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1 Introduction

An insightful analysis of the superconformal index of N = 4 maximally supersymmetric
Yang-Mills theory with gauge group SU(N) has recently provided a microscopic foundation
for the entropy of electrically charged, rotating, asymptotically AdS5 black holes [1–3]. The
results are an important improvement on the understanding of the superconformal index
previously introduced in [4, 5] and provide an explicit realization of a conjecture put forward
in [6] regarding the entropy of AdS5 black holes. These developments motivated various
studies into the superconformal index of large classes of 4d N = 1 theories [7–14].
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The problem of microscopic counting of the entropy has thus descended into a technical
plane. Two main technical approaches have emerged, one rooted in saddle point approxima-
tions [1, 2], and one in a Bethe-Ansatz (BA) formula of the index [3]; a systematic discussion
comparing both approaches including sub-leading contributions and extending the results
to include 4d N = 1 theories was presented in [15]. Other approaches to the evaluation of
the index, include, for example, those rooted in doubly-periodic extensions [16, 17], direct
numerical evaluation [18, 19]; a partial list of results includes [20–23].

In the context of the AdS/CFT correspondence the superconformal index (SCI) rep-
resents the full quantum entropy of the dual black holes. The drive to have an exact in
N expression for the index is motivated by nothing less than to have the exact quantum
entropy of the dual black holes. One expects such object will have powerful lessons to teach
us about the nature of quantum gravity. Indeed, studies of the superconformal index have
already yielded important insight into aspects of quantum gravity in asymptotically AdS
spacetimes. The analysis of [15] and more recently [23], have established the robustness of
the ultraviolet prediction for the logarithmic corrections to the entropy; a study reported
in [24] has provided some insight into the structure of certain non-perturbative terms in
the index. More ambitiously, one can expect that the BA structure of the index, whereby it
is rewritten as the contributions of solutions to the Bethe-Ansatz Equations (BAE), might
give us some clues about the path integral on the gravity side. Similarly, in the saddle
point approach to the index one might expect that the hierarchy of saddle point solutions
is related to the contributions to the gravitational path integral. With that motivation in
mind, we explore the extent to which the exact superconformal index can be reconstructed
from the BAE solutions.

In this manuscript we explore, within the BA approach to the SCI, the ingredients
necessary to reconstruct the full exact index. Most of the recent work devoted to the SCI
has been analytic in nature. There have been, however, two recent studies exploiting a
direct numerical approach to the index with the main goal of better understanding finite
N aspects [18, 19]. In part inspired by these developments we study the SCI at finite N
focusing on N = 2, 3. We take advantage of the relative simplicity of these cases to shed
light on general aspects of the BA approach to recovering the full index.

The BA approach to the superconformal index has the advantage of providing, in
principle, an exact formula for the index. The devil, as we know, is in the details and the
details in this context are the set of BAE solutions that need to be included to compute
the index. Roughly speaking, following the classification of [14, 25], all the BAE solutions
include standard (corresponding to a freely acting orbifold T 2/Zm×Zn) and non-standard
ones. One concrete result of this manuscript is to clarify the role that these two types of
solutions play in reconstructing the full SCI. The large N picture is by now fairly clear,
the dominant contribution coming from the so-called basic solutions and perhaps a small
set of other solutions depending on the fugacities [14, 15]. In this manuscript we focus on
the more subtle finite N issues, in particular, we study how each type contributes to the
computation of the full SCI. In particular, we will demonstrate the important role played,
for N ≥ 3, by non-standard solutions.
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The rest of the manuscript is organized as follows. We start in section 2 by briefly
reviewing the BA approach to the superconformal index. We discuss the SU(2) case in
section 3 and SU(3) in section 4. We discuss our results in section 5 and relegate a number
of technical details to a series of appendices.

2 Review of the Bethe-Ansatz approach

The superconformal index (SCI) of 4d N = 4 SU(N) supersymmetric-Yang-Mills (SYM)
theory [4, 5] is given as (following the convention of [3]1):

I(ya, p, q) = Tr(−1)F e−β{Q,Q†}pJ1qJ2yQ1
1 yQ2

2 yQ3
3 . (2.1)

The SCI (2.1) above receives contributions from the 1
16 -BPS states of the radially quan-

tized theory on R × S3 that preserve a complex supercharge Q. These BPS states are
characterized by the charges J1,2 and Q1,2,3. Here J1,2 = JL ± JR are angular momenta
associated with SU(2)L×SO(2)R ∼= SO(4) acting on S3 and Q1,2,3 are three R-charges for
U(1)3 ⊂ SO(6)R. The fugacities p, q, y1,2,3 are associated with the quantum numbers J1,2
and Q1,2,3 respectively, and constrained as pq = y1y2y3. The SCI (2.1) is well defined for
|p|, |q| < 1.

One can rewrite the expression (2.1) more explicitly in terms of elliptic hypergeometric
integrals as [26, 27]

I(ya,p,q) = ((p;p)∞(q;q)∞)N−1

N !

3∏
a=1

Γ(ya;p,q)N−1
∮ N−1∏

i=1

dzi
2πizi

N∏
i,j=1(i 6=j)

∏3
a=1 Γ( zizj ya;p,q)

Γ( zizj ;p,q) ,

(2.2)
where the zi-integration is over a unit circle with the SU(N) constraint ∏N

i=1 zi = 1. The
integral (2.2) can be evaluated using a saddle point approximation [1, 2] (see also [7, 8, 14]).
It has recently been computed beyond the saddle point approximation and shown to be
given, up to exponentially suppressed contributions, in terms of the exact S3 partition
function of a Chern-Simons theory [15] (see also [23] for more general classical groups).

One can also compute the SCI (2.2) following the Bethe-Ansatz (BA) approach. The
BA approach has been introduced for a generic 4d N = 1 supersymmetric gauge theories
in [28] based on insightful observations made in [29, 30]. It was then applied to the N = 4
SU(N) SYM theory with p = q in [3] and, more recently, to the same theory with p = ha

and q = hb where a, b ∈ N and gcd(a, b) = 1 [31]. Some discussion of the BA approach to
the SCI of a large class of 4d N = 1 supersymmetric quiver gauge theories was presented to
leading order in [12, 13] and a systematic sub-leading study was presented recently in [15].
In this manuscript we focus on the BA approach to the index of N = 4 SU(N) SYM
with emphasis on aspects of the finite rank, N . Our starting point is the corresponding
presentation of the index following the BA formula for the SCI of the N = 4 SU(N) SYM
theory as (see appendix A for the definitions of elliptic functions)

I(ya, p, q) = κ(ya, p, q)
∑

{ui}∈MBAE

Ztot({ui}; ∆, σ, τ)H({ui}; ∆, ω)−1, (2.3)

1We have used Qhere
a = 1

2 Rthere
a (a = 1, 2, 3).
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where zi = e2πiui , ya = e2πi∆a , p = ha = e2πiσ, q = hb = e2πiτ , h = e2πiω, and

κ(ya, p, q) = 1
N !

(
(p; p)∞(q; q)∞

3∏
a=1

Γ(ya, p, q)
)N−1

, (2.4a)

Ztot({ui}; ∆, σ, τ) =
ab∑

m1=1
· · ·

ab∑
mN−1=1

Z({ul −mlω}; ∆, σ, τ) (2.4b)

Z({ui}; ∆, σ, τ) =
N∏
i 6=j

(
Γ̃(uij ;σ, τ)−1

3∏
a=1

Γ̃(uij + ∆a;σ, τ)
)
, (2.4c)

H({ui}; ∆, ω) = det
[ 1

2πi
∂(Q1, . . . , QN )

∂(u1, . . . , uN−1, λ)

]
. (2.4d)

Here uij ≡ ui − uj and {ui} is a shorthand notation for N holonomies {ui| i = 1, · · · , N}.
The SU(N) constraint is given as∑N

i=1 ui ∈ Z. In (2.4b), theN -th integermN is determined
through the constraint

N∑
l=1

ml = 0. (2.5)

The BA operator used in (2.4d) is defined as

Qi({uj}; ∆, ω) ≡ e2πi(λ+3
∑N

j=1 uij)
∏
∆

N∏
j=1

θ0(uji + ∆;ω)
θ0(uij + ∆;ω)

= e2πiλ∏
∆

N∏
j=1

θ1(uji + ∆;ω)
θ1(uij + ∆;ω) ,

(2.6)

where ∆ take values in ∆ ∈ {∆1,∆2,−∆1 − ∆2} and λ is a free parameter that will be
determined next. The Bethe-Ansatz Equations (BAE) used in the BA formula (2.3) is then
given as a system of transcendental equations as

Qi({uj}; ∆, ω) = 1, (2.7)

which fixes the parameter e2πiλ to a N -th root of unity. MBAE in (2.3) denotes a set of
BAE solutions whose first N − 1 holonomies are within the fundamental domain, namely

{ui} ∈ MBAE iff
i) Qi({uj}; ∆, ω) = 1 (i = 1, · · · , N)
ii) ui = xi + yiω with 0 ≤ yi < 1 (i = 1, · · · , N − 1)

. (2.8)

For later purpose, here we summarize the key properties of the BA operator (2.6) and
the building blocks (2.4). Let us begin with the BA operator (2.6) which is doubly periodic
with respect to holonomies and invariant under a constant shift as follows

Qi({uj +mj + njω}; ∆, ω) = Qi({uj}; ∆, ω) (nj ,mj ∈ Z), (2.9a)
Qi({uj + c}; ∆, ω) = Qi({uj}; ∆, ω). (2.9b)
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One of the building blocks Z({ui}; ∆, aω, bω) (2.4c) in the BA formula (2.3) is quasi-
periodic with respect to holonomies and invariant under a constant shift as

Z({uj − δjkabω}; ∆, σ, τ) = (−1)N−1e−2πiλQk({uj}; ∆, ω)Z({uj}; ∆, σ, τ), (2.10a)
Z({uj + c}; ∆, σ, τ) = Z({uj}; ∆, σ, τ). (2.10b)

The quasi-periodicity can be proved using (A.6a), (A.7), and (A.10). Another building
block H({ui}; ∆, ω) (2.4d) in the BA formula (2.3) satisfies similar properties explicitly
given as:

H({uj − δjkω}; ∆, σ, τ) = H({uj}; ∆, σ, τ), (2.11a)
H({uj + c}; ∆, σ, τ) = H({uj}; ∆, σ, τ), (2.11b)

which follows from its definition in (2.4d) and the properties (2.9). Note that, according
to (2.11a), the determinant H({ui}; ∆, ω) is invariant under the ω-shift of the k-th holon-
omy with an arbitrary k = 1, · · · , N . Hence it is periodic with respect to holonomies,
which is distinguished from the quasi-periodicity of a building block Z({ui}; ∆, aω, bω)
given in (2.10a). For SU(N), the determinant (2.4d) reduces to that of an (N−1)×(N−1)
matrix H [15, 25]

H({ui}; ∆, ω) = N det[Hij ] ≡ N det
[ 1

2πi
∂(Q1, . . . , QN−1)
∂(u1, . . . , uN−1)

]
. (2.12)

Evaluating ∂Qi/∂uj with the BA operator (2.6) at BAE solutions satisfying (2.7), we
obtain the elements of the matrix H explicitly as

Hii = −
N−1∑
k 6=i

g(uki;ω)− 2g(uNi;ω),

Hij = g(uij ;ω)− g(uNj ;ω) (i 6= j),
(2.13)

where
g(u;ω) ≡ 1

2πi
∑
∆

∂

∂∆ [log θ1(u+ ∆;ω) + log θ1(−u+ ∆;ω)] . (2.14)

3 The SU(2) index

In this section, we specialize to the case of SU(2) with the goal of achieving a clear picture
of how the full SCI arises from the BA formula (2.3) and the explicit role of the Bethe
vacua (2.8). We will further directly compare the results of the BA approach with other
approaches such as the series expansion by counting states [18, 19] and direct numerical
integration of (2.2).

For N = 2, the BAE (2.7) reduces to a single transcendental equation as

± 1 = e−2πiλ =
∏
∆

θ1(∆ + u21;ω)
θ1(∆− u21;ω) ⇔ 1 =

∏
∆

θ1(∆ + u21;ω)2

θ1(∆− u21;ω)2 , (3.1)

– 5 –
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where ∆ take values in ∆ ∈ {∆1,∆2,−∆1 −∆2}. Note that the double-periodicity of the
BA operator (2.9a) implies that given a solution u21, we can generate countably many BAE
solutions u21 +m+ nω (m,n ∈ Z). For the SU(2) case at hand, if we identify solutions in
different lattices as u21 ∼ u21 +Z+Zω, there are only 6 distinct BAE solutions [14]. They
are given as

u21 ∈
{

0, 1
2 ,
ω

2 ,
1 + ω

2 , u∆,−u∆

}
. (3.2)

Let us now introduce a classification of the solutions. We will roughly group the solutoins
to the BAE as standard and non-standard as follows (except the trivial one):

• Standard solutions: the BAE solutions that correspond to a freely acting orbifold
T 2/Zm × Zn.These solutions can be associated to an SL(2,Z) action and are generi-
cally ∆-indepent.

• Non-standard solutions: all the other solutions, they have the generic property of
being ∆-dependent.

Applied to the set of solutions in (3.2), the first solution is the trivial one and the next
three are standard solutions denoted by three integers as {2, 1, 0}, {1, 2, 0}, and {1, 2, 1}
respectively in the convention of [25]. The last two are called non-standard solutions that
depend on chemical potentials [14]. The explicit form of a non-standard solution is known
only for real ∆1,2 in the asymptotic regions: for example, in the ‘low-temperature’ limit
|ω| → ∞ with fixed argω, u∆ is given for real ∆1,2 as [14]

u∆(|ω| → ∞) = 1
2πi log

−(1−∑∆ cos 2π∆
2

)
+

√(1−∑∆ cos 2π∆
2

)2
− 1

 . (3.3)

It is also convenient to characterize the solutions based on the value of e−2πiλ in equa-
tion (3.1). In this case we can split the 6 solutions (3.2) into two groups as

e−2πiλ = −1 : u21 ∈
{1

2 ,
ω

2 ,
1 + ω

2

}
, (3.4a)

e−2πiλ = 1 : u21 ∈ {0, u∆,−u∆} . (3.4b)

It is noteworthy that, in the SU(2) case, the characterization by the value of e−2πiλ (3.4)
distinguishes standard solutions (3.4a) from a trivial one and non-standard ones (3.4b).
We will see that such grouping will play an important role in computing the SU(2) index
through the BA formula (2.3) below.

Observe that the low-temperature asymptotic form (3.3) is enough to evaluate the
value of e−2πiλ for a non-standard solution u21 = ±u∆. This is because the value of e−2πiλ

cannot jump between ±1 under continuous deformation of ω: once the value of e−2πiλ is
determined in the low-temperature limit |ω| → ∞, it has to be the same for arbitrary ω.

Now we consider the contribution from a BAE solution u21 = u?, which is an arbitrary
element of the 6 solutions listed in (3.2), to the SCI through the BA formula (2.3). Using
the double-periodicity of the BA operator (2.9a), we set

u? = x? + y?ω with − 1 < y? ≤ 0 (3.5)

– 6 –
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without loss of generality. From this BAE solution u21 = u?, we can generate a total of 4 in-
equivalent elements {u1, u2} ofMBAE (2.8) using the properties of the BA operator (2.9) as

MBAE 3
{
−u

?

2 + r + s1ω

2 ,
u?

2 + r + s2ω

2

}
, (3.6)

where
r ∈ {0, 1}, {s1, s2} ∈ {{0, 0}, {1,−1}}. (3.7)

Substituting these 4 elements into the BA formula (2.3) and using (2.10b), we obtain the
contribution from a BAE solution u21 = u? to the SCI

I{u21=u?}(ya, p, q) = 2κ(ya, p, q)
2ab∑
m1=1

Z({−u?+m1ω
2 , u

?+m1ω
2 }; ∆, aω, bω)

H({−u?+m1ω
2 , u

?+m1ω
2 }; ∆, ω)

. (3.8)

Using the properties of Z({ui}; ∆, aω, bω) (2.10) and H({ui}; ∆, ω) (2.11), we can sim-
plify (3.8) further as

I{u21=u?}(ya, p, q) =

4κ(ya, p, q)
∑ab

m1=1 Z({−u
?+m1ω

2 ,
u?+m1ω

2 };∆,aω,bω)

H({−u?2 ,
u?

2 };∆,ω)
(e−2πiλ = −1)

0 (e−2πiλ = 1)
,

(3.9)
where the value of e−2πiλ follows from (3.4) for a given u21 = u?.

Finally, the SU(2) index is given as the sum of (3.9) over all BAE solutions u21 = u?

listed in (3.2). The result can be written strictly in terms of the standard solutions as

I(ya, p, q) = 4
(
I{2,1,0} + I{1,2,0} + I{1,2,1}

)
, (3.10)

where we have defined

κ−1I{2,1,0} =
∑ab
m1=1Z({−1/2+m1ω

2 , 1/2+m1ω
2 }; ∆, aω, bω)

H({−1
4 ,

1
4}; ∆, ω)

, (3.11a)

κ−1I{1,2,0} =
∑ab
m1=1Z({− (m1−1/2)ω

2 , (m1−1/2)ω
2 }; ∆, aω, bω)

H({−ω
4 ,

ω
4 }; ∆, ω) , (3.11b)

κ−1I{1,2,1} =
∑ab
m1=1Z({−1/2+(m1−1/2)ω

2 , 1/2+(m1−1/2)ω
2 }; ∆, aω, bω)

H({−1+ω
4 , 1+ω

4 }; ∆, ω)
. (3.11c)

We remark that the non-standard solutions in the SU(2) case evaluate to zero but this
is an accident of SU(2). The non-standard solutions will play a more prominent, albeit
puzzling, role in generic cases of SU(N).

3.1 Asymptotic behavior

The SU(2) index (3.10) is exact but each contribution from standard solutions listed
in (3.11) is a complicated combination of elliptic Gamma functions. Hence, in this subsec-
tion, we investigate the SU(2) index (3.10) in the asymptotic regions where the exact BA
formula (3.10) can be written in terms of elementary functions. This will allow us to un-
derstand the behavior of the SU(2) index more intuitively and also compare it with results
from other approaches including the series expansion by counting states [18, 19] and a nu-
merical integration of (2.2). The asymptotic regions we consider are the low-temperature
limit (|ω| → ∞ or |h| → 0) and the Cardy-like limit (|ω| → 0 or |h| → 1) with fixed argω.

– 7 –
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3.1.1 The low-temperature limit

When |h| < 1, we can expand the SU(2) index (3.10) as a series in h, which gives a
reasonable approximation under |ω| → ∞ or |h| → 0. Specializing to the case p = q =
h = y

3/2
a , corresponding to (a, b) = (1, 1), and using the product representations of the

Pochhammer symbol and the elliptic Gamma function, the contributions from the three
standard solutions (3.11) can be expanded as

I{2,1,0} = −1
2 − 3x− 21

2 x
2 − 31x3 − 87x4 − 225x5 − 1071

2 x6 − 1215x7 − 2661x8

− 5598x9 − 22755
2 x10 +O

(
x11
)
, (3.12a)

I{1,2,0} = − 1
16x3/2 −

3
16x1/2 + 3

8 −
3
4x

1/2 + 3
2x−

43
16x

3/2 + 21
4 x

2 − 153
16 x

5/2

+ 31
2 x

3 − 105
4 x7/2 + 177

4 x4 − 1131
16 x9/2 + 447

4 x5 − 2775
16 x11/2 + 2135

8 x6

− 1635
4 x13/2 + 2439

4 x7 − 7211
8 x15/2 + 5325

4 x8 − 30999
16 x17/2 + 5589

2 x9

− 16023
4 x19/2 + 11379

2 x10 − 64327
8 x21/2 +O

(
x11
)
, (3.12b)

I{1,2,1} = 1
16x3/2 + 3

16x1/2 + 3
8 + 3

4x
1/2 + 3

2x+ 43
16x

3/2 + 21
4 x

2 + 153
16 x

5/2

+ 31
2 x

3 + 105
4 x7/2 + 177

4 x4 + 1131
16 x9/2 + 447

4 x5 + 2775
16 x11/2 + 2135x6

8
+ 1635

4 x13/2 + 2439
4 x7 + 7211

8 x15/2 + 5325
4 x8 + 30999

16 x17/2 + 5589
2 x9

+ 16023
4 x19/2 + 11379

2 x10 + 64327
8 x21/2 +O

(
x11
)
. (3.12c)

Here we follow the notation of [18, 19], where x is defined by the relations p = q = x3

and ya = x2. Combining these three standard solutions according to (3.10) then gives the
SU(2) index

I(ya =x2,p=x3, q=x3) = 1+6x4−6x5−7x6+18x7+6x8−36x9+6x10+O(x11), (3.13)

which agrees with the generalized series expansion of the SU(2) index (B.10) derived in
appendix B based on [18, 19]. Although these expressions are presented here only up to
O(x10), the Pochhammer symbol and elliptic Gamma function can easily be expanded to
considerably higher order if desired.

We also investigated the more generic case p = h3, q = h2, and ya = h5/3 corresponding
to (a, b) = (3, 2). In this case, the three standard solutions, (3.11), admit the expansions

I{2,1,0}=− 3
4x3−

3
x2−

45
4x−33− 381

4 x− 495
2 x2− 2457

4 x3−1434x4− 12879
4 x5

− 27747
4 x6− 57867

4 x7− 58509
2 x8− 230523

4 x9− 443271
4 x10− 834345

4 x11

− 1539861
4 x12+· · ·− 36607515

2 x19+O(x20), (3.14a)
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I{1,2,0}=− 1
8x9/2−

3
8x7/2 + 3

8x3−
9

8x5/2 + 3
2x2−

13
4x3/2 + 45

8x−
39

4x1/2 + 133
8

− 57
2 x

1/2+ 381
8 x−77x3/2+· · ·+ 73215039

8 x19−11782924x39/2+O(x20), (3.14b)

I{1,2,1}= 1
8x9/2 + 3

8x7/2 + 3
8x3 + 9

8x5/2 + 3
2x2 + 13

4x3/2 + 45
8x+ 39

4x1/2 + 133
8

+ 57
2 x

1/2+ 381
8 x+77x3/2+· · ·+ 73215039

8 x19+11782924x39/2+O(x20), (3.14c)

where we have taken p = x9, q = x6 and ya = x5. Adding these contributions then gives
the SU(2) index

I(ya = x5, p = x9, q = x6) = 1 + 6x10 − 3x11 − 3x14 − 7x15 + 9x16 − 3x17 + 9x19 +O(x20).
(3.15)

This agrees with the generalized series expansion of the SU(2) index, (B.10), when rear-
ranged according to the scaling p = h3, q = h2, and ya = h5/3.

The above observation confirms that the BA formula (2.3) is consistent with the series
expansion (B.10) based on [18, 19] in the low-temperature regime where |h| < 1. This
strongly supports that the N = 2 BA formula (3.10) gives the exact SU(2) index, in partic-
ular that the three contributions from standard solutions (3.11) are the only contributions
to the SCI and each one has a degeneracy of 4.

It is noteworthy that, both in (3.12) and (3.14), the series for I{2,1,0} is a Taylor series
in integer powers of x, but the other two series for I{1,2,0} and I{1,2,1} include half-integer
powers of x. Moreover, they start at order x−3/2. Remarkably, the half-integer powers of
x cancel in the sum I{1,2,0} + I{1,2,1}. From this observation in the SU(2) case, we expect
I{m,n,r}, namely the contribution from a BAE solution to the SCI denoted by three integers
{m,n, r} following [25], to be a series in powers of x1/n and that fractional powers of x
are removed in the sum ∑n−1

r=0 I{m,n,r} in general. Nevertheless, inverse integer powers of
x can remain in this sum. If would be interesting to investigate whether this tantalizing
cancellations offer a bridge to the bootstrap ideas for the superconformal index based on
modularity advanced by Gadde [32].

3.1.2 The Cardy-like limit
Next we investigate the Cardy-like limit (|ω| → 0 or |h| → 1) of the SU(2) index
through (3.10). For simplicity, we identify p = q with (a, b) = (1, 1). Standard contri-
butions to the SU(2) index (3.11) are then written explicitly as

I{2,1,0}= (q;q)2
∞
∏3
a=1 Γ̃(∆a;τ)

4i
π

∑
∆∂∆ log[θ1(1

2 +∆;τ)θ1(−1
2 +∆;τ)]

∏3
a=1 Γ̃(1

2 +∆a;τ)Γ̃(−1
2 +∆a;τ)

Γ̃(1
2 ;τ)Γ̃(−1

2 ;τ)
,

(3.16a)

I{1,2,0}= (q;q)2
∞
∏3
a=1 Γ̃(∆a;τ)

4i
π

∑
∆∂∆ log[θ1( τ2 +∆;τ)θ1(− τ

2 +∆;τ)]

∏3
a=1 Γ̃( τ2 +∆a;τ)Γ̃(− τ

2 +∆a;τ)
Γ̃( τ2 ;τ)Γ̃(− τ

2 ;τ)
,

(3.16b)

I{1,2,1}= (q;q)2
∞
∏3
a=1 Γ̃(∆a;τ)

4i
π

∑
∆∂∆ log[θ1( τ+1

2 +∆;τ)θ1(− τ+1
2 +∆;τ)]

∏3
a=1 Γ̃( τ+1

2 +∆a;τ)Γ̃(− τ+1
2 +∆a;τ)

Γ̃( τ+1
2 ;τ)Γ̃(− τ+1

2 ;τ)
.

(3.16c)
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From here on, we use q and τ instead of h and ω since they are the same under the
identification p = q = h with (a, b) = (1, 1). We will also use the “∼” symbol for equations
valid up to exponentially suppressed terms of the form O(e−1/|τ |).

To begin with, substituting the asymptotic behaviors of θ1(u; τ) (A.18) and
Γ̃(u; τ) (A.19) into (3.16b) gives the Cardy-like limit of the contribution from the basic
{1, 2, 0} BAE solution as

log I{1,2,0} ∼ −
3πi
τ2

3∏
a=1

(
{∆a}τ −

1 + η1
2

)
− log 2. (3.17)

Here the τ -modded value {·}τ is defined in (A.12) and we have introduced ηC ∈ {±1} as

3∑
a=1
{C∆a}τ = 2Cτ + 3 + ηC

2 ⇔
3∑

a=1
{C∆̃a} = 3 + ηC

2 , (3.18)

assuming ∆̃a 6∈ Z. Refer to (A.14) and (A.15) for the definitions of the ‘tilde’ component
of chemical potentials ∆̃a and a real modded value {·} respectively.

For the other two BA contributions (3.16a) and (3.16c), we keep track of the leading
exponentially suppressed terms since otherwise they diverge for the η1 = η2 case. Substi-
tuting the asymptotic behaviors (A.18) and (A.19) into (3.16a) and (3.16c) then gives

logI{2,1,0}

∼− πi

2τ2

3∏
a=1

(
{2∆a}τ−

1+η2
2

)
+ πi

τ2

3∏
a=1

(
{∆a}τ−

1+η1
2

)
−log16

+
3∑

a=1

(
2log

ψ({1/2+∆a}τ
τ −1)

ψ(1−{1/2+∆a}τ
τ +1)

+log
ψ({∆a}τ

τ −1)
ψ(1−{∆a}τ

τ +1)

)
+4log

(
1−e−

πi
τ

)

+


3η1πi

4 (η1 =−η2)
πi(6−5η1)

12 −log∑∆

(
e−

2πi
τ (1−{ 1

2 +∆}τ )

1−e−
2πi
τ (1−{ 1

2 +∆}τ )
− e−

2πi
τ {

1
2 +∆}τ

1−e−
2πi
τ {

1
2 +∆}τ

)
(η1 = η2)

,

(3.19)

logI{1,2,1}

∼− πi

2τ2

3∏
a=1

(
{2∆a}τ−

1+η2
2

)
+ πi

τ2

3∏
a=1

(
{∆a}τ−

1+η1
2

)
−log16

+
3∑

a=1

(
log

ψ({1/2+∆a}τ
τ − 1

2)
ψ(1−{1/2+∆a}τ

τ + 1
2)

+log
ψ({1/2+∆a}τ

τ − 3
2)

ψ(1−{1/2+∆a}τ
τ + 3

2)
+log

ψ({∆a}τ
τ −1)

ψ(1−{∆a}τ
τ +1)

)

+4log
(
1+e

πi
τ

)
+


5η1πi

4 (η1 =−η2)
πi(6−5η1)

12 −log∑∆

(
−e−

2πi
τ (1−{ 1

2 +∆}τ )

1+e−
2πi
τ (1−{ 1

2 +∆}τ )
− −e

− 2πi
τ {

1
2 +∆}τ

1+e−
2πi
τ {

1
2 +∆}τ

)
(η1 = η2)

.

(3.20)

Refer to appendix C.1 for details. Note that the BA contributions (3.19) and (3.20) have
the same 1

τ2 -leading order terms. The sub-leading terms are different, however, and this
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difference will play an important role in estimating the Cardy-like asymptotics of the SU(2)
index in the region of chemical potentials dubbed as “W -wing” defined below in (3.21).

Now, substituting (3.17), (3.19), and (3.20) into (3.10) gives the Cardy-like limit of the
SU(2) index. Following the classification of [14], we investigate the resulting SU(2) index
in the “M -wing” and in the “W -wing,” respectively. The M -wing is the region of chemical
potentials where the contribution from the basic {1, N, 0} BAE solution, namely (3.17) for
N = 2, is dominant. In theW -wing the contribution from the basic solution is exponentially
suppressed. These two regimes of chemical potentials are explicitly determined as

M -wing: Re
[
− i

τ2

3∏
a=1

(
{∆a}τ −

1 + η1
2

)]
> 0,

W -wing: Re
[
− i

τ2

3∏
a=1

(
{∆a}τ −

1 + η1
2

)]
< 0.

(3.21)

The Cardy-like limit in the M-wing. In the M -wing, we can simplify (3.10) with
p = q as

I(ya, q, q) = 4I{1,2,0}

(
1 +
I{2,1,0} + I{1,2,1}

I{1,2,0}

)
∼ 4I{1,2,0}. (3.22)

The SU(2) index is then given from (3.17) as

I(ya, q, q) ∼ 2e−
3πi
τ2
∏3
a=1

(
{∆a}τ− 1+η1

2

)
(M -wing). (3.23)

This is consistent with (1.2) of [15], including the factor of 2.

The Cardy-like limit in the W -wing. In the W -wing, we can simplify (3.10) with
p = q as

I(ya, q, q) = 4
(
I{2,1,0} + I{1,2,1}

)(
1 +

I{1,2,0}
I{2,1,0} + I{1,2,1}

)
∼ 4

(
I{2,1,0} + I{1,2,1}

)
.

(3.24)

Since I{2,1,0} and I{1,2,1} have the same exponential leading order in the Cardy-like limit,
we must keep track of both contributions to evaluate the SU(2) index. We compute their
sum in two different cases: η1 = −η2 and η1 = η2. Recall that ηC ∈ {±1} from (3.18) so
these are the only options.

First, when η1 = −η2, substituting (3.19) and (3.20) into (3.24) simply gives

I(ya, q, q) ∼ −
1

2
√

2
e−

πi
2τ2
∏3
a=1

(
{2∆a}τ− 1+η2

2

)
+ πi
τ2
∏3
a=1

(
{∆a}τ− 1+η1

2

)
(W -wing, η1 = −η2).

(3.25)

For η1 = η2, substituting (3.19) and (3.20) into (3.24) gives

I(ya, q) ∼
XSU(2)

4 e−
πi

2τ2
∏3
a=1

(
{2∆a}τ− 1+η2

2

)
+ πi
τ2
∏3
a=1

(
{∆a}τ− 1+η1

2

)
+ (6−5η1)πi

12

×
3∏

a=1

ψ
(
{∆a}τ
τ − 1

)
ψ
(

1−{∆a}τ
τ + 1

) (W -wing, η1 = η2),
(3.26)

– 11 –



J
H
E
P
0
6
(
2
0
2
1
)
1
2
6

where XSU(2) is a complicated function of chemical potentials defined in (C.5). Following
appendix C.1, we can approximate XSU(2) as

XSU(2) ∼ 4∆SU(2)

τ
+ 2η1 −

2i
π
, (3.27)

where we have introduced ∆SU(2) as

∆SU(2) =

{1/2 + ∆3}τ (η1 = η2 = −1)
1− {1/2 + ∆1}τ (η1 = η2 = 1)

, (3.28)

under the ordering (without loss of generality)

0 < {∆̃1} < {∆̃2} < {∆̃3} < 1. (3.29)

Refer to (A.14) for the definition of ∆̃a. Substituting (3.27) back into (3.26) then gives

I(ya, q, q)

∼
(∆SU(2)

τ
+ η1

2 −
i

2π

)
e−

πi
2τ2
∏3
a=1

(
{2∆a}τ− 1+η2

2

)
+ πi
τ2
∏3
a=1

(
{∆a}τ− 1+η1

2

)
+ (6−5η1)πi

12

(W -wing, η1 = η2).

(3.30)

As we have explained, for the configuration of chemical potentials satisfying η1 = η2 within
the W-wing, the Jacobian of the 2-center BAE solutions vanishes in the leading Cardy-
like limit. This situation forces us to keep track of the first exponentially suppressed
term in the Cardy-like expansion. For the configuration of chemical potentials satisfying
η1 = −η2 within the W-wing, however, the Jacobian of the 2-center BAE solutions does
not vanish in the leading Cardy-like limit and affords us the possibility of neglecting the
first exponentially suppressed terms.

3.2 Numerical investigation

Thus far we have discussed the treatment of the SU(2) SCI using the BA approach. In
this subsection we want to confront our analysis with the full index which can be obtained
by direct integration in the case of small rank N . The integral expression of the N = 4
SU(N) SCI (2.2) reduces to a one-dimensional integral for the N = 2 case as

I(ya,p,q) = (p;p)∞(q;q)∞
2

3∏
a=1

Γ(ya;p,q)
∮

dz1
2πiz1

∏3
a=1 Γ(z2

1ya;p,q)Γ(z−2
1 ya;p,q)

Γ(z2
1 ;p,q)Γ(z−2

1 ;p,q)
. (3.31)

We can obtain the SU(2) index directly by evaluating the integral (3.31) numerically.
Taking the numerical answer as reference, we will confirm in several examples that the
numerical integral matches the analytic result for I(ya, p, q) from the BA formula (3.10)
in both asymptotic regions discussed in the two previous subsections. The comparison
with the numerical evaluation of the index has the added bonus of showing us where each
approximation breaks down.
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Figure 1. Plots of Re log I(ya, q, q) versus |τ | for q = e2πiτ where τ has the phase τ = |τ |e 2πi
3 . From

the left to the right, we have chosen ∆a = 1
3 + 2τ

3 , ∆a = 2
3 + 2τ

3 , and ∆a = { 4
5 + 2τ

3 ,
4
5 + 2τ

3 ,
2
5 + 2τ

3 }
respectively. The black dots are from numerical evaluation of the integral (3.31) and the dotted red
lines are from the low-temperature expansion (B.10) up to order x30. The blue lines corresponds
to the Cardy-like expansions (3.23), (3.25), and (3.30) respectively. The above plots show that
the low-temperature (Cardy-like) expansions are consistent with the numerical integral where |τ | is
large (small).

Our results are illustrated in figure 1, where the black dots represent the direct numeri-
cal evaluation of (3.31). We compare the numerical results with two asymptotic expansions:
(i) The low temperature (i.e. large |τ |) expansion represented by a red dotted line and dis-
cussed in subsection 3.1.1; (ii) The Cardy-like (i.e. small |τ |) expansion represented by
an solid blue line and discussed in subsection 3.1.2. Here we identify p = q (= h) with
a = b = 1 and thereby σ = τ (= ω). Recall that the SCI is defined for |p|, |q| < 1 so
0 < arg τ < π. Let us summarize our findings in three main points:

• The results displayed in figure 1 support the efficacy of the BA approach and ex-
plicitly validate that the BA formula (2.3) gives the exact SCI for the SU(2) case.
In particular, only the standard BAE solutions (3.4a) contribute to the SU(2) index.
Non-standard BAE solutions (3.4b) do not contribute to the SU(2) index.

• The low temperature expansion is expected to have the radius of convergence |q| = 1.
Hence (B.10) is supposed to match the numerical results for any τ with Im τ > 0,
provided one keeps track of as many terms as necessary. Figure 1 shows that the
expansion up to order x30 is only valid for |τ | & 0.2. This result can be improved if
one adds more terms in the series expansion. See appendix B for some examples.

• The Cardy-like expansions (3.23), (3.25), and (3.30) are valid up to exponentially
suppressed terms of the form O(e−1/|τ |). Hence they match the numerical results in
the small |τ | region only.

4 The SU(3) index

In this section, we investigate the extent to which the BA formula (2.3) yields the full
SU(3) index following a path parallel to that followed in the SU(2) case. For N = 3, the
BAE (2.7) reduces to two transcendental equations as

e−2πiλ =
∏
∆

θ1(∆ + u21;ω)
θ1(∆− u21;ω)

θ1(∆ + u31;ω)
θ1(∆− u31;ω) =

∏
∆

θ1(∆− u21;ω)
θ1(∆ + u21;ω)

θ1(∆ + u32;ω)
θ1(∆− u32;ω)

∈ {1, w, w2},
(4.1)
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where w = e
2πi
3 is a primitive cube root of unity and ∆ take values in ∆ ∈ {∆1,∆2,−∆1−

∆2}. Since each transcendental equation is a multi-variable function of u21 and u31 and
the two transcendental equations are coupled, it is difficult to classify all possible BAE
solutions under the identification (u21, u31) ∼ (u21 +Z+Zω, u31 +Z+Zω) as in the SU(2)
case. The known standard BAE solutions are given as

(u21, u31) ∈
{(1

3 ,
2
3

)
,

(
ω

3 ,
2ω
3

)
,

(1 + ω

3 ,
2(1 + ω)

3

)
,

(2 + ω

3 ,
2(2 + ω)

3

)}
∪
{(2

3 ,
1
3

)
,

(2ω
3 ,

ω

3

)
,

(2(1 + ω)
3 ,

1 + ω

3

)
,

(2(2 + ω)
3 ,

2 + ω

3

)}
,

(4.2)

where they are denoted by triples of integers {3, 1, 0}, {1, 3, 0}, {1, 3, 1}, and {1, 3, 2}
respectively in the conventions of [25].2 Note that above, the second line is a permutation
of the first one. A complex 1-dimensional continuous family of non-standard BAE solutions
was also found in [14]. Even though its full analytic expression is not yet known, a special
point within the family of solution is known explicitly as

(u21, u31) ∈
{(1

2 ,
ω

2

)
,

(
ω

2 ,
1
2

)}
. (4.3)

For all the known N = 3 BAE solutions (4.2) and (4.3), the value of λ is given as e−2πiλ = 1.
Hence, in the SU(3) case, the value of e−2πiλ is not a good criteria to distinguish standard
solutions and non-standard ones.

We now consider the contribution from a standard BAE solution (u21, u31) = (u?, v?),
representing an arbitrary element of the 8 solutions listed in (4.2), to the SCI through the
BA formula (2.3). Using the double-periodicity of the BA operator (2.9a), we set

(u?, v?) = (x? + y?ω,w? + z?ω) with − 1 < y? + z? ≤ 0, 0 ≤ 2y? − z? < 3, (4.4)

without loss of generality. From this BAE solution (u21, u31) = (u?, v?), we can generate
total 9 inequivalent elements {u1, u2, u3} within MBAE (2.8) using the properties of the
BA operator (2.9) as

MBAE 3
{
−u

? + v?

3 + r + s1ω

3 ,
2u? − v?

3 + r + s2ω

3 ,
−u? + 2v?

3 + r + s3ω

3

}
, (4.5)

where

r ∈ {0, 1, 2},

{s1, s2, s3} ∈


{{0, 0, 0}, {1, 1,−2}, {2, 2,−4}} (0 ≤ 2y? − z? < 1)
{{0, 0, 0}, {1, 1,−2}, {2,−1,−1}} (1 ≤ 2y? − z? < 2)
{{0, 0, 0}, {1,−2, 1}, {2,−1,−1}} (2 ≤ 2y? − z? < 3)

.
(4.6)

Substituting these 9 elements into the BA formula (2.3), we obtain the contribution from
a standard BAE solution (u21, u31) = (u?, v?) to the SCI. The resulting expression can be

2The solutions in the second line of (4.2) have the same three-integer notation as the ones in the first
line: switching u21 ↔ u31 does not change the three-integer notation.

– 14 –



J
H
E
P
0
6
(
2
0
2
1
)
1
2
6

simplified further by using the properties of the building blocks (2.10) and (2.11) as

I{(u21,u31)=(u?,v?)}(yq,p,q)

= 9κ(ya,p,q)
∑ab
m1=1

∑ab
m2=1Z({−u?+v?+(m1+m2)ω

3 , 2u?−v?+(2m1−m2)ω
3 , −u

?+2v?+(−m1+2m2)ω
3 };∆,aω,bω)

H({−u?+v?
3 , 2u?−v?

3 , −u
?+2v?
3 };∆,ω)

.

