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1 Introduction

Conformal field theories (CFTs) are important landmarks in the space of general quantum
field theories (QFTs) and are studied extensively. A natural next step in charting out
the landscape of QFTs more generally is to understand renormalization group (RG) flows
connecting different CFTs. RG flows are harder to analyze, due to the lack of conformal
symmetry in between the end points, which makes general results particularly valuable.
A striking class of such general results are “c-theorems”, which identify quantities that
change monotonically along RG flows. Such “c-functions” strongly constrain the possible
flows between different CFTs, indicate the irreversibility of RG flows, and they give useful
measures for the number of degrees of freedom of a given system, which is hard to define
otherwise in QFT. Furthermore, in certain limits c-functions can be directly related to the
density of states, e.g. by Cardy formulae [1], and they feature prominently in the context
of AdS/CFT and black hole microstate counting.

Monotonicity properties for different types of c-functions have been established in
d = 2, 3, 4 [2–8], and for certain types of flows in supersymmetric theories in d = 6 [9–13].
The remaining dimension in which supersymmetric conformal field theories (SCFTs) exist,
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d = 5, is much less understood. A holographic c-theorem holds in general dimensions for
flows described by certain truncated gravity theories [14, 15], but while highly indicative,
the flows that can actually be realized within consistent truncations to these gravity theories
are rather limited.

In this work we revisit RG flows between 5d SCFTs. Many 5d SCFTs can be understood
as UV fixed points of (perturbatively non-renormalizable) 5d gauge theories [16–18], and
even larger classes of theories can be realized in string theory (recent classification attempts
include [19–28]). We will focus on a large general class of 5d SCFTs that can be engineered
by (p, q) 5-brane webs in Type IIB string theory [29, 30]. Akin to 3d [5–8], the quantity
that is expected to be monotonic along RG flows is the free energy on the 5-sphere [7],

F = − logZS5 . (1.1)

Consequently, results establishing the monotonicity of F are also referred to as F -theorems.
Certain flows between 5d SCFTs have been found to be compatible with a putative F -
theorem at finite N in [31], and at large N e.g. in [32–35]. However, unlike in 3d no general
proof for the monotonicity of F is available,1 and the data supporting the conjectured
monotonicity is somewhat sparse.

Several properties are desirable for a function to be identified as a measure for the
number of degrees of freedom: (i) it should be bounded from below (ii) it should be
invariant under marginal deformations (iii) it should decrease along RG flows from the
UV to the IR. The last property can be formulated in various forms, the weakest of which
is that the value at the IR fixed point should be smaller than the value at the UV fixed
point. Concretely in 5d, the putative c-function −F is expected to satisfy

−FUV > −FIR . (1.2)

Property (i) is in general not satisfied by −F in 5d: free Maxwell theory, which is not
conformal in 5d [37], has −F = −∞ [38], showing that −F is unbounded from below at
least if non-conformal theories are not excluded. Marginal deformations are scarce in 5d
(there are no supersymmetric ones), but some evidence for property (ii) has been given
in [7]. In this paper we focus on (1.2), and provide extensive evidence that it holds for RG
flows between large classes of large-N 5d SCFTs.2

Our approach is to study RG flows between general 5d SCFTs engineered by (p, q)
5-brane webs with large numbers of external branes in Type IIB string theory, using the
holographic duals for these theories constructed in [39–41]. Using a combination of an-
alytic and numerical methods, we survey a large sample of RG flows. The free energies
−F obtained from the supergravity duals are manifestly positive, and have been matched

1The methods based on entanglement entropy used to prove F/a-theorems in 3d/4d in [8, 36] do not
extend straightforwardly to 5d, since the relation between F and the sphere entanglement entropy includes
a third order derivative of the entanglement entropy whose positivity properties are harder to access.

2In 3d, statements analogous to (i) and (iii) have been proven. In fact, a stronger version of (1.2) holds:
F is defined and monotonic also in between the fixed points. While there is evidence for property (ii), a
proof is lacking.
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to field theory computations for numerous examples in [33, 35]. We compare the free en-
ergies between the UV and IR fixed points of the RG flows, and find that, for all flows
considered, (1.2) is satisfied, in line with the existence of a 5d F -theorem.

We will derive a general expression for the sphere free energy of 5d SCFTs engineered
by (p, q) 5-brane webs with large numbers of external 5-branes from their supergravity
duals. This free energy is expressed in terms of the charges of the (p, q) 5-branes involved
in the string theory realization of the 5d SCFTs, and additional parameters characterizing
the geometry of the internal space in the supergravity duals. These additional parameters
are fixed in terms of the 5-brane charges by regularity conditions. If the regularity condi-
tions are not satisfied, the supergravity duals are singular, and there is no immediate field
theory interpretation. Nevertheless, our expression for the free energy with the geometric
parameters left unconstrained is finite and can be regarded as a “trial free energy”. We
show that solutions to the regularity conditions extremize this trial free energy. Using these
results, we show analytically that the free energy decreases for certain simple classes of RG
flows, and survey a large sample of more general flows numerically.

Outline. In section 2, we review relevant aspects of 5d SCFTs engineered by (p, q) 5-
brane webs, and discuss RG flows from that perspective. In section 3, we review the planar
limit of 5d SCFTs and summarize the main results on the free energies, whose derivation
we relegate to appendices. In section 4, we discuss explicit RG flows. We close with a
discussion in section 5.

2 5d SCFTs and RG flows

Many 5d SCFTs can be realized as UV fixed points of perturbatively non-renormalizable
5d gauge theories with N = 1 supersymmetry.3 We will start here with a string theory
construction of 5d SCFTs in terms of 5-brane webs, which also covers SCFTs that can not
be described as UV fixed points of gauge theories, and make connections to gauge theory
descriptions along the way. In this section we review the features of 5-brane webs that will
be pertinent below; more details can be found for instance in [29, 30].

The basic ingredients are (p, q) 5-branes of Type IIB string theory, where (1, 0) is a D5
and (0, 1) an NS5-brane. Supersymmetric configurations of (p, q) 5-branes can be realized
if all branes share five of their six worldvolume dimensions, and have the remaining one
lying in a common plane, say with coordinates x and y, at an angle dictated by the (p, q)
charges, i.e. p∆x = q∆y. These 5-branes can join and split so long as their (p, q)-charges
are conserved. Every planar junction of such (p, q) 5-branes at a point in the xy-plane
defines a 5d SCFT with 16 supersymmetries (comprising 8 Poincaré supersymmetries and
their superconformal partners). An example is shown schematically in figure 1a, where the
external 5-branes have been resolved slightly for illustrative purposes. The SCFTs have an
SU(2) R-symmetry, which in the string theory realization corresponds to rotations in the

3The superconformal algebra in 5d is unique and includes 8 Poincaré supercharges, which fixes the
amount of supersymmetry for theories with UV fixed points in 5d.
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Figure 1. Left: generic 5-brane junction, fully specified by a choice of external 5-branes. The
external branes have been resolved slightly for illustrative purposes; the figure represents a junction
at a point. The branes are at angles reflecting their charge, i.e. ∆x/∆y = p/q. Right: mass
deformation of a junction of M NS5 and N D5-branes. The UV fixed point is described by the
configuration with all D5 and all NS5 branes coincident (see figure 3). For N = M = 1 this describes
a free massless hypermultiplet.

three directions transverse to all 5-branes. Relevant deformations of the SCFT correspond
to displacements of a subset of the semi-infinite external 5-branes.

Many 5-brane junctions at a point can be deformed to brane webs involving stacks of
parallel D5-branes of finite extent in the horizontal direction, suspended between more gen-
eral (p, q) 5-branes. An example for an intersection of N D5-branes and M NS5-branes,
discussed first in [30], is shown in figure 1b. Following [42], we refer to this theory as
+N,M . Each stack of N D5-branes suspended between a pair of neighboring NS5-branes
corresponds to an SU(N) gauge node. The gauge nodes are connected by bifundamen-
tal hypermultiplets resulting from strings connecting neighboring D5-brane stacks. The
semi-infinite D5-branes at the ends realize SU(N) flavor symmetries, associated with fun-
damental hypermultiplets resulting from strings connecting D5-branes across the first and
last NS5-brane. A gauge theory for the +N,M junction thus is a linear quiver gauge theory
of SU(N) nodes, connected by hypermultplets in the bifundamental representation, and
with flavors in the fundamental representation at the boundary nodes:4

[N ]− SU(N)− . . .− SU(N)− [N ] , (2.1)

with a total of M − 1 gauge nodes and with all Chern-Simons levels zero. In general,
a 5-brane junction may or may not have deformations that can be described as 5d gauge
theories. However, whether or not a 5d SCFT has deformations described by gauge theories
will not play a role in the following. We will only use that relevant deformations are realized
by displacements of some of the external 5-branes, which allows for a simple geometric
picture of RG flows for general SCFTs.

The 5d SCFTs considered in this paper are fully specified by a choice of 5-brane charges
(p1, q1), . . . , (pL, qL) defining a 5-brane junction at a point. These theories have holographic

4Another gauge theory description can be obtained by performing an S-duality on the brane web, cor-
responding to a 90 degree rotation. This leads, in this case, to a gauge theory of the same form but with
M and N exchanged.
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duals based on the Type IIB string theory solutions constructed in [40, 41].5 Below, we
will consider theories for which the supergravity approximation to Type IIB string theory
becomes accurate, which is when all (integer) charges (p`, q`) are homogeneously large. We
will generally refer to the limit where all (p`, q`) scale with N , i.e. are O(N) with N large,
as the “large N limit”.

