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1 Introduction

The groundbreaking work of Strominger and Vafa [1] provided the first microscopic expla-
nation for the entropy of certain asymptotically flat black holes, and inspired a considerable
amount of work in regards to understanding the microstates of asymptotically flat black
holes. In the last few years, this has been expanded on for asymptotically AdS black holes
using the AdS/CFT correspondence [2, 3]. In particular, for a special class of supersym-
metric extremal AdS black holes, which we call BPS black holes, the Bekenstein-Hawking
entropies can be reproduced from the corresponding boundary conformal field theories
(CFT) [4–18].

Combining with the near-horizon Kerr/CFT correspondence [19–21], we now have a
unifying picture as shown in figure 1. More precisely, for BPS black holes, their entropies
can be computed in various ways, including (i) the original Bekenstein-Hawking formula
on the gravity side, (ii) the near-horizon Kerr/CFT correspondence and (iii) the microstate
counting from the boundary CFT via AdS/CFT correspondence. In addition, the useful
limit called the gravitational Cardy limit can simplify the geometry near the horizon, by
producing an AdS3 subgeometry, which has been explicitly verified for AdS4,5,6,7 BPS black
holes in [22].

Most of the previous work has assumed supersymmetry, and one natural question that
may arise is whether or not the entropy matching is successful when the BPS bound -
the intersection of supersymmetry and extremality is relaxed. In order to investigate this
question, we study near-extremality in this paper. There has already been progress made
in this direction, such as in [23], where AdS5 black holes have been discussed from gravity,
including near-extremal (TH > 0) and extremal near-BPS (TH = 0) configurations. For the
latter case, the boundary field theory was also explored. Later, [24] resolved some technical
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Figure 1. The asymptotically AdS black hole entropy can be computed in three different ways
(S(i)

BH), and have found to give one universal result for the entropy. This is valid for both BPS black
holes and near-extremal black holes.

problems and successfully derived the heat capacity for near-extremal AdS5 black holes from
the boundary N = 4 supersymmetric Yang-Mills theory (SYM). In addition, [24] used the
Bardeen-Horowitz near-horizon rescaling [25] and the Kerr/CFT correspondence [19–21]
to reproduce the near-extremal AdS5 black hole entropy from the near-horizon CFT2.
Consequently, it provided a new microscopic formalism of Hawking radiation, similar to
the D1-D5 CFT interpretation for asymptotically flat black holes studied by Callan and
Maldacena [26]. In this work, we extend the analyses of [22] from the BPS case to the
near-extremal case. However, unlike [22], we do not assume the Cardy limit.

More explicitly, we compute the near-extremal electrically charged rotating AdS4 black
hole entropy using three different approaches:

1. expansion of the non-extremal AdS4 black hole solution around the BPS solution,

2. near-extremal Kerr-Newman-AdS/CFT correspondence from the near-horizon CFT2,

3. microstate counting via AdS/CFT correspondence from the boundary 3d supercon-
formal ABJM theory at small temperature.

We find that the entropy computations from the three different approaches lead to one
universal result for the entropy, which can be formally written as

SBH = S∗ + δS = S∗ +
(
C

TH

)
∗
TH , (1.1)

where S∗ denotes the electrically charged rotating AdS4 black hole entropy in the BPS
limit, while (C/TH)∗ stands for the heat capacity in the BPS limit. Therefore, our results
use a concrete example to support the existence of a near-horizon CFT2, which accounts
for the black hole entropy, and show that the Kerr/CFT correspondence [19–21], which was
originally applied only to extremal black holes, can also be extended to the near-extremal
black holes. In addition, the near-extremal AdS5 black hole discussed in [24] and the
near-extremal AdS4 black hole considered in this paper support that the unifying picture
shown in figure 1 is valid for both BPS black holes and near-extremal black holes. As
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a byproduct, we clean up some technical issues in previous literature. This includes the
computation of the right central charge of the near-horizon CFT2 and that cL = cR similar
to [27]. In addition, we can unambiguously derive the right Frolov-Thorne temperature
TR and consequently the black hole entropy from the right sector without any cutoffs, as
in [27, 28].

Several recent works based on 2d JT gravity coupled to a 2d bath CFT [29–32] have
provided a holographic description of Hawking radiation and black hole evaporation, which
can potentially be used to address the long-standing problem of black hole information
paradox. This paper together with [24] give an alternative approach of studying black hole
evaporation and information paradox via AdS/CFT correspondence. In contrast to [29–32],
which are intrinsically 2d models, both [24] and our work include both higher-dimensional
CFTs on the boundary and a near-horizon 2d CFT, which may be more robust.

This paper is organized as follows. In section 2 we carefully discuss how to achieve
near-extremal black holes by perturbing the extremal condition for the supersymmetric
black hole solutions, and then compute the near-extremal electrically charged rotating
AdS4 black hole entropy in three different ways. In section 3 we connect the near-extremal
AdS4 black hole entropy obtained in the previous section with Hawking radiation, and
provide a microscopic formalism similar to [26] for asymptotically flat black holes and [24]
for AdS5 black holes. Some discussions for the future research directions are presented in
section 4.

While this work was being completed, we became aware of the related work [33], which
has some overlap with subsection 2.2 in this paper.

2 Near-extremal AdS4 black hole entropy

2.1 AdS4 black hole solution

In this subsection, we review the asymptotically AdS4 black holes of interest along with
some of their properties. The non-extremal asymptotically AdS4 electrically charged ro-
tating black hole solution with a gauge group U(1) × U(1) was constructed in [34, 35] as
a solution to 4d N = 4 gauged supergravity. This is a special case, where there are two
electric charges that are pairwise equal (Q1 = Q3, Q2 = Q4) along with one angular mo-
mentum J . The solution is characterized by four parameters (a,m, δ1, δ2). The metric, the
scalar fields and the gauge fields are given by

ds2 = − ∆r

W

(
dt− a sin2θ

Ξ dφ

)2

+W

(
dr2

∆r
+ dθ2

∆θ

)
+ ∆θ sin2θ

W

(
a dt− r1r2 + a2

Ξ dφ

)2

,

(2.1)

eϕ1 = r2
1 + a2 cos2θ

W
, χ1 = a(r2 − r1) cos θ

r2
1 + a2 cos2θ

,

A1 = 2
√

2m sinh(δ1) cosh(δ1) r2
W

(
dt− a sin2θ

Ξ dφ

)
+ α41 dt ,

A2 = 2
√

2m sinh(δ2) cosh(δ2) r1
W

(
dt− a sin2θ

Ξ dφ

)
+ α42 dt , (2.2)
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where

ri ≡ r + 2m sinh2(δi) , (i = 1, 2)
∆r ≡ r2 + a2 − 2mr + g2r1r2(r1r2 + a2) ,
∆θ ≡ 1− g2a2 cos2θ ,