(4.7)
Finally, the standard contribution to the SU(3) index Istandard(ya, p, q) is given as the

sum of (4.7) over all standard BAE solutions (u21, u31) = (u?, v?) listed in (4.2). The result
can be written as

I(ya, p, q) = 18
(
I{3,1,0} + I{1,3,0} + I{1,3,1} + I{1,3,2}

)
︸ ︷︷ ︸

= Istandard(ya,p,q)

+Inon-standard(ya, p, q), (4.8)

where we have defined

κ−1I{3,1,0} =
∑ab
m1=1

∑ab
m2=1Z({−1+(m1+m2)ω

3 , (2m1−m2)ω
3 , 1+(−m1+2m2)ω

3 }; ∆, aω, bω)
H({−u?+v?

3 , 2u?−v?
3 , −u

?+2v?
3 }; ∆, ω)

,

(4.9a)

κ−1I{1,3,0} =
∑ab
m1=1

∑ab
m2=1Z({− (m1+m2+1)ω

3 , (2m1−m2)ω
3 , (−m1+2m2+1)ω

3 }; ∆, aω, bω)
H({−u?+v?

3 , 2u?−v?
3 , −u

?+2v?
3 }; ∆, ω)

,

(4.9b)

κ−1I{1,3,1} =
∑ab
m1=1

∑ab
m2=1Z({−1+(m1+m2+1)ω

3 , (2m1−m2)ω
3 , 1+(−m1+2m2+1)ω

3 }; ∆, aω, bω)
H({−u?+v?

3 , 2u?−v?
3 , −u

?+2v?
3 }; ∆, ω)

,

(4.9c)

κ−1I{1,3,2} =
∑ab
m1=1

∑ab
m2=1Z({−2+(m1+m2+1)ω

3 , (2m1−m2)ω
3 , 2+(−m1+2m2+1)ω

3 }; ∆, aω, bω)
H({−u?+v?

3 , 2u?−v?
3 , −u

?+2v?
3 }; ∆, ω)

.

(4.9d)

Note that we do not have an explicit expression for Inon-standard(ya, p, q). The issues with
this non-standard contribution will determine our ability to recover the full index using
the BA approach.

4.1 Asymptotic behaviors

As in the SU(2) case, the SU(3) index (4.8) with standard contribution (4.9) is written in
terms of elliptic functions in a complicated way. Hence, in this subsection, we investigate
the SU(3) index (4.8) in the asymptotic regions where we have more control of the expres-
sion (4.8). Going to these limiting regions and comparison with direct numerical evaluation
helps us identify quantitatively how close we are able to reconstruct the full index from the
given BAE solutions. In this subsection, therefore, we investigate the SU(3) index (4.8) in
two asymptotic regions. Namely, in the low-temperature limit (|ω| → ∞ or |h| → 0) and in
the Cardy-like limit (|ω| → 0 or |h| → 1) with fixed argω. For simplicity, here we identify
p = q = h with (a, b) = (1, 1).
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4.1.1 The low-temperature limit

When |p| = |q| = |h| < 1, we can expand the SU(3) index (4.8) as a series in h. Specializing
to the case p = q = x3 with ya = Yax

2 following the convention of [18, 19], we find that (4.9)
are expanded as series in x as

I{3,1,0} = 1
6 + 1

3

( 1
Y1

+ 1
Y2

+ 1
Y3

)
x+O(x2), (4.10a)

I{1,3,0} = − (1− Y1)(1− Y2)(1− Y3)
162(3− Y1 − Y2 − Y3)2x4 +O(x−3), (4.10b)

I{1,3,1} = − (1− wY1)(1− wY2)(1− wY3)
162w(3− wY1 − wY2 − wY3)2x4 +O(x−3), (4.10c)

I{1,3,2} = − (1− w2Y1)(1− w2Y2)(1− w2Y3)
162w2(3− w2Y1 − w2Y2 − w2Y3)2x4 +O(x−3), (4.10d)

where w = e
2πi
3 is a primitive cube root of unity. The above expressions might be quite

involved but it is easy to note that the sum of all standard contributions (4.10) still has a
non-vanishing x−4 order. We can compare this result with the series expansion of the SU(3)
index obtained from explicitly performing the holonomy integrals in the representation (2.2)
whose result is

I(ya = Yax
2, p = x3, q = x3) = 1 + (Y 2

1 + Y 2
2 + Y 2

3 + Y1Y2 + Y2Y3 + Y3Y1)x4

− 2(Y1 + Y2 + Y3)x5 +O(x6).
(4.11)

This expansion of the exact index does not have inverse powers of x. Substituting (4.10)
and (4.11) into (4.8) then implies

I(ya, p, q) 6= Istandard(ya, p, q). (4.12)

We have found similar results for N = 4, 5 cases. We conclude that the BA formula (2.3)
does not yield the complete SCI for N ≥ 3 if we take only the standard BAE solutions
denoted by three integers {m,n, r} into account.

The above finding is one of the main results of this manuscript as it highlights the
crucial role of non-standard solutions. In particular, our result shows that the continuous
family of BAE solution in N ≥ 3 cases found in [14], should be seriously considered in
attempts of reproducing the full exact superconformal index. When N = 3, in particular,
we mentioned that there is a complex 1-dimensional continuous family of BAE solutions
including a special point (4.3). At the moment it is not obvious how to modify the BA for-
mula (2.3) to incorporate this continuous family of BAE solutions.3 The main obstruction
to applying the BA formula is a zero mode of the determinant H({ui}; ∆, ω). The above
analysis demonstrates the importance of this issue when computing the SCI through the
BA formula (2.3) in the regime where the SCI allows for a series expansion with respect to
fugacities.

3We are grateful to A. Cabo-Bizet for discussions on this and related topics addressed in [22] and, in
particular, for his suggestion of considering equivariant integration à la Atiyah-Bott-Berline-Vergne as a
guiding principle.
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4.1.2 The Cardy-like limit
Next we investigate the Cardy-like limit (|ω| → 0 or |h| → 1) of the SU(3) index
through (4.8). From here on, we use q and τ instead of h and ω since they are the
same under the identification p = q = h with (a, b) = (1, 1). We will also use the “∼”
symbol for equations valid up to exponentially suppressed terms of the form O(e−1/|τ |).

Let us start by discussing the basic solution which has proven to be central in the
Cardy-like limit. Substituting the asymptotic behavior of θ1(u; τ) (A.18) and Γ̃(u; τ) (A.19)
into (4.9b) gives the Cardy-like limit of the contribution from the basic {1, 3, 0} BAE
solution as

log I{1,3,0} ∼ −
8πi
τ2

3∏
a=1

(
{∆a}τ −

1 + η1
2

)
− log 6. (4.13)

Refer to (A.12) and (3.18) for the definitions of the τ -modded value {·}τ and ηC ∈ {±1}.
For the other three BA contributions (4.9a), (4.9c), and (4.9d), we keep track of the

leading exponentially suppressed terms for the same reason in the SU(2) case: the deter-
minant H({ui}; ∆, τ) diverges for the η1 = η3 case without the leading exponentially sup-
pressed terms. Substituting the asymptotic behaviors (A.18) and (A.19) into (4.9a), (4.9c),
and (4.9d) then gives

logI{3,1,0}

∼− πi

3τ2

3∏
a=1

(
{3∆a}τ−

1+η3
2

)
+ πi

τ2

3∏
a=1

(
{∆a}τ−

1+η1
2

)
−log

(
33×3!

)

+
3∑

a=1

(
3log

ψ({1/3+∆a}τ
τ −1)

ψ(1−{1/3+∆a}τ
τ +1)

+3log
ψ({2/3+∆a}τ

τ −1)
ψ(1−{2/3+∆a}τ

τ +1)
+2log

ψ({∆a}τ
τ −1)

ψ(1−{∆a}τ
τ +1)

)

+6log
(
1−e−

2πi
3τ
)

+6log
(
1−e−

4πi
3τ
)

+


2η1πi

3 (η1 =−η3)
πi(6−5η1)

6 −2log∑2
J=1

∑
∆

(
e−

2πi
τ (1−{J3 +∆}τ )

1−e−
2πi
τ (1−{J3 +∆}τ )

− e−
2πi
τ {

J
3 +∆}τ

1−e−
2πi
τ {

J
3 +∆}τ

)
(η1 = η3)

,

(4.14)

logI{1,3,1}

∼− πi

3τ2

3∏
a=1

(
{3∆a}τ−

1+η3
2

)
+ πi

τ2

3∏
a=1

(
{∆a}τ−

1+η1
2

)
−log

(
33×3!

)

+
3∑

a=1

(
2log

ψ({1/3+∆a}τ
τ − 2

3)
ψ(1−{1/3+∆a}τ

τ + 2
3)

+2log
ψ({2/3+∆a}τ

τ − 4
3)

ψ(1−{2/3+∆a}τ
τ + 4

3)

+log
ψ({2/3+∆a}τ

τ − 1
3)

ψ(1−{2/3+∆a}τ
τ + 1

3)
+log

ψ({1/3+∆a}τ
τ − 5

3)
ψ(1−{1/3+∆a}τ

τ + 5
3)

+2log
ψ({∆a}τ

τ −1)
ψ(1−{∆a}τ

τ +1)

)

+6log
(
1−e−2πi( 1

3τ−
2
3 )
)

+6log
(
1−e−2πi( 2

3τ−
1
3 )
)

+


4η1πi

3 (η1 =−η3)
πi(6−5η1)

6 −2log∑2
J=1

∑
∆

(
e−

2πi
τ (1−{J3 +∆}τ−Jτ3 )

1−e−
2πi
τ (1−{J3 +∆}τ−Jτ3 )

− e−
2πi
τ ({J3 +∆}τ+Jτ

3 )

1−e−
2πi
τ ({J3 +∆}τ+Jτ

3 )

)
(η1 = η3)

,

(4.15)
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logI{1,3,2}

∼− πi

3τ2

3∏
a=1

(
{3∆a}τ−

1+η3
2

)
+ πi

τ2

3∏
a=1

(
{∆a}τ−

1+η1
2

)
−log

(
33×3!

)

+
3∑

a=1

(
2log

ψ({2/3+∆a}τ
τ − 2

3)
ψ(1−{2/3+∆a}τ

τ + 2
3)

+2log
ψ({1/3+∆a}τ

τ − 4
3)

ψ(1−{1/3+∆a}τ
τ + 4

3)

+log
ψ({1/3+∆a}τ

τ − 1
3)

ψ(1−{1/3+∆a}τ
τ + 1

3)
+log

ψ({2/3+∆a}τ
τ − 5

3)
ψ(1−{2/3+∆a}τ

τ + 5
3)

+2log
ψ({∆a}τ

τ −1)
ψ(1−{∆a}τ

τ +1)

)

+6log
(
1−e−2πi( 2

3τ−
2
3 )
)

+6log
(
1−e−2πi( 1

3τ−
1
3 )
)

+


4η1πi

3 (η1 =−η3)
πi(6−5η1)

6 −2log∑2
J=1

∑
∆

(
e−

2πi
τ (1−{J3 +∆}τ+Jτ

3 )

1−e−
2πi
τ (1−{J3 +∆}τ+Jτ

3 )
− e−

2πi
τ ({J3 +∆}τ−Jτ3 )

1−e−
2πi
τ ({J3 +∆}τ−Jτ3 )

)
(η1 = η3)

.

(4.16)

Refer to appendix C.2 for details. As in the SU(2) case, the BA contributions (4.14), (4.15),
and (4.16) have the same 1

τ2 -leading order but their sub-leading terms are different. This
difference will play an important role in estimating the Cardy-like asymptotics of the SU(3)
index in the W -wing (3.21).

Now, substituting (4.13), (4.14), (4.15), and (4.16) into (4.8), we obtain the Cardy-
like limit of the standard contribution Istandard(ya, q, q) to the SU(3) index. Note that
this contribution may not match the Cardy-like limit of the SU(3) index because the non-
standard contribution Inon-standard(yq, q, q) may affect the result: we have already seen that
this is truly the case in the low-temperature (|τ | → ∞) regime. For now, we focus on the
Cardy-like limit of the standard contribution Istandard(ya, q, q) in the M -wing and in the
W -wing classified as (3.21).

The Cardy-like limit in the M-wing. In theM -wing, we can simplify Istandard(ya, p, q)
in (4.8) with p = q as

Istandard(ya, q, q) = 18I{1,3,0}

(
1 +
I{3,1,0} + I{1,3,1} + I{1,3,2}

I{1,3,0}

)
∼ 18I{1,3,0}. (4.17)

The standard contribution is then given from (4.13) as

Istandard(ya, q, q) ∼ 3e−
8πi
τ2
∏3
a=1

(
{∆a}τ− 1+η1

2

)
(M -wing). (4.18)

This is consistent with (1.2) of [15], whose logarithm matches the entropy function of the
dual supersymmetric, rotating, electrically charged black hole upon the Legendre transfor-
mation with respect to chemical potentials [2, 3].

The Cardy-like limit in the W -wing. In theW -wing, we can simplify Istandard(ya, p, q)
in (4.8) with p = q as

Istandard(ya, q,q) = 18(I{3,1,0}+I{1,3,1}+I{1,3,2})
(

1+
I{1,3,0}

I{3,1,0}+I{1,3,1}+I{1,3,2}

)
∼ 18(I{3,1,0}+I{1,3,1}+I{1,3,2}).

(4.19)
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Since I{3,1,0}, I{1,3,1}, and I{1,3,2} have the same exponential leading order in the Cardy-
like limit, we must keep track of all of them to evaluate the SU(3) index. We compute
their sum in two different cases: η1 = −η3 and η1 = η3. Recall that ηC ∈ {±1} from (3.18)
so these are the only options.

First, when η1 = −η3, substituting (4.14), (4.15), and (4.16) into (4.19) simply gives

Istandard(ya, q, q) ∼
e

2η1πi
3 + 2e

4η1πi
3

9 e−
πi

3τ2
∏3
a=1

(
{3∆a}τ− 1+η3

2

)
+ πi
τ2
∏3
a=1

(
{∆a}τ− 1+η1

2

)
(W -wing, η1 = −η3).

(4.20)

For η1 = η3, substituting (4.14), (4.15), and (4.16) into (4.19) gives

Istandard(ya, q, q) ∼
XSU(3)

9 e−
πi

3τ2
∏3
a=1

(
{3∆a}τ− 1+η3

2

)
+ πi
τ2
∏3
a=1

(
{∆a}τ− 1+η1

2

)
+πi(6−5η1)

6

×
( 3∏
a=1

ψ({∆a}τ
τ − 1)

ψ(1−{∆a}τ
τ + 1)

)2

(W -wing, η1 = η3)
(4.21)

where XSU(3) is a complicated function of chemical potentials defined in (C.15). Following
appendix C.2, one can approximate XSU(3) as

XSU(3) ∼ 27(∆SU(3))2

2τ2 + 27∆SU(3)(η1π − i)
2πτ + 3(8π2 − 15η1πi− 9)

8π2 , (4.22)

where we have introduced ∆SU(3) as

∆SU(3) =



{1/3 + ∆3}τ (η1 = η3 = −1, {∆̃3} > 2/3)
{2/3 + ∆2}τ (η1 = η3 = −1, {∆̃3} < 2/3)
1− {2/3 + ∆1}τ (η1 = η3 = 1, {∆̃1} < 1/3)
1− {1/3 + ∆2}τ (η1 = η3 = 1, {∆̃1} > 1/3)

, (4.23)

under the ordering (without loss of generality)

0 < {∆̃1} < {∆̃2} < {∆̃3} < 1. (4.24)

Refer to (A.14) for the definition of ∆̃a. Substituting (4.22) back into (4.21) then gives

Istandard(ya, q, q) ∼
(

3(∆SU(3))2

2τ2 + 3∆SU(3)(η1π − i)
2πτ + 8π2 − 15η1πi− 9

24π2

)

× e−
πi

3τ2
∏3
a=1

(
{3∆a}τ− 1+η3

2

)
+ πi
τ2
∏3
a=1

(
{∆a}τ− 1+η1

2

)
+πi(6−5η1)

6

(W -wing, η1 = η3).

(4.25)

4.2 Numerical investigation

The integral expression of the N = 4 SU(N) SCI (2.2) reduces to a two-dimensional integral
for the N = 3 case as

I(ya, p, q) = (p; p)2
∞(q; q)2

∞
3!

3∏
a=1

Γ(ya; p, q)
∮

dz1
2πiz1

dz2
2πiz2

3∏
i,j=1 (i 6=j)

∏3
a=1 Γ( zizj ya; p, q)

Γ( zizj ; p, q) ,

(4.26)
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Figure 2. Plots of Re log I(ya, q, q) and Re log Istandard(ya, q, q) versus |τ | for q = e2πiτ . From the
left to the right, we have chosen ∆a = { 13

48 + 2τ
3 ,

28
48 + 2τ

3 ,
7

48 + 2τ
3 }, ∆a = { 5

12 + 2τ
3 ,

9
12 + 2τ

3 ,
10
12 +

2τ
3 }, and ∆a = { 3

12 + 2τ
3 ,

10
12 + 2τ

3 ,
11
12 + 2τ

3 } respectively with τ = |τ |e 2πi
3 . Blue dots are from

the numerical integral (4.26) and orange lines are from the Cardy-like expansions (4.18), (4.20),
and (4.25) respectively. Red dashed line in the last plot, which matches the numerical integral
better, is obtained by using XSU(3) in (C.15) without approximation. The above plots show that
the Cardy-like expansion of the standard contribution Istandard(ya, q, q) matches the numerical index
I(ya, q, q) where |τ | is small.

where z3 = 1/(z1z2). We can obtain the SU(3) index directly by evaluating the inte-
gral (4.26) numerically. We confirmed in several examples that the numerical integral
matches the analytic result for Istandard(yq, p, q) from the BA formula (4.8) in the Cardy-
like limit. See figure 2. This means that the non-standard contribution Inon-standard(yq, p, q)
in (4.8), which plays an important role in the low-temperature limit as we have ob-
served in (4.12), is suppressed in the Cardy-like limit compared to the standard one
Istandard(yq, p, q). In short, we have

I(ya, q, q) ∼ Istandard(ya, q, q) =
∑
n|N

n−1∑
r=0
I{N/n,n,r} (4.27)

for the N = 3 case. This Cardy-like asymptotics (4.27) has already been anticipated for
N ≤ 4 in [14] by investigating a dominant holonomy configuration among various C-center
saddles and comparing its contribution to the Cardy-like asymptotics of the SCI with
numerical results: in the context of BA approach, C-center saddles correspond to standard
BAE solutions. However, it has been shown that the Cardy-like asymptotics (4.27) is not
valid for N = 5, 6 in [14]. Hence for a general N , we expect non-standard BAE solutions
affect the Cardy-like asymptotics of the SCI beyond the exponentially suppressed level.
Refer to section 4.2.2 of [14] for some examples of such non-standard BAE solutions.

Let us conclude this section with a numerical exploration of one non-standard solution
to highlight some of its puzzling properties. We have already observed in (4.12) that
the standard contribution does not give the complete SU(3) index beyond the Cardy-like
limit. We also pointed to the culprit — a complex 1-dimensional continuous family of BAE
solutions including a special point (4.3). Such solution cannot be taken into account in the
conventional BA formula (2.3) because the formula implicitly assumes that all the BAE
solutions are isolated. We explore this issue with a numerical example more explicitly.
Recall that the BA formula of the index (2.3) is derived from integration over the first
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Figure 3. Numerical BAE solutions {z1, z2, z3 = 1/z1z2} of the BAE (4.1) with ∆a = { 1
5 +

τ
4 ,

1
3 + τ

2 ,−
8

15 + 5τ
4 } and τ = 1 + i

5 . Recall zi = e2πiui . Blue dots denote the exact BAE solution
(u21, u32) = ( 1

2 ,
τ
2 ) given in (4.3) under the SU(N) constraint

∑3
i=1 ui ∈ Z and orange dots are

numerical BAE solutions with u21 = 1
2 + i k

100 (k = 1, 2, · · · , 30). Dashed lines represent the
integration contour. You may obtain different flat directions by choosing different values of u21 and
solve (4.1) numerically for u31.

N − 1 holonomies along the annulus [28]

ui : {0→ 1} ∪ {−τ + 1→ −τ} (4.28)

for i = 1, · · · , N − 1. In figure 3, we plot the exponentiated numerical values of the
first N − 1 holonomies zi = e2πiui (i = 1, · · · , N − 1) corresponding to the continuous
family of BAE solutions in the N = 3 case. It is evident that the solution is not isolated
and, moreover, intersects the integration contour. These two properties clearly invalidate
the conventional BA formula (2.3) derived from the contour integral over the first N − 1
holonomies along the annulus, and require a modification that incorporates the effect of
such continuous family of BAE solutions.

5 Discussion

The BA approach to the SCI has the technical advantage of providing an exact answer
for the index expressed as a sum over the solutions of the corresponding BAE. In this
manuscript we have studied the details of such construction with the ultimate goal of
understanding the extent to which the full index can be reconstructed from different classes
of BAE solutions. Our first step was, naturally, to group the solutions following a particular
classification into standard (corresponding to a freely acting orbifold T 2/Zm×Zn) and non-
standard. Since our goal is on finite N aspects we focused explicitly on N = 2 in section 3
and N = 3 in section 4; for these and other values of N one can alternatively compute the
index using direct numerical integration in the expression (2.2).

In section 3, for SU(2), we showed explicitly that the standard solutions (3.4a) were
sufficient to reproduce full SCI. The non-standard solutions, presented in (3.3), turn out,
accidentally, to not contribute to the SCI.
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In the SU(3) case, by going to a particular regime (low temperature regime in sec-
tion 4.1.1) in the SCI, we showed that the standard solutions are not enough to reproduce
the index. This is the general state of affairs for N ≥ 3. In the Cardy-like limit, we
have shown that non-standard BAE solutions including dreaded family of continuous ones
contribute exponentially suppressed terms to the SU(3) index at most. This supports the
previous numerical investigation of [14], which implies that for N ≤ 4 the standard so-
lutions determine the Cardy-like asymptotics of the SCI up to exponentially suppressed
terms. But for N ≥ 5, the non-standard solutions may also contribute to the Cardy-like
asymptotics of the SCI beyond the exponentially suppressed level. Furthermore, we also
verified, in more details than the recent analysis of [15], that when restricted to theM -wing
region of fugacities, the basic solution is sufficient to reproduce the index in the Cardy-like
limit up to exponentially suppressed contributions of the form O(e−1/|τ |).

One important aspect that we leave for future investigation is how to incorporate the
continuous families of solutions into the expression for the BA approach to the SCI. One
natural challenge is that the BA formula, as currently formulated, assumes that the solu-
tions to the BAE are isolated; this is clearly not the case as shown in this manuscript. An-
other important generalization that needs to be considered is the fact that the holonomies
are not all contained within a particular annulus. Indeed, in section 4.1.1 we showed explic-
itly that the continuous family of solutions in that case intersects the integration contour,
bringing in extra difficulties. There is, nevertheless, some guidance on how to generalize
the BA approach to the SCI coming from equivariant integration à la Atiyah-Bott-Berline-
Vergne, as recently discussed in [22]. We hope to address this issue in the future.

One might question the need for an exact in N expression for the SCI when we have
demonstrated control over the leading order and, in this very manuscript, demonstrated
that the non-standard solutions are exponentially suppressed in the Cardy-like limit. Our
motivation is two-fold. First, we expect that such an exact in N expression will help in
understanding modular properties of the full index in more details. Second, the gravita-
tional dual of the SCI is the exact quantum entropy of the dual black holes. Namely, the
exact answer in all powers of Newton’s constant which will undoubtedly teach us much
about quantum gravity. There are the obvious lessons from corrections to the Bekenstein-
Hawking entropy recently discussed in [33–38] in the context of AdS4 balck holes. More
ambitiously, is the hope that the structure of the index might guide into elucidating aspects
of the putative quantum gravity path integral. For example, it would be quite interest-
ing if there was a one-to-one correspondence between BAE solutions in field theory and
gravitational configurations contributing to the path integral.
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A Elliptic functions

Here we gather some definitions and a few useful identities for elliptic functions that are
used in the main body of the paper.

A.1 Definitions

The Pochhammer symbol is defined as

(z; q)∞ =
∞∏
k=0

(1− zqk). (A.1)

The elliptic theta functions have the following product forms:

θ0(u; τ) =
∞∏
k=0

(1− e2πi(u+kτ))(1− e2πi(−u+(k+1)τ)), (A.2a)

θ1(u; τ) = −ie
πiτ
4 (eπiu − e−πiu)

∞∏
k=1

(1− e2πikτ )(1− e2πi(kτ+u))(1− e2πi(kτ−u))

= ie
πiτ
4 e−πiuθ0(u; τ)

∞∏
k=1

(1− e2πikτ ). (A.2b)

The elliptic Gamma function and the ‘tilde’ elliptic Gamma function are defined as

Γ(z; p, q) =
∞∏

j,k=0

1− pj+1qk+1z−1

1− pjqkz , (A.3a)

Γ̃(u;σ, τ) =
∞∏

j,k=0

1− e2πi[(j+1)σ+(k+1)τ−u]

1− e2πi[jσ+kτ+u] . (A.3b)

For p = q, we abbreviate Γ(z; q, q) and Γ̃(u; τ, τ) as Γ(z, q) and Γ̃(u; τ) respectively. We
also define a special function ψ(u) as

ψ(u) ≡ exp
[
u log

(
1− e−2πiu

)
− 1

2πiLi2(e−2πiu)
]
. (A.4)

The ψ-function satisfies

logψ(u) =
∞∑
n=1

i− 2πnu
2πn2 e−2πinu (Im u < 0), (A.5a)

ψ(u+ 1) = (1− e−2πiu)ψ(u). (A.5b)

A.2 Basic properties

The elliptic theta functions have quasi-double-periodicity, namely

θ0(u+m+ nτ ; τ) = (−1)ne−2πinue−πin(n−1)τθ0(u; τ), (A.6a)

θ1(u+m+ nτ ; τ) = (−1)m+ne−2πinue−πin
2τθ1(u; τ), (A.6b)
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for m,n ∈ Z. The inversion formula of θ0(u; τ) can be written simply as

θ0(−u; τ) = −e−2πiuθ0(u; τ). (A.7)

The elliptic Gamma function also has quasi-double-periodicity, namely

Γ̃(u;σ, τ) = Γ̃(u+ 1;σ, τ) = θ0(u; τ)−1Γ̃(u+ σ;σ, τ) = θ0(u;σ)−1Γ̃(u+ τ ;σ, τ). (A.8)

It also satisfies the inversion formula

Γ̃(u;σ, τ) = Γ̃(σ + τ − u;σ, τ)−1. (A.9)

The following identity in [28] is also useful:

Γ̃(u+mabω; aω, bω) = (−e2πiu)−
abm2

2 +m(a+b−1)
2 (e2πiω)−

abm3
6 +ab(a+b)m2

4 − (a2+b2+3ab−1)m
12

× θ0(u;ω)mΓ̃(u; aω, bω). (A.10)

A.3 Asymptotic behaviors

For small |τ | with fixed 0 < arg τ < π, the Pochhammer symbol can be approximated as

log(q; q)∞ = −πi12

(
τ + 1

τ

)
− 1

2 log(−iτ) +O
(
e
− 2π sin(arg τ)

|τ |

)
. (A.11)

To study asymptotic behaviors of elliptic functions, first we introduce a τ -modded
value of a complex number u, namely {u}τ , as

{u}τ ≡ u− bReu− cot(arg τ) Im uc (u ∈ C). (A.12)

By definition, the τ -modded value satisfies

{u}τ = {ũ}τ + ǔτ, {−u}τ =

1− {u}τ (ũ /∈ Z)
−{u}τ (ũ ∈ Z),

(A.13)

where we have defined ũ, ǔ ∈ R as
u = ũ+ ǔτ. (A.14)

Note that, for a real number x, a τ -modded value {x}τ reduces to a normal modded value
{x} defined as

{x} ≡ x− bxc (x ∈ R). (A.15)

Bernoulli functions Bn(·) satisfy the following useful identity written in terms of the τ -
modded value:

C−1∑
J=0

Bn

({
J

C
+ u

}
τ

)
= 1
Cn−1Bn({Cu}τ ). (A.16)
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Now, the asymptotic behavior of elliptic functions for a small |τ | with fixed 0 < arg τ <
π are given as follows:

logθ0(u;τ) = πi

τ
{u}τ (1−{u}τ )+πi{u}τ−

πi

6τ (1+3τ+τ2)

+log
(
1−e−

2πi
τ

(1−{u}τ )
)(

1−e−
2πi
τ
{u}τ

)
+O

(
e
− 2π sin(argτ)

|τ |

)
,

(A.17)

logθ1(u;τ) = πi

τ
{u}τ (1−{u}τ )− πi4τ (1−τ)+πibReu−cot(argτ)Imuc− 1

2 logτ

+log
(
1−e−

2πi
τ

(1−{u}τ )
)(

1−e−
2πi
τ
{u}τ

)
+O

(
e
− 2π sin(argτ)

|τ |

)
,

(A.18)

log Γ̃(u;τ) = 2πiQ({u}τ ;τ)−logψ
({u}τ

τ
−1
)
−logψ

(1−{u}τ
τ

+1
)

+O
(
e
− 2π sin(argτ)

|τ |

)
,

Q(u;τ)≡−B3(u)
6τ2 +B2(u)

2τ − 5
12B1(u)+ τ

12 . (A.19)

B Series expansion of the SU(2) index

For finite N , the elliptic hypergeometric integral representation, (2.2), leads to a direct
evaluation of the index by explicit integration. While the elliptic Gamma function is not
elementary, its product representation, (A.3a), allows for a series expansion of the finite-N
index. This was explicitly realized in [18, 19], where the series expansion of the N = 4 U(N)
index was investigated for finite N with the simplest possible configuration of fugacities,
namely p = q = y

3/2
a .