For 5-branes with large (p, q) one may distinguish two cases: 1) if (p, q) have a large
common divisor, we have a stack of a large number of like-charged 5-branes and 2) if
(p, q) are relatively prime, it is a single 5-brane with large charges. The two cases differ
substantially in terms of relevant deformations of the SCFTs and also for instance regarding
the spectrum of stringy states realizing SCFT operators (studied from the holographic
perspective in [42]). However, from the perspective of the free energies, the two cases in
general differ only by an O(1) adjustment of the brane charges, and the free energies in
the large N limit are insensitive to such O(1) adjustments. Consequently, we can treat the
two cases on equal footing.

In the following we discuss two classes of RG flows from the brane web perspective, to
set the stage for the discussion of the change in free energy along such flows in the following
sections.

2.1 Higgs branch flows

The first class are Higgs branch flows, which are triggered by relevant deformations that
break the R-symmetry SU(2)R. The SU(2)R symmetry corresponds to rotations in the
directions transverse to all 5-branes, and Higgs branch deformations are realized by moving
a sub-junction of 5-branes out of the xy-plane in which the full 5-brane junction lies.

The simplest case is to separate an entire (p, q) 5-brane from the 5-brane junction:
for instance, for the +M,N theory shown in figure 1b, one may move an entire D5-brane
out of the xy-plane. This triggers a flow whose fixed point in the infrared is obtained by
moving the 5-brane off to infinity, leaving behind the original junction with one complete
5-brane removed. This is illustrated in figure 2a for a flow connecting the +4,5 to the +3,5
theory.6 Such flows are only possible if the original 5-brane junction involves semi-infinite
(p, q) 5-branes joining from opposite directions.

More generally, brane webs which are composed of two independent sub-webs were
called reducible in [30]. For the 5-brane junctions realizing 5d SCFTs at the origin of their
moduli space, reducibility amounts to having subsets of 5-branes whose charges individually
sum to zero. From such a reducible web one may remove any sub-junction of semi-infinite
5-branes whose charges sum to zero. The natural next case to consider is removing a triple-
junction of semi-infinite 5-branes and one may go up to removing a sub-junction of as many
5-branes as the original junction involves. In general the removed sub-junction describes

5More general theories can be realized by brane webs involving for example 7-branes and orientifold
planes [43–45]. Supergravity duals for certain classes of such theories are available [46, 47], but will not be
considered here.

6A related flow is discussed in section IIF of [30]. In general, Higgs branch flows are possible only from
certain points on the moduli space. Here we only discuss flows between 5d SCFTs at the origins of their
moduli spaces.
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Figure 2. Left: Higgs branch deformation of the +4,5 web in figure 1b in which a complete D5-
brane is moved orthogonally from the plane of the web. The IR fixed point of the flow triggered by
this deformation is obtained by moving the D5 off to infinity, leaving a +3,5 web. Right: a junction
of a D5 and an NS5 is separated from the plane in which the +5,4 web of figure 1b lies, leaving
behind a +3,4 web.

additional light degrees of freedom and the IR theory comprises two decoupled sectors.
An example where a junction of four semi-infinite external 5-branes is removed is shown
in figure 2b, depicting a Higgs branch flow connecting the +4,5 to a theory consisting
of two decoupled sectors, one described by the +3,4 theory and one by the +1,1 theory
corresponding to a free hypermultiplet.7

2.2 Mass deformations

The second class of flows we are interested in are relevant deformations that preserve the
SU(2)R symmetry. Examples in gauge theory language include turning on flavor mass
terms (see figure 3) and turning on a finite (as opposed to infinite) gauge coupling (see
figure 4). We will simply refer to general SU(2)R-preserving relevant deformations as
mass deformations. These deformations can be realized from the brane web perspective by
moving a number K of branes in one stack, say of charge (p, q), off to infinity. For this to be
compatible with charge conservation, one may pick a neighboring stack, of charge (p′, q′),
and move the K (p, q) 5-branes off along this stack, by merging the K (p, q) 5-branes with
K ′ of the (p′, q′) 5-branes. This creates a number K̂ of new branes, with charges (p̂, q̂).
The result at the end point of the flow is that K (p, q) 5-branes are eliminated, K ′ (p′, q′)
5-branes are eliminated, and K̂ (p̂, q̂) 5-branes are produced in the original junction, in
such a way that

K(p, q) +K ′(p′, q′) = K̂(p̂, q̂) . (2.2)

This equality follows from charge conservation. The modified original junction is cou-
pled via an infinitely long link to a junction of K (p, q) 5-branes, K ′ (p′, q′)-branes and

7Further Higgs branch flows can be realized by terminating the external (p, q) 5-branes on [p, q] 7-branes
and moving segments of 5-branes out of the xy plane, as discussed e.g. in [48]. We will not consider such
flows here.
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Figure 3. Left: +N,M junction. Middle: a D5-brane from is joined with an NS5 brane and
separated from the junction, creating a (1, 1) 5-brane of finite extent. In the gauge theory (2.1)
this deformation corresponds to a flavor mass term. Right: moving the D5/NS5 combination off to
infinity decouples the flavor hypermultiplet.

Figure 4. Relevant deformations of a triple junction involving (1, 0), (1, 1) and (1,−1) 5-branes
(left), leading to quadruple junctions (center and right) upon moving the dashed segments off to
infinity. The gauge theory on the left is [8] − SU(6) − SU(4) − SU(2). The web in the center
is obtained by running the SU(2) gauge coupling to zero. The web on the right is obtained by
running the SU(4) gauge coupling to zero; the gauge theory described by the remaining solid part
is [8]− SU(6)− [4], the dashed part describes [4]− SU(2).

K̂ (−p̂,−q̂) 5-branes, which in general describes additional 5d degrees of freedom. The
constraints for realizing a relevant deformation are that K, K ′, K̂ are all positive. Charge
quantization also constrains K, K ′ and (p̂, q̂) to be integers.

Examples are shown in figure 3 and 4. For the flow in figure 3, starting from the
+N,M junction, semi-infinite 5-branes with (p, q) = (1, 0) and (p′, q′) = (0, 1) are moved
off to infinity, in such a way that (p̂, q̂) = (1, 1) 5-branes are created. Charge conservation
amounts to K = K ′ = K̂. For K = 1 the relevant deformation corresponds to a mass
term for one of the fundamental flavors attached to the last node in the gauge theory (2.1).
For K > 1 the interpretation is more involved. There are no light 5d degrees of freedom
associated with the triple junction that is moved off to infinity for K = 1. Figure 4 on the
left shows a triple junction involving 2N D5-branes, N (1, 1) and N (1,−1) 5-branes, for
N = 4. For general N the SCFT was dubbed YN theory in [42]. It is the UV fixed point
of the quiver gauge theory

[2N ]− SU(2N − 2)− SU(2N − 4)− . . .− SU(2) . (2.3)

The deformation shown in figure 4 corresponds to joining a subset of (p, q) = (1, 1) and
(p′, q′) = (1,−1) 5-branes, to form (p̂, q̂) = (1, 0) 5-branes. Charge conservation requires
K +K ′ = 2K̂. For general K, the relevant deformation amounts to turning on a finite (as

– 7 –
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opposed to infinite) gauge coupling for the SU(2K) gauge node. The IR theory resulting
from this flow consists of two sectors. One sector (the dashed part in figure 4) is a YK
theory, the other is the UV fixed point of the gauge theory

[2N ]− SU(2N − 2)− . . .− SU(2K + 2)− [2K] . (2.4)

Both sectors have an SU(2K) symmetry which is weakly gauged, corresponding to the long
link between the two webs.

3 Free energy from supergravity duals

We now discuss the supergravity duals for 5d SCFTs engineered by 5-brane junctions and
their free energies. In section 3.1, the relevant aspects of the solutions are reviewed. The
main results for the free energies are summarized in section 3.2, while their derivations are
relegated to appendices A and B.

3.1 Supergravity duals

The geometry of the supergravity duals takes the form of a warped product of AdS6 and S2

over a Riemann surface Σ, which for the solutions considered here is a disk or, equivalently,
the upper half plane, H, without punctures.8 The supergravity duals are defined in terms of
a pair of locally holomorphic functions A±(w), with w a complex coordinate on Σ = H [39–
41]. The differentials, ∂A±, have poles at locations r` on the real line, with residues given
by Z`±. Each pole represents an external (p`, q`) 5-brane of the associated brane junction.
The functions A±(w) are given in terms of the pole positions r` and the respective residues
Z`± by

A±(w) = A0
± +

L∑
`=1

Z`± ln(w − r`) , Z`± = 3
4α
′ (±q` + ip`) . (3.1)

The pole positions r` and constants A0
± of a given solution are determined in terms of the

residues by regularity conditions. For a solution with L poles these include L conditions,
which, for k = 1, . . . , L, take the form

A0
+Z

k
− −A0

−Z
k
+ +

L∑
`=1
` 6=k

Z [`,k] ln |r` − rk| = 0 , Z [`,k] ≡ Z`+Zk− − Zk+Z`− . (3.2)

The sum over these equations vanishes, since
∑
` Z

[`,k] =
∑
` Z

`
± = 0 by charge conservation,

leaving L − 1 independent conditions. One may solve two of them for the constants A0
±;

the remaining L− 3 regularity conditions are spelled out in (A.30). Three poles can thus
be fixed arbitrarily, reflecting the SL(2,R) automorphisms of the upper half plane, and the
remaining ones are fixed by the remaining L− 3 regularity conditions. Importantly, there

8The representations on the disk and on the upper half plane are related by a Möbius transformation.
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is an additional constraint, which requires that ∂wA− is non-zero in the interior of Σ, i.e.
in the upper half plane,

∂wA− 6= 0 , ∀w ∈ int(Σ) . (3.3)

In other words, all zeros of the meromorphic differential ∂wA− have to be in the lower half
plane or on the real line. We refer to [41] for a detailed discussion. In the supergravity
solutions this guarantees that κ2 is positive in the interior of Σ. In terms of the brane
picture it enforces that the ordering of the poles, r`, along ∂Σ is compatible with the
ordering of the 5-branes forming a particular junction. Together, the constraints (3.2)
and (3.3) fix all parameters in A± in terms of the 5-brane charges, in line with a one-to-
one correspondence between 5-brane junctions and supergravity solutions. From the field
theory perspective the absence of moduli reflects that 5d SCFTs have no supersymmetric
exactly marginal deformations [49].