W ≡ r1r2 + a2 cos2θ ,

Ξ ≡ 1− a2g2 ,

(2.3)

and g ≡ `−1
4 is the inverse of the AdS4 radius. We have added two pure gauge terms to

the two gauge fields A1,2 with constants α41 and α42. The metric (2.1) can be written
equivalently as

ds2 = −∆r∆θ

BΞ2 dt
2 +B sin2θ(dφ+ f dt)2 +W

(
dr2

∆r
+ dθ2

∆θ

)
, (2.4)

with the factors B and f given by

B ≡ (a2 + r1r2)2∆θ − a2 sin2(θ) ∆r

WΞ2 ,

f ≡ aΞ
(
∆r −∆θ(a2 + r1r2)

)
∆θ(a2 + r1r2)2 − a2∆r sin2θ

.

(2.5)

The 1
4 -BPS supersymmetric solutions can be obtained by imposing the condition

e2δ1+2δ2 = 1 + 2
ag

, (2.6)

or equivalently,
a = a0 , with a0 ≡

2
g (e2δ1+2δ2 − 1) . (2.7)

The extremal black hole solutions are achieved when the function ∆r(r) has a double
root, or equivalently when the discriminant of ∆r(r) vanishes, which can be viewed as an
equation for m. We can solve when the discriminant is zero and obtain the extremal value
of m as a function of a and δ1,2, i.e.,

m = mext(a, δ1, δ2) . (2.8)

Since this computation is straightforward, we omit the lengthy expression of mext(a, δ1, δ2).
In this case, for m < mext the function ∆r(r) has two different real roots corresponding
to the outer and the inner horizons of a non-extremal black hole. For m > mext the
function ∆r(r) does not have real roots, which implies that the solution has a naked sin-
gularity instead of a black hole. We would like to emphasize that the asymptotically AdS4
Kerr-Newman black holes have also been discussed in [36]. However, the supersymmet-
ric solutions considered [36] have 1

2 -BPS supersymmetry instead of 1
4 -BPS supersymmetry

discussed in [34, 35], which makes some features of the black holes different.
Before moving on, we want to emphasize the parameter space we are exploring. Par-

ticularly, we want to focus on the parameters m, a and δ1 as well as the conditions that
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Figure 2. The extremal surface (yellow) and the supersymmetric surface (green).

characterize supersymmetry and extremality of the black hole. Our goal is to have a black
hole solution that is slightly perturbed from these two conditions. Hence, it satisfies both
the supersymmetric condition (2.7) and the extremal condition (2.8). Under the super-
symmetric condition (2.7), the extremal condition (2.8) is equivalent to

(mg)2 = cosh2(δ1 + δ2)
eδ1+δ2 sinh3(δ1 + δ2) sinh(2δ1) sinh(2δ2)

, (2.9)

which can also be obtained by requiring the black hole solution to have a regular horizon.
The two conditions (2.7) and (2.9) in [35] contain typos, which have been corrected in [37,
38] and also [39]. With these two constraints, there are only two independent parameters
for asymptotically AdS4 electrically charged rotating BPS black holes. To illustrate the
relations of the parameters, we plot in figure 2 the codimension-1 supersymmetric surface
defined by (2.7) together with the codimension-1 extremal surface defined by (2.8) in
the parameter space (m, a, δ1, δ2), where for simplicity we set δ2 = δ1 and L = 1. The
intersection of these codimension-1 surfaces is a codimension-2 surface corresponding to
the BPS solutions.

We now collect useful properties of the black hole, including the position of the outer
horizon in the BPS limit

r0 = 2m sinh(δ1) sinh(δ2)
cosh(δ1 + δ2) , (2.10)

which coincides with the BPS inner horizon. For the thermodynamic quantities of the
non-extremal asymptotically AdS4 black holes, the gravitational angular velocity Ω and
the temperature TH are given by

Ω = a(1 + g2r1r2)
r1r2 + a2 , TH = ∆′r

4π(r1r2 + a2) , (2.11)
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which are evaluated at the outer horizon r+, and the prime (′) denotes the derivative with
respect to r. The other thermodynamic quantities are [35]

S = π(r1r2 + a2)
Ξ ,

J = ma

2Ξ2 (cosh(2δ1) + cosh(2δ2)) ,

Q1 = Q3 = m

4Ξ sinh(2δ1) ,

Q2 = Q4 = m

4Ξ sinh(2δ2) .

(2.12)

2.2 Near-extremal AdS4 black hole entropy from gravity solution

The asymptotically AdS4 black hole solutions discussed in the previous subsection are in
general non-extremal. Since our focus is on near-extremality, we perturb the BPS black hole
solution. More precisely, we expand the non-extremal AdS4 black hole solutions around
the BPS solution by turning on a small temperature.

We shall do this by studying the parameter space. Before imposing the constraints (2.7)
and (2.9), there are 4 parameters that characterize the black hole solution, and we inter-
change one of these parameters, a, with the outer horizon r+, where r+ is the biggest root
of the equation ∆r(r+) = 0, i.e.,

r2
+ + a2 − 2mr+ + g2

2∏
i=1

(
r+ + 2m sinh2(δi)

) [ 2∏
i=1

(
r+ + 2m sinh2(δi)

)
+ a2

]
= 0 . (2.13)

Note that we only do this replacement of a with r+ when we compute the entropy in this
subsection. There are two reasons why we make this change. The first is pragmatic: this
simplifies the algebra significantly. The second is that the outer horizon r+ plays a clear
role in the nAttractor mechanism [40], which will also be relevant for the discussions later
in this subsection. Now, we use (2.13) to solve for the parameter a in terms of r+, and the 4
independent parameters for the non-extremal AdS4 black hole solutions are (r+,m, δ1, δ2).
Correspondingly, there are 4 independent physical quantities (TH , J,Q1, Q2), where we
have set Q1 = Q3 and Q2 = Q4 as in (2.12). Without loss of generality, we further set
δ2 = δ1, and therefore Q1 = Q2, to simplify the discussion.

