEP12(2020)030
https://doi.org/10.1007/JHEP12(2020)030
https://arxiv.org/abs/2004.07853
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.07853
https://doi.org/10.1016/0550-3213(89)90574-9
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB312%2C616%22
https://doi.org/10.1007/JHEP01(2014)061
https://doi.org/10.1007/JHEP01(2014)061
https://arxiv.org/abs/1311.1133
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.1133
https://doi.org/10.1103/PhysRevD.10.1145
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD10%2C1145%22
https://doi.org/10.1016/0378-4371(79)90223-1
https://inspirehep.net/search?p=find+J%20%22Physica%2CA96%2C327%22
https://doi.org/10.1103/PhysRevLett.114.221602
https://arxiv.org/abs/1412.4095
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.4095
https://doi.org/10.1016/S0370-2693(00)00669-9
https://arxiv.org/abs/hep-th/0005016
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0005016
https://doi.org/10.1016/j.physletb.2010.08.043
https://arxiv.org/abs/1006.4367
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.4367
https://arxiv.org/abs/1709.04891
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.04891
https://doi.org/10.1103/RevModPhys.84.671
https://arxiv.org/abs/1105.3735
https://inspirehep.net/search?p=find+J%20%22Rev.Mod.Phys.%2C84%2C671%22
https://doi.org/10.1103/PhysRevLett.108.041101
https://arxiv.org/abs/1106.3344
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.3344
https://doi.org/10.1007/JHEP04(2016)002
https://arxiv.org/abs/1601.04068
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.04068
https://doi.org/10.1103/PhysRevD.82.044020
https://doi.org/10.1103/PhysRevD.82.044020
https://arxiv.org/abs/1007.0443
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.82.044020%22
https://doi.org/10.1103/PhysRevD.98.045003
https://arxiv.org/abs/1804.08686
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.08686

[40] C. De Rham, K. Hinterbichler and L.A. Johnson, On the (A)dS Decoupling Limits of
Massive Gravity, JHEP 09 (2018) 154 [arXiv:1807.08754] [INSPIRE].

[41] N. Moynihan, Scattering Amplitudes and the Double Copy in Topologically Massive Theories,
JHEP 12 (2020) 163 [arXiv:2006.15957] [INSPIRE].

[42] J. Bonifacio, K. Hinterbichler and R.A. Rosen, Constraints on a gravitational Higgs
mechanism, Phys. Rev. D 100 (2019) 084017 [arXiv:1903.09643] [INSPIRE].

[43] C. Cheung and C.-H. Shen, Symmetry for Flavor-Kinematics Duality from an Action, Phys.
Rev. Lett. 118 (2017) 121601 [arXiv:1612.00868] [INSPIRE].

[44] R. Monteiro and D. O’Connell, The Kinematic Algebra From the Self-Dual Sector, JHEP 07
(2011) 007 [arXiv:1105.2565] [INSPIRE].

[45] C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].

[46] H. van Dam and M.J.G. Veltman, Massive and massless Yang-Mills and gravitational fields,
Nucl. Phys. B 22 (1970) 397 [INSPIRE].

[47] N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons
and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].

— 50 —


https://doi.org/10.1007/JHEP09(2018)154
https://arxiv.org/abs/1807.08754
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.08754
https://doi.org/10.1007/JHEP12(2020)163
https://arxiv.org/abs/2006.15957
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.15957
https://doi.org/10.1103/PhysRevD.100.084017
https://arxiv.org/abs/1903.09643
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.09643
https://doi.org/10.1103/PhysRevLett.118.121601
https://doi.org/10.1103/PhysRevLett.118.121601
https://arxiv.org/abs/1612.00868
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.00868
https://doi.org/10.1007/JHEP07(2011)007
https://doi.org/10.1007/JHEP07(2011)007
https://arxiv.org/abs/1105.2565
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.2565
https://doi.org/10.12942/lrr-2014-7
https://arxiv.org/abs/1401.4173
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.4173
https://doi.org/10.1016/0550-3213(70)90416-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB22%2C397%22
https://doi.org/10.1016/S0003-4916(03)00068-X
https://arxiv.org/abs/hep-th/0210184
https://inspirehep.net/search?p=find+J%20%22Ann.%20Phys.%2C305%2C96%22

	Introduction
	Massive KLT formula
	Equivalence of massive BCJ and massive KLT
	Spurious singularities

	Massive gravity and (Massive Yang-Mills)²
	Physical motivation
	3-point amplitudes and asymptotic states
	4-point amplitudes and high energy behavior
	5-point amplitudes and non-physical singularities

	Locality and the spectral condition
	4-point spectral condition
	5-point spectral conditions
	Non-minimal rank

	Discussion
	Massless limits of massive theories
	Matrix of 5-point bi-adjoint scalar amplitudes
	Factorization on physical poles
	Feynman rules for massive Yang-Mills
	4-point graviton-dilaton amplitudes from double-copy
	BCJ relations as null vectors