The non-trivial Type IIB supergravity fields are the metric gµν , the axio-dilaton τ and
the two-form field C(2), which are given in terms of the functions A± as follows

ds2 =
√

6GT ds2
AdS6 + 1

9
√

6G T−
3
2 ds2

S2 + 4κ2
√

6G
T

1
2 |dw|2 ,

τ = i
R∂wG∂w̄(Ā+ + Ā−)− ∂w̄G∂w(A+ +A−)
R∂wG∂w̄(Ā+ − Ā−) + ∂w̄G∂w(A+ −A−)

,

C(2) = 2i
3

(
∂w̄G∂wA+ + ∂wG∂w̄Ā−

3κ2T 2 − Ā− −A+

)
volS2 , (3.4)

where volS2 and ds2
S2 are the volume form and line element for unit-radius S2, and ds2

AdS6

is the line element of unit-radius AdS6. The composite quantities G, κ2, T and R are
defined by

κ2 = −|∂wA+|2 + |∂wA−|2 , ∂wB = A+∂wA− −A−∂wA+ ,

G = |A+|2 − |A−|2 + B + B̄ , T 2 =
(1 +R

1−R

)2
= 1 + 2|∂wG|2

3κ2 G
. (3.5)

An explicit expression for G in terms of single-valued dilogarithm functions was derived in
appendix C of [50]; it will not be needed for our purposes.

3.2 Free energy

The free energies can be obtained holographically from the on-shell action of Type IIB
supergravity, which directly computes the (large N) SCFT partition function. This follows
from the basic AdS/CFT dictionary and has been verified for the theories considered here
in [33–35]. The free energy can also be obtained by evaluating the entanglement entropy
associated with a spherical region in flat space, which is computed holographically by eval-
uating the area of a minimal surface. Both approaches were studied holographically in [51],
where general expressions were derived and it was shown that the two approaches agree
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for a set of examples. The expression derived from the entanglement entropy computation
reads [51]

F = − 64π
9(2πα′)4

∫
Σ
d2w κ2G . (3.6)

For regular solutions κ2 and G are positive in the interior of Σ and zero on the boundary,
so that F is negative. In appendix A we show that this expression agrees with the free
energy derived from the on-shell action for general functions A± as given in equation (3.1).
We also evaluate the resulting expression for the free energy explicitly. As a main result,
we show in appendix A that, assuming that the regularity conditions (3.2) are satisfied,
the free energy evaluates to

F = − 64π2

9(2πα′)4

L∑
`,k,m,n=1

Z [`k]Z [mn]L3

(
rk − rm
rk − r`

r` − rn
rm − rn

)
, (3.7)

where L3 is the single-valued trilogarithm function, defined as [52]

L3(z) = Re
(

Li3(z)− ln |z| · Li2(z)− 1
3 ln2|z| · ln(1− z)

)
. (3.8)

The function L3 is real-analytic on C except for {0, 1,∞}, where it is still continuous and
takes the values L3(0) = L3(∞) = 0 and L3(1) = ζ(3). It satisfies a number of functional
relations, among which we highlight L3(z) = L3(1/z) and

L3(z) + L3(1− z) + L3

(
z

z − 1

)
= ζ(3) . (3.9)

The terms in equation (3.7) where not all of (`, k,m, n) are distinct may be evaluated
explicitly, leading to

F = 64π2

9(2πα′)4

ζ(3)
L∑

`,k=1

(
Z [`,k]

)2
−

∑
k,`,m,n
distinct

Z [`k]Z [mn]L3

(
rk − rm
rk − r`

r` − rn
rm − rn

) . (3.10)

Since Z [`,k] is purely imaginary, the first term is non-positive. These expressions are not
entirely in terms of SCFT data yet, since they still involve the positions of the poles
characterizing the supergravity duals. For a given set of 5-brane charges characterizing
a 5-brane junction, the pole positions still have to be determined from the regularity
conditions in equation (3.2) and (3.3).

3.3 Extremality

One may take an alternative perspective, and consider the expression for F in (3.7) —
for given Z`±, i.e. 5-brane charges — as defining a function of the pole positions, Ftrial(~r )
with ~r = {r`}L`=1. This “trial free energy” Ftrial(~r ) by definition agrees with F for pole
configurations that satisfy the regularity conditions (3.2). Moreover, since L3 is finite,
Ftrial(~r ) is well-defined for any choice of ~r. The relation to the original expression in (3.6),

– 10 –



J
H
E
P
0
2
(
2
0
2
1
)
1
9
2

however, is lost: since the regularity conditions (3.2) were used in deriving the expression
in (3.7) from (3.6), the two functions do not have to agree when the regularity conditions
in (3.2) are not satisfied, and the interpretation of the expression in (3.6) indeed becomes
subtle.9 We show in appendix B that the configurations of poles which satisfy the regularity
conditions in (3.2) are distinguished points also in the parameter space of Ftrial(~r ): if the
conditions in (3.2) are satisfied, then

δFtrial(~r )
δr`

= 0 , ∀` = 1, . . . , L . (3.11)

That is, any configuration of poles satisfying the regularity conditions in (3.2) is a local
extremum of the function Ftrial(~r ).

One may wonder whether this can be turned around, i.e. whether the regularity con-
ditions (3.2) can be derived from requiring the trial free energy to be extremal. We have
not attempted a proof, but suspect it may be possible. The extremality conditions (3.11)
are L equations, but Ftrial(~r ) only depends on the cross ratios formed out of the entries
of ~r, which are invariant under the SL(2,R) automorphisms of the upper half plane. So
there are three directions along which Ftrial(~r ) is constant and only L−3 of the conditions
in (3.11) are non-trivial. This parallels the discussion of the regularity conditions (3.2),
which allow for three poles to be fixed arbitrarily and then determine the remaining ones
up to discrete degeneracy.

Moving further in this direction, one may wonder whether the remaining con-
straint (3.3), which requires all zeros of ∂A− to be in the lower half plane, may also imprint
itself on the trial free energy. Indeed, using the numerical methods described in section 4.3,
we tested for a sample of 103 randomly generated solutions for each L ∈ {4, 5, 6, 7, 8}
whether the critical point of Ftrial(~r ) is a maximum, a minimum, or a saddle point. In all
cases where (3.2) and (3.3) are both satisfied it turned out to be a minimum of F/maximum
of −F . More precisely, the matrix δFtrial(~r )/(δrpδrq) has three eigenvalues which are zero,
reflecting the freedom to make SL(2,R) transformations on the upper half plane, while all
the remaining L−3 eigenvalues were positive in all cases.10 For all configurations satisfying
the constraint in (3.2) but not the one in (3.3), we found that the L−3 non-trivial eigenval-
ues had mixed signs. This suggests that the condition in (3.3) is reflected in the trial free
energy as well. It would be interesting to understand whether one can uniquely identify
the configuration of poles that satisfies the conditions in (3.2) and (3.3) from properties
of the trial free energy Ftrial alone. We leave a more detailed discussion and geometric
interpretation of the regularity conditions — perhaps as a form of volume extremization
— for the future.

From a practical perspective, the extremality property (3.11) is useful in that it simpli-
fies the variation of the free energy due to an infinitesimal change of the residues. Changing

9The regularity conditions in (3.2) ensure that G is constant along the boundary and can be made to
vanish on ∂Σ by a judicious choice of the integration constant that is unspecified by the definition in (3.5).
If (3.2) is not satisfied, G can not be set to zero on the entire boundary, and the integration constant
remains as free parameter. The divergences of κ2 at the poles are less suppressed in the integrand as a
result (though they remain integrable).

10This statement becomes trivial for L = 3, where also the constraint in (3.3) becomes trivial.
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the residues — representing a deformation of the brane web, e.g. corresponding to a rele-
vant deformation of the SCFT — in general induces a shift in the positions of the poles,
due to the regularity conditions (3.2). The variation of the free energy is

δF =
L∑
`=1

[
δF

δZ`+
δZ`+ + δF

δZ`−
δZ`− + δF

δr`
δr`

]
. (3.12)

However, thanks to the extremality property (3.11), the change in the pole positions,
δr`, does not contribute to the variation of F . Knowledge of how the poles adapt to an
infinitesimal change in the residues is therefore not required to obtain the change in the
free energy δF . Using the symmetry under exchange of (`k) and (mn), one finds

δF = − 128π2

9(2πα′)4

L∑
`,k,m,n=1

Z [`k] δZ [mn] L3

(
rk − rm
rk − r`

r` − rn
rm − rn

)
. (3.13)

This will be useful in studying the infinitesimal change in free energy between “nearby”
fixed points.

4 RG flows

From the large N perspective, where the 5-brane charges are O(N), the flows discussed in
section 2 may be divided into two categories: those corresponding to an O(N) change in
the brane charges and those in which the brane charges change by a subleading amount.
From the perspective of the supergravity duals the latter correspond to an infinitesimal
adjustment, while the former correspond to an O(1) change in the solution.

