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1 Introduction and summary

A recent advance in the understanding of black holes are the computations [1, 2] of the
time evolution of the entanglement entropy between a holographic black hole system and an
external bath to which the black hole is coupled. A crucial ingredient in these computations
are entanglement islands — contