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1 Introduction

The microscopic origin of the Bekenstein-Hawking entropy [1] has been one of the most
prominent topics in all of theoretical physics for several decades. It is largely what triggered
the celebrated AdS/CFT correspondence [2] and it continues to serve as an indispensable
theoretical laboratory for many aspects of quantum gravity. However, despite very sig-
nificant early investigations [3–7], only in the last few years was progress made towards
understanding the entropy of asymptotically AdSd>3 black holes microscopically [8–16].
Moreover, the physical picture behind these recent developments remains blurred by vari-
ous technicalities even now. The purpose of this paper is to exploit well-established insights
into black holes in AdS3 to illuminate these conceptual challenges.
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Supersymmetric black holes in AdS5 × S5, dual to 4D N = 4 super-Yang-Mills with
SU(N) gauge group, have entropy that scales as S ∼ N2 [17–23]. The entropy cannot
be accounted for by the conventional superconformal index of SYM which has asymptotic
behavior O(eN0) [4, 5]. However, it is now understood that the superconformal index grows
as O(eN2) [12–14] (see also [24–30]) when studied as a function of complex chemical po-
tentials, rather than real ones. Moreover, the resulting density of states accounts precisely
for the Bekenstein-Hawking entropy of the dual BPS black hole:

S = 2π
√
Q1Q2 +Q2Q3 +Q3Q1 −

1
2N

2 (J1 + J2) , (1.1)

where QI (with I = 1, 2, 3) denote the R-charges (rotations on S5) and Ji (with i = 1, 2)
the angular momenta within AdS5.

The Legendre transform from the canonical (potentials specified) to the microcanonical
(charges specified) ensemble can be formulated as an extremization principle for an entropy
function [11, 13] that is necessarily complex. Its extremum successfully yields the correct
entropy (1.1) but the requirement that it be real imposes an extra constraint on the black
hole charges:

Q1Q2Q3+ 1
2N

2J1J2 =
(
Q1+Q2+Q3+ 1

2N
2
)(

Q1Q2+Q2Q3+Q3Q1−
1
2N

2 (J1+J2)
)
.

(1.2)
The physical origin of this constraint is somewhat mysterious, and the way it arises tech-
nically is unfamiliar from previous studies of the microscopic black hole entropy in other
settings. On the other hand, the extra constraint (1.2) is very much anticipated from the
gravity side where it is satisfied by all BPS black holes in AdS5 [17–22], in addition to the
more conventional BPS mass condition

M =
3∑
I=1

QI +
2∑
i=1

Ji . (1.3)

In other words, all black holes that satisfy the mass formula (1.3) also obey the con-
straint (1.2) [31].

The necessity of angular momentum, the complexification of potentials, and the extra
constraint are features of all BPS black holes that are asymptotically AdSd>3. They may
give the impression that BPS black holes in higher dimensional AdS are fundamentally
different from their asymptotically flat relatives which are closely related to the BTZ black
holes in AdS3. In this article we show that, on the contrary, BPS black holes in AdS3 are
very similar to asymptotically AdSd>3 BPS black holes and vice versa. For instance, the
partition function (2.2) for the BTZ black holes in AdS3 is rewritten for the BPS case in
the form of (3.7) that resembles the higher dimensional analogue (3.8), see [11].

The AdS3/CFT2 correspondence is simpler, and therefore more transparent, than its
higher dimensional counterparts because:

• There are fewer charges.

• The charge constraint analogous to (1.2) is linear.
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• The superconformal algebra in two dimensions factorizes into two independent fac-
tors.

• There is a powerful tool in CFT2: modular invariance.1

It is for these reasons that the AdS3 problem has already been “solved”, to a large extent.
We consider general CFT2’s with (4, 4) supersymmetry that are not necessarily chiral,

we allow distinct levels kR,L in the two sectors. In this theory we study the high temperature
grand canonical partition function, computed via modular invariance from the vacuum
state, and their dual BTZ black holes. From this simple starting point we derive BPS
properties of black holes in several ways.

The most direct approach is to take an appropriate limit of the thermodynamic ex-
pressions. This isolates the zero temperature sector. However, supersymmetry demands
that, in addition, we engage a gauge field for an SU(2)R symmetry that is interpreted
in spacetime as rotation on an S3 fibered over AdS3. Thus the BPS limit involves two
conditions on the thermodynamic potentials.

In terms of charges, one of the conditions satisfied by BPS black holes in AdS3 is a
linear mass condition that we present as:

E − ESUSY = P + JL , (1.4)

where P and JL = J1 + J2 are conserved charges of the black hole. The left hand side,
including the supersymmetric Casimir energy ESUSY = −1

2kL, corresponds to the black
hole mass in the higher dimensional examples. We see that the form of the mass formula
in AdS3 is completely analogous to (1.3).

The second condition satisfied by BPS black holes in AdS3 is a constraint on the black
hole charges, namely

JL = kL . (1.5)

We interpret this relation as the AdS3 analogue of the constraint (1.2). Despite its simplic-
ity, it is far from trivial. The BPS states identified by the superconformal algebra are, in
our conventions, the chiral primaries. They all satisfy the mass formula (1.4) and unitarity
further demands that 0 ≤ JL ≤ 2kL [34, 35]. The charge constraint (1.5) is much stronger,
it shows that black holes are possible only for a single value of JL. As we explain further
below, we interpret this fact as a result of ensemble average.

Following the cue from recent work on BPS black holes in higher dimensional AdS,
we also study the supersymmetric index I, i.e. the elliptic genus in CFT2. It is simple to
compute via an analytical condition from the partition function and, in the case kR = kL,
we find

ln I = k
ω̃1ω̃2
µ̃

. (1.6)

The variables are potentials that are subject to the constraint

µ̃− ω̃1 − ω̃2 = 2πi . (1.7)
1Interesting modular-like properties of 4D CFT are being studied as well, see [32, 33] for examples.
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These formulae give an AdS3 version of the HHZ free energy that plays a central role in
discussions of AdS black holes in higher dimensions [11]. We analyze it by defining the
entropy function as a Legendre transform of (1.6), or more precisely its generalization (3.6)
to kR 6= kL. After extremization over all potentials, our entropy function becomes

S = 2π
√
kR

(
P + 1

2JL −
1
4kL

)
− 1

4J
2
R + πi (JL − kL) . (1.8)

Upon requiring this to be real, we recover the charge constraint JL = kL given in (1.5) and
we further find the correct BPS entropy

SBPS = 2π
√
kR

(
P + 1

4kL
)
− 1

4J
2
R . (1.9)

The fact that these manipulations are much simpler than their higher dimensional ana-
logues facilitates a critical evaluation of the procedure. Alas, we find the reasoning un-
satisfying: the imaginary part of (1.8) is immaterial to the reality of physical quantities
because JL − kL ∈ Z and so the degeneracy2 eS is manifestly real, even before imposing
any condition.

In the AdS3 context we can examine why the manipulations “work”. The real part of
the index condition (1.7) indicates that the index does not distinguish the two charges P
and JL, it only depends on the combination P+ 1

2JL. It is extremization over the potentials
independently, rather than their combination, that gives the correct charge constraint from
a principled point of view. That the reality condition gives the same result appears to be
an artifact of special mathematical properties of the BPS partition function.

Instead, we provide a physical interpretation of the AdS3 charge constraint (1.5) that
is purely microscopic: the ensemble average. While it is hardly a novel claim that black
holes are described by thermal ensembles in the dual field theory, we show that the very
concept of thermal ensemble, that macroscopic charges are obtained by taking averages
over the ensemble, leads to their constraint. We expect this observation to be central to
understanding more intricate problems in higher dimensions.

The rest of this paper is organized as follows. In section 2 we develop the thermo-
dynamics of asymptotically AdS3 BPS black holes with all chemical potentials treated as
real. In section 3 we define the supersymmetric index, as opposed to partition function, and
potentials become complex. We formulate an entropy extremization principle and examine
why this procedure works. We also introduce a nAttractor mechanism for the BTZ black
holes, to give a clear spacetime interpretation of the potentials. In section 4 we generalize
the thermodynamics of the black holes to the nearBPS regime. Finally, in section 5, we
discuss how the charge constraint (1.5) arises from an ensemble average, by considering
the representation theory of (4, 4) SCFT2’s.

2 Partition function for BTZ black holes

In this section we study the thermodynamics of BPS black holes in AdS3. The starting
point is the high temperature partition function which we motivate from both sides of the

2More precisely, it is the degeneracy where bosons and fermions contribute with opposite signs.
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AdS3/CFT2 correspondence. We show that the BPS limit imposes two conditions on the
black hole parameters.

2.1 Notation

We consider the standard set-up that describes BPS black holes in 5 asymptotically flat
dimensions. Such black holes lift to the 6D geometry AdS3 × S3 and are dual to CFT2’s
with (4, 4) supersymmetry. The SU(2) × SU(2) isometry of S3 corresponds to rotation
of the original black hole in five dimensions and is identified with the R-symmetry of the
CFT2.

We define the grand canonical partition function as

Z = Tr e−β(ε−µp−ωRjR−ωLjL) , (2.1)

where the quantum numbers ε, p, jR, jL characterize individual states. The corresponding
macroscopic charges, evaluated as averages over many states, are denoted E,P, JR, JL. The
conjugate potentials of both microscopic and macroscopic quantities are β, βµ, βωR,L with
signs specified by the definition (2.1). Alternatively, the first law of thermodynamics

TdS = dE − µdP − ωRdJR − ωLdJL ,

summarizes conventions conveniently in a form that is well adapted to black holes.
In CFT2 the eigenvalues of Virasoro generators are introduced through

L0 −
kR
4 = ε+ p

2 , L̃0 −
kL
4 = ε− p

2 .

The constants kL,R are levels of the SU(2) R-currents. They are related to central charges
as cL,R = 1

6kL,R byN = 4 supersymmetry. The unique SL(2)×SL(2) invariant ground state
annihilated by L0, L̃0 has strictly negative energy Evac = −1

4(kR + kL) and corresponds to
the AdS3 vacuum. It is separated by a gap from the black holes which have nonnegative
energy in the CFT2 terminology. The momentum P corresponds to angular momentum
of the AdS3 black hole but for the 5D black hole it is momentum along a compact 6th
dimension.

2.2 The high temperature partition function

The “high temperature” partition function describes thermodynamics in the entire black
hole regime.3 In fact, we will regularly refer to it as the “general” partition function despite
the restriction to high temperature, in order to stress that it depends on all the continuous
variables appearing in the definition (2.1). We write it in either of the two forms

lnZ = kR
β(1− µ)

(
π2 + β2ω2

R

)
+ kL
β(1 + µ)

(
π2 + β2ω2

L

)
= πikR

2τ
(
1− 4z2

)
− πikL

2τ̄
(
1− 4z̄2

)
. (2.2)

3It identifies the black hole saddle point, as we discuss further in section 3.5. On the microscopic side, it
is believed that CFT2’s have special properties (due to long string sectors) [36–39] such that the Cardy-limit
applies all the way to low temperature.
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The second line is a rewriting of the first that introduces standard CFT2 notation for the
fugacities:

2πiτ = −β(1− µ) ,
2πiτ̄ = β(1 + µ) ,
2πiz = βωR ,

2πiz̄ = −βωL . (2.3)

Note that, in either notation, the partition function is a function of four independent real
variables. In contrast, the index corresponds to a boundary condition that sets z̄ = 1

2 and
is automatically independent of τ̄ . Thus the index depends on only two real variables and
the dependence on the anti-holomorphic (L) sector disappears entirely. We study the index
in section 3.

The simplest derivation of the partition function (2.2) applies a modular transformation
to the ground state contribution. However, the result is very robust and can be reached
in many ways. For example, a more refined derivation was given in [40], from both bulk
(AdS3) and boundary (CFT2) points of view. It showed that, when starting from bulk
principles, all (local) higher derivative corrections are incorporated.

From the general partition function (2.2), thermodynamic properties such as macro-
scopic variables of the ensemble are readily obtained. Differentiation of the partition func-
tion (2.2) by β gives

E − µP − ωRJR − ωLJL = −∂ lnZ
∂β

= kR
β2(1− µ)

(
π2 − β2ω2

R

)
+ kL
β2(1 + µ)

(
π2 − β2ω2

L

)
, (2.4)

and we similarly find the conserved charges

P = 1
β

∂ lnZ
∂µ

= kR
β2(1− µ)2

(
π2 + β2ω2

R

)
− kL
β2(1 + µ)2

(
π2 + β2ω2

L

)
, (2.5)

JL,R = 1
β

∂ lnZ
∂ωL,R

= 2kL,R
1± µωL,R . (2.6)

A combination of these expressions gives the energy

E = kR
β2(1− µ)2

(
π2 + β2ω2

R

)
+ kL
β2(1 + µ)2

(
π2 + β2ω2

L

)
, (2.7)

and the macroscopic entropy

S = β (E − µP − ωRJR − ωLJL) + lnZ

= 2kRπ2

β(1− µ) + 2kLπ2

β(1 + µ)

= 2π
√

1
2kR(E + P )− 1

4J
2
R + 2π

√
1
2kL(E − P )− 1

4J
2
L . (2.8)

Equations (2.5)–(2.8) are starting points for various limits we study in the rest of
this section.

– 6 –



J
H
E
P
0
7
(
2
0
2
1
)
0
3
8

2.3 Supersymmetry gives two conditions on parameters

Up to this point we did not impose any conditions on the black hole parameters. We now
impose supersymmetry and show that the resulting BPS black holes satisfy two conditions.

In the 2D superconformal theory with (4, 4) supersymmetry, there are four 1
4 -BPS

sectors. Each sector preserves two real supersymmetries that are either holomorphic (R)
or anti-holomorphic (L), and that either raise or lower the R-charge. We focus without loss
of generality throughout the article on the 1

4 -BPS sector which preserves supersymmetries
that are anti-holomorphic (L) and raise the R-charge. Then the unitarity bound from the
anticommutator of the supercharges on individual CFT states in the NS sector is:

ε− p+ 1
2kL ≥ jL , (2.9)

from which a bound for black hole energy and charges follows:

E − P + 1
2kL ≥ JL . (2.10)

Microscopic states whose quantum numbers saturate the inequality (2.9) are called chiral
primaries. Unitarity further requires that chiral primaries have 0 ≤ jL ≤ 2kL [34, 35].

Saturation of the inequality (2.10) is a necessary condition for a supersymmetric black
hole but it is not sufficient. Indeed, the black hole entropy formula (2.8) does not make
sense unless [41]:

1
2(E − P ) ≥ 1

4kL
J2
L . (2.11)

A hypothetical black hole solution that violates this inequality would have event horizon
with imaginary area. Such geometries are not regular so black holes with these quantum
numbers simply do not exist. This regularity condition is variously referred to as the cosmic
censorship bound or the condition for absence of closed time-like curves.

The BPS condition demands that the inequality (2.10) be saturated but then compat-
ibility with regularity (2.11) gives

JL = kL . (2.12)

This is the charge constraint on BPS black holes in AdS3 advertised in the introduc-
tion (1.5). Thus BPS black holes have the same quantum numbers as the particular chiral
primaries situated in the middle of the interval 0 ≤ jL ≤ 2kL allowed by unitarity.

2.4 Extremality vs. supersymmetry

In the previous subsection we established that BPS black holes in AdS3 are co-dimension
2 in parameter space: saturation of two inequalities (2.10)–(2.11) introduces two relations
between the four parameters E, P , and JR,L. In this and the next subsection we elaborate
on this property from a thermodynamic point of view.

In discussions of black holes two notions of “ground state” appear:

• Extremality: the temperature T = 0.

• Supersymmetry: the BPS inequality for the energy is saturated.

– 7 –
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These conditions are similar in that both determine the black hole energy in terms of
its charges. However, they are not at all equivalent. On the contrary, it may be useful to
interpret them as two complementary requirements that each imposes one relation between
the black hole parameters. The supersymmetric black holes are co-dimension 2 in parameter
space because of these two conditions.4

The two concepts of ground state can be applied in either order. In the previous
subsection our starting point was the supersymmetry algebra:

1. Supersymmetry gives the BPS condition E = P + JL − 1
2kL that determines the

energy E in terms of conserved charges. In CFT2 terminology the eigenvalue of L0
is 1

2JL.

2. Among configurations with charges that satisfy the BPS formula for the energy, a
regular black hole exists only if, in addition, the extremality condition

T−1 = β =
(
∂S

∂E

)
P,JL,R

= kLπ

2
√

kL
2 (E − P )− 1

4J
2
L

+ kRπ

2
√

kR
2 (E + P )− 1

4J
2
R

→∞ ,

is met. This is only possible when the charges are further restricted to JL = kL.

From this point of view the second condition on charges is “additional” and perhaps sur-
prising. However, thermodynamic reasoning suggests that we impose extremality first:

1. The lowest possible energy allowing a regular black hole geometry for given conserved
charges (P, JL,R) is the extremal energy Eext.

2. Considering only extremal black holes, we further require that the geometry permits
supersymmetry: a spacetime Killing spinor must exist. This imposes an independent
constraint on the charges.

From the thermodynamic point of view it is supersymmetry that imposes an additional
condition on the charges that may appear surprising. In the next subsection we will imple-
ment the BPS limit with extremality imposed first. In particular, we will derive the two
inequalities (2.10)–(2.11) defining the BPS limit from the general partition function (2.2).

2.5 BPS as a thermodynamic limit

Recall the formulae (2.5)–(2.7) that relate the quantum numbers to potentials, reproduced
here for convenience:

E = kR
β2(1− µ)2

(
π2 + β2ω2

R

)
+ kL
β2(1 + µ)2

(
π2 + β2ω2

L

)
, (2.13a)

P = kR
β2(1− µ)2

(
π2 + β2ω2

R

)
− kL
β2(1 + µ)2

(
π2 + β2ω2

L

)
, (2.13b)

JL,R = 2kL,R
1± µωL,R . (2.13c)

4In this paper we just consider conditions on continuous black hole parameters. There are also important
discrete distinctions that must be made, such as the ones defining the nonBPS branch [42].
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In the canonical ensemble the extremal limit amounts to vanishing temperature β → ∞.
However, we must be careful with what remains finite in this limit.

Consider a pair of particular combinations of these charges:

E + P − J2
R

2kR
= 2kRπ2

β2(1− µ)2 ≥ 0 , (2.14a)

E − P − J2
L

2kL
= 2kLπ2

β2(1 + µ)2 ≥ 0 . (2.14b)

If one naïvely takes β →∞ with the chemical potential µ finite and generic, both of these
inequalities will be saturated. However, when the expressions on the left hand sides of both
equations in (2.14) vanish, the black hole entropy (2.8) will be zero as well. Therefore,
the limit taken this way yields an extremal “black hole” with an event horizon that has
vanishing area. Such a geometry is singular, it is not a black hole solution.

In order to circumvent this obstacle, we need to saturate only one of the inequali-
ties (2.14). We pick the latter without loss of generality, because this choice is analogous
to the one leading to (2.11). To avoid also saturating (2.14a), we take β →∞ while rescal-
ing µ so that µ̃ ≡ β(µ − 1) remains finite. Note that µ̃ ≤ 0 because µ ≤ 1. It further
follows from (2.13c) that, in order to describe black holes with generic values of JR, the
limit must also take ωR → 0 with ω̃R ≡ βωR kept finite. In contrast, ωL does not require
any rescaling, it can be kept finite by itself.

In summary, the extremal limit of a general AdS3 black hole is:

Extremal limit:



β →∞ ,

µ→ 1 with µ̃ ≡ β(µ− 1) finite,
ωR → 0 with ω̃R ≡ βωR finite,
ωL finite.

(2.15)

This limit was designed so that (2.13) gives expressions that are finite:

E = kR
µ̃2

(
π2 + ω̃2

R

)
+ kL

4 ω2
L , (2.16a)

P = kR
µ̃2

(
π2 + ω̃2

R

)
− kL

4 ω2
L , (2.16b)

JR = −2kR
µ̃
ω̃R , (2.16c)

JL = kLωL . (2.16d)

The explicit sign in the formula for JR compensates µ̃ < 0 so that the angular momentum
JR has the same sign as the rescaled angular velocity ω̃R, as expected. These formulae for
the conserved charges give the energy as a function of the charges

Eext = P + 1
2kL

J2
L . (2.17)
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This is the ground state energy for these conserved charges. It saturates (2.11) and is
identified with the extremal black hole mass. The extremal entropy becomes

Sext = −2kRπ2

µ̃
= 2π

√
1
2kR (Eext + P )− 1

4J
2
R

= 2π
√
kRP + kR

4kL
J2
L −

1
4J

2
R . (2.18)

The last equation eliminated the energy using the extremality condition (2.17).
As we have stressed, the extremal black holes are not necessarily supersymmetric. As

the second and last step of implementing the BPS limit, we now examine supersymmetry.
Recall from (2.10) that charges of supersymmetric black holes must saturate the inequality

E − P − JL + 1
2kL ≥ 0 .

The left hand side can be recast as a sum of two squares

E − P − JL + 1
2kL = 2kLπ2

β2 (1 + µ)2 + kL
2

(
1− 2ωL

1 + µ

)2
, (2.19)

using (2.13). The first square is precisely (2.14b) so it vanishes in the extremal limit.
In order to saturate the BPS bound (2.10) the second square must vanish as well so we
demand that the potentials satisfy

ϕ ≡ 1 + µ− 2ωL = 0 , (2.20)

in addition to conditions for extremality. We defined the parameter ϕ for future use. Since
µ = 1 at extremality we must have ωL = 1 in the BPS limit. However, just as the extremal
limit is taken with µ̃ ≡ β(µ − 1) kept finite there is no obstacle to taking the BPS limit
ωL → 1 so ω̃L ≡ β(ωL−1) remains finite. The value of ω̃L is, like µ̃ and ω̃R, not constrained.

To summarize, the BPS AdS3 black holes are limits of generic AdS3 black holes as

T = β−1 → 0 , (2.21)

while the potentials

µ̃ = β(µ− 1) , ω̃R = βωR , ω̃L = β(ωL − 1) , (2.22)

are kept finite. In this limit two inequalities (2.10) and (2.11) are saturated.
The BPS limit of the extremal expressions (2.16) gives

E = kR
µ̃2

(
π2 + ω̃2

R

)
+ kL

4 , (2.23a)

P = kR
µ̃2

(
π2 + ω̃2

R

)
− kL

4 , (2.23b)

JR = −2kR
µ̃
ω̃R , (2.23c)
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and notably,

JL = kL . (2.24)

The extremal black hole entropy (2.18) also simplifies further in the BPS limit

SBPS = 2π
√
kR(P + 1

4kL)− 1
4J

2
R . (2.25)

In the BPS limit, the four macroscopic quantities E,P, JL,R are parametrized by only
two potentials µ̃ and ω̃R, they are independent of the third potential ω̃L. This confirms
the expectation that the parameters of a BPS black hole form a co-dimension 2 surface in
the space of all possible charges. On the other hand, there really are three independent
rescaled potentials µ̃, ω̃L,R. This is possible because ω̃L parametrizes a flat direction along
which the BPS black hole does not change.

2.6 The BPS limit and the partition function

We now implement the BPS limit discussed in the previous subsection on the partition
function rather than the macroscopic variables.

As before, we first take the extremal (zero temperature) limit β → ∞ in the manner
specified in (2.15). The trace (2.1) that defines the partition function becomes

Z = Tr e−β(ε−p)+µ̃p+ω̃RjR+βωLjL . (2.26)

This expression is schematic because β appears explicitly even though we take β → ∞.
However, it captures an important qualitative feature of the physics. Disregarding tem-
porarily the term βωLjL (which will be addressed shortly), as β →∞ the first term in the
exponent assures that only states with ε = p contribute insofar as such states exist and
they are separated from the states with ε > p by a gap. The states singled out this way
will be the BPS states, except for the proviso that we have yet to account for the term
βωLjL.

To do so we proceed and implement the second part of the BPS prescription (2.21)–
(2.22) which specifies the BPS energy. It is taken into account by rewriting the extremal
partition function (2.26) as

Z = e
1
2βkLTr e−β(ε−p−jL+ 1

2kL)+µ̃p+ω̃RjR+ω̃LjL

= e
1
2βkLTr e−2β(L̃0− 1

2 jL)eµ̃p+ω̃RjR+ω̃LjL . (2.27)

In the second expression we introduced L̃0 − kL
4 = 1

2(ε − p) and reorganized in order to
isolate the term β(L̃0 − 1

2jL) in the exponent which, because the limit β →∞ is implied,
singles out the chiral primary states annihilated by L̃0 − 1

2jL. We assume that such states
are separated by a gap from the states where L̃0 − 1

2jL is positive and unitarity ensures
that this operator cannot be negative. Thus the partition function receives contributions
only from the chiral primaries, precisely the states that preserve supersymmetry.
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The overall factor e 1
2βkL in (2.27) diverges as β →∞ but, because no other potential

enters, it does not depend on the state. This term incorporates the supersymmetric Casimir
energy [43]

ESUSY = −1
2kL , (2.28)

that is common to all states. Note that it is not the conventional Casimir energy EC =
−1

4(kL + kR) that enters here and the two notions of Casimir energy agree only when the
levels kL = kR. The Casimir energy appears explicitly because we study the partition
function defined as a path integral rather than as a trace over a Hilbert space normalized
such that the vacuum contributes unity.

It is the convention in CFT2 that the Virasoro generators L0, L̃0 annihilate the SL(2)2

invariant (NS-NS)-vacuum which, therefore, is assigned a negative Casimir energy EC =
− 1

24(cR + cL) = −1
4(kR + kL). This usage has been adopted in discussions of AdS3/CFT2

correspondence. The supersymmetric Casimir energy (2.28) is a variant that is better
protected by supersymmetry, but it follows the same conventions. In contrast, in the
context of black holes in higher dimensional AdS spaces, it is customary to assign mass
M = 0 to the AdS vacuum. Adaptation of our AdS3 treatment to this practice amounts
to defining the BPS black hole mass as

M = E − ESUSY = P + JL . (2.29)

This simple linear formula, with numerical value “1” in front of each quantum number
P and JL, is the AdS3 version of the standard supersymmetric mass formulae (1.3) for
supersymmetric black holes in AdS4,5,6,7.

Taking the extremal limit (2.15) explicitly on the general partition function (2.2) we
find

lnZext = −kR
µ̃

(
π2 + ω̃2

R

)
+ 1

2kL
(
β − 1

2 µ̃
)
ω2
L . (2.30)

We retained the divergent linear-in-β term which encodes the supersymmetric Casimir
energy but does not contribute to the entropy. Other terms were computed by expanding
for small temperature and retaining the terms that are finite in the extremal limit. The
extremal partition function (2.30) simplifies further in the BPS limit (2.21)–(2.22)

lnZBPS = 1
2kLβ −

kR
µ̃

(
π2 + ω̃2

R

)
+ kL

(
ω̃L −

1
4 µ̃
)
. (2.31)

This BPS partition function reproduces the formulae for BPS limits of macroscopic
charges (2.23)–(2.24). For example, the potential ω̃L appears, but exclusively as a lin-
ear term that gives the correct value

JL = ∂

∂ω̃L
lnZBPS = kL . (2.32)

3 The supersymmetric index and entropy extremization

In the previous section we discussed black hole thermodynamics with the partition function
as starting point, as in conventional thermodynamics. However, recent progress on BPS
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black holes in AdS with dimensions larger than three is based on the superconformal index.
Therefore, in this section, we study the thermodynamics of BTZ black holes on the basis of
the supersymmetric index. In particular, we develop an entropy extremization prescription
for BTZ black holes that mimics its analogues in the literature on higher dimensional
cases [11].

3.1 The partition function and the index

The grand canonical partition function was defined in (2.1), as a trace over all states:

Z = Tr e−β(ε−µp−ωRjR−ωLjL) . (3.1)

In subsection 2.6 we isolated the BPS states by taking β → ∞ with certain rescaled
potentials (identified by their tilde) kept finite. This gave the BPS partition function (2.27):

ZBPS = e
1
2βkLTr e−2β(L̃0− 1

2 jL)eµ̃p+ω̃RjR+ω̃LjL
∣∣∣
β→∞

= e
1
2βkL

∣∣∣
β→∞

TrBPS e
µ̃p+ω̃RjR+ω̃LjL . (3.2)

The limit β → ∞ ensures that only the chiral primaries contribute to the trace since the
operator L̃0 − 1

2jL vanishes exactly on those and is positive on others. Equivalently, the
trace is taken only over the chiral primaries (BPS states) in the second line.

In this section we study the supersymmetric index, also known as the elliptic genus in
CFT2, rather than the partition function. As usual, the index is the same as the general
partition function (3.1), except for insertion into the trace of a sign (−1)F that depends
on the fermion number F . The goal is that when the supercharge Q that defines the BPS
sector does not annihilate some state |ψ〉, it creates a nontrivial partner Q|ψ〉 that cancels
the original state |ψ〉 in the trace, because the two members of the pair are counted with
opposite signs (−1)F . The general partition function (3.1) with (−1)F inserted should
therefore receive contributions only from states that are annihilated by Q and so reduce
to the BPS partition function (3.2), also with (−1)F inserted.

However, for the two members of each pair to cancel properly, they must have the same
fugacities, their weight depending on the potentials with tilde must be the same. This can
be arranged by considering only fugacities that satisfy the constraint

β(1 + µ− 2ωL) = µ̃− 2ω̃L = 0 , (3.3)

which commutes with the supercharge Q in the anti-holomorphic (L) sector. More con-
cisely, the insertion of (−1)F and the requirement µ̃− 2ω̃L = 0 can be elegantly combined
as the complex constraint

µ̃− 2ω̃L = 2πi , (3.4)

on the potentials. With this constraint the general partition function (3.1) automatically
reduces to the BPS partition function (3.2). In particular, the dependence on β disappears,
except for the factor e 1

2βkL that accounts for the supersymmetric Casimir energy. It is
conventional to omit this overall factor from definitions of supersymmetric indices, or of
elliptic genus.
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To summarize, the index is

I ≡ eβESUSYZ
∣∣∣
ω̃L= µ̃

2−iπ

= TrBPS e
µ̃p+ω̃RjR+ω̃LjL

∣∣∣
ω̃L= µ̃

2−iπ

= eβESUSYZBPS
∣∣∣
ω̃L= µ̃

2−iπ
, (3.5)

where ESUSY = −1
2kL was given in (2.28). Going from the first to the third line is non-

trivial, it is justified to restrict the trace to BPS states because of the aforementioned
cancellations. In other words, the index is independent of β, as expressed by the second
line of (3.5), so β →∞ is not needed in its definition.

The BPS partition function ZBPS depends on three independent potentials: µ̃ and
ω̃L,R, apart from the formal e−βESUSY

∣∣∣
β→∞

factor. Since the dependence on ω̃L can be
eliminated by the complex constraint (3.4), the index depends on only two independent
parameters which we take as µ̃ and ω̃R.

We can compute the index for supersymmetric black holes in AdS3 explicitly by starting
from the general partition function (2.2), introducing tilde potentials through (2.22), and
then imposing the index constraint (3.4):

ln I = −kL2 β + kR
β(1− µ)

(
π2 + β2ω2

R

)
+ kL
β(1 + µ)

(
π2 + β2ω2

L

)
= −kL2 β − kR

µ̃

(
π2 + ω̃2

R

)
+ kL
µ̃+ 2β

(
π2 + (ω̃L + β)2

)
= −kR

µ̃

(
π2 + ω̃2

R

)
+ kL

4 (µ̃− 4πi)

= −kR
µ̃

(
π2 + ω̃2

R

)
+ kL

µ̃

(
π2 + ω̃2

L

)
. (3.6)

We present the manipulations in detail to highlight that they are exact, the dependence
on β disappears without any limit taken, as anticipated. The final expression with the
constraint (3.4) implied agrees with the BPS partition function (2.31), again as anticipated.
A simpler but less illuminating route to the formula for the index given in the last line
of (3.6) is to evaluate the partition function and take the high temperature limit β → 0
with the tilde variables kept fixed. In other words, the last line of (3.6) follows from the
second line by taking β = 0.

The computation illustrates how the index (3.5) and the BPS partition function (2.31)
are closely related, yet they are different in significant ways such that they complement
one another:

• The BPS partition function restricts the trace to the chiral primary states by an
explicit limit β →∞. In contrast, the index is independent of β, the limit β →∞ is
possible but not mandatory. This is one aspect of the index being protected under
continuous deformations of the theory, while the BPS partition function is not.
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• The supersymmetric index is defined not only by an insertion of (−)F , its fugacities
must be constrained by (3.4) or else it is not protected under continuous deforma-
tions. In contrast, the BPS partition function keeps all three potentials µ̃ and ω̃R,L
independent. It is possible to focus on variables that satisfy the constraint, but the
general case incorporates more information about the theory.

• The supersymmetric index is defined with the supersymmetric Casimir energy
stripped off, while the partition function retains it.

These distinctions between the supersymmetric index and the BPS partition function are
central to this paper.

In the non-chiral case kL = kR = k we can recast our result for the index (3.6) as

ln I = k
ω̃1ω̃2
µ̃

, (3.7)

by choosing the basis ω̃L,R = 1
2(ω̃1 ± ω̃2) for the potentials. This result is reminiscent of

the HHZ free energy that plays a central role in discussions of black hole entropy in higher
dimensional AdS spaces. For example, in AdS5/CFT4 [11],

lnZ5 = 1
2N

2 ∆̃1∆̃2∆̃3
ω̃aω̃b

. (3.8)

The three potentials ∆̃I (I = 1, 2, 3) for R-charges in the higher dimensional setting (rota-
tion on S5) are analogous to ω̃1,2 for R-charges in CFT2 (rotation on S3). The rotational
velocities ω̃a,b (not to be confused with ω̃1,2 in (3.7)) in AdS5 correspond to the potential
for angular momentum µ̃ in AdS3. The overall coefficient k is two times the Casimir energy
in AdS3 while 1

2N
2 is two times the Casimir energy in AdS5.

We interpret our result for the supersymmetric index (3.6) as the HHZ free energy
in AdS3. It is more general than the version (3.7) that is more directly analogous to
the HHZ formulae in higher dimensions, because it includes the non-chiral case kR 6= kL.
In each dimension, the index nature of the HHZ free energy requires imposing a linear
constraint between the complexified potentials: the 3D free energy (3.6) satisfies (3.4) and
the constraint

∆̃1 + ∆̃2 + ∆̃3 − ω̃a − ω̃b = 2πi ,

is imposed on the 5D free energy (3.8). In the AdS3 example we can make completely
explicit the distinction between the HHZ free energy (3.6) and the BPS partition func-
tion (2.31) that depends on unconstrained potentials. This comparison also highlights the
role of the supersymmetric Casimir energy.

3.2 Entropy extremization

Whereas we have derived the supersymmetric index (3.6) for AdS3 black holes by imposing
a complex condition (3.4) on the more general BPS partition function, in higher dimensional
AdS spaces it is only the index that can be reliably computed. In that context a procedure
to extract the entropy and the charge constraint of supersymmetric black holes directly
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from the index has been developed [11]. In this subsection we apply this procedure to the
AdS3 case and show that it reproduces the results derived from the BPS partition function
in section 2.

The claim that is now standard in higher dimensional AdS spaces is that we can process
the index as if it was an ordinary free energy. It is with this procedure in mind that we
have referred to the (logarithm of the) index as the HHZ free energy. According to this
prescription, the black hole entropy is given by the Legendre transform of the index (3.6),
subject to the complex constraint (3.4). Following [11], it can be computed efficiently by
extremizing the entropy function

S[µ̃, ω̃R, ω̃L] = kL
(
ω̃2
L+π2)−kR (ω̃2

R+π2)
µ̃

−ω̃LJL−ω̃RJR−µ̃P−Λ(µ̃−2ω̃L−2πi) , (3.9)

with respect to the potentials µ̃, ω̃R,L and the Lagrange multiplier Λ that enforces the
condition (3.4).

The entropy function is homogeneous of degree one in the potentials µ̃, ω̃R,L, except
for 2πiΛ which is constant, and for the terms proportional to π2 which are homogeneous
of degree minus one. Keeping track of the inhomogeneous terms, the extremization condi-
tions give

0 = (ω̃L∂ω̃L + ω̃R∂ω̃R + µ̃∂µ̃)S = S − 2πiΛ + 2π2(kR − kL)
µ̃

,

so that
S = 2πiΛ− 2π2(kR − kL)

µ̃
. (3.10)

The second term vanishes when kR = kL but otherwise not. It represents a novel refinement
when compared to analogous computations in higher dimensional AdS spaces.

The individual entropy extremization conditions are

∂ω̃LS = kL
2ω̃L
µ̃

+ (2Λ− JL) = 0 , (3.11a)

∂ω̃RS = −kR
2ω̃R
µ̃
− JR = 0 , (3.11b)

∂µ̃S = −kL
(
ω̃2
L + π2)− kR (ω̃2

R + π2)
µ̃2 − (Λ + P ) = 0 . (3.11c)

Using the constraint (3.4), the first equation gives

kL
µ̃− 2πi

µ̃
= JL − 2Λ⇒ πikL

µ̃
= Λ− 1

2(JL − kL) . (3.12)

The entropy function therefore becomes

S = 2πi
[
Λ + iπ

µ̃
(kR − kL)

]
= 2πi

[
kR
kL

Λ− 1
2kL

(kR − kL)(JL − kL)
]
≡ 2πiΛeff , (3.13)

where we defined
Λeff = kR

kL
Λ− 1

2kL
(kR − kL)(JL − kL) . (3.14)

– 16 –



J
H
E
P
0
7
(
2
0
2
1
)
0
3
8

Rewriting the last extremization condition (3.11c) using the others (3.11a)–(3.11b) and the
expression for µ̃ (3.12) we find

− 1
kL

(
Λ− 1

2JL
)2

+ 1
4kR

J2
R−(Λ+P )− 1

k2
L

(kR−kL)
(

Λ− 1
2(JL−kL)

)2
= 0 , (3.15)

which we reorganize into a quadratic equation for Λeff :

Λ2
eff − (JL − kL) Λeff + 1

4 (JL − kL)2 + kR

(
P + JL

2 −
kL
4

)
− 1

4J
2
R = 0 . (3.16)

Selecting the root with negative imaginary part we find the extremized entropy function
in terms of charges:

S = 2πiΛeff = 2π
√
kR

(
P + JL

2 −
kL
4

)
− J2

R

4 + πi (JL − kL) . (3.17)

For BPS black holes in higher dimensional AdS the standard prescription posits that
charges must be constrained such that the extremized entropy function is real [11, 13].
Applying this rule in AdS3 as well we find

JL = kL ,

in agreement with the charge constraint (2.24) that we inferred from gravitational con-
siderations. After fixing the charges this way, the entropy function (3.17) is real with
the value

SBPS = 2π
√
kR

(
P + 1

4kL
)
− 1

4J
2
R , (3.18)

in agreement with the entropy (2.25) of a BPS black hole in AdS3.
In summary, in this subsection we applied the entropy extremization procedure to

recover thermodynamic properties from the supersymmetric index (3.6). The computation
is novel in that the index (3.6) used here is more refined than the version (3.7) that is
directly analogous to higher dimensional cases, as explained at the end of subsection 3.1.