For instance, for the Higgs branch flows, removing a sub-junction involving O(1) 5-
brane charges corresponds to an infinitesimal change in the supergravity dual, while remov-
ing a sub-junction involving O(N) charges leads to a substantially changed supergravity
dual. Similarly, for the mass deformations, if K(p, q) and K ′(p′, q′) are smaller than O(N)
the deformation leads to an infinitesimal flow; if they are O(N) then the flow induces a
finite change in the supergravity dual. In the following we denote by δF and ∆F the
changes in the free energy due to infinitesimal and finite RG flows in the aforementioned
sense, respectively.

Some finite flows can be understood as successively removing small numbers of branes.
In that case, the change in free energy can be obtained by integrating small variations. An
example is given by separating K D5-branes from the +N,M junction in figure 1b. This
can be understood as K times removing a single D5-brane, and the total change in free
energy can be obtained by integrating the variation δF due to removal of a single D5-brane.
In general, this is not possible: when separating a sub-junction from a 5-brane junction,
the sub-junction itself may contain light degrees of freedom that contribute to the IR free
energy. An example is removing, at once, a full +K,K sub-junction with K of O(N) from
the +N,M theory. Integrating the variations in the free energy due to consecutive removal
of +1,1 junctions would reproduce the free energy of the +N−K,M−K theory, but it would
miss the contribution of the (decoupled) +K,K theory. The two flows do not lead to the
same IR fixed point. We will consider both finite and infinitesimal flows in the following.
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We discuss Higgs branch flows in section 4.1 and SU(2)R-preserving relevant defor-
mations in section 4.2. For both we discuss simple flows analytically and sample more
general flows numerically. We generated a large number of supergravity solutions for
L ∈ {3, . . . , 10} poles, the procedure for which is described in section 4.3 (some exam-
ple solutions are provided in appendix C). We evaluated the change in free energy due to
finite and infinitesimal flows starting from these solutions and the results are discussed in
section 4.3.1.

4.1 Higgs branch flows

We will discuss Higgs branch flows realized by separating a sub-junction of K 5-brane
stacks from a junction of L 5-brane stacks describing the UV SCFT. From the supergravity
perspective, the condition for such a deformation to exist is that there is a set of K poles
whose residues sum to zero. Without loss of generality, we can label the poles such that

K∑
`=1

Z`± = 0 . (4.1)

We will consider the IR SCFT resulting from the removal of a K-fold junction of 5-branes,
which consists of a fraction ξ of the 5-branes in each of the 5-brane stacks represented by
the poles with ` = 1, . . . ,K. A simple example is the flow in figure 2a, in which K = 2
(corresponding to the two stacks of semi-infinite D5-branes) and ξ = 1/4. This leaves
behind a fraction 1− ξ of the first K 5-brane stacks of the original junction. The IR SCFT
in general consists of two sectors: the first is the original L-fold junction with the charges
of the first K 5-branes reduced accordingly. It is described by a supergravity solution with
residues {Z̃`+}L`=1 given by

Z̃`± =

(1− ξ)Z`± , ` = 1, . . . ,K ,

Z`+ , ` = K + 1, . . . , L ,
(4.2)

where 0 < ξ < 1. For K = 2 — corresponding to separating an entire 5-brane — this is
the full IR theory; there are no light 5d degrees of freedom associated with the separated
5-brane. For K ≥ 3 the second sector corresponds to the separated K-junction, and is
described by a supergravity solution with residues {Ẑ`+}K`=1 given by

Ẑ`+ = ξZ`+ , ` = 1, . . . ,K . (4.3)

The free energy in the IR is the sum of the free energy for the two sectors.
For K = 2, corresponding to removing an entire 5-brane from a junction which allows

for that, i.e. with Z1
± = −Z2

±, the minimal number of poles in the UV solution is L = 4.
If two residues are opposite-equal, such that complete 5-branes can be removed, the re-
maining two residues are opposite-equal as well due to charge conservation. The regularity
conditions for four-pole solutions with two pairs of opposite-equal residues were discussed
in [51]. For solutions with Z1

+ = −Z2
+ and Z3

+ = −Z4
+ the poles can be chosen as

r1 = 0 , r2 = 2
3 , r3 = 1

2 , r4 = 1 . (4.4)
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The free energy obtained from (3.10) is

FUV = 28ζ(3)
3π2α′4

(
Z [1,3])2 . (4.5)

Since Z [`,k] is imaginary this is negative. The free energy for the +N,M solution, as a
particular example, has been matched to a localization computation in [33, 35]. The IR
SCFT consists of only one sector in this case, and is described by a 4-pole solution with
pairwise opposite-equal residues as well. The free energy with the residues (4.2) becomes

FIR = 28ζ(3)
3π2α′4

(
Z̃ [1,3])2 = (1− ξ)2FUV . (4.6)

This clearly satisfies FIR/FUV < 1, and (1.2), for 0 < ξ < 1, as expected.
For K = 3 — i.e. separating a triple junction — the separated part of the 5-brane

junction describes ungapped degrees of freedom. The minimal case is L = K = 3, for
which the free energy of the UV SCFT, obtained from (3.10), is

FUV = 8ζ(3)
3π2α′4

(Z [1,2])2 . (4.7)

Separating the triple junction into two triple junctions leaves two SCFTs that are decoupled
at the leading order in large N . One is described by a supergravity solution with residues
Z̃`+ = (1 − ξ)Z`+, the other by a supergravity solution with residues Ẑ`+ = ξZ`+. The IR
free energy is given by

FIR = (ξ4 + (1− ξ)4)FUV . (4.8)

As expected, FIR/FUV < 1 and (1.2) is satisfied. For a solution with 4 poles a deformation
removing a triple junction does not exist, since three residues summing to zero in the UV
solution would force the remaining residue to zero by charge conservation. The minimal
number of poles with which non-trivial deformations separating off a triple junction can
be realized is 5. This case and cases with K > 3 will be treated numerically in section 4.3.

An expression for the general variation of the free energy due to infinitesimal flows,
separating a small sub-junction, may be obtained from (3.13). Using the antisymmetry of
Z [`k], we find

δF

δξ
= 256π2

9(2πα′)4

L∑
`,k,m=1

Z [`k]
K∑
n=1

Z [mn]L3

(
rk − rm
rk − r`

r` − rn
rm − rn

)
. (4.9)

The contribution of the separated sub-junction is O(ξ4) and sub-leading. An F -theorem
would imply that the variation in (4.9) is always positive if (r`, Z`+)L`=1 satisfy the regularity
conditions.

4.2 Mass deformations

We now turn to the SU(2)R-preserving relevant deformations discussed from the brane
perspective in section 2.2. In the supergravity setup, we pick integers s, t ∈ {1, . . . L}
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and let rs and rt be the neighboring poles in the UV solution for which the residues are
decreased in magnitude. A fraction α of the 5-branes represented by the pole at rs is
removed and a fraction β of the 5-branes represented by the pole at rt is removed as well.
Examples with α = β = 1/4 and α = β = 1/2 are shown in figure 4. A new brane stack
will be created in the original solution at a position rL+1 on the real line which is between
rs and rt. The resulting supergravity solution has L+1 poles with residues {Z̃`+}L+1

`=1 given
by Z̃`+ = Z`+ for s, t 6= ` ∈ {1, . . . , L} and

Z̃s+ = (1− α)Zs+ , Z̃t+ = (1− β)Zt+ , Z̃L+1
+ = αZs+ + βZt+ , (4.10)

with 0 < α, β < 1. As discussed in section 2.2 for the YN theory, the IR SCFT in general
consists of two sectors. For the example in figure 4 these are coupled by weakly gauging
global symmetries; the gauge fields accomplishing that are subleading in number and do
not contribute to the leading-order free energy. The first sector of the IR SCFT is described
by the setup in (4.10); the second sector is described by a 3-pole solution with residues
{Ẑ`+}3`=1 given by

Ẑ1
+ = αZs+ , Ẑ2

+ = βZt+ , Z3
+ = −αZs+ − βZt+ . (4.11)

The IR free energy is the sum of the free energies for the (L + 1)-pole solution and the
3-pole solution, i.e. FIR = F̃IR(Z̃`+) + F̂IR(Ẑ`+).

The smallest number of poles to consider in the initial configuration for a mass defor-
mation is three. An example is shown in figure 4. Similar to the Higgs branch deformations
discussed above, we will treat the minimal case analytically. The free energy of the UV
SCFT was given in (4.7). With the residues left arbitrary, we can fix (s, t) = (1, 2) without
loss of generality; the other cases follow by permuting the residues. For this flow, the first
sector of the IR SCFT is a quadruple junction, described by a 4-pole supergravity solution
with poles at r̃` with residues Z̃`+ given by

(Z̃`+)4
`=1 =

(
(1− α)Z1

+, (1− β)Z2
+, Z

3
+, αZ

1
+ + βZ2

+

)
, (r̃`)4

`=1 = (−1, 0, 1, u) . (4.12)

The poles corresponding to s = 1 and t = 2 are at −1 and 0, respectively, so u ∈ (−1, 0).
Using the relations in (3.9) and that the original three residues Z`+ sum to zero, we find
the following expression for the contribution to the IR free energy

F̃IR(Z̃`+) = 16(1− α)(1− β)(Z [1,2])2

3π2α′4

[
αL3

(
u− 1

2u

)
+ βL3

(1− u
1 + u

)
− (α+ β)ζ(3)

]
+ (1− αβ)2FUV , (4.13)

with FUV as in (4.7). The second sector is the triple junction, described by a 3-pole
supergravity solution with residues given in (4.11), whose free energy is given by

F̂IR(Ẑ`+) = α2β2FUV . (4.14)

For ∆F = FIR − FUV we find

∆F
FUV

= 2αβ(αβ − 1) + 2(1− α)(1− β)
[
α

(
L3
(
u−1
2u
)

ζ(3) − 1
)

+ β

(
L3
(1−u

1+u
)

ζ(3) − 1
)]

. (4.15)
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The first term is negative for arbitrary 0 < α, β < 1. The second term consists of the square
bracket with a coefficient which is positive. In the square brackets, the two combinations
of L3 and ζ(3) multiplying α and β are separately negative for arbitrary u ∈ (0, 1). So
∆F/F is negative regardless of whether u solves the regularity condition (3.2).

Nevertheless, it is instructive to discuss the condition determining u. Since the original
3-pole solution is entirely specified in terms of Z [1,2], and the change in residues is also
dictated by Z1

+ and Z2
+, the residues drop out of the regularity conditions (which can be

taken in the form (A.30), with A0
± eliminated), leaving

α ln
∣∣∣∣ 2u
1− u

∣∣∣∣ = β ln
∣∣∣∣1 + u

1− u

∣∣∣∣ . (4.16)

For any positive α, β there is a solution u ∈ (−1, 0). Solutions outside of this interval do
not satisfy the constraint (3.3), which is required for a regular supergravity solution. To
survey all deformations one may alternatively fix u ∈ (−1, 0) and solve for β in terms of α
such that α, β ∈ (0, 1).

Before moving on to numerically studying more general flows, we discuss infinitesimal
deformations, i.e. |α|, |β| � 1. The contribution to the free energy from the triple junction,
i.e. F̂ (Ẑ`+) in the above notation, is subleading (in α, β), and does not affect the infinitesimal
variation of the free energy. Due to the extremality property (3.11), the variation of the
pole positions drops out of the variation of the free energy. However, one does need the
location of the pole r̃L+1 in the limit where the residue Z̃L+1

+ vanishes. Thus, one effectively
starts with an (L+ 1)-pole solution with the residue ZL+1

+ zero at the UV fixed point, and
we set

δZs+ = −αZs+ , δZt+ = −βZt+ , δZL+1
+ = αZs+ + βZt+ . (4.17)

For α, β → 0, the first L regularity conditions (3.2) approach their unperturbed form; the
L original poles approach their positions in the UV solution. The remaining condition
resulting from the pole at rL+1 reads

A0
+δZ

L+1
− −A0

−δZ
L+1
+ +

L∑
`=1

δZ [`,L+1] ln |r` − rL+1| = 0 , (4.18)

and determines where the new pole emerges.
The variation of the free energy becomes

δF = 256π2

9(2πα′)4

∑
` 6=k

Z [`k]
L∑
n=1

[
αZ [s,n]L3

(
rk − rs
rk − r`

r` − rn
rs − rn

)
+ βZ [t,n]L3

(
rk − rt
rk − r`

r` − rn
rt − rn

)

−
(
αZ [s,n] + βZ [t,n]

)
L3

(
rk − rL+1
rn − rL+1

r` − rn
r` − rk

)]
. (4.19)

Note that rL+1 depends on α, β and on the properties of the original solution. An F -
theorem would imply that this variation decreases −F for arbitrary 0 < α, β � 1.

– 16 –



J
H
E
P
0
2
(
2
0
2
1
)
1
9
2

4.3 Numerics

In order to test (1.2) for more general flows, we generated a large random sample of super-
gravity solutions, by solving the constraints (3.2) and (3.3) for randomly chosen configu-
rations of residues, and evaluated the change in free energy between the UV and IR fixed
points for the RG flows discussed in section 4.1 and 4.2. We have done so for finite flows,
for which (generically) one solution has to be generated for the UV fixed point and two
solutions for the IR fixed point, as well as infinitesimal flows. This was done separately for
Higgs branch deformations, for which solutions were generated such that a sub-junction
of a predetermined number of 5-branes can be removed, and for the SU(2)R-preserving
relevant deformations, where this constraint is not required.

To generate a solution, one has to determine, for a given set of residues, the positions
of the poles. Two of the regularity conditions in (3.2), say for k = m and k = n, are solved
for the constants A0

±. The result is given in (A.29). The remaining regularity conditions
are then given by (A.30), which may be written (for fixed k,m, n) as

L∑
`=1

Z [`,k]Z [m,n] ln |r` − rk|+ (even permutations of (k,m, n)) = 0 . (4.20)

With the conditions for k = m and k = n trivial and the sum of the left-hand side over k
vanishing, these are L−3 independent conditions. Three poles can be fixed arbitrarily and
the remaining ones can be determined by numerically solving the independent regularity
conditions.

Numerical solutions can be found efficiently with an educated initial guess for the pole
positions {r`}. We used the following: we map the upper half plane to the unit disc, and
then superimpose the brane junction picture as in figure 1, where the 5-branes are at angles
determined by their 5-brane charges. The intersection of the external 5-branes with the
boundary of the disc, mapped back to the upper half plane, then provides an initial guess
for the position of the poles. This leads to

r
(0)
` = f

(
Z`+
|Z`+|

)
, with f(z) = i

1 + z

1− z . (4.21)

As three poles can be fixed arbitrarily, we take three of these initial guesses as actual pole
positions, while the remaining pole positions are solved for numerically.

To avoid numerically degenerate solutions we impose that the poles are separated by
10−3 on the real line (which can be accomplished by an SL(2,R) transformation). Once a
solution to the regularity conditions (3.2) is found, we impose the remaining condition (3.3),
by numerically computing the zeros of ∂A− and ensuring that they are all in the lower
half plane.11 In terms of the brane picture, the condition (3.3) enforces that the ordering
of the poles is compatible with the ordering of the 5-branes in the brane junction. The
initial guess in equation (4.21) implements this ordering, but the numerical search may not
preserve it.

11If all zeros are in the upper half plane one can take Σ to be the lower half plane.
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Figure 5. Histograms for ∆F/FUV for Higgs branch flows removing an entire 5-brane, for L =
5, 6, 7, 8. For L = 9, 10 similar distributions were generated; they are qualitatively similar.

4.3.1 Results

We start with the Higgs branch flows where a complete 5-brane is removed. Using the
algorithm outlined in the previous section we generated a random sample of 104 solutions
for each L ∈ {5, 6, 7, 8, 9, 10}. For each solution L− 1 residues are drawn randomly in such
a way that the first two are opposite-equal, and the remaining residue is fixed by charge
conservation. The pole positions are then determined numerically. For each solution we
evaluated the infinitesimal change in free energy following from (4.9). The ratio δF/FUV
was negative for all solutions created. As discussed in section 4.1, for these flows negativity
of δF/FUV is sufficient to conclude that finite flows are compatible with an F -theorem, and
our data certainly suggests that δF/FUV is generally negative.12 We nevertheless generated
the finite flows as well. For each solution we chose a random ξ ∈ (0, 1) (see (4.2)), and
determined the L-pole supergravity solution corresponding to the IR fixed point. Since
there is no contribution from the decoupled 5-branes, the IR free energy is given by the
contribution from the solution with residues (4.2) alone. The resulting data is visualized
in figure 5. The ratio ∆F/FUV, with

∆F = FIR − FUV , (4.22)

is negative throughout, in line with (1.2). As clearly exhibited in the histograms, ∆F/FUV
is bounded from below by −1. As the number of poles is increased, the (negative) expecta-
tion value of ∆F/FUV shifts towards zero, which is to be expected: the impact of removing
even an entire stack of (p, q) 5-branes (corresponding to ξ = 1) on the free energy naturally
decreases as the number of brane stacks involved in the brane junction describing the UV
SCFT increases.

12If the regularity condition (3.3) is dropped, however, to allow for irregular initial solutions, δF/F can
take either sign. Thus, a general proof of δF/F < 0 has to incorporate (3.2) and (3.3).
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Figure 6. Histograms for ∆F/FUV for Higgs branch flows removing a triple junction, for L =
5, 6, 7, 8. The distributions for L = 9, 10 are again similar.

A similar survey was conducted for Higgs branch flows removing a triple junction.
Using the algorithm outlined above, 104 solutions were generated for each L ∈ {5, . . . 10},
such that three of the residues sum to zero and a Higgs branch flow can be realized by
removing a triple junction. We computed δF/F using (4.9) with K = 3 for each solution,
and found it negative throughout. We also analyzed finite flows. For each solution we chose
a random ξ ∈ (0, 1), specifying what fraction of the 5-branes constituting the 3-fold sub-
junction should be separated off, and generated the L-pole solution with residues as in (4.2).
For these flows the separated triple junction with residues as in (4.3) does contribute to the
IR free energy and has to be taken into account. We again found ∆F/FUV to be negative
for all flows, in line with an F -theorem (1.2). The results are illustrated in figure 6. As
before, the expectation value of ∆F/FUV decreases in absolute value as the number of poles
is increased, but it is negative for all solutions created. We considered flows separating sub-
junctions of 4 and more brane stacks as well, with similar results. The ratios δF/F for
infinitesimal flows and ∆F/FUV for finite flows were negative throughout.

We now turn to the SU(2)R-preserving mass deformations discussed in section 4.2.
The solutions describing the UV fixed points can be generated with no restriction on
the residues other than that the total charge is conserved, and we again generated 104

solutions for each L ∈ {3, . . . , 10}. For the mass deformation one has a discrete choice of
the two neighboring brane stacks (s and t in the notation of section 4.2) and a choice of
the parameters α and β reflecting the fractions of branes in each of the two stacks that
are separated from the junction. For each solution we chose a deformation randomly and
computed the infinitesimal change in the free energy from (4.19). As discussed below (4.16),
it is actually more convenient to fix the position at which the new pole emerges in the correct
interval and then determine β in terms of α. The variations δF/F were all negative. For
finite flows, we again chose a deformation randomly. In this case the contribution from the
separated triple junction with residues (4.11) has to be taken into account, and the solution
describing the leftover (L+ 1)-fold junction with residues (4.10) has to be generated. The
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Figure 7. Histograms for ∆F/FUV for SU(2)R-preserving mass deformations for L = 3, 4, 5, 6. For
L = 3 the lower bound is larger than −1, and agrees with the minimum of (4.15). For larger L the
lower bound approaches −1. The distributions for L = 7, 8, 9, 10 are qualitatively similar.

results for the change in free energy are shown in figure 7. For reference, the 3-pole case,
which was treated analytically in section 4.2, is included as well. Following the same
argument as for the previous cases, ∆F/FUV is expected to decrease in absolute value as
the number of poles is increased, which is borne out in the data. The main point, of course,
is that ∆F/F is negative throughout.

5 Discussion

As reviewed in the introduction, d = 5 stands out among the dimensions, in which su-
perconformal field theories exist, in the scarcity of general results on c-functions that are
available. Moreover, the sphere free energy F as a candidate c-function is not without
subtleties, suggesting that a proper choice of assumptions may be crucial for establishing
an F -theorem.

In this work, we have collected substantial evidence for the validity of an F -theorem
for RG flows between 5d SCFTs engineered in Type IIB string theory by junctions of
large numbers of (p, q) 5-branes. These theories admit supergravity duals in Type IIB.
We have focused on the weak version of an F -theorem, expressed in equation (1.2), and
compared the sphere free energy between the end points of a large sample of RG flows.
The UV SCFTs were drawn from a random sample, and we considered flows triggered by
relevant deformations that preserve the SU(2) R-symmetry as well as Higgs branch flows.
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We studied O(105) RG flows numerically and found that in all cases the value of −F ,
computed from the holographic duals of the UV and IR SCFTs, was smaller at the IR
fixed point than at the UV fixed point, in line with an F -theorem (1.2). Moreover, for
certain simple classes of RG flows we established analytically that −F decreases and is
compatible with an F -theorem. These results certainly suggest that it should be possible
to establish a general F -theorem for flows between 5d SCFTs with supergravity duals in
Type IIB, preferably in a form which also covers more general theories, e.g. engineered
by 5-brane junctions with 7-branes or orientifolds, for which supergravity solutions were
discussed in [46, 47].

We note that, for the theories considered here, the evidence for monotonic behavior
of −F directly extends to evidence for monotonicity of the conformal central charge CT
which determines the stress-tensor three-point function (see e.g. [31, 53]), since F is related
to CT by a universal numerical factor at large N [33, 35]. While a CT -theorem is not valid
in 3d and 4d for theories with less than 8 supercharges (see e.g. [54, 55]), supersymmetric
theories in 5d have at least 8 supercharges, which may allow to establish a CT -theorem.
It would be interesting to study the fate of the monotonicity properties beyond the strict
large N limit, to distinguish the two quantities.

From a more general perspective, we obtained new results for 5d SCFTs with holo-
graphic duals in Type IIB and found hints for interesting structures in their supergravity
duals. We have shown that the free energy for a 5d SCFT engineered by a junction
of 5-branes with charges {(p1, q1), . . . (pL, qL)}, with all charges homogeneously large, is
given by

F = − 64π2

9(2πα′)4

L∑
`,k,m,n=1

Z [`k]Z [mn]L3

(
rk − rm
rk − r`

r` − rn
rm − rn

)
, (5.1)

where L3 is the single-valued trilogarithm function defined in (3.8) and Z [`k] = Z`+Z
k
− −

Zk+Z
`
− with Z`± = 3

4α
′(±q` + ip`). The parameters r1, . . . , rL are determined in terms of

the 5-brane charges by the conditions in (3.2) and (3.3). These conditions arise from the
requirement for regularity of the supergravity solutions and they are required for deriv-
ing (5.1). However, one may change perspective and regard the expression in (5.1) as
defining an “off-shell” trial free energy for arbitrary r1, . . . , rL. We have shown that the
solutions to the conditions (3.2) extremize this trial free energy, and have given numerical
evidence that the condition (3.3) is satisfied if and only if the extremum is a maximum of
−F . This suggests that the entire set of supergravity regularity conditions may be recov-
ered from an extremization principle for the trial free energy defined by (5.1), and hints at
a geometric interpretation akin to a form of volume extremization.

For supergravity solutions that satisfy the regularity conditions, one can understand
the volume computed by the free energy straightforwardly: from the entanglement entropy
computations of F in [51], one can identify a 4-manifold M4 whose volume is the free
energy. It takes the form of a warped product of S2 over a disk/the upper half plane, with
metric

ds2
M4 = f2

6

(
f2

2ds
2
S2 + 4ρ2|dw|2

)
, (5.2)
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where f2
6 f

2
2 = 2G/(3T ) and f2

6ρ
2 = κ2T with the definitions in (3.5). Our results indicate

that the volume of this 4-manifold decreases between fixed points that can be connected
by RG flows. It would be interesting to understand how this interpretation would extend
to holographic RG flow solutions, and whether there is a sense in which the metric on M4
uniformizes along flows, e.g. along the lines of [56] where the Ricci flow equations were
found in RG flows.

If the regularity conditions are not satisfied, the interpretation of F in (5.1) as volume of
M4 becomes subtle (the metric in (5.2) acquires additional parameters and divergences, see
footnote 9). However, the expression in (5.1) remains well-behaved and finite, suggesting
that a geometric interpretation which differs from the volume of M4 away from regular
solutions may exist. Intriguingly, L3 features prominently in the volumes of hyperbolic 5-
manifolds [57] (see also [58]). It would be interesting to understand whether the expression
in (5.1) may be related to triangulations of 5-manifolds.

We close with a more general outlook. It would certainly be desirable to establish
monotonicity results directly in field theory. At least for planar theories it should be
possible to make progress through explicit analyses. For example, the general expression for
the free energies of 5d SCFTs arising from balanced quiver gauge theories, derived in [35]
from supersymmetric localization, allows to analyze fairly large classes of Higgs branch
flows where multiple external 5-branes are terminated on the same 7-brane (see [48]) in
field theory. More generally, the identification of the saddle points for the matrix models
resulting from supersymmetric localization with electrostatics potentials discussed in [35]
may allow to cover more general flows and theories. One may hope to extend these methods
to include corrections to the planar limit and perhaps gain useful insights into theories at
finite N . From a geometric perspective, it would be interesting to better understand the
5d free energy in terms of a volume maximization, akin to volume extremizations in other
dimensions [59–66]. The latter have had profound consequences and interpretations in the
corresponding field theories, and it would be interesting to extend a similar logic to the
present case.
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A Free energy derivation

In the following, the expression for the free energy in (3.7) is derived. We start with the
free energy obtained from the entanglement entropy of a spherical region, and show that
it matches the expression obtained from the on-shell action. We then proceed to evaluate
it explicitly.

– 22 –



J
H
E
P
0
2
(
2
0
2
1
)
1
9
2

A.1 General expression

The free energy obtained from the entanglement entropy of a spherical region was discussed
in [51]. It is evaluated from an 8d minimal surface, which after using the form of the metric
functions in (3.4) and (3.5) leads to

F = − 64π
9(2πα′)4J , J =

∫
d2w |∂G|2 . (A.1)

From the definition of G and the holomorphy of B, one finds that, without further assump-
tions,

|∂G|2 = 1
4∂∂̄

(
G2 − 2(B + B̄)G

)
+ ∂̄ (G∂B) + ∂

(
G∂̄B̄

)
. (A.2)

The last two terms in (A.2) produce boundary terms in the integral (A.1) which vanish
due to the regularity condition G|∂Σ = 0. The G2 term vanishes for the same reason. Thus,
for regular solutions,

J = −1
2

∫
Σ
d2w ∂∂̄

[
(B + B̄)G

]
. (A.3)

Using the definition of G to replace B+ B̄ and again that ∂∂̄G2 produces a boundary term
which vanishes for regular solutions thanks to G|∂Σ = 0, we can rewrite J as follows

J = 1
2

∫
Σ
d2w ∂∂̄

[
(|A+|2 − |A−|2)G

]
. (A.4)

This expression holds for generic A±, e.g. also for solutions with 7-branes as in [46, 47], as
long as the regularity condition G|∂Σ = 0 is satisfied.

We now use the explicit form of A± for solutions describing 5-brane junctions in (3.1).
Take Σ = H+ the upper half plane, and conventions as in [51], i.e. ∂w = 1

2 (∂x − i∂y) and
d2w = i

2dw ∧ dw̄ = dx ∧ dy. Then, J can explicitly be written as follows

J = − i4

∫
∂Σ=R

dx ∂
[
(|A+|2 − |A−|2)G

]
. (A.5)

On the real axis, with the branch cut of ln along the negative real axis,

−|A+|2 + |A−|2 = −2πi
∑
6̀=k
Z [`,k]Θ (rk − w) ln

∣∣∣∣ r` − wr` − rk

∣∣∣∣ . (A.6)

Moreover, (see (C.6) of [50]),

∂wG =
L∑

`,k=1
6̀=k

Z [`,k] 1
w − rk

ln
∣∣∣∣w − r`r` − rk

∣∣∣∣2 . (A.7)

Consequently,

J = π
∑
6̀=k

∑
m 6=n

Z [`k]Z [mn]
∫ rk

−∞
dx ln

∣∣∣∣ x− r`r` − rk

∣∣∣∣ 1
x− rn

ln
∣∣∣∣ x− rmrm − rn

∣∣∣∣ . (A.8)
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This result agrees with the on-shell action of Type IIB supergravity (cf. equation (47)
in [51]).

The lower bound in the integration can be shifted to an arbitrary position so long as it
is independent of r` and rk: to see this, split ln

∣∣∣ x−r`
r`−rk

∣∣∣ = ln |x− r`|− ln |r`− rk|. This splits
the extra integral that needs to be added to shift the integration bound into two pieces.
The first one, with ln |x− r`|, is independent of rk, and hence vanishes when summed over
k. The second one depends on r` and rk only through the overall factor ln |r` − rk|, which
is symmetric under exchange of r` and rk. So it vanishes upon summing over k and `,
showing that the lower bound can be shifted.

A.2 Integration

To explicitly evaluate J it will be convenient to introduce

y = rm − x
rm − rn

, t` = rm − r`
rm − rn

, tk = rm − rk
rm − rn

. (A.9)

Then, upon shifting the lower bound of integration in (A.8) to rn, J can be written as

J = π
∑
6̀=k

∑
m 6=n

Z [`k]Z [mn]
∫ tk

0
dy ln

∣∣∣∣ y − t`t` − tk

∣∣∣∣ 1
y − 1 ln |y| . (A.10)

Due to Z [`,k] being antisymmetric in ` and k, the expression for J in (A.8) is (anti)sym-
metric under various permutations of (r`, rk, rm, rn), which will be useful below. In the
new variables, (y, t`, tk), these permutations are realized as follows: exchanging rn and
rm corresponds to {y, t`, tk} ↔ {1 − y, 1 − t`, 1 − tk}; exchanging rk and r` amounts to
exchanging t` and tk. The remaining symmetry, i.e. exchanging (rm, rn) with (r`, rk), under
which the sum in J is symmetric, acts on t`, tk as follows

t` ↔ t′` = t`
t` − tk

, tk ↔ t′k = t` − 1
t` − tk

. (A.11)

One can use ln |y|/(y − 1) = −Re ∂y Li2(1− y) and integration by parts to express J
in terms of multiple polylogarithms of weight three. The space of multiple polylogarithms
of weigth three is spanned by regular polylogarithms of weight up to three [67], and we
shall now rewrite J in terms of these simpler functions.

The integral can be expressed in terms of the single-valued trilogarithm function [52]

L3(z) = Re
(

Li3(z)− ln |z| · Li2(z)− 1
3 ln2|z| ln(1− z)

)
. (A.12)

This function is real-analytic except at z ∈ {0, 1,∞}, where it is continuous and evaluates
to L3(0) = L3(∞) = 0 and L3(1) = ζ(3). Furthermore, the derivative along the real line is
given by

∂xL3(x) = 1
3 ln |x|

( ln |x|
1− x + ln |1− x|

x

)
. (A.13)
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Finally, we will also use that, on the real line,

∂x Re Li2(x) = − ln |1− x|
x

. (A.14)

Now, let us define

D(y) = L3

(
t` − y

(t` − 1)y

)
− L3

(
t` − y
t` − 1

)
− L3(y)− L3

(
1− t`

y

)
+ 1

3 ln |1− y| ln |y| ln |y − t`|

+ ln |tk − t`|Re Li2(1− y) + ln |t` − 1|Re
(

Li2(y)− Li2
(
y

t`

))
+ 1

3 ln |t` − 1|
(

ln |t`| ln |t` − y|+ 2 ln |y| ln
∣∣∣∣ t`(1− y)
t` − y

∣∣∣∣) . (A.15)

The real part of Li2 is single-valued and so is D. Moreover, D is continuous at y = 0 and
y = t`. An explicit computation shows that

∂yD(y) = ln
∣∣∣∣ y − t`t` − tk

∣∣∣∣ 1
y − 1 ln |y| . (A.16)

Therefore, we can express J as

J = π
∑
6̀=k

∑
m 6=n

Z [`k]Z [mn][D(tk)−D(0)
]
. (A.17)

Since
∑
k Z

k
± = 0, terms which are independent of tk vanish when summed over k. The

terms in the first and third line of (A.15) are continuous at y = 0, with no dependence
on tk. Hence, they drop out when evaluated at y = 0. The first term in the second line
is symmetric under exchange of t` and tk, and thus drops out. Lastly, the second term is
independent of tk. Thus, together we may drop the D(0)-piece and end up with

J = π
∑
` 6=k

∑
m 6=n

Z [`k]Z [mn]D(tk) . (A.18)

We can now evaluate the contribution from y = tk more explicitly. Noting that (t` −
tk)/(t` − 1) is independent of rm, tk is independent of r` and 1 − t`/tk is independent of
rn, only the first of the four L3 terms survives summation. Hence, we remain with the
following expression for J

J = π
∑
6̀=k

∑
m 6=n

Z [`k]Z [mn]
[
L3

(
t`−tk

(t`−1)tk

)
+1

3 ln |1−tk| ln |tk| ln |tk−t`|

+ln |tk−t`|Re Li2(1−tk)+ln |t`−1|Re
(

Li2(tk)−Li2
(
tk
t`

))

+1
3 ln |t`−1|

(
ln |t`| ln |t`−tk|+2 ln |tk| ln

∣∣∣∣ t`(1−tk)t`−tk

∣∣∣∣)
]
.

(A.19)

The second term in the first line and the first term in the last line together are symmetric
under exchange of t` and tk; they therefore cancel upon taking the sum. Exchanging rn
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and rm corresponds to {t`, tk} → {1 − t`, 1 − tk}. This can be used to merge the Li2(tk)
and Li2(1− tk) terms. Finally, we swap ` and k in the last term, at the expense of a sign,
to arrive at

J = π
∑
6̀=k

∑
m 6=n

Z [`k]Z [mn]L3

(
t` − tk

(t` − 1)tk

)
+ π

(
J̃1 + 2

3 J̃2

)
, (A.20)

where

J̃1 =
∑
` 6=k

∑
m 6=n

Z [`k]Z [mn] Re
(

ln
∣∣∣∣ t` − 1
tk − t`

∣∣∣∣ Li2(tk)− ln |t` − 1| Li2
(
tk
t`

))
,

J̃2 =
∑
` 6=k

∑
m 6=n

Z [`k]Z [mn] ln
∣∣∣∣ tk − t`
(t` − 1)tk

∣∣∣∣ ln |t`| ln |1− tk| . (A.21)

The first term in J in equation (A.20), expressed in terms of r` and using that L3(1/z) =
L(z), is identical to (3.7). The restriction to ` 6= k and m 6= n can be dropped, since
L3 vanishes in those cases. To show that the free energy is indeed given by (3.7) it thus
remains to show that J̃1 = J̃2 = 0.

A.3 Evaluating J̃1 and J̃2

In general J̃1 and J̃2 are non-zero. However, we shall now show that they in fact vanish
when the poles satisfy the regularity conditions.

We start by evaluating J̃2; expressing J̃2 in terms of the pole positions leads to

J̃2 =
∑
6̀=k

∑
m 6=n

Z [`k]Z [mn] ln
∣∣∣∣rk − r`r` − rn

rm − rn
rk − rm

∣∣∣∣ ln ∣∣∣∣ r` − rmrm − rn

∣∣∣∣ ln ∣∣∣∣ rk − rnrm − rn

∣∣∣∣ . (A.22)

One can restrict the sum to all of `, k,m, n being distinct, since the product of logarithms
vanishes otherwise. Using the symmetries under exchange of ` ↔ k, m ↔ n, as well as
(`, k)↔ (m,n) allows to rewrite this as

J̃2 = 2
∑

`,k,m,n
distinct

Z [`k]Z [mn]Lkn (L`mLk` + L`nLkm − LmnLk`) , where Lij = ln |ri − rj | .

(A.23)

The last two terms are antisymmetric under the exchange of k ↔ n. Thus, we may write

J̃2 = 2
∑

`,k,m,n
distinct

Z [`k]Z [mn]LknL`mLk` + 2
∑

`,k,m,n
distinct

(
Z [`k]Z [mn] − Z [`n]Z [mk]

)
LknL`nLkm .

(A.24)

From the definition of Z [`k] we immediately obtain the identity

Z [`k]Z [mn] − Z [`n]Z [mk] = Z [`m]Z [kn] . (A.25)
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Using it in the second term of (A.24) shows that, upon renaming indices (`, n) → (n, `)
and then swapping ` and k at the expense of a sign, it is opposite-equal to the first term.
Thus, we have shown that

J̃2 = 0 . (A.26)

Now, let us turn to J̃1; when expressing it as in equation (A.21), in terms of the pole
positions, it is convenient to add terms that are independent of r` and r`, and which thus
sum to zero. Thus, we can rewrite J̃1 it as follows

J̃1 =
∑
6̀=k

∑
m 6=n

Z [`k]Z [mn] ln
∣∣∣∣rk − r`rn − r`

rm − rn
rm − rk

∣∣∣∣Re
(

Li2
(
rm − rk
rm − r`

)
− Li2

(
rm − rk
rm − rn

))
.

(A.27)

If any of (`, k,m, n) are equal their contribution vanishes, so the sum can be restricted to
(`, k,m, n) being distinct. One can then pull the logarithm into the parenthesis and relabel
indices (`↔ n) in the second term, to arrive at

J̃1 =
∑
`,k,m

distinct

I`km Re Li2
(
rm − rk
rm − r`

)
,

I`km =
∑

n/∈{`,k,m}

(
Z [`k]Z [mn] ln

∣∣∣∣rk − r`rn − r`
rm − rn
rm − rk

∣∣∣∣− Z [nk]Z [m`] ln
∣∣∣∣rk − rnrn − r`

rm − r`
rm − rk

∣∣∣∣) .
(A.28)

In the remainder of this section, we will show that I`km vanishes if the regularity
conditions (3.2) are satisfied. To this end, we first bring the regularity conditions (3.2) into
a useful form. Pick two arbitrary but fixed conditions, k = m and k = n, m 6= n, and solve
for A0

±. This yields

Z [m,n]A0
± = Zn±

∑
6̀=m

Z [`,m] ln |r` − rm| − Zm±
∑
`6=n

Z [`,n] ln |r` − rn| . (A.29)

Then, using this in the regularity conditions yields∑
` 6=m

Z [`,m]Z [n,k] ln |r` − rm| −
∑
6̀=n
Z [`,n]Z [m,k] ln |r` − rn|+

∑
` 6=k

Z [`,k]Z [m,n] ln |r` − rk| = 0 .