For even moderately large values of N & 10, the (N − 1)-dimensional integral soon
becomes computationally expensive. However, the N = 2 case can readily be pushed to
fairly high order in the series expansion. Here we have explicitly

ISU(2)(ya,p,q) = (p;p)∞(q;q)∞ΠΓ(ya;p,q)
2

∫ 1

0
duW (z;p;q)ΠΓ(zya;p,q)ΠΓ(z−1ya;p,q),

IU(2)(ya,p,q) = ((p;p)∞(q;q)∞ΠΓ(ya;p,q))2

2

∫ 1

0
duW (z;p;q)ΠΓ(zya;p,q)ΠΓ(z−1ya;p,q),

(B.1)

where z = e2πiu and we have defined

W (z; p; q) ≡ 1
Γ(z; p, q)Γ(z−1; pq) = (z; p)∞(z−1p; p)∞(z; q)∞(z−1q; q)∞,

ΠΓ(ya; p, q) ≡
3∏

a=1
Γ(ya; p, q). (B.2)
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Using the product form of the elliptic Gamma function, (A.3a), we can obtain the product
representation

ΠΓ(ζya; p; q) =
∞∏

j,k=0

1− ζ−1Wpj+1qk+1 + ζ−2Y p2j+1q2k+1 − ζ−3p3j+2q3k+2

1− ζY pjqk + ζ2Wp2j+1q2j+1 − ζ3p3j+1lq3k+1 , (B.3)

where we have defined

Y ≡
3∑

a=1
ya, W ≡

3∑
a=1

y−1
a . (B.4)

Note that we have used the constraint y1y2y3 = pq in deriving this expression.
We now consider the evaluation of the integral for the index, (B.1). One approach is

to evaluate the integral over the holonomy as a contour integral

∫ 1

0
du →

∮
dz

2πiz , (B.5)

where the contour is the unit circle surrounding z = 0 taken in the conventional direction.
This picks up the residues inside the unit circle, which can be identified from the product
representation of the integrand, with the poles coming from the denominator of (B.3) as
worked out in [21]. Alternatively, by truncating the infinite product at some finite order,
the index becomes the integral of a rational function of the form

I(Y,W, p, q) ∼
∫ 1

0
du f(z = e2πiu), (B.6)

which just picks out the zero-mode f0 in the series expansion of

f(z) =
∑
n

fnz
n (B.7)

(where negative powers of z are allowed).
There is still some subtlety in truncating the product representation (B.3), and that is

that the series expansion in ζ (which corresponds to either z or z−1) will still have an infinite
number of contributions at each order. To avoid this issue, we must simultaneously expand
in powers of p and q. This can be made explicit by introducing an expansion parameter x
along with a particular set of scalings of the fugacities. The most straightforward scaling
is to take

p→ px3, q → qx3, ya → yax
2, (B.8)

to keep track of the orders of the series expansion with respect to x. Note that this scaling
is consistent with the constraint y1y2y3 = pq.

After expanding as a series in x, we then pick out the zero-mode of the integrand and
multiply by the appropriate U(2) or SU(2) prefactor in (B.1). The result for the U(2)
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index is

IU(2)(Y x2,Wx−2, px3, qx3)
= 1 + Y x2 − (p+ q)x3 + (−3pqW + 2Y 2)x4 − (p+ q)Y x5

+ (−p2 + 4pq − q2 − 5pqWY + 2Y 3)x6 + (p+ q)(2pqW − Y 2)x7

+ (5p2q2W 2 + (−p2 + 8pq − q2)Y − 11pqWY 2 + 3Y 4)x8

+ (p+ q)(−2pq + 4pqWY − Y 3)x9

+ ((2p3q − 11p2q2 + 2pq3)W + 13p2q2W 2Y

+ (−2p2 + 10pq − 2q2)Y 2 − 14pqWY 3 + 3Y 5)x10 +O(x11),

(B.9)

while the result for the SU(2) index is

ISU(2)(Y x2,Wx−2, px3, qx3)
= 1 + (−pqW + Y 2)x4 − (p+ q)Y x5 + pq(2−WY )x6 + (p+ q)Y 2x7

+ (p2q2W 2 + (−p2 + pq − q2)Y − 3pqWY 2 + Y 4)x8

+ (p+ q)Y (pqW − Y 2)x9

+ (−p2q2W + 2p2q2W 2Y + (p+ q)2Y 2 − pqWY 3)x10 +O(x11).

(B.10)

Here we recall the definitions

Y = y1 + y2 + y3, W = 1
y1

+ 1
y2

+ 1
y3 = y1y2 + y2y3 + y3y1

pq
. (B.11)

The U(2) index reduces to the result of [18, 19] in the equal fugacity case

Y = 3q2/3, W = 3q−2/3, p = q. (B.12)

(Alternatively, we can just set Y = W = 3 and p = q = 1 and retain x as the expansion
parameter used in [18, 19].) The first 30 terms in the expansion of the SU(2) index are
presented in table 1. While the expansion gets unwieldy at high order for general ya
fugacities, it simplifies considerably in special cases such as the equal fugacity case.

When p and q are related according to p = ha and q = hb, expansion of the BA
result (3.10) is the most computationally efficient method for obtaining the series repre-
sentation. However, the advantage of the series expansion of the elliptic hypergeometric
integral is that it applies in general even when p and q are unrelated. In particular, while
we assumed the scaling (B.8), the expansion can also be rearranged as a double series in p
and q with some corresponding scaling of the ya fugacities.

The series expansion can be viewed as an explicit realization of the Hamiltonian formu-
lation of the index, (2.1), with integer coefficients corresponding to the degeneracies at each
order in powers of the fugacities. As such, the series is expected to converge with fugacities
inside the unit circle, namely |p| < 1, |q| < 1 and |ya| < 1. However, this convergence can
be extremely slow, so the series expansion is not particularly useful as one approaches the
Cardy-like regime. As a demonstration, we compare the numerically evaluated index with
the series expansion obtained from (3.10) truncated to different orders in figure 4.
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Figure 4. The series evaluation of Re log I(ya, q, q) compared with its numerical evaluation. The
parameters ∆a = 1

3 + 2τ
3 and τ = |τ |e 2πi

3 correspond to the left panel of figure 1. The series is
truncated at order xn where q = x3 with n = 30, 100 and 500 as indicated.

n d2(n)
0 1
1 0
2 0
3 0
4 Y 2−pqW

5 Y (−p−q)
6 2pq−pqW Y

7 Y 2(p+q)
8 p2q2W 2+Y

(
−p2+pq−q2)−3pqW Y 2+Y 4

9 pqW Y (p+q)+Y 3(−p−q)
10 2p2q2W 2Y −p2q2W−pqW Y 3+Y 2(p+q)2

11 Y
(
−p3−q3)−p2q2W 2(p+q)−pqW Y 2(p+q)+Y 4(p+q)

12 −p3q3W 3+6p2q2W 2Y 2+pqW Y
(
2p2−7pq+2q2)+Y 3 (−2p2+3pq−2q2)+p2q2

−5pqW Y 4+Y 6

13 −pqW
(
p3+q3)+2Y 2 (p3+q3)+2pqW Y 3(p+q)+Y 5(−p−q)

14 2p3q3W 2+4p2q2W 2Y 3−2pqW Y 2 (p2+3pq+q2)+Y 4 (2p2+3pq+2q2)
+Y
(
−p4−3p3q3W 3−p3q+2p2q2−pq3−q4)−pqW Y 5

15 2pqW Y
(
p3+q3)+p2q2W 2Y 2(p+q)+Y 3 (−3p3−p2q−pq2−3q3)−3pqW Y 4(p+q)

+Y 6(p+q)
16 p4q4W 4+15p2q2W 2Y 4−p2q2W 2Y

(
p2−16pq+q2)+2pqW Y 3 (2p2−11pq+2q2)

+p2q2W
(
p2−5pq+q2)+Y 5 (−2p2+5pq−2q2)+Y 2 (2p4−10p3q3W 3+9p2q2+2q4)

−7pqW Y 6+Y 8

17 −3p2q2W 2Y 3(p+q)−p2q2W 2 (p3+2p2q+2pq2+q3)+pqW Y 2 (−2p3+7p2q+7pq2−2q3)
+Y 4 (3p3−p2q−pq2+3q3)+Y

(
−p5−3p3q2−3p2q3−q5)+4pqW Y 5(p+q)+Y 7(−p−q)

18 14p3q3W 2Y 2+p3q3+6p2q2W 2Y 5−pqW Y 4 (5p2+13pq+5q2)+Y 6 (2p2+3pq+2q2)
+Y
(
4p4q4W 4+pqW (p+q)2 (2p2−5pq+2q2))+p3q3W 3 (p2−3pq+q2)

Table 1. Continued on next page.
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n d2(n)
+Y 3 (−4p4−10p3q3W 3−p3q+2p2q2−pq3−4q4)−pqW Y 7

19 6p2q2W 2Y 4(p+q)−pqW (p+q)
(
p2−pq+q2)2+p2q2W 2Y

(
−2p3+p2q+pq2−2q3)

+pqW Y 3 (8p3−5p2q−5pq2+8q3)+Y 5 (−4p3+p2q+pq2−4q3)
+Y 2 (3p5−p4q−p3q3W 3(p+q)+5p3q2+5p2q3−pq4+3q5)−5pqW Y 6(p+q)+Y 8(p+q)

20 −p5q5W 5+28p2q2W 2Y 6+p2q2W 2Y 3 (−4p2+71pq−4q2)+pqW Y 5 (7p2−43pq+7q2)
+Y 7 (−2p2+7pq−2q2)+Y 2 (15p4q4W 4+pqW

(
−5p4+6p3q−42p2q2+6pq3−5q4))

+Y 4 (5p4−35p3q3W 3−p3q+20p2q2−pq3+5q4)
+Y
(
−24p4q4W 3−(p−q)2(p4+2p3q+4p2q2+2pq3+q4))

+p2q2W 2 (p4−p3q+10p2q2−pq3+q4)−9pqW Y 8+Y 10

21 −10p2q2W 2Y 5(p+q)+p3q3W 3 (p3+p2q+pq2+q3)+2p2q2W 2Y 2 (p3−7p2q−7pq2+q3)
−2pqW Y 4 (5p3−6p2q−6pq2+5q3)+Y 6 (4p3−2p2q−2pq2+4q3)+2p2q2 (p3+q3)
+Y 3 (−5p5+2p4q+4p3q3W 3(p+q)−9p3q2−9p2q3+2pq4−5q5)
+pqW Y

(
2p5−7p4q+6p3q2+6p2q3−7pq4+2q5)+6pqW Y 7(p+q)+Y 9(−p−q)

22 5p5q5W 4+8p2q2W 2Y 7+p2q2W 2Y 4 (9p2+47pq+9q2)−3pqW Y 6 (3p2+7pq+3q2)
+Y 8 (2p2+3pq+2q2)+Y 3 (20p4q4W 4+pqW

(
10p4−5p3q−24p2q2−5pq3+10q4))

+Y 5 (−6p4−21p3q3W 3+p3q+5p2q2+pq3−6q4)
+Y 2((p+q)2(3p4−7p3q+12p2q2−7pq3+3q4)−p3q3W 3 (p2+37pq+q2))
+p2q2W

(
p4+2p3q−3p2q2+2pq3+q4)

+Y
(
−5p5q5W 5−p2q2W 2 (p4−3p3q−18p2q2−3pq3+q4))−pqW Y 9

23 −4p3q3W 2 (p3+q3)+15p2q2W 2Y 6(p+q)+p2q2W 2Y 3 (−10p3+21p2q+21pq2−10q3)
+pqW Y 5 (14p3−17p2q−17pq2+14q3)+Y 7 (−4p3+3p2q+3pq2−4q3)
+Y 2 (p4q4W 4(p+q)−pqW

(
6p5−15p4q+14p3q2+14p2q3−15pq4+6q5))

+Y 4 (7p5−5p4q−10p3q3W 3(p+q)+11p3q2+11p2q3−5pq4+7q5)
+Y
(
−p7−3p5q2+2p4q3+2p3q4+2p3q3W 3 (p3+q3)−3p2q5−q7)−7pqW Y 8(p+q)

+Y 10(p+q)
24 p6q6W 6+45p2q2W 2Y 8−2p2q2W 2Y 5 (8p2−91pq+8q2)+pqW Y 7 (11p2−71pq+11q2)

+Y 9 (−2p2+9pq−2q2)−pq
(
p6+p3q3+q6)

+Y 4(70p4q4W 4+pqW
(
−12p4+22p3q−125p2q2+22pq3−12q4))

+Y 6 (6p4−84p3q3W 3−4p3q+33p2q2−4pq3+6q4)+p3q3W 3 (p4+2p3q−14p2q2+2pq3+q4)
+Y 2(−21p5q5W 5−p2q2W 2(p4+24p3q−111p2q2+24pq3+q4))
+Y
(
36p5q5W 4+pqW

(
4p6−2p5q+7p4q2−23p3q3+7p2q4−2pq5+4q6))

+Y 3(−7p6+p5q−10p4q2+16p3q3−10p2q4+p3q3W 3 (5p2−164pq+5q2)+pq5−7q6)
−11pqW Y 10+Y 12

25 −21p2q2W 2Y 7(p+q)+p2q2W 2Y 4 (15p3−44p2q−44pq2+15q3)
+p3q3W 2Y

(
8p3−11p2q−11pq2+8q3)+pqW Y 6 (−17p3+25p2q+25pq2−17q3)

−p4q4W 4 (p3+p2q+pq2+q3)
+Y 3 (pqW

(
13p5−18p4q+39p3q2+39p2q3−18pq4+13q5)−5p4q4W 4(p+q)

)
+Y 5 (−9p5+5p4q+20p3q3W 3(p+q)−18p3q2−18p2q3+5pq4−9q5)
+Y 2(4p7+8p5q2−3p4q3−3p3q4+8p2q5+p3q3W 3 (p3+18p2q+18pq2+q3)+4q7)
−pqW

(
p7+p6q+3p5q2−2p4q3−2p3q4+3p2q5+pq6+q7)+8pqW Y 9(p+q)+Y 11(−p−q)

+4Y 8(p−q)2(p+q)
26 −6p6q6W 5+10p2q2W 2Y 9+p2q2W 2Y 6 (25p2+98pq+25q2)−pqW Y 8 (13p2+29pq+13q2)

Table 1. Continued on next page.
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n d2(n)
+Y 10 (2p2+3pq+2q2)+Y 5 (56p4q4W 4+pqW

(
23p4−25p3q−71p2q2−25pq3+23q4))

+Y 7 (−7p4−36p3q3W 3+5p3q+11p2q2+5pq3−7q4)
+Y 3(p2q2W 2(−15p4+25p3q+111p2q2+25pq3−15q4)−35p5q5W 5)
+Y 2(p4q4W 4 (p2+71pq+q2)−pqW

(
9p6−16p5q+11p4q2+43p3q3+11p2q4−16pq5+9q6))

+Y 4(10p6−7p5q+13p4q2+29p3q3+13p2q4−2p3q3W 3 (7p2+69pq+7q2)−7pq5+10q6)
+p2q2W 2(p6−2p5q+p4q2+3p3q3+p2q4−2pq5+q6)
+Y
(
−p8+6p6q6W 6−3p6q2−4p5q3+7p4q4−4p3q5−3p2q6

+p3q3W 3 (2p4+p3q−36p2q2+pq3+2q4)−q8)−pqW Y 11

27 −p3q3 (p3+q3)+28p2q2W 2Y 8(p+q)−p4q4W 3 (p3+q3)
+p2q2W 2Y 5(−29p3+70p2q+70pq2−29q3)+pqW Y 7 (21p3−34p2q−34pq2+21q3)
+Y 9 (−4p3+5p2q+5pq2−4q3)
+Y 4 (15p4q4W 4(p+q)−pqW

(
21p5−41p4q+45p3q2+45p2q3−41pq4+21q5))

+Y 6 (10p5−9p4q−35p3q3W 3(p+q)+19p3q2+19p2q3−9pq4+10q5)
+Y 2(2p2q2W 2(2p5−17p4q+8p3q2+8p2q3−17pq4+2q5)−p5q5W 5(p+q)

)
+Y 3(−8p7+5p6q−17p5q2+2p4q3+2p3q4−17p2q5+3p3q3W 3 (3p3−13p2q−13pq2+3q3)

+5pq6−8q7)+pqW Y
(
3p7−7p6q+15p5q2−6p4q3−6p3q4+15p2q5−7pq6+3q7)

−9pqW Y 10(p+q)+Y 12(p+q)
28 −p7q7W 7+19p6q6W 4+66p2q2W 2Y 10+p2q2W 2Y 7 (−36p2+373pq−36q2)

+pqW Y 9(15p2−107pq+15q2)+Y 11 (−2p2+11pq−2q2)
+Y 6(210p4q4W 4+pqW

(
−28p4+41p3q−287p2q2+41pq3−28q4))

+Y 8 (7(p4−p3q+7p2q2−pq3+q4)−165p3q3W 3)
+Y 4 (p2q2W 2 (23p4−67p3q+506p2q2−67pq3+23q4)−126p5q5W 5)
+W

(
2p8q2−2p6q4−5p5q5−2p4q6+2p2q8)

+Y 3(p4q4W 4 (−6p2+323pq−6q2)
+pqW

(
18p6−29p5q+44p4q2−173p3q3+44p2q4−29pq5+18q6))

+Y 5(−13p6+9p5q−25p4q2+53p3q3−25p2q4+15p3q3W 3 (2p2−37pq+2q2)+9pq5−13q6)
+Y
(
−49p6q6W 5−p2q2W 2(p6−12p5q+10p4q2−102p3q3+10p2q4−12pq5+q6))

+Y 2(4p8−3p7q+28p6q6W 6+8p6q2+2p5q3+13p4q4+2p3q5+8p2q6

+p4q4W 3 (25p2−272pq+25q2)−3pq7+4q8)−13pqW Y 12+Y 14

29 −36p2q2W 2Y 9(p+q)+2p2q2W 2Y 6 (23p3−55p2q−55pq2+23q3)
−5pqW Y 8(5p3−9p2q−9pq2+5q3)+Y 10 (4p3−6p2q−6pq2+4q3)
+Y 5(pqW

(
33p5−51p4q+95p3q2+95p2q3−51pq4+33q5)−35p4q4W 4(p+q)

)
+Y 7(−11p5+11p4q+56p3q3W 3(p+q)−25p3q2−25p2q3+11pq4−11q5)
−4p3q3W 2 (p5−p4q+2p3q2+2p2q3−pq4+q5)
+Y 3(6p5q5W 5(p+q)−p2q2W 2 (17p5−50p4q+97p3q2+97p2q3−50pq4+17q5))
+Y 2(2p4q4W 4(p3−8p2q−8pq2+q3)

+2pqW
(
−5p7+10p6q−17p5q2+17p4q3+17p3q4−17p2q5+10pq6−5q7))

+Y 4(13p7−10p6q+27p5q2−10p4q3−10p3q4+27p2q5

+p3q3W 3(−25p3+92p2q+92pq2−25q3)−10pq6+13q7)
+Y
(
−p9−2p7q2+p6q3−2p5q4−2p4q5+p3q6−2p2q7

+p4q4W 3 (−2p3+21p2q+21pq2−2q3)−q9)+10pqW Y 11(p+q)+Y 13(−p−q)
30 −pqW Y 13+

(
2p2+3qp+2q2)Y 12+12p2q2W 2Y 11−pq

(
17p2+37qp+17q2)W Y 10

Table 1. Continued on next page.
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n d2(n)
+
(
−7p4−55q3W 3p3+9qp3+17q2p2+9q3p−7q4)Y 9+p2q2 (49p2+169qp+49q2)W 2Y 8

+
(
120p4q4W 4+pq

(
35p4−57qp3−141q2p2−57q3p+35q4)W

)
Y 7

+
(
15p6−16qp5+28q2p4+51q3p3−5q3 (11p2+71qp+11q2)W 3p3+28q4p2−16q5p+15q6)Y 6

+
(
p2q2(−46p4+106qp3+367q2p2+106q3p−46q4)W 2−126p5q5W 5)Y 5

+
(
20p4q4 (p2+17qp+q2)W 4

−pq
(
30p6−65qp5+59q2p4+159q3p3+59q4p2−65q5p+30q6)W

)
Y 4

+
(
−10p8+8qp7+56q6W 6p6−23q2p6−6q3p5+29q4p4−6q5p3

+q3(16p4−47qp3−325q2p2−47q3p+16q4)W 3p3−23q6p2+8q7p−10q8)Y 3

+
(
2p2q2(3p6−24qp5+11q2p4+57q3p3+11q4p2−24q5p+3q6)W 2

−p5q5 (p2+121qp+q2)W 5)Y 2

+
(
−7p7q7W 7−p4q4(3p4+4qp3−74q2p2+4q3p+3q4)W 4

+pq
(
4p8−11qp7+15q2p6+4q3p5−37q4p4+4q5p3+15q6p2−11q7p+4q8)W)Y

+3p2q8+7p7q7W 6+5p5q5+p3q3(p6+4qp5−2q2p4−11q3p3−2q4p2+4q5p+q6)W 3+3p8q2

Table 1. The coefficients d2(n) in the expansion of the SU(2) index ISU(2)(Y x2,Wx−2,px3, qx3) =∑
n d2(n)xn up to O(x30) where Y and W are defined in (B.12).

C Cardy-like expansions of the standard contributions

In this appendix, we investigate the Cardy-like limit of the standard contributions to the
N = 4 SU(N) SCI through the BA formula (2.3) for N = 2 and N = 3 cases respectively.
In particular, since the contribution from the basic {1, N, 0} BAE solution have already
been computed in the literature and given explicitly as (3.17) and (4.13) for N = 2 and
N = 3 respectively, we focus on the other standard BAE solutions. As mentioned in the
main text, we identify p = q for simplicity.

C.1 SU(2) case

For the SU(2) case, there are two remaining standard BAE solutions: {2, 1, 0} and {1, 2, 1}.
Their contributions to the SCI are given in (3.16a) and (3.16c) respectively.

First, the building blocks of (3.16a), or equivalently those of (3.11a) with a = b = 1,
can be computed using the asymptotic expansions (A.18) and (A.19) as

log κZ{2,1,0} = − πi

2τ2

3∏
a=1

(
{2∆a}τ −

1 + η2
2

)
+ πi

τ2

3∏
a=1

(
{∆a}τ −

1 + η1
2

)

+ πi(6 + 5η1 − 10η2)
12 − log τ − log 2!

+
3∑

a=1

(
2 log

ψ({1/2+∆a}τ
τ − 1)

ψ(1−{1/2+∆a}τ
τ + 1)

+ log
ψ({∆a}τ

τ − 1)
ψ(1−{∆a}τ

τ + 1)

)

+ 4 log
(
1− e−

πi
τ

)
+O

(
e
− 2π sin(arg τ)

|τ |

)
(C.1)
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and

− logH{2,1,0}=− log4−log
(
η2−η1
τ

+ 2
τ

∑
∆

(
e−

2πi
τ

(1−{ 1
2 +∆}τ )

1−e− 2πi
τ

(1−{ 1
2 +∆}τ )

− e−
2πi
τ
{ 1

2 +∆}τ

1−e− 2πi
τ
{ 1

2 +∆}τ

))

+O
(
e
− 2π sin(argτ)

|τ |

)
. (C.2)

Here we have also used the identity (A.16). The determinant contribution (C.2) now
explains why we should keep track of the leading exponentially suppressed terms. If η1 = η2,
we get a divergent logarithmic contribution “log 0” without those terms. The Cardy-like
limit of the contribution (3.16a) is then given as the sum of (C.1) and (C.2), which results
in (3.19).

Similarly the building blocks of (3.16c), or equivalently those of (3.11c) with a = b = 1,
are given as

logκZ{1,2,1}=− πi

2τ2

3∏
a=1

(
{2∆a}τ−

1+η2
2

)
+ πi

τ2

3∏
a=1

(
{∆a}τ−

1+η1
2

)

+πi(6+8η1−13η2)
12 −logτ−log2!

+
3∑

a=1

(
log

ψ({1/2+∆a}τ
τ − 1

2)
ψ(1−{1/2+∆a}τ

τ + 1
2)

+log
ψ({1/2+∆a}τ

τ − 3
2)

ψ(1−{1/2+∆a}τ
τ + 3

2)
+log

ψ({∆a}τ
τ −1)

ψ(1−{∆a}τ
τ +1)

)

+4log
(
1+e

πi
τ

)
+O

(
e
− 2π sin(argτ)

|τ |

)
(C.3)

and

− logH{1,2,1}=− log4−log
(
η2−η1
τ

+ 2
τ

∑
∆

(
−e−

2πi
τ

(1−{ 1
2 +∆}τ )

1+e− 2πi
τ

(1−{ 1
2 +∆}τ )

− −e
− 2πi

τ
{ 1

2 +∆}τ

1+e− 2πi
τ
{ 1

2 +∆}τ

))

+O
(
e
− 2π sin(argτ)

|τ |

)
. (C.4)

The Cardy-like limit of the contribution (3.16c) is then given as the sum of (C.3) and (C.4),
which leads to (3.20).

Sum of the two contributions (3.19) and (3.20) also involves complicated calculations.
The resulting sum (3.26) is therefore written in terms of XSU(2), which is defined as

XSU(2) =
(1− e−πiτ )4∏3

a=1
ψ( {1/2+∆a}τ

τ
−1)2

ψ( 1−{1/2+∆a}τ
τ

+1)2∑
∆

(
e−

2πi
τ (1−{ 1

2 +∆}τ )

1−e−
2πi
τ (1−{ 1

2 +∆}τ )
− e−

2πi
τ {

1
2 +∆}τ

1−e−
2πi
τ {

1
2 +∆}τ

)

+
(1 + e−

πi
τ )4∏3

a=1
ψ( {1/2+∆a}τ

τ
− 1

2 )
ψ( 1−{1/2+∆a}τ

τ
+ 1

2 )
ψ( {1/2+∆a}τ

τ
− 3

2 )
ψ( 1−{1/2+∆a}τ

τ
+ 3

2 )∑
∆

(
−e−

2πi
τ (1−{ 1

2 +∆}τ )

1+e−
2πi
τ (1−{ 1

2 +∆}τ )
− −e−

2πi
τ {

1
2 +∆}τ

1+e−
2πi
τ {

1
2 +∆}τ

) .