The black hole entropy in (2.12) is valid for any temperature, including small temper-
ature. This is achieved by expanding around the BPS value of the entropy, leading to the
expression

S = S∗ +
(
C

TH

)
∗
TH +O(T 2

H) , (2.14)

where S∗ denotes the AdS4 black hole entropy (2.12) in the BPS limit

S∗ = 2π
g2 (e4 δ1 − 3) , (2.15)

while C is the heat capacity which is linear in TH , and
(
C
TH

)
∗
is evaluated in the BPS

limit. Computing
(
C
TH

)
∗
is straightforward(

C

TH

)
∗

=
(
dS

dTH

)
∗

=
(
∂S

∂r+

)
∗

(
∂r+
∂TH

)
∗

+
(
∂S

∂m

)
∗

(
∂m

∂TH

)
∗

+
(
∂S

∂δ1

)
∗

(
∂δ1
∂TH

)
∗
, (2.16)

– 6 –



J
H
E
P
0
4
(
2
0
2
1
)
2
5
6

where ∂r+
∂TH

, ∂m
∂TH

and ∂δ1
∂TH

can be obtained by inverting the matrix

∂(TH , J,Q1)
∂(r+,m, δ1) . (2.17)

Once the dust settles, the result is

(
C

TH

)
∗

=
8
√

2π2
(
e4 δ1 − 1

) 3
2

g3 (e4 δ1 − 3) (e8 δ1 + 10 e4 δ1 − 7) . (2.18)

We comment that this result can also be obtained by only varying S with respect to r+, i.e.,(
C

TH

)
∗

=
(
∂S

∂r+

)
∗

(
∂r+
∂TH

)
∗
. (2.19)

This is similar to the AdS5 case discussed in [23], which is related to the nAttractor
mechanism [40]. This hints that the nAttractor mechanism extends to other dimensions.

2.3 AdS4 black hole solution in the near-horizon limit

In this subsection, we consider near-extremal asymptotically AdS4 black holes close to the
1
4 -BPS solutions by introducing a small positive temperature T , and discuss the corre-
sponding metrics.

It was discussed in [36] that for asymptotically AdS4 black holes from the extremal
case to non-extremal configurations corresponds to perturbing the parameter m from its
extremal value mext. As we can see from figure 2, when perturbing around the AdS4

1
4 -BPS

black holes, we can deviate from the extremal surface but still stay in the supersymmet-
ric surface by imposing the supersymmetric condition (2.7). Meanwhile, we expand the
parameter m around its BPS value given by (2.9) with a small dimensionless parameter
λ [27] corresponding to near-extremal AdS4 black hole solutions, i.e.,

m = m0(1 + λ2m̃) , (2.20)

where
m0 ≡

cosh(δ1 + δ2)
g e(δ1+δ2)/2 sinh3/2(δ1 + δ2)

√
sinh(2δ1) sinh(2δ2)

, (2.21)

which coincides withmext under the supersymmetric condition (2.7). In generalmext 6= m0.
A similar limit was also used in [41] to study the near-BPS black holes and compared with
other limits in [5]. To summarize, near-extremal AdS4 black holes can be achieved by
perturbing the parameter m around mext while keeping the other parameters fixed. This
is made explicit in this paper by imposing the near-extremal condition (2.20) with the
parameter a fixed by the supersymmetric condition (2.7).

Moreover, we perform a near-horizon scaling to the asymptotically AdS4 black hole
metric (2.4), which was first introduced by Bardeen and Horowitz in [25] and extensively
studied [22] for the BPS AdS4 black holes

r → r0 + λ r̃ , t→ t̃

λ
, φ→ φ̃− g

[
coth(2δ1)− 2

] t̃
λ
. (2.22)
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In principle, for near-extremal black holes we should consider the near-horizon scaling
r → r+ + λ r̃. However, the near-extremal condition (2.20) implies that r+ and r0 only
differ by a constant of order λ. Hence, we can absorb that constant into r̃ and still take
r → r0+λ r̃ in the near-horizon scaling. This kind of near-horizon scaling for near-extremal
black holes has been used in [28]. To summarize, we impose the near-horizon scaling (2.22)
together with the condition conditions (2.20) and (2.7).

Taking the limit λ→ 0, the metric (2.4) becomes

ds2 = −

(
e8 δ1 + 10 e4 δ1 − 7

) (
e4 δ1 + cos(2θ)

)
2 (e4 δ1 + 1)2 g2 r̃2 dt̃2 +

2
(
e4 δ1 + cos(2θ)

)
g2 (e8 δ1 + 10 e4 δ1 − 7)

dr̃2

r̃2

+
2
(
e4 δ1 + cos(2θ)

)
g2 (e8 δ1 − 2 e4 δ1 − 1− 2 cos(2 θ)) dθ

2

+ ΛAdS4(θ)
[
dφ̃+ g2 eδ1 (e4 δ1 − 3)

√
csch(2 δ1) sech(2 δ1)

1 + coth(2 δ1) r̃ dt̃

]2

, (2.23)

where

ΛAdS4(θ) ≡
2
(
e8 δ1 − 2 e4 δ1 − 1− 2 cos(2 θ)

)
sin2(θ)

g2 (e4 δ1 − 3)2 (e4 δ1 + cos(2θ)) . (2.24)

From the near-horizon, we are now in a position to extract the necessary details to compute
the entropy via the Kerr/CFT correspondence. As we shall see, there are several methods
to compute the central charges, which requires a rewriting of the near-horizon geometry in
different coordinate systems. To make things clearer, we summarize each of these different
expressions of the near-horizon metric. The change of coordinates

τ ≡
g2
(
e8 δ1 + 10 e4 δ1 − 7

)
2(e4δ1 + 1) t̃ , ρ ≡ r̃ , (2.25)

allows us to write (2.23) in Poincaré coodinates

ds2 =
2
(
e4 δ1 + cos(2θ)

)
g2 (e8 δ1 + 10 e4 δ1 − 7)