3.3 Discussion: the imaginary part of the entropy function

The result of entropy extremization agrees with the gravitational side for the BPS black
holes in AdS3 discussed here, as it does for their analogues in AdS4,5,6,7. However, in all
these cases it is not entirely clear why the procedure works. In particular, it is somewhat
mysterious how the reality condition on the entropy function gives the charge constraint
obeyed by BPS black holes. In this subsection we address this question in the AdS3 context.

In order to understand the reality condition on the entropy function, recall how complex
numbers enter in the first place. We compute the supersymmetric index from the BPS
partition function in (3.5), by imposing the complex constraint (3.4) on the potentials:

I = TrBPS e
µ̃p+ω̃RjR+ω̃LjL

∣∣∣
ω̃L= µ̃

2−iπ

= TrBPS e
−iπjLeµ̃(p+ 1

2 jL)+ω̃RjR . (3.19)
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However, despite the appearance of a complex constraint, the index remains real as long as
all potentials other than ω̃L remain real, because the R-symmetry quantum number jL is
quantized as an integer. This, of course, is unsurprising since the complex number simply
encodes the real grading (−1)F .

Entropy extremization computes degeneracies (with negative signs for fermions) d = eS

for states with specified quantum numbers from the index through a Legendre transform.
Schematically for a system with one quantum number j and chemical potential ω̃ we have

I =
∑
j

(−1)F (j)d(j)
(
eω̃
)j

⇔ (−1)F (j)d(j) =
∮

dω̃

2πie
log I−ω̃(j+1) , (3.20)

and entropy extremization amounts to computing the contour integral from a saddle point.
However, this procedure does not introduce any genuinely complex numbers. We already
noted that the index is real and the resulting degeneracies d(j) must also be real, by
definition. Indeed, that is what our explicit result for the entropy function (3.17) shows:
although πi(JL−kL) is complex, this term simply accounts for fermion statistics eπi(JL−kL)

because JL − kL ∈ Z. Thus the imaginary part of the entropy function has a perfectly
acceptable physical interpretation and so there is no good reason a priori to demand that
it vanish. It is puzzling, then, that the charge constraint required for regularity of the black
hole geometry is precisely equivalent to reality of the entropy function.

Our resolution of the puzzle is that the charge constraint originates from the BPS
partition function which, as we stressed in subsection 3.1, contains more information than
the index. However, due to a particular property of the BPS partition function (2.31), the
index inherits the data needed to infer the charge constraint.

To see this, consider the entropy function (3.9) that we extremized in subsection 3.2,
written in terms of the BPS partition function:

S[µ̃, ω̃R] = (lnZBPS − µ̃P − ω̃RJR − ω̃LJL) |ω̃L= µ̃
2−iπ

.

Here we explicitly substitute ω̃L = µ̃
2 − iπ, rather than employing a Lagrange multiplier.

Also, we omitted the supersymmetric Casimir energy for clarity, as it is immaterial to our
argument. Extremization of the entropy function over µ̃ gives

d

dµ̃
(lnZBPS)|ω̃L= µ̃

2−iπ
= ∂

∂µ̃
lnZBPS + 1

2
∂

∂ω̃L
lnZBPS = P + 1

2JL . (3.21)

This reproduces the standard formulae for macroscopic charges P and JL in the canonical
ensemble, but only for the combination P + 1

2JL. The outcome that only one combination
of P and JL appears is expected because, as seen in (3.19), the index does not distinguish
the two charges P , JL, it only depends on their combination P + 1

2JL. However, we
found in (2.32) that the charge constraint JL = kL originates from averaging over the jL
quantum number alone. Thus the charge constraint follows from separating (3.21) into two
independent equations, one for P and another for J , a step that is usually not justified.

However, the situation at hand is special, because the BPS partition function (2.31),
and so the entropy function S = lnZBPS − µ̃P − ω̃RJR − ω̃LJL, are linear functions of ω̃L,
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and also real functions of all other potentials. Therefore, provided that µ̃ and ω̃R are real
and ω̃L = µ̃

2 − iπ is the only source of complex numbers,

Im(lnZBPS) = (Im ω̃L) · ∂

∂ω̃L
lnZBPS ,

⇒ Im S = (Im ω̃L) ·
(

∂

∂ω̃L
lnZBPS − JL

)
. (3.22)

The requirement that S be real gives

Im S = 0 ⇔ ∂

∂ω̃L
lnZBPS − JL = 0 , (3.23)

which becomes the charge constraint JL = kL. This is how, upon introduction of complex
numbers via ω̃L = µ̃

2 −iπ, reality of the entropy function mimics extremization with respect
to a potential that is an independent variable only in the BPS partition function and not
in the index.

To summarize, the BPS charge constraint JL = kL is a piece of information that is
contained in the partition function (2.31) but not in the index (3.6), because dependence
on two potentials µ̃ and ω̃L are lumped together in the index. It is only because the
BPS partition function is i) a real function of all potentials and ii) linear in ω̃L, that the
dependence on ω̃L alone can be extracted from the index, as it is encoded in the imaginary
part. Were it not for these features, a principled derivation of the charge constraint would
follow only from the BPS partition function and not from the index, which depends on one
fugacity less.

It is unclear if the analogous mechanism applies to asymptotically AdS5 BPS black
holes where, in fact, the correct charge constraint can be derived by demanding reality of
the entropy function. Recent progress on the superconformal index of the dual N = 4
Super-Yang-Mills theory relies heavily on the modified index [13, 24, 29] where the role of
(−1)F is played by eiπr with r the U(1) R-charge of 4D N = 1 theory. The modified index
is a Witten index that counts only 1

16 -BPS states and exhibits deconfined behavior for some
complex phases of the fugacities. However, it is no longer a manifestly real function even
when the fugacities are real, because r is not integer-quantized. In this situation reality
of the extremized entropy function is not an a priori principled way to extract additional
information from the index.

3.4 Potentials and the BTZ nAttractor mechanism

The entropy function is constructed from the index, yet it encodes data characterizing black
holes that are not even BPS. In this subsection we illustrate this claim and, in the process,
develop a spacetime interpretation of the potentials that extremize the entropy function,
following analogous computations for black holes in higher dimensional AdS spaces [31, 44].

The value of the potential for 3D angular momentum at the extremum of the entropy
function was determined in (3.12):

µ̃ = 2πikL
2Λ− (JL − kL) = − πkR√

kR(P + 1
4kL)− 1

4J
2
R

. (3.24a)
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In the second equation we first take JL = kL satisfied by BPS black holes and then the
denominator Λ becomes purely imaginary with value given implicitly in (3.15). We choose
its sign consistently with (3.17) and with µ̃ < 0. The constraint (3.4) and the extremization
condition on ω̃R (3.11b) then easily give

ω̃L = 1
2 (µ̃− 2πi) = − πkR

2
√
kR(P + 1

4kL)− 1
4J

2
R

− iπ , (3.24b)

ω̃R = − JR
2kR

µ̃ = πJR

2
√
kR(P + 1

4kL)− 1
4J

2
R

. (3.24c)

These potentials are real, except for the imaginary part of ω̃L which implements the bound-
ary condition needed for the index. They are derived from the index, an object protected
by supersymmetry, yet their real parts can be identified with physical potentials in space-
time [11]. More precisely, they correspond to features of the potentials that break super-
symmetry.

In order to establish this we adapt the nearAdS attractor mechanism known in higher
dimensions [45, 46] to BTZ black holes [47, 48]. Accordingly, consider a general asymptot-
ically AdS3 geometry of the form

ds2 = − r
4 − r4

0
`2R2(r)dt

2 + `2r2

r4 − r4
0
dr2 +R2(r)

(
dφ+ µ(r)

`
dt

)2
, (3.25)

where the function R2(r) ∼ r2 for large r to ensure the correct asymptotics. The BTZ
black hole at hand is the special case where r2

0 = 1
2(r2

+ − r2
−) and the functions specifying

the geometry are5

R2(r) = r2 + 1
2(r2

+ + r2
−) ,

µ(r) = r+r−
R2(r) , (3.26)

in terms of the parameters r2
± that are related to physical black hole variables as

M = r2
+ + r2

−
8G3`2

,

P = r+r−
4G3`

. (3.27)

We denote 3D angular momentum by P to conform with notation elsewhere in this article.
Regularity of the Euclidean geometry at the horizon r2 = r2

0 determines the tempera-
ture of any black hole of the form (3.25) as

T = r2
0

π`2R(r0) .

5The standard radial coordinate for the BTZ black hole is r2
BTZ = R2

here. The shifted radial coordinate
here is a close analogue of the radial coordinate that is appropriate in higher dimensional cases.
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In the extremal case r2
0 = 0 and the inner and outer horizons coincide at r2 = 0, but

at non-zero temperature they move to ±r2
0, respectively. The associated entropy change

is entirely captured by the increase in “area” due to the event horizon moving outwards
by ∆r2 = r2

0:

∆S = 1
4G3

· 2π∂r2R

∣∣∣∣
r2=r2

0

∆r2 = π2`2

4G3
∂r2R2

∣∣∣∣∣
r2=r2

0

T .

The BTZ black hole (3.26) has ∂r2R2 = 1 so the near extremal heat capacity is linear in
temperature CT ∼ T with constant of proportionality

CT
T

= π2`2

4G3
= π2kL` , (3.28)

where we used the Brown-Henneaux formula `
4G3

= kL [49] for excitations of a BPS black
hole with its L-sector in the ground state.6

Similarly, the dimensionless 3D rotational velocity (3.26) is µ(0) = 1 for the BPS black
hole where R2 = r2

+ = r2
−. For a nearBPS black hole it is changed by

∆µ = − r+r−
R4 ∂r2R2

∣∣∣∣
r2=r2

0

∆r2 = −π`
2

R
T . (3.29)

This contribution is negative because the nearBPS rotational velocity is below the speed of
light. The “area” of the event horizon is 2πR so we can rewrite the rescaled potential (2.22)
in terms of the BPS entropy and find

µ̃ = ∆µ
T

= −2π2`kR
SBPS

. (3.30)

We used the Brown-Henneaux formula `
4G3

= kR for BPS states preserving the L-sector
ground state. The result agrees in the unit ` = 1 with (3.24a) from entropy extremization,
given (2.25), as expected.

We defined both the specific heat (3.28) and the nearBPS rotational velocity (3.30) as
response coefficients for the black hole becoming near-extremal, by adding a small tempera-
ture. However, the computation in this subsection shows that we can equally interpret these
parameters as characterizing the BPS black hole, albeit slightly away from its event horizon.
This is the situation described in low energy effective field theory by the nAdS2/nCFT1
correspondence and seems like the most appropriate for discussions of the index.

3.5 The Hawking-Page transition for BPS black holes

The thermodynamics of black holes in AdS spacetimes sheds light on the phase diagram of
gauge theories (and their relatives) at strong coupling [3, 51]. This relation is interesting
even for BPS black holes described by an index, despite the protection against phase tran-
sitions due to supersymmetry. For example, interpreting the index as a conventional free
energy gives, for BPS black holes in AdS5, a phase diagram that is surprisingly similar to

6The refinements needed to distinguish between kL and kR in AdS3 were discussed in [50].
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that of the Schwarzschild-AdS5 black hole [29, 52]. In this subsection we give a perspective
on such higher dimensional BPS phase diagrams by discussing their analogue in AdS3.

The BPS partition function (2.31) gives the free energy in the BPS limit as

W = −lnZBPS = −1
2kLβ − kLω̃L + kR

µ̃

(
π2 + ω̃2

R

)
+ 1

4kLµ̃ . (3.31)

We define the BPS free energy without the factor 1/β appearing in standard thermody-
namics. Local thermodynamic stability can be probed by the compressibility matrix

Kij = −
(

∂2W
∂Φi∂Φj

)
T

, (3.32)

where {Φi} = {µ̃, ω̃R, ω̃L} collectively refer to the potentials. The potential ω̃L parametrizes
a direction that decouples and is entirely flat. The remaining two directions are spanned
by ω̃R and µ̃, and the free energy has response coefficients

−


∂2W
∂µ̃2

∂2W
∂µ̃∂ω̃R

∂2W
∂ω̃R∂µ̃

∂2W
∂ω̃2

R

 =

−
2kR
µ̃3 (π2 + ω̃2

R) 2kRω̃R
µ̃2

2kRω̃R
µ̃2 −2kR

µ̃

 . (3.33)

Recalling that µ̃ < 0, both eigenvalues of the matrix are positive. Therefore, the compress-
ibility matrix is positive definite and the system is locally stable.

The formula (3.31) expresses the standard Cardy asymptotics of CFT2 but in a no-
tation that is adapted for comparison with BPS black holes in higher dimensional AdS.
The linear-in-β term encodes the supersymmetric Casimir energy (2.28). Similarly, the
linear-in-ω̃L term encodes the charge constraint JL = kL (2.32). Both of these linear con-
tributions depend only on kL so they are properties of the theory rather than the state.
They can be removed without losing any physical information, by Legendre transform to a
microcanonical ensemble that fixes the charges E and JL rather than the potentials β and
ω̃L. This feature shows that a linear shift in the potentials β, ω̃L is inconsequential so we
can remove the first two terms in (3.31) entirely, not even a constant is left behind.

The remaining two terms in (3.31) are negative because µ̃ is required to be negative,
as discussed above (2.15). Apart from the sign, the potential µ̃ can be interpreted as an
inverse “temperature”

Teff = −µ̃−1 . (3.34)

The physical temperature vanishes, as always for BPS states, but this effective BPS tem-
perature expresses the usual physical intuition that a large value corresponds to large
occupancy numbers. The sum of the two “thermal” contributions to the free energy (3.31)
are bounded from above

W ≤Wmax = −π
√
kRkL ,

with equality when ω̃R = 0 and

µ̃ = µ̃HP = −2π
√
kR
kL

. (3.35)
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The index “HP” anticipates that we shortly interpret the special value (3.35) as the
Hawking-Page transition temperature.

The standard modular S-transformation takes µ̃→ 4π2

µ̃ and, at least at a first glance,
the free energy (3.31) suggests that such a high/low temperature duality could persist
in the effective description, perhaps inherited from an underlying SL(2,Z) symmetry and
subject to the interesting refinement that the self-dual point would have to be rescaled
from 2π to 2π

√
kR
kL

. Unfortunately, as we explain next, this suggestion does not hold up to
closer scrutiny.

In bulk AdS3 quantum gravity, modular transformation interchanges the high tem-
perature black hole phase where (Euclidean) temperature is contractible with the low
temperature AdS gas phase where it is the spatial circle that is contractible. Indeed, in
the complete CFT2 there are infinitely many saddle points related by SL(2,Z) symmetry,
corresponding to the thermal gas and a family of black hole images [37]. However, the free
energy (2.2) that we study throughout this paper does not represent a complete CFT2, it
is just the classical contribution from a single saddle point, that of the simplest black hole.
It is related to the thermal gas saddle point by the SL(2,Z) symmetry in the full theory,
but the map is nontrivial. Duality takes ω̃R → 2πiω̃R

µ̃ , flipping the sign of the term in (3.31)
that is proportional to ω̃2

R. Moreover, the free energy is not invariant, its transformation
adds a term proportional to ω̃2

R such that no term of this form remains, and it adds yet
another term proportional to ω̃2

L. In this way, the underlying high/low temperature duality
relates the black hole and the thermal gas while also exchanging the L and R sectors of
the CFT2. We expect that similar mechanisms are possible in higher dimensions.

The procedure followed when analyzing BPS black holes in higher dimensional AdS
spaces suggests yet another perspective on the free energy (3.31). Motivated by the su-
persymmetric index (3.5), we cancel the linear-in-β term that gives the supersymmetric
Casimir energy but we then evaluate the linear-in-ω̃L term by imposing the constraint (3.4).
This gives the index-inspired free energy

WI = kR
µ̃

(
π2 + ω̃2

R

)
− 1

4kLµ̃ = −kR
(
π2 + ω̃2

R

)
Teff + kL

4Teff
, (3.36)

that is an AdS3 analogue of the free energy taken as a basis for discussions of the confine-
ment/deconfinement transition for black holes in higher dimensional AdS [29, 52]. Note
that the second term kL

4Teff
now gives a positive contribution to the free energy.

The index-inspired free energy (3.36) is plotted, in units of k, as a function of effective
temperature Teff in figure 1. We interpret the phase diagram in analogy with the AdS-
Schwarzschild case and discussions of BPS black holes in higher dimensional AdS. The high
temperature phase where WI < 0 is the black hole phase, or more precisely the “large”
black hole phase. At lower temperature, the part of the line where WI > 0 is the “small”
black hole phase. This phase is unstable because there is an entirely different saddle point,
not captured by the free energy formula we analyze, that corresponds to the thermal gas
with no black hole and has WI = 0 at all temperatures. The Hawking-Page transition
point is where the line crosses WI = 0, at the temperature corresponding to (3.35).
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Figure 1. Index-inspired free energy (3.36) as a function of effective temperature Teff = −µ̃−1,
not drawn to scale. The red dashed line represents the thermal gas phase for lower temperature,
and the large black hole phase for higher temperature. The red dot represents the Hawking-Page
transition point between the two.

The index-inspired free energy assigns the entire expression (3.36) to the black hole
while the BPS free energy (3.31) interprets the two last terms in (3.31) as the black hole
and thermal contributions, respectively. The two approaches therefore differ physically,
but they give the same transition temperature, because acting with −µ̃∂µ̃|ω̃L on the free
energy (3.31) is exactly equivalent to imposing the real part of the constraint (3.4). As in
subsection 3.3 this is possible because the free energy depends linearly on ω̃L.

4 NearBPS black holes

In this section we generalize the description of AdS3 BPS black holes discussed in the
previous sections and study the thermodynamics of small deviations away from the BPS
limit. This adapts to AdS3 the nearBPS black hole thermodynamics in AdS4,5,7 that was
studied in [31, 44]. The simplifications in AdS3 clarify their higher dimensional analogues.

4.1 Introducing nearBPS thermodynamics

We first evaluate the macroscopic quantum numbers for AdS3 black holes slightly away
from the BPS limit. The organizing principle, stressed in subsection 2.4, is that BPS
black holes are co-dimension two in parameter space. The two conditions satisfied by
BPS black holes were presented, by the thermodynamic interpretation in subsection 2.5,
as extremality T = 0 and, in addition, the vanishing of the potential ϕ = 1 + µ − 2ωL
introduced in (2.20). Therefore, the nearBPS regime is characterized by T and ϕ that are
small but not necessarily zero.7 We take the two parameters T and ϕ to be of the same
order in smallness:

T ∼ ϕ ∼ ε� 1 .

In the canonical ensemble, the four macroscopic charges of a generic nonBPS black
hole (2.5)–(2.7) are functions of four independent conjugate potentials. We can pick a

7The deviations T and ϕ need not be small, the general partition function (2.2) is valid for any non-BPS
black hole. Taking them small illuminates the relation between the BPS and nearBPS regimes. Additionally,
considerations for small T and ϕ are direct analogues of discussions of black holes in higher dimensional
AdS spaces.
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basis where the potentials are µ̃ = β(µ − 1), ω̃R = βωR, T , and ϕ. For given values of µ̃
and ω̃R, we now expand (2.5)–(2.6) to linear order in T , ϕ and find

P = kR
µ̃2 (π2 + ω̃2

R)− kL
4 + kL

4 ϕ+ . . . = P∗ + kL
4 ϕ+ . . . , (4.1a)

JL = kL −
kL
2 ϕ+ . . . = JL∗ −

kL
2 ϕ+ . . . , (4.1b)

JR = −2kR
µ̃
ω̃R = JR∗ . (4.1c)

The dots denote terms of order O(ε2) that we neglect. The quantities with an asterisk
refer to the values of the charges (2.23)–(2.24) in the strict BPS limit where T = 0 and
ϕ = 0. The formulae show that, in our basis of potentials, none of the charges depend
on temperature T to linear order, and JR depends on neither T nor ϕ to any order. The
potential ϕ is a source for the charges but leaves fixed the combination P + 1

2JL that the
index is sensitive to.

We also want to expand the energy (2.7) in T and ϕ. However, recall that, for given
charges P and JL, the energy is bounded from below by EBPS = P + JL− 1

2kL. Therefore,
rather than computing the energy by itself, it is instructive to expand the excitation energy
E−EBPS above the BPS bound.8 It vanishes at linear order but at quadratic order we find

E − EBPS = 2kL
β2(1 + µ)2 (π2 + β2ω2

L)− 2kLωL
1 + µ

+ 1
2kL

= 1
8kL

(
(2πT )2 + ϕ2

)
. (4.2)

The formulae (4.1)–(4.2) characterize the low lying excitations of a BPS black hole
which, by definition, is both extremal and supersymmetric. This ground state has the
smallest possible mass for its charges and, to preserve supersymmetry, the charges are
constrained by JL = kL. The formulae make explicit that these two conditions correspond
to two orthogonal directions that violate BPS-ness of the black hole:

• One direction raises the temperature, so that the mass increases by 1
8kL(2πT )2 while

charges remain unchanged. Conversely, as noted after (4.1), all charges are indepen-
dent of T .

• Another direction turns on the potential ϕ while maintaining zero temperature. As
a result, the charges (4.1) are shifted by terms that are linear in ϕ. The energy of
the resulting extremal but non-supersymmetric black hole is given by (2.17), which

8Because we are also considering JL away from its BPS limit kL, the “BPS” energy EBPS is not necessarily
the energy of a BPS black hole. It is the energy of a hypothetical “black hole” that is supersymmetric but
not necessarily regular, for given charges.
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is higher than EBPS by

Eext − EBPS =
(
P + J2

L

2kL

)
−
(
P + JL −

1
2kL

)
= 1

2kL
(JL − kL)2

= 1
8kLϕ

2 , (4.3)

in agreement with (4.2).

Expanding the entropy (2.8) at linear order in T and ϕ gives

S = −2kRπ2

µ̃
+ π2kLT + . . . = S∗ + π2kLT + . . . . (4.4)

The entropy has no term that is linear in ϕ, but only a term that is linear in T . This term
indicates a heat capacity CT that is linear in temperature with a value

CT
T

= π2kL . (4.5)

This coefficient, computed from black hole thermodynamics, agrees with the result of the
nAttractor mechanism (3.28) in the unit ` = 1, which is derived directly from the geometry
of the supersymmetric black hole.

In the expression for the excitation energy (4.2), the heat capacity enters as a term that
is quadratic in the temperature T . Furthermore, drawing analogy between the potential
ϕ
2π and an electric potential, we interpret the coefficient of the term quadratic in ϕ as
the capacitance. The energy formula shows that these two linear response coefficients are
identical, up to possible differences in notation and terminology. We introduce a parameter
Cϕ in lieu of capacitance, in order to stress this fact:

CT
T

= Cϕ
T

= π2kL . (4.6)

This agreement is a nontrivial consequence of N = 2 supersymmetry. For example, it is
built into the N = 2 superschwarzian description of the low energy excitations, i.e. the
nAdS2/nCFT1 correspondence.

4.2 The first law of nearBPS thermodynamics

As a check on our computations and our understanding, we can now explicitly verify the
first law of thermodynamics

TdS = dE − µdP − ωRdJR − ωLdJL
= d(E − P − JL)− (µ− 1)dP − ωRdJR − (ωL − 1)dJL , (4.7)

in the nearBPS regime. For variations within the BPS surface, JL∗ = kL is constant so
dJL = 0, and d(E−P −JL) = 0 follows from E∗ = P∗+JL∗− 1

2kL because kL is constant.
Therefore, the first law within the BPS surface reduces to:

dS∗ = −µ̃dP∗ − ω̃RdJR∗ . (4.8)
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This is indeed satisfied by the BPS expressions (2.23)–(2.25): the variables S∗, P∗, and JR∗
depend on the potentials ω̃R and µ̃ only, and in such a way that the linear relation (4.8) is
satisfied. Thus (4.8) parametrizes the 2D surface of BPS black holes.

Taking into account the BPS surface (4.8), we can rewrite the more general first
law (4.7) as an equation for excitations above the BPS surface:

Td(S − S∗) = d(E − P − JL)− (µ− 1)d(P − P∗)− (ωL − 1)dJL . (4.9)

There is no differential dJR because JR∗ = JR. Variations of JR do not influence the
excitations, they correspond to motion entirely within the BPS surface. We now use (4.1)
to evaluate two of the terms on the right hand side:

(µ− 1)d(P − P∗) + (ωL − 1)dJL = 1
4kL[(µ− 1)− 2(ωL − 1)]dϕ = 1

4kLϕdϕ . (4.10)

At this point we can verify that (4.2) and (4.4) satisfy the first law for excitations above
the BPS surface (4.9):

Td (S − S∗)︸ ︷︷ ︸
π2kLT

= d (E − P − JL)︸ ︷︷ ︸
1
2π

2kLT 2+ 1
8kLϕ

2

− [(µ− 1)d(P − P∗) + (ωL − 1)dJL]︸ ︷︷ ︸
1
4kLϕdϕ

.

4.3 NearBPS thermodynamics in the canonical ensemble

On the gravitational side of the AdS/CFT correspondence it is natural to study thermo-
dynamics in the canonical ensemble, with potentials specified and the conjugate charges
incorporated as subsidiary variables. In this subsection we first discuss the nearBPS po-
tentials and then the nearBPS free energy.

Inverting the relations (4.1a) and (4.1c) between (P, JR) and (µ̃, ω̃R) we find

µ̃ = µ− µ∗
T

= − πkR√
kR(P + 1

4kL)− J2
R
4

+O(ε) , (4.11a)

ω̃R = ωR − ωR∗
T

= πJR

2
√
kR(P + 1

4kL)− J2
R
4

+O(ε) , (4.11b)

where the BPS values of the potentials are µ∗ = 1, ωR∗ = 0 and the sign for the square
root was chosen so µ̃ < 0. The nearBPS corrections of order ε ∼ T ∼ ϕ are not needed.
Therefore, at this order, the equations are essentially the same as the BPS relations (2.23),
and they also agree with the real part of the potentials (3.24a), (3.24c) determined by
extremization of the BPS entropy function, and with the value (3.30) from the spacetime
solution. However, in the nearBPS thermodynamics, terms of O(ε) are merely small, the
strict limit ε → 0 is not implemented. This distinction is helpful when computing the
analogous formula for ω̃L, using the definition of ϕ (2.20)

ω̃L = ωL − ωL∗
T

= − πkR

2
√
kR(P + 1

4)kL −
J2
R
4

− ϕ

2πT · π +O(ε) . (4.11c)
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Here ωL∗ = 1 and we used ωL < 1 to determine the sign for the square root. The potentials
ϕ and T both vanish in the strict BPS limit ε→ 0 but a priori the ratio ϕ

2πT can take any
value without obstructing BPS saturation.

The index corresponds to an analytic continuation of the black hole that takes ϕ
2πT →

i [12, 53], as one can see from (3.4). In this sense the real and imaginary parts of the
result (4.11c) for the potential ω̃L both coincide with the complex value (3.24b) that was
derived by extremization of the entropy function. The agreement between imaginary parts
is not very impressive in AdS3 because it is very simple, µ̃ and ω̃R are both independent
of ϕ

2πT . However, analogous agreements persist in higher dimensional AdS where they are
more elaborate, with multiple potentials involved [31, 44].