(C.5)
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To simplify this expression in the Cardy-like limit, first note that

max
∆

{
|e−

2πi
τ

(1−{ 1
2 +∆}τ )|, |e−

2πi
τ
{ 1

2 +∆}τ |
}

= |e−
2πi
τ

∆SU(2) |

=

|e
− 2πi

τ
{ 1

2 +∆3}τ | (η1 = η2 = −1)
|e−

2πi
τ

(1−{ 1
2 +∆1}τ )| (η1 = η2 = 1)

,
(C.6)

under the ordering (without loss of generality)

0 < {∆̃1} < {∆̃2} < {∆̃3} < 1. (C.7)

This explains the origin of the definition of ∆SU(2) given in (3.28). For this ∆SU(2), one
can prove the following asymptotic expansions

ψ(∆SU(2)

τ − 1)2

− e−
2πi
τ ∆SU(2))

1−e−
2πi
τ ∆SU(2))

+
ψ(∆SU(2)

τ − 1
2)ψ(∆SU(2)

τ − 3
2)

− −e
− 2πi

τ ∆SU(2))

1+e−
2πi
τ ∆SU(2))

∼ 4∆SU(2)

τ
− 2− 2i

π
,

ψ(∆SU(2)

τ + 1)−2

e−
2πi
τ ∆SU(2))

1−e−
2πi
τ ∆SU(2))

+
ψ(∆SU(2)

τ + 1
2)−1ψ(∆SU(2)

τ + 3
2)−1

−e−
2πi
τ ∆SU(2))

1+e−
2πi
τ ∆SU(2))

∼ 4∆SU(2)

τ
+ 2− 2i

π
,

(C.8)

using the expansion of the ψ-function (A.5a). Applying the above results (C.8) to the
definition of XSU(2) (C.5) along with (C.6) and (3.28), we obtain the asymptotic expansion
of XSU(2) (3.27).

C.2 SU(3) case

For the SU(3) case, there are three remaining standard BAE solutions: {3, 1, 0} and
{1, 3, 1}, and {1, 3, 2}. Their contributions to the SCI are given in (4.9a), (4.9c), and (4.9d)
with p = q (a = b = 1) respectively.

First, the building blocks of (4.9a) with a = b = 1 can be computed using the asymp-
totic expansions (A.18) and (A.19) as

log κZ{3,1,0}

= − πi

3τ2

3∏
a=1

(
{3∆a}τ −

1 + η3
2

)
+ πi

τ2

3∏
a=1

(
{∆a}τ −

1 + η1
2

)

+ πi(12 + 5η1 − 15η3)
12 − 2 log τ − log 3!

+
3∑

a=1

(
3 log

ψ({1/3+∆a}τ
τ − 1)

ψ(1−{1/3+∆a}τ
τ + 1)

+ 3 log
ψ({2/3+∆a}τ

τ − 1)
ψ(1−{2/3+∆a}τ

τ + 1)
+ 2 log

ψ({∆a}τ
τ − 1)

ψ(1−{∆a}τ
τ + 1)

)

+ 6 log
(
1− e−

2πi
3τ
)

+ 6 log
(
1− e−

4πi
3τ
)

+O
(
e
− 2π sin(arg τ)

|τ |

)
(C.9)

and
− logH{3,1,0}

= −3 log 3− 2 log
(
η3 − η1

2τ + 1
τ

2∑
J=1

∑
∆

(
e−

2πi
τ

(1−{J3 +∆}τ )

1− e− 2πi
τ

(1−{J3 +∆}τ )
− e−

2πi
τ
{J3 +∆}τ

1− e− 2πi
τ
{J3 +∆}τ

))
.

(C.10)
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Here we have also used the identity (A.16). The determinant contribution (C.10) now
explains why we should keep track of the leading exponentially suppressed terms. If η1 = η3,
we get a logarithmically divergent contribution “log 0” without those terms. The Cardy-
like limit of the contribution (4.9a) with a = b = 1 is then given as the sum of (C.9)
and (C.10), which gives (4.14).

Similarly the building blocks of (4.9c) with a = b = 1 are given as

log κZ{1,3,1}

= − πi

3τ2

3∏
a=1

(
{3∆a}τ −

1 + η3
2

)
+ πi

τ2

3∏
a=1

(
{∆a}τ −

1 + η1
2

)

+ πi(12 + 9η1 − 19η3)
12 − 2 log τ − log 3!

+
3∑

a=1

(
2 log

ψ({1/3+∆a}τ
τ − 2

3)
ψ(1−{1/3+∆a}τ

τ + 2
3)

+ 2 log
ψ({2/3+∆a}τ

τ − 4
3)

ψ(1−{2/3+∆a}τ
τ + 4

3)

+ log
ψ({2/3+∆a}τ

τ − 1
3)

ψ(1−{2/3+∆a}τ
τ + 1

3)
+ log

ψ({1/3+∆a}τ
τ − 5

3)
ψ(1−{1/3+∆a}τ

τ + 5
3)

+ 2 log
ψ({∆a}τ

τ − 1)
ψ(1−{∆a}τ

τ + 1)

)

+ 6 log
(
1− e−2πi( 1

3τ−
2
3 )
)

+ 6 log
(
1− e−2πi( 2

3τ−
1
3 )
)

+O
(
e
− 2π sin(arg τ)

|τ |

)
(C.11)

and

−logH{1,3,1}

=−3log3−2log
(
η3−η1

2τ + 1
τ

2∑
J=1

∑
∆

(
e−

2πi
τ

(1−{J3 +∆}τ−Jτ3 )

1−e− 2πi
τ

(1−{J3 +∆}τ−Jτ3 )
− e−

2πi
τ

({J3 +∆}τ+Jτ
3 )

1−e− 2πi
τ

({J3 +∆}τ+Jτ
3 )

))
.

(C.12)

The Cardy-like limit of the contribution (4.9c) with a = b = 1 is then given as the sum
of (C.11) and (C.12), which gives (4.15).

Finally the building blocks of (4.9d) with a = b = 1 are given as

log κZ{1,3,2}

= − πi

3τ2

3∏
a=1

(
{3∆a}τ −

1 + η3
2

)
+ πi

τ2

3∏
a=1

(
{∆a}τ −

1 + η1
2

)

+ πi(12 + 9η1 − 19η3)
12 − 2 log τ − log 3!

+
3∑

a=1

(
2 log

ψ({2/3+∆a}τ
τ − 2

3)
ψ(1−{2/3+∆a}τ

τ + 2
3)

+ 2 log
ψ({1/3+∆a}τ

τ − 4
3)

ψ(1−{1/3+∆a}τ
τ + 4

3)

+ log
ψ({1/3+∆a}τ

τ − 1
3)

ψ(1−{1/3+∆a}τ
τ + 1

3)
+ log

ψ({2/3+∆a}τ
τ − 5

3)
ψ(1−{2/3+∆a}τ

τ + 5
3)

+ 2 log
ψ({∆a}τ

τ − 1)
ψ(1−{∆a}τ

τ + 1)

)

+ 6 log
(
1− e−2πi( 2

3τ−
2
3 )
)

+ 6 log
(
1− e−2πi( 1

3τ−
1
3 )
)

+O
(
e
− 2π sin(arg τ)

|τ |

)
, (C.13)
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and

−logH{1,3,2}

=−3log3−2log
(
η3−η1

2τ + 1
τ

2∑
J=1

∑
∆

(
e−

2πi
τ

(1−{J3 +∆}τ+Jτ
3 )

1−e− 2πi
τ

(1−{J3 +∆}τ+Jτ
3 )
− e−

2πi
τ

({J3 +∆}τ−Jτ3 )

1−e− 2πi
τ

({J3 +∆}τ−Jτ3 )

))
.

(C.14)

The Cardy-like limit of the contribution (4.9d) with a = b = 1 is then given as the sum
of (C.13) and (C.14), which gives (4.16).

Sum of the three contributions (4.14), (4.15), and (4.16) also involves complicated
calculations. The resulting sum (4.21) is therefore written in terms of XSU(3), which is
defined as

XSU(3)

=
(1−e− 2πi

3τ )6(1−e− 4πi
3τ )6∏3

a=1
ψ( {1/3+∆a}τ

τ
−1)3

ψ( 1−{1/3+∆a}τ
τ

+1)3

ψ( {2/3+∆a}τ
τ

−1)3

ψ( 1−{2/3+∆a}τ
τ

+1)3(∑2
J=1

∑
∆( e−

2πi
τ (1−{J/3+∆}τ )

1−e−
2πi
τ (1−{J/3+∆}τ )

− e−
2πi
τ {J/3+∆}τ

1−e−
2πi
τ {J/3+∆}τ

)
)2

+ (1−e−2πi( 1
3τ−

2
3 ))6(1−e−2πi( 2

3τ−
1
3 ))6(∑2

J=1( e−
2πi
τ (1−{J/3+∆}τ−Jτ/3)

1−e−
2πi
τ (1−{J/3+∆}τ−Jτ/3)

− e−
2πi
τ ({J/3+∆}τ+Jτ/3)

1−e−
2πi
τ ({J/3+∆}τ+Jτ/3)

)
)2

×
3∏

a=1

ψ({1/3+∆a}τ
τ − 2

3)2

ψ(1−{1/3+∆a}τ
τ + 2

3)2

ψ({2/3+∆a}τ
τ − 4

3)2

ψ(1−{2/3+∆a}τ
τ + 4

3)2

ψ({2/3+∆a}τ
τ − 1

3)
ψ(1−{2/3+∆a}τ

τ + 1
3)

ψ({1/3+∆a}τ
τ − 5

3)
ψ(1−{1/3+∆a}τ

τ + 5
3)

+ (1−e−2πi( 2
3τ−

2
3 ))6(1−e−2πi( 1

3τ−
1
3 ))6(∑2

J=1( e−
2πi
τ (1−{J/3+∆}τ+Jτ/3)

1−e−
2πi
τ (1−{J/3+∆}τ+Jτ/3)

− e−
2πi
τ ({J/3+∆}τ−Jτ/3)

1−e−
2πi
τ ({J/3+∆}τ−Jτ/3)

)
)2

×
3∏

a=1

ψ({2/3+∆a}τ
τ − 2

3)2

ψ(1−{2/3+∆a}τ
τ + 2

3)2

ψ({1/3+∆a}τ
τ − 4

3)2

ψ(1−{1/3+∆a}τ
τ + 4

3)2

ψ({1/3+∆a}τ
τ − 1

3)
ψ(1−{1/3+∆a}τ

τ + 1
3)

ψ({2/3+∆a}τ
τ − 5

3)
ψ(1−{2/3+∆a}τ

τ + 5
3)
.

(C.15)

To simplify this expression in the Cardy-like limit, first note that

max
∆

{
|e−

2πi
τ

(1−{ 1
3 +∆}τ )|, |e−

2πi
τ

(1−{ 2
3 +∆}τ )|, |e−

2πi
τ
{ 1

3 +∆}τ |, |e−
2πi
τ
{ 2

3 +∆}τ |
}

= |e−
2πi
τ

∆SU(3) | =



|e−
2πi
τ
{ 1

3 +∆3}τ | (η1 = η3 = −1, {∆̃3} > 2/3)
|e−

2πi
τ
{ 2

3 +∆2}τ | (η1 = η3 = −1, {∆̃3} < 2/3)
|e−

2πi
τ

(1−{ 2
3 +∆1}τ )| (η1 = η3 = 1, {∆̃1} < 1/3)

|e−
2πi
τ

(1−{ 1
3 +∆2}τ )| (η1 = η3 = 1, {∆̃1} > 1/3)

,
(C.16)

under the ordering (without loss of generality)

0 < {∆̃1} < {∆̃2} < {∆̃3} < 1. (C.17)
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This explains the origin of the definition of ∆SU(3) given in (4.23). For this ∆SU(3), one
can prove the following asymptotic expansions

ψ(∆SU(3)

τ − 1)3(
− e−

2πi
τ ∆SU(3))

1−e−
2πi
τ ∆SU(3))

)2 +
ψ(∆SU(3)

τ − 2
3)2ψ(∆SU(3)

τ − 5
3)(

− w2e−
2πi
τ ∆SU(3))

1−w2e−
2πi
τ ∆SU(3))

)2 +
ψ(∆SU(3)

τ − 4
3)2ψ(∆SU(3)

τ − 1
3)(

− we−
2πi
τ ∆SU(3))

1−we−
2πi
τ ∆SU(3))

)2

∼ 27(∆SU(3))2

2τ2 + 27∆SU(3)(−π − i)
2πτ + 3(8π2 + 15πi− 9)

8π2 ,

ψ(∆SU(3)

τ + 1)−3(
e−

2πi
τ ∆SU(3))

1−e−
2πi
τ ∆SU(3))

)2 +
ψ(∆SU(3)

τ + 2
3)−2ψ(∆SU(3)

τ + 5
3)−1(

we−
2πi
τ ∆SU(3))

1−we−
2πi
τ ∆SU(3))

)2 +
ψ(∆SU(3)

τ + 4
3)−2ψ(∆SU(3)

τ + 1
3)−1(

w2e−
2πi
τ ∆SU(3))

1−w2e−
2πi
τ ∆SU(3))

)2

∼ 27(∆SU(3))2

2τ2 + 27∆SU(3)(π − i)
2πτ + 3(8π2 − 15πi− 9)

8π2 , (C.18)

using the expansion of the ψ-function (A.5a). Here w = e2πi/3 is a primitive cube root of
unity. Applying the above results (C.18) to the definition ofXSU(3) (C.15) along with (C.16)
and (4.23), we obtain the asymptotic expansion of XSU(3) (4.22).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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