(
−ρ2 dτ2 + dρ2

ρ2

)
+

2
(
e4 δ1 + cos(2θ)

)
g2 (e8 δ1 − 2 e4 δ1 − 1− 2 cos(2 θ)) dθ

2

+ ΛAdS4(θ)

dφ̃+
2
(
e8 δ1 − 4 e4 δ1 + 3

)√
csch(2 δ1)

eδ1 (e8 δ1 + 10 e4 δ1 − 7) ρ dτ

2

. (2.26)

Therefore, it is clear that the near-horizon scaling we applied to the metric leaves us with
a circle fibered over AdS2, yielding a warped AdS3 geometry. We now see that the near-
horizon metric in Poincaré coodinates (2.26) is in the standard form

ds2 = f0(θ)
(
−ρ2 dτ2 + dρ2

ρ2

)
+ fθ(θ) dθ2 + γij(θ)

(
dxi + kiρ dτ

) (
dxj + kjρ dτ

)
, (2.27)

with xi ∈ {φ̃} for the AdS4 case, and the coefficients f0(θ), fθ(θ), ki and γij(θ) are functions
of θ in general.
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Now, we transform the Poincaré coordinates (τ, ρ, θ, φ̃) in the metric (2.26) to the
global coordinates (t̂, r̂, θ, φ̂) using the following relations

g ρ = r̂ +
√

1 + r̂2 cos(t̂) , g−1 τ =
√

1 + r̂2 sin(t̂)
r̂ +
√

1 + r̂2 cos(t̂)
, (2.28)

which leads to

−ρ2 dτ2 + dρ2

ρ2 = −(1 + r̂2) dt̂2 + dr̂2

1 + r̂2 ,

ρ dτ = r̂ dt̂+ dκ ,

(2.29)

where
κ ≡ log

(
1 +
√

1 + r̂2 sin(t̂)
cos(t̂) + r̂ sin(t̂)

)
. (2.30)

Consequently, the metric (2.26) can be rewritten as

ds2 =
2
(
e4 δ1 + cos(2θ)

)
g2 (e8 δ1 + 10 e4 δ1 − 7)

[
−(1 + r̂2) dt̂2 + dr̂2

1 + r̂2

]

+
2
(
e4 δ1 + cos(2θ)

)
g2 (e8 δ1 − 2 e4 δ1 − 1− 2 cos(2 θ)) dθ

2

+ ΛAdS4(θ)

dφ̂+
2
(
e8 δ1 − 4 e4 δ1 + 3

)√
csch(2 δ1)

eδ1 (e8 δ1 + 10 e4 δ1 − 7) r̂ dt̂

2

, (2.31)

where

φ̂ ≡ φ̃+
2
(
e8 δ1 − 4 e4 δ1 + 3

)√
csch(2 δ1)

eδ1 (e8 δ1 + 10 e4 δ1 − 7) κ . (2.32)

Besides the near-horizon scaling (2.22), we can also apply a light-cone scaling in the
near-horizon region [27]

x+ ≡ ε
(
φ+ e4 δ1 − 3

e4 δ1 − 1 gt
)
, x− ≡ φ− e4 δ1 − 3

e4 δ1 − 1 gt , (2.33)

and then consider the following near-horizon scaling in the light-cone coordinates

r → r0 + ε r̃ , t→ e4 δ1 − 1
e4 δ1 − 3

x+ − εx−

2gε , φ→ x+ + εx−

2ε . (2.34)

Together with the condition (2.20) and taking the limit ε→ 0, we obtain the near-horizon
metric for the AdS4 near-extremal black holes in the coordinates (x+, r̃, θ, x−)

ds2 = −

(
e4 δ1 − 1

)2 (
e8 δ1 + 10 e4 δ1 − 7

) (
e4 δ1 + cos(2θ)

)
8 (e8 δ1 − 2 e4 δ1 − 3)2 r̃2 dx+2

+
2
(
e4 δ1 + cos(2θ)

)
g2 (e8 δ1 + 10 e4 δ1 − 7)

dr̃2

r̃2 +
2
(
e4 δ1 + cos(2θ)

)
g2 (e8 δ1 − 2 e4 δ1 − 1− 2 cos(2 θ)) dθ

2

+ ΛAdS4(θ)
[
dx− + eδ1 sech(2 δ1)

csch(2 δ1)3/2 g r̃ dx
+
]2

, (2.35)
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where ΛAdS4(θ) is the same as (2.24). Introducing some new coordinates

x̂+ ≡
g
(
e4 δ1 − 1

) (
e8 δ1 + 10 e4 δ1 − 7

)
4 (e8 δ1 − 2 e4 δ1 − 3) x+ , ρ̂ ≡ r̃ , x̂− ≡ x− , (2.36)

we can rewrite the near-horizon metric in the light-cone coordinates (2.35) as

ds2 =
2
(
e4 δ1 + cos(2θ)

)
g2 (e8 δ1 + 10 e4 δ1 − 7)

[
−ρ̂2 dx̂+2 + dρ̂2

ρ̂2

]
+

2
(
e4 δ1 + cos(2θ)

)
g2 (e8 δ1 − 2 e4 δ1 − 1− 2 cos(2 θ)) dθ

2

+ ΛAdS4(θ)

dx̂− +
2
(
e8 δ1 − 4 e4 δ1 + 3

)√
csch(2 δ1)

eδ1 (e8 δ1 + 10 e4 δ1 − 7) ρ̂ dx̂+

2

. (2.37)

We see that the metric (2.37) is in the standard form

ds2 = f0(θ)
(
−ρ̂2 dx̂+2 + dρ̂2

ρ̂2

)
+ fθ(θ) dθ2 + γij(θ)

(
dxi + kiρ̂ dx̂+

) (
dxj + kj ρ̂ dx̂+

)
,

(2.38)
with xi ∈ {x̂−} for the AdS4 case, and ki, f0(θ), fθ(θ) and γij(θ) remain the same
as (2.27). To summarize, we now have several different expressions for the near-horizon
metric in Poincaré and global coordinates. This is useful when we utilize the near-extremal
Kerr/CFT correspondence.

2.4 Near-extremal AdS4 black hole entropy from Cardy formula

After obtaining the various expressions of the near-horizon metric of the asymptotically
AdS4 black holes, we are now ready to compute the central charges and the Frolov-Thorne
temperatures using the near-extremal Kerr/CFT correspondence as well as hidden confor-
mal symmetry of the near-horizon geometry to find the AdS4 black hole entropy in the
near-extremal limit. For the left central charge cL and the right central charge cR, there
are two different ways for computing each of them, depending on which coordinate system
we choose. We summarize each of these diverse approaches as a consistency check on our
computation as well as to keep things self-contained.

The Kerr/CFT correspondence was originally posed for asymptotically flat extremal
Kerr black holes [19] and was later shown to also be valid for asymptotically AdS black
holes [20, 21]. For the near-extremal case, [27, 28] initiated some progress and we extend
those results here by computing the entropies of near-extremal AdS4 black holes via the
Cardy formula. Before further exploring the near-extremal case, let us take a step back
and recall how the Kerr/CFT correspondence works. The basic idea is the following.
Taking the Bardeen-Horowitz near-horizon scaling [25], the near-horizon geometry of an
asymptotically flat or asymptotically AdS extremal black hole contains U(1) cycles fibered
on AdS2. The near-horizon asymptotic symmetries are characterized by diffeomorphims
generated by the vectors

ζε = ε(φ) ∂
∂φ
− r ε′(φ) ∂

∂r
. (2.39)
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The mode expansion of a diffeomorphism generating vector ζ is

ζ(n) = −e−inφ̃ ∂
∂φ̃
− inre−inφ̃ ∂

∂r̂
. (2.40)

We can define a 2-form kζ for a general perturbation hµν around the background metric
gµν as

kζ [h, g] ≡ −1
4εαβµν

[
ζνDµh− ζνDσh

µσ + ζσD
νhµσ + 1

2hD
νζµ − hνσDσζ

µ

+ 1
2h

σν(Dµζσ +Dσζ
µ)
]
dxα ∧ dxβ . (2.41)

We also define the Lie derivative with respect to ζ, denoted by Lζ , as

Lζgµν ≡ ζρ∂ρgµν + gρν∂µζ
ρ + gµρ∂νζ

ρ . (2.42)

The left central charge cL of the near-horizon Virasoro algebra can be computed using the
Kerr/CFT correspondence in two slightly different ways. For the first method, the central
charge can be computed using the following integral [19–21]

1
8πG

∫
∂Σ
kζ(m) [Lζ(n)g, g] = − i

12cL (m3 + αm) δm+n, 0 , (2.43)

where g denotes the near-horizon metric of the near-extremal AdS4 black hole in global
coordinates (2.31). An explicit evaluation of (2.43) shows that

cL =
24
√

2 (e4 δ1 − 1)
g2 (e8δ1 + 10 e4 δ1 − 7) . (2.44)

The other way of computing cL is to evaluate the following integral [27]

1
8πGN

∫
∂Σ
kξn [Lξm ḡ, ḡ] = δn+m, 0 n

3 cL
12 , (2.45)

where ḡ denotes the standard form (2.27) of the near-horizon metric of the near-extremal
AdS4 black hole in Poincaré coordinates (2.26). More precisely, we obtain with the
unit GN = 1

cL =
3k

φ̃

GN

∫ π

0
dθ
√
Det (γij(θ)) fθ(θ) =

24
√

2 (e4 δ1 − 1)
g2 (e8δ1 + 10 e4 δ1 − 7) , (2.46)

which matches exactly the result of cL (2.44) from the first approach.
The right central charge cR can also be obtained in two different ways. Although we

describe the two methods, we prefer one method over the other because of its robustness.
The first approach is to compute the quasi-local charge [27, 42, 43] using the standard
form of the near-horizon metric of the near-extremal AdS4 black hole in Poincaré coordi-
nates (2.27), which is given by the integral

cR
12 = 1

8πGN

∫
dxi dθ

kikjγij(θ)
√
Det (γij(θ)) fθ(θ)

2Λ0f0(θ) , (2.47)
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where f0(θ), fθ(θ), γij(θ) and ki are defined in (2.27), and the parameter Λ0 denotes a
UV cutoff in r. This approach has been used to compute the right central charge cR for
near-extremal AdS5 black holes [24]. For the four-dimensional case, the integral (2.47)
can be applied to the near-horizon metric (2.26) in Poincaré coordinates to compute cR.
However, the result is not very illuminating due to the unfixed cutoff Λ0.

To compute cR, we choose a more concrete approach using light-cone coordinates as
introduced in [27]. More precisely, a scale-covariant right central charge c

(cov)
R can be

computed from the near-horizon metric (2.37) by using

c
(cov)
R = 3k− ε

∫ π

0
dθ
√
Det (γij(θ)) fθ(θ) =

24 ε
√

2 (e4 δ1 − 1)
g2 (e8δ1 + 10 e4 δ1 − 7) , (2.48)

where the factors γij(θ), fθ(θ) and k− are defined in (2.38). Like in [27], we can define a
scale-invariant right central charge cR ≡ c(cov)

R /ε, which in this case is

cR =
24
√

2 (e4 δ1 − 1)
g2 (e8δ1 + 10 e4 δ1 − 7) . (2.49)

We see that the result is exactly the same as the left central charge computed in (2.44)
and (2.46). To summarize, the explicit expression for the integral changes slightly depend-
ing on the coordinate system, and we have shown that all the results do indeed lead to the
same central charge.

Now that we have taken care of the central charges, and have consistently gotten that
cL = cR, the final ingredient is the Frolov-Thorne temperatures TL and TR. We have seen
in [22] that for the BPS case TR = 0. For the near-extremal case, TL can still be computed
in the same way discussed in [22], and its value remains the same as the BPS case, as it is
unaffected by whether we impose the condition (2.20). Therefore, we find

TL =
eδ1
(
e8 δ1 + 10 e4 δ1 − 7

)√
sinh(2 δ1)

4π (e8 δ1 − 4 e4 δ1 + 3) . (2.50)

On the other hand, TR is proportional to the physical Hawking temperature TH . To
find the exact expression of TR, we apply the technique of hidden conformal symmetry.
This method was first introduced in [44], and later generalized to many different cases.
The basic idea is to define a set of near-horizon conformal coordinates and corresponding
locally-defined vector fields with SU(2,R) Lie algebra, such that the wave equation of an
uncharged massless scalar field becomes the quadratic Casimir of the SU(2,R) Lie algebra.
In this way, we can fix the Frolov-Thorne temperatures TL,R and the mode numbers NL,R

for non-extremal black holes.
In particular, [28] has considered the hidden conformal symmetry of an AdS4 black

hole close to the solutions discussed in this paper. We can apply the same technique by
first expanding ∆r defined in (2.3)

∆r = k(r − r+)(r − rs) +O
(
(r − r+)3

)
, (2.51)
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where k and rs can be read off from the Taylor expansion to quadratic order in (r − r+).
Based on hidden conformal symmetry [28], the right temperature is

TR = k(r+ − rs)
4πaΞ . (2.52)

Applying the definition the Hawking temperature TH (2.11) to the leading order expression
of ∆r (2.51), we find for b = a that

TH = k(r+ − rs)
4π(r2

1 + a2)
. (2.53)

Combining (2.52) with (2.53), we obtain

TR = r2
1 + a2

aΞ TH . (2.54)

We also find that the expression obtained using hidden conformal symmetry for TL is (2.50)
as expected. Using the Cardy formula, we obtain the near-extremal AdS4 black hole entropy

S = π2

3 cLTL + π2

3 cRTR

= S∗ +
(
C

TH

)
∗
TH = 2π

g2 (e4 δ1 − 3) +
8
√

2π2
(
e4 δ1 − 1

) 3
2

g3 (e4 δ1 − 3) (e8 δ1 + 10 e4 δ1 − 7) TH , (2.55)

where the BPS entropy S∗ is

S∗ = π2

3 cLTL , (2.56)

while the near-extremal correction to the black hole entropy is

δS = π2

3 cRTR ≡
(
C

TH

)
∗
TH . (2.57)

We see that this result from the near-horizon CFT2 and the Cardy formula is exactly the
same as the results from the gravity side ((2.14), (2.15) and (2.18)).

2.5 Near-extremal AdS4 black hole entropy from boundary CFT

What remains is the computation of the near-extremal entropy from the boundary CFT.
In the BPS limit, the AdS4 black hole entropy can be obtained by extremizing an entropy
function, which was derived by the superconformal index or supersymmetric localization
of the 3d ABJM theory on the boundary of electrically charged rotating AdS4 BPS black
holes [11, 12]. More precisely, the BPS entropy function is

S(∆̃I , ω̃) = −4
√

2 i k
1
2N

3
2

3

√
∆̃1∆̃2∆̃3∆̃4

ω̃
+ω̃J+

∑
I

∆̃IQI+Λ
(∑

I

∆̃I − ω̃ − 2πi
)
, (2.58)

where ∆̃I are chemical potentials corresponding to the electric charges QI , and ω̃ is the
angular velocity. To extremize the entropy function (2.58), we solve the equations

∂S

∂∆̃I

= 0 , ∂S

∂ω̃
= 0 , (2.59)
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which can be expressed explicitly as

QI + Λ = 4
√

2 i k
1
2N

3
2

3

√
∆̃1∆̃2∆̃3∆̃4

2∆̃I ω̃
, (2.60)

J − Λ = −4
√

2 i k
1
2N

3
2

3

√
∆̃1∆̃2∆̃3∆̃4

ω̃2 . (2.61)

Substituting these equations back into the entropy function (2.58), we obtain

S = −2πiΛ . (2.62)

Moreover, the equations (2.60) and (2.61) can be combined into one equation:

Q1Q2Q3Q4 + Λ
( ∑
I<J<K

QIQJQK

)
+ Λ2

(∑
I<J

QIQJ

)
+ Λ3

(∑
I

QI

)
+ Λ4

= −2
9kN

3(Λ2 − 2ΛJ + J2) ,

(2.63)

which can be written more compactly as

Λ4 +AΛ3 +B Λ2 + C Λ +D = 0 , (2.64)

with the real-valued coefficients

A =
4∑
I=1

QI ,

B =
∑
I<J

QIQJ + 2
9kN

3 ,

C =
∑

I<J<K

QIQJQK −
4
9kN

3J ,

D = Q1Q2Q3Q4 + 2
9kN

3J2 .

(2.65)

In order to obtain a real-valued black hole entropy, the expression (2.62) implies that
Λ should have a purely imaginary root. Since (2.64) is a quartic equation of Λ with
real coefficients, the imaginary roots should come in pairs. Consequently, (2.64) can be
factorized as

(Λ2 + α)(Λ2 + β Λ + µ) = Λ4 + β Λ3 + (α+ µ) Λ2 + αβ Λ + αµ . (2.66)

Comparing (2.66) with (2.64), we find

A = β , B = α+ µ , C = αβ , D = αµ , (2.67)

or equivalently,
α = C

A
, β = A , µ = B − C

A
= AD

C
. (2.68)
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According to (2.62), the imaginary root Λ = i
√
α = i

√
C
A leads to the real-valued AdS4

BPS black hole entropy

S∗BH = 2π

√
Q1Q2Q3 +Q1Q2Q4 +Q1Q3Q4 +Q2Q3Q4 − 4

9kN
3J

Q1 +Q2 +Q3 +Q4
. (2.69)

For the special case Q1 = Q3, Q2 = Q4, the expression above becomes

S∗BH = 2π
3

√
9Q1Q2(Q1 +Q2)− 2kJN3

Q1 +Q2
. (2.70)

After imposing the identifications of parameters introduced in [11, 12, 38]

QBH,I = g

2QI , JBH = J , I ∈ {1, · · · , 4} (2.71)

and using an entry from the AdS/CFT dictionary

1
GN

= 2
√

2
3 g2k

1
2N

3
2 , (2.72)

we can rewrite the BPS black hole entropy (2.70) as

S∗BH = π

g2G

JBH(
2
gQBH,1 + 2

gQBH,2
) , (2.73)

which can be subsequently written in terms of the free parameters (δ1, δ2) on the gravity
side in the BPS limit. For the special case δ1 = δ2, the BPS black hole entropy obtained
from the boundary CFT is

S∗BH = 2π
g2 (e4 δ1 − 3) , (2.74)

which is exactly the same as the BPS result from the gravity side (2.15) and the one from
the near-horizon Kerr/CFT correspondence (2.56).

In addition to the black hole entropy, the electric charges QI ’s and the angular mo-
mentum J should also satisfy a constraint, which originates from the consistency of two
expressions of µ in (2.68), i.e.,

B − C

A
− AD

C
= 0 . (2.75)

More explicitly, for the special case Q1 = Q3, Q2 = Q4 the constraint is

2
9kN

3 + (Q1 +Q2)2 + 2kJN3

9(Q1 +Q2) + 2kJN3 [Q1Q2 + J(Q1 +Q2)]
2kJN3 − 9Q1Q2(Q1 +Q2) = 0 . (2.76)

We emphasize that the constraint is not unique. A constraint multiplied by a constant or
some regular function of QI and J can produce new constraints. For later convenience,
we define

h ≡ J2

4g5(Q1+Q2)2

[
2
9kN

3 + (Q1+Q2)2+ 2kJN3

9(Q1 +Q2) + 2kJN3 [Q1Q2 + J(Q1 +Q2)]
2kJN3 − 9Q1Q2(Q1 +Q2)

]
,

(2.77)
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whose BPS value will be called h∗, and

h∗ = 0 (2.78)

is one of the BPS constraints. So far we have only considered the BPS black holes from the
boundary CFT in this subsection. To extend the BPS results to the near-extremal case,
similar to the AdS5 case discussed in [24], we generalize the quartic equation (2.64) from
the BPS limit to the near-extremal case by perturbing Λ and h as

(Λ + δΛ)4 +A (Λ + δΛ)3 +B (Λ + δΛ)2 + C (Λ + δΛ) +D + (h∗ + δh) = 0 , (2.79)

which at the order O(δΛ) is

(4Λ3 + 3AΛ2 + 2B Λ + C) δΛ + δh = 0 . (2.80)

For the root Λ = i
√

C
A , which has led to the BPS black hole entropy, we can solve (2.80)

and obtain
δΛ = δh

2C − 2i
√

C
A

(
B − 2CA

) . (2.81)

Based on (2.62), the correction to the BPS black hole entropy is

δS = −2πi δΛ . (2.82)

Hence, only the imaginary part of δΛ will contribute to the real part of δS. If we assume
that δh is purely imaginary, then

Im(δΛ) = δhRe

 1

2C − 2i
√

C
A

(
B − 2CA

)


= 2C δh[
2C − 2i

√
C
A

(
B − 2CA

)] [
2C + 2i

√
C
A

(
B − 2CA

)]
= δh

2C + 2
A

(
B − 2CA

)2 . (2.83)

Therefore, for real-valued δS we have

δS = −2πi Im(δΛ) = −πi δh

C + 1
A

(
B − 2CA

)2 . (2.84)

We view δh as a small change of h from its BPS value, i.e.,

δh = h− h∗ = h . (2.85)

We can compute δh by
δh = ∂h

∂QI
δQI + ∂h

∂J
δJ , (2.86)
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with the transformations similar to the AdS5 case [24]

δQI = ηQI , δJi = ηJi . (2.87)

For the near-extremal case, we relate the transformation parameter η with the temperature
change

2πi δTH = 2η , (2.88)

where δTH = TH − T ∗H = TH . Now, we apply (2.86) to the explicit choice of h given
by (2.77). In the unit GN = 1, the near-extremal correction to the BPS entropy for the
special case δ1 = δ2 becomes

δS =
8
√

2π2
(
e4 δ1 − 1

) 3
2

g3 (e4 δ1 − 3) (e8 δ1 + 10 e4 δ1 − 7) TH ≡
(
C

TH

)
∗
TH . (2.89)

Combining the BPS black hole entropy from the boundary CFT (2.74) and the near-
extremal correction (2.89), we obtain the near-extremal AdS4 black hole entropy from the
boundary CFT

SBH = S∗BH + δS

= 2π
g2 (e4 δ1 − 3) +

8
√

2π2
(
e4 δ1 − 1

) 3
2

g3 (e4 δ1 − 3) (e8 δ1 + 10 e4 δ1 − 7) TH ≡ S∗ +
(
C

TH

)
∗
TH , (2.90)

which matches perfectly with the results from gravity solution ((2.14), (2.15) and (2.18))
and from the near-horizon Kerr/CFT correspondence ((2.55), (2.56) and (2.57)).

3 Hawking radiation and near-extremal AdS4 black hole

In section 2, we have derived the near-extremal AdS4 black hole entropy using three differ-
ent approaches and obtained one universal result. In particular, the approach of the near-
horizon Kerr/CFT correspondence shows that there exists a near-horizon CFT2, which
accounts for the low-energy spectrum of the black hole microstates.

As we have seen in subsection 2.4, the near-extremal black hole entropy can be decom-
posed into the contributions from the left and the right sectors of the near-horizon CFT2.
The expression from the canonical ensemble is

SBH = π2

3 cLTL + π2

3 cRTR , (3.1)

which has been discussed extensively for the asymptotically flat black holes [45–52], while
the expression from the microcanonical ensemble is [53]

SBH = 2π

√
cLNL

6 + 2π

√
cRNR

6 , (3.2)

where NL and NR are the left and the right mode numbers, respectively. The relation (3.2)
can be applied to asymptotically AdS black holes as well (see e.g. [54]). Comparing the
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expressions (3.1) and (3.2), we find that the temperatures TL,R can be related to the mode
numbers NL,R

TL = 1
π

√
6NL

cL
, TR = 1

π

√
6NR

cR
. (3.3)

The explicit expressions of NL and NR for near-extremal AdS4 black holes considered in
this paper with δ1 = δ2 are

NL = e8 δ1 + 10 e4 δ1 − 7
4
√

2g2 (e4 δ1 − 3)2√
e4 δ1 − 1

,

NR =
4
√

2π2
(
e4 δ1 − 1

) 5
2 T 2

H

g4 (e4 δ1 − 3)2 (e8 δ1 + 10 e4 δ1 − 7)
.