(A.30)

For k = m,n these are trivial. So we have L− 3 conditions, fixing L− 3 of the poles.
Now, given (A.30), let us evaluate I`km. The terms in (A.28) which are independent

of rn can be converted to (minus) sums over n ∈ {`, k,m}. This leads to

I`km =
∑

n/∈{`,k,m}

(
Z [`k]Z [mn] ln

∣∣∣∣rm − rnrn − r`

∣∣∣∣− Z [nk]Z [m`] ln
∣∣∣∣rk − rnrn − r`

∣∣∣∣)

−
∑

n∈{`,k,m}

(
Z [`k]Z [mn] ln

∣∣∣∣ rk − r`rm − rk

∣∣∣∣− Z [nk]Z [m`] ln
∣∣∣∣ rm − r`rm − rk

∣∣∣∣) . (A.31)
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Regrouping terms in the first line and using the identity (A.25), we end up with

I`km =
∑

n/∈{`,k,m}

(
Z [`k]Z [mn] ln |rm−rn|−Z [nk]Z [m`] ln |rk−rn|−Z [km]Z [n`] ln |rn−r`|

)

−Z [`k]Z [m`] ln
∣∣∣∣ rk−r`rm−r`

∣∣∣∣−Z [`k]Z [mk] ln
∣∣∣∣ rk−r`rm−rk

∣∣∣∣+Z [mk]Z [m`] ln
∣∣∣∣ rm−r`rm−rk

∣∣∣∣ . (A.32)

The terms in the second line are exactly the terms excluded in the sums in the first line,
so that

I`km =
∑
n

(
Z [`k]Z [mn] ln |rm − rn| − Z [nk]Z [m`] ln |rk − rn| − Z [km]Z [n`] ln |rn − r`|

)
,

(A.33)

where it is again understood that Z [`k] ln |rk − r`| is zero if ` = k. With the regularity
conditions as in equation (A.30), we conclude that the right hand side vanishes. In view
of (A.28) this means that

J̃1 = 0 . (A.34)

B Extremality of Ftrial(~r )

We start with the expression for F where the sum is restricted to all summation indices
being distinct — as in equation (3.10) — and translate it to J by stripping off overall
factors — as in equation (A.1). Then, we consider the variation of J upon varying the
position of a particular pole, rp, i.e.

δJ
δrp

= π
∑

k,`,m,n
distinct

Z [`k]Z [mn]
[
δm,p

δ

δrm
+ δn,p

δ

δrn
+ δ`,p

δ

δr`
+ δk,p

δ

δrk

]
L3

(
rk − rm
rk − r`

r` − rn
rm − rn

)
.

(B.1)

The argument of L3 is symmetric under exchange of (`, k)↔ (m,n), so the last two terms
in the square brackets can be combined with the first two terms. This leads to

δJ
δrp

= 2π
∑

k,`,m,n
distinct

Z [`k]Z [mn]L′3
(
rk − rm
rk − r`

r` − rn
rm − rn

)(
δn,p

(rk − rm)(r` − rm)
(rk − r`)(rm − rn)2 − (m↔ n)

)
.

(B.2)

The derivative of L3 is given explicitly in (A.13), which leads to

δJ
δrp

= 2π
3
∑

k,`,m,n
distinct

Z [`k]Z [mn] ln |x|
[ ln |x|

1− x + (m↔ n)
] [
δn,p

(rk − rm)(r` − rm)
(rk − r`)(rm − rn)2 − (m↔ n)

]
,

(B.3)

– 28 –



J
H
E
P
0
2
(
2
0
2
1
)
1
9
2

where x = (rk − rm)(r` − rn)/((rk − r`)(rm − rn)). The sum symmetrizes the ln |x| term
in (m,n), so one can replace ln |x| → 1

2(ln |x|+ (m↔ n)). Furthermore, the “−(m↔ n)”-
pieces in the last factor can then be absorbed into a factor 2. This leads to
δJ
δrp

= 2π
3

∑
k,`,m,n
distinct

Z [`k]Z [mn] [ln |x|+ (m↔ n)]
[
ln |x| rm − rk

(rk − rn)(rm − rn) − (k ↔ `)
]
δn,p .

(B.4)

The first factor is symmetric in k ↔ `, so −(k ↔ `) in the second factor only produces a
factor 2, and we can rewrite

δJ
δrp

= 4π
3

∑
(k,`,m) 6=p

distinct

Z [`k]Z [mp] ln |y(1− y)|
(

ln |y|
rp − rm

− ln |y|
rp − rk

)
, y = rk − rm

rk − r`
r` − rp
rm − rp

.

(B.5)

For the 1/(rp− rm) term, one can use that ln |y| ln |y− 1| is symmetric in k ↔ `, to reduce
the coefficient to ln2 |y|. We find∑

(k,`,m) 6=p
distinct

Z [`k]Z [mp] ln |y(1− y)| ln |y|
rp − rm

=
∑

(k,`,m) 6=p
distinct

Z [`k]Z [mp]

rp − rm

(
2Lkm(L`p − Lk`)− 2Lk`L`p + 2Lmp(Lkp − Lkm)− L2

kp + L2
km

)
,

(B.6)

where as before Lij = ln |ri − rj |. Now, we swap k and m in the second term and use the
result in (B.5) to obtain

δJ
δrp

= 2π
3
∑
m 6=p

1
rp − rm

Ĵpm , (B.7)

where

Ĵpm =
∑

(`,k) 6=m,p
distinct

[
Z [`k]Z [mp]

(
2Lkm(L`p−Lk`)−2Lk`L`p+2Lmp(Lkp−Lkm)−L2

kp+L2
km

)

+Z [`m]Z [kp] (Lm`−Lkm−L`p+Lkp)(Lmp+Lk`+Lm`+Lkm+Lkp+L`p)

−3Z [`m]Z [kp] (Lm`−Lkm−L`p+Lkp)(Lm`+Lkp)
]
. (B.8)

The first factor in the second line is antisymmetric in `↔ k, while the second is symmetric.
We can thus use the replacement Z [`m]Z [kp] → 1

2(Z [`m]Z [kp] − Z [km]Z [`p]) = 1
2Z

[`k]Z [mp] to
combine the second with the first line, i.e.

Ĵpm =
∑

(`,k) 6=m,p
distinct

[
3Z [`k]Z [mp](Lkp − Lkm)(L`k + Lmp)

− 3Z [`m]Z [kp] (Lm` − Lkm − L`p + Lkp)(Lm` + Lkp)
]
. (B.9)
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Terms which do not depend on ` and k can be converted to (minus) sums only over the
excluded values,

Ĵpm = 3
∑

(`,k) 6=m,p
distinct

[
Z [`k]Z [mp](Lkp−Lkm)L`k−Z [`m]Z [kp] ((Lkp−Lkm)Lm`+(Lm`−L`p)Lkp)

]

−3
∑
k 6=m,p

`∈{k,m,p}

[
Z [`k]Z [mp](Lkp−Lkm)Lmp−Z [`m]Z [kp](Lkp−Lkm)Lkp

]

+3
∑
6̀=m,p

k∈{`,m,p}

Z [`m]Z [kp](Lm`−L`p)Lm` . (B.10)

Upon renaming `↔ k in the last term of the first line, and in the last line, the lower two
lines become the missing terms for the summation over ` in the first line,

Ĵpm = 3
∑
k 6=m,p

(Lkp − Lkm)
∑
`

[
Z [`k]Z [mp]L`k − Z [`m]Z [kp] Lm` + Z [km]Z [`p]L`p

]
. (B.11)

The sum over ` is precisely the regularity condition (A.30). We conclude that Ĵpm = 0, thus
showing equation (3.11). Thus, the functional F (~r ) is extremized by pole configurations
that satisfy the regularity conditions.

C Sample solutions

In this appendix, we present a sample of explicit solutions and their free energies. To
streamline the notation we set 2πα′ = 1.

Solutions for L = 5, . . . , 10 poles, connected by a Higgs branch flow separating complete
5-branes from the brane web, are shown in table 1. The data for the UV and IR theories
are denoted by UV and IR superscripts, respectively, and the IR theories are characterized
by the prescription in equation (4.2) with K = 2, (i.e. the first two residues are affected,
while the remaining ones stay fixed) and where ξ ∈ (0, 1) was chosen arbitrarily.

Solutions with L = 5, . . . , 10 poles connected by a Higgs branch flow separating a
triple-junction of 5-branes from the brane web are shown in table 2. The IR theories are
characterized by the prescription in equation (4.2) with K = 3 (i.e. the first three residues
are affected, while the remaining ones stay fixed) and ξ ∈ (0, 1) was chosen randomly.
The IR theories comprise two sectors for these flows, and both contributions are included
in ∆F .

Solutions for UV and IR theories connected by SU(2)R-preserving RG flows, for which
the UV solutions have L = 3, . . . , 8 poles, are shown in table 3. The IR theories are
characterized by the prescription in equation (4.10), where we have conveniently chosen
s = 1 and t = 2 (i.e. the first two residues as well as the (L + 1)th are affected, while the
remaining ones stay fixed). α, β ∈ (0, 1) were chosen randomly. The IR SCFTs comprise
two sectors, one described by a solution with L+ 1 poles and one described by a solution
with 3 poles; both contribute to ∆F .
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