In the canonical ensemble all thermodynamic data — charges, energy, entropy — is
contained in Gibbs’ free energy

G ≡ − 1
β

lnZ . (4.12)

In the nearBPS regime where we expand in small T , ϕ for given µ̃, ω̃R,

G = − 1
β

(
−kR
µ̃

(
π2 + ω̃2

R

)
+ kL
µ̃+ 2β

(
π2 + (ω̃L + β)2

))
= GBPS −

kL
8
(
ϕ2 + (2πT )2

)
+ . . . , (4.13)

up to quadratic order in T and ϕ, and we have

GBPS = −1
2kL − kLT

(
ω̃L −

1
4 µ̃
)

+ kRT

µ̃

(
π2 + ω̃2

R

)
, (4.14)

as in (2.31).
Gibbs’ free energy generates extensive variables through the first law of thermodynam-

ics in the form
dG = −SdT − Pdµ− JLdωL − JRdωR . (4.15)

Note that these are potentials without tilde, before rescaling by T . For example, the
entropy is given by a thermal derivative taken with fixed µ, ωL, ωR:

S = −∂TG = −2π2kR
µ− 1 T + 1

4kL(2π)2T = S∗ + π2kLT , (4.16)

up to linear order in T , in agreement with (4.4). In the nearBPS regime we can also
quantify the magnitude of thermal fluctuations in the standard manner. For example,

〈
jL − 〈jL〉

〉2
= −∂2

ωL
G = kL ,

with the average value of JL = 〈jL〉 = kL. The levels kL,R are both huge for semiclas-
sical black holes, but they are finite. The relative fluctuations in the value of JL are of
order ∼ k−

1
2

L .
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5 Microscopics of the BPS charge constraint

In the previous sections, we reached the BPS limit of AdS3 black holes from a thermo-
dynamic point of view and stressed that the supersymmetric limit is reached by tuning
two potentials. In this section, we revisit this property of BPS black holes from a micro-
scopic point of view, noting that chiral primaries are co-dimension one in parameter space.
We argue that black holes are ensemble averages, effectively restricting their macroscopic
charges to that of a particular chiral primary, thus yielding a second condition on the
parameters. This gives a complementary and fully microscopic understanding of the BPS
charge constraint JL = kL, which was derived from the thermodynamic partition function
in section 2.

5.1 Two-Dimensional superconformal algebra and representations

We consider black holes in AdS3 × S3 described by supersymmetric CFT2’s with (4, 4)
supersymmetry. The (super-)conformal algebra simplifies greatly in two dimensions as it
factorizes into two independent copies of (super-)Virasoro algebra. To take advantage we
first review the unitary representations of the small N = 4 superconformal algebra [54] in
2D [34, 35].

It is sufficient to analyze one chiral sector of the (4, 4) algebra, either left or right,
and we denote by c = 6k the central charge of this sector. Each unitary representation of
the algebra is labeled by the L0- and J-eigenvalues (h, j) of its superconformal primary,9
and the whole multiplet consists of the primary and its descendants. We can focus on the
NS sector because representations in the Ramond sector are isomorphic through spectral
flow by half-integral unit. Then there are just two types of representations: the massless
(a.k.a. short) with a superconformal primary that saturates the unitarity bound h ≥ 1

2j,
and the massive (a.k.a. long) with a primary that does not. The massless multiplets
are enumerated by the representation of the SU(2) R-charge in the range j = 0, 1, · · · , k
that fixes the conformal weight h = 1

2j. The massive multiplets only permit the range
j = 0, 1, · · · k − 1 but h can take any real value strictly larger than the bound h > 1

2j.
Massive representations with identical j and distinct h all have the same structure so it is
not of our interest to distinguish them, they are not essentially distinct.

The representations are conveniently described by their characters Tr qhyj . Note that
the Casimir term − c

24 in the exponent is absent by convention, it must be restored in phys-
ical partition functions. The character formulae for the two classes of multiplets are [35]:10

Massive: chh,j(q,y) = qhFNS
∞∑

m=−∞

(
y2(k+1)m+j+1−y−2(k+1)m−j−1

) q(k+1)m2+(j+1)m

y−y−1 ,

(j= 0,1, · · ·k−1)

Massless: χj(q,y) = q
j
2FNS

∞∑
m=−∞

(
y2(k+1)m+j+1

(1+yqm+ 1
2 )2
− y−2(k+1)m−j−1

(1+y−1qm+ 1
2 )2

)
q(k+1)m2+(j+1)m

y−y−1 ,

(j= 0,1, · · ·k) (5.1)
9We use the Dynkin convention where the label j is always an integer and the j’th representation has

dimension j + 1. The half-integral spin familiar from quantum mechanics is jQM = 1
2 jhere.

10We turn off a U(1) fugacity called y in [35] and the SU(2) fugacity is renamed (e 1
2 iθ)there = yhere.
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where

FNS =
∏
n≥1

(
1 + yqn−

1
2
)2 (

1 + y−1qn−
1
2
)2

(1− y2qn)(1− qn)2(1− y−2qn) ,

accounts for the action of creation operators, i.e. the negative frequency modes {Gr<0}
and {Ln<0, J

i
n<0} of the four fermionic and four bosonic fields. Since the massive character

chh,j(q, y) depends on the conformal weight h only via qh, it is convenient to define an
h-independent massive character by shifting out the h in excess of the unitarity bound 1

2j:

c̃hj(q, y) ≡ chh,j(q, y)q−h+ 1
2 j . (5.2)

The transformation under spectral flow follows from these formulae. In particular, the
sum over m in (5.1) guarantees invariance of each character under spectral flow by integral
η: h→ hη = h− ηj + kη2

j → jη = j − 2kη
⇔ qhyj → qhηyjη = qh(yq−η)jqkη2

y−2kη . (5.3)

Although massless multiplets have no continuous parameter, it is possible that a combi-
nation of them continuously deform into a massive multiplet, at least group theoretically.
Such recombination rules are fairly simple. Notice that the massless character formula
in (5.1) differ from the massive one only by the factors (1+y±1qm+ 1

2 )2 in the denominator.
Inspecting how χj(q, y) depends on j, one can see that these factors are precisely cancelled
by adding four characters with different j’s, thus yielding the mathematical identity:

c̃hj(q, y) = χj(q, y) + 2χj+1(q, y) + χj+2(q, y) . (5.4)

The identity holds literally for j = 0, . . . , k − 2; for j = k − 1 the term with index j + 2 is
undefined but the identity is valid with this term omitted.

The supersymmetric index is protected against recombinations because contributions
from the four massless representations on the right hand side of (5.4) cancel one another in
the index, in agreement with the vanishing result for the index of the massive representa-
tions with any value of h. The BPS partition function includes all massless representations
and is not protected in this way.

5.2 Ensemble average gives the charge constraint

Given the unitary representations described by their characters, we are now ready to extract
an extra constraint on macroscopic charges imposed by supersymmetry.

In the N = 4 superconformal algebra, the R-symmetry is SU(2), rather than SO(2)
as in N = 2, so any chiral primary with J-eigenvalue j is part of an SU(2) representation
that, in particular, contains the anti-chiral primary with J-eigenvalue −j and the same
L0-eigenvalue h = 1

2j as the initial chiral primary, which saturates the anti-chiral unitarity
bound h ≥ −1

2j. The anti-chiral primary is related to a state with eigenvalues (h, j) =
(k − 1

2j, 2k − j) via spectral flow and this state is itself a chiral primary. Thus a chiral
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primary with R-charge j always comes in pair with another chiral primary that has R-
charge 2k − j.

This pairing is easily observed in explicit expansion of the characters (5.1). For exam-
ple, for k = 5,

χj=0(q, y) = 1 + y2q + y4q2 + y6q3 + y8q4 + y10q5 + · · · ,
χj=1(q, y) = yq1/2 + y3q3/2 + y5q5/2 + y7q7/2 + y9q9/2 + · · · ,

where ellipses represent terms with strictly h > 1
2j.

In fact the argument is not restricted to chiral primaries, it shows that any state
with eigenvalues (h, j) is paired with another state with (h + k − j, 2k − j). The pair
is characterized by having R-charge mirrored about k and the same conformal weight in
excess of the unitarity bound:

h− 1
2j = (h+ k − j)− 1

2(2k − j) .

The claim can be explicitly proved using the characters (5.1). The Z2 exchange operation
within the pairs corresponds to a substitution y → q−1y−1 followed by multiplication by
qky2k, because

qhyj → qh(q−1y−1)jqky2k = qh+k−jy2k−j . (5.5)

Then one can verify that all characters (5.1) are invariant (or, even) under this Z2 trans-
formation:

χj(q, y) = χj(q, q−1y−1) · qky2k ,

c̃hj(q, y) = c̃hj(q, q−1y−1) · qky2k , (5.6)

proving that all states appear in pairs, as claimed.
Provided an ensemble of microscopic states that come packaged in multiplets, macro-

scopic charges are obtained by taking ensemble averages. We have seen that every state
within any multiplet comes in a pair with another state with respective R-charges j and
2k − j. It is obvious that the ensemble average of the angular momentum turns out to be
k, regardless of which and how many multiplets of each type appear in the ensemble.

An important caveat in this argument is that both microscopic states within a pair must
be weighed with equal probability within the canonical ensemble. Given the eigenvalues
(h, j) and (h + k − j, 2k − j) of the two states, this assumption translates into a relation
between chemical potentials:

τ + 2z = 0 , (5.7)

where τ and z define the canonical partition function by

Z = Tr e2πiτL0+2πizJ . (5.8)

To see how this argument applies to microscopic accounting of BPS black holes, we
start again from the definition of the partition function (2.1), as rewritten in (2.27):

Z = e
1
2βkLTr e−β(ε−p−jL+ 1

2kL)+µ̃p+ω̃RjR+ω̃LjL , (5.9)
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where we recall the definitions µ̃ = β(µ − 1), ω̃R = βωR, and ω̃L = β(ωL − 1). Our
interest is the pairing in the L-sector where for a state with quantum numbers (p, jL, jR)
that saturates the BPS bound there is another BPS state that has quantum numbers
(p−kL+jL, 2kL−jL, jR). In the supersymmetric partition function we choose potentials so

− µ̃+ 2ω̃L = 0 , (5.10)

which guarantees that the two members of the pair have the same weight. It follows that
the contribution from the two states in the pair to the expectation value 〈jL〉 is kL.

The discussion in this subsection is based on the partition function and we do not
appeal to cancellations, unlike in the reasoning based on the index. Rather, we interpret
the splitting and joining of the BPS states in the chiral ring as a thermodynamic process
where there are many possible values of the quantum number jL but, in the ensemble
realized by a black hole, thermodynamic equilibrium forces the macroscopic value JL = kL,
even though this is not the value in most microstates by themselves.
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