(3.4)

Suppose that the left and the right mode numbers in the BPS limit are N∗L and N∗R
respectively, where

N∗R = 0 . (3.5)

As discussed in [24, 26], for the near-extremal case the left-moving and the right-moving
modes become

NL = N∗L + δNL ≈ N∗L ,
NR = N∗R + δNR = δNR ,

(3.6)

with δNL = δNR � N∗L, which can be seen from (3.4). Because TH/g � 1 for near-
extremal AdS4 black holes, the right mode number NR ∼ (TH/g)2 is much smaller than the
left mode number NL ∼ (TH/g)0. If we assume that the right modes obey a microcanonical
ensemble, then the partition function of the right sector can be written as

ZR =
∑
NR

qNRd(NR) =
∑
NR

qNReSR =
∑
NR

qNRe2π
√
cRNR/6 , (3.7)

where q ≡ e−1/TR . We evaluate this partition function using a saddle-point approximation
with respect to NR, and the result is

δNR = NR = q
∂

∂q
logZR ≈

cRπ
2

6 (log(q))2 , with log(q) < 0 . (3.8)

The inequality log(q) < 0 can be justified by the definition q ≡ e−1/TR . For near-extremal
AdS4 black holes 0 < TR � 1, which implies that 0 < q � 1 and consequently log(q) < 0.
The occupation number in the right sector is given by Bose-Einstein statistics

ρR(k0) = qn

1− qn = e
− k0

TR

1− e−
k0
TR

, (3.9)

where n is the momentum quantum number of the mode moving in the time circle for the
near-horizon region of AdS4 black holes, and k0 is the typical energy of the right-moving
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modes. From (3.8) we can solve for q in terms of δNR = NR, and then combining it
with (3.9) we obtain

TR = k0
πn

√
6 δNR

cR
= 1
π

√
6NR

cR
, (3.10)

where we used k0 = n. A similar expression holds for TL, i.e.,

TL = 1
π

√
6NL

cL
. (3.11)

We see that (3.10) and (3.11) are completely consistent with (3.3). Since the right sector
obeys the Bose-Einstein statistics, the typical energy k0 of the right modes can be charac-
terized by the right temperature TR. In the limit k0 ∼ TR � TL, the occupation number
in the left sector can be approximated as

ρL(k0) = e
− k0

TL

1− e−
k0
TL

≈ TL
k0

= 1
πk0

√
6NL

cL
. (3.12)

According to [24, 26], Hawking radiation can be formulated as a scattering process of
left and right modes in the near-horizon CFT2. Therefore, we can evaluate the Hawking
radiation rate for near-extremal AdS4 black holes based on the analyses above

dΓ ∼ d4k

k0

1
pL0 p

R
0
|A|2 cL ρL(k0) ρR(k0) , (3.13)

where the central charge cL provides the degrees of freedom for a given momentum quantum
number n, and A is the disc amplitude of strings depending on details of the near-horizon
CFT2. From (3.12) we see that

cL ρL(k0) ∼ SL ∝ (horizon area) . (3.14)

Consequently, the Hawking radiation rate becomes

dΓ ∼ (horizon area) · e
− k0

TR

1− e−
k0
TR

d4k , (3.15)

which is a consequence of Bose-Einstein statistics, and implies that the radiation spectrum
is thermal and governed by a temperature TR proportional to the Hawking temperature
TH . Therefore, we have found a microscopic formalism of Hawking radiation in the near-
horizon CFT2. According to this picture, the scattering of modes is unitary; hence there
is no information loss during the Hawking radiation process.

Since the boundary CFT can exactly reproduce the near-extremal black hole en-
tropy (3.1), this microscopic formalism of Hawking radiation can in principle be embedded
in higher-dimensional boundary CFT, which is the 3d superconformal ABJM theory for
AdS4 black holes.

Like the AdS5 case discussed in [24], we have not taken into account the global structure
of AdS space. Particularly, due to the conformal boundary of AdS space, once the radiation
reaches the boundary, it will bounce back and head towards the black hole. Therefore, our
current model provides a microscopic description for the Hawking radiation immediately
after creation. We leave the full evolution of Hawking radiation for future work.
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4 Discussion

We have studied the electrically charged rotating AdS4 black holes in the near-extremal
limit. Moreover, by studying the parameter space we have successfully defined a way
to approach near-extremal supersymmetric black holes. We have then computed the en-
tropy using three different approaches: (i) from the gravity solution, (ii) from the near-
horizon CFT2 via the Kerr/CFT correspondence and (iii) from the boundary CFT via
the AdS/CFT correspondence. Remarkably, these three results match precisely, giving us
a universal and unique expression for the entropy in the near-extremal limit. This sup-
ports the near-extremal microstate counting in the boundary CFT and in the near-horizon
CFT2. We also have shown that the extension of the Kerr/CFT correspondence, originally
posed for extremality, to near-extremal black holes is valid. Using the results of near-
extremal black hole entropy, we provide a microscopic description of Hawking radiation,
and qualitatively show that unitarity and information are preserved during the Hawking
radiation process.

The success of this work provides motivation to further study near-extremality in
other dimensions and indeed show that the three diverse entropy computations lead to one
universal entropy. Besides the near-extremal AdS5 black holes discussed in [24] and the
AdS4 case discussed in this paper, we can also consider the known AdS6 and AdS7 [33] black
hole solutions. Similar results from different approaches listed in figure 1 are expected.
Moreover, the unifying picture figure 1 can potentially be valid beyond the Bekenstein-
Hawking entropy. Hence, it would be interesting to study the subleading corrections to
the Bekenstein-Hawking entropy and see if the different approaches still provide a unique
expression for the entropy, in the same spirit of [55–65]. A recent work [66] shows that
Sen’s classical entropy function formalism [67] can be applied to asymptotically AdS4 black
holes to capture higher derivative corrections to the Bekenstein-Hawking entropy, which
complements the methods in figure 1.

Besides the microstate counting of black holes, a more interesting question is how to
use field theory techniques to study dynamical process in black hole physics. For instance,
Hawking radiation on asymptotically AdS black holes has been studied within the frame-
work of AdS/CFT correspondence previously in [68, 69]. Some recent progress has been
made for microscopic description of Hawking-Page transition [70]. Another related prob-
lem is to reproduce the Page curve in the black hole evaporation process [71–73], which
has been studied in the framework of 2d JT gravity coupled to a 2d bath CFT [29–32].
Our approach in [24] and in this paper provides another powerful framework of studying
these problems. In order to do that, however, we have to first carefully study the Hawking
radiation at a later time in the dual boundary field theory and in the near-horizon CFT2 to
resolve the issues from the global property of AdS space. We hope to refine our microscopic
models and study these more physical problems in the near future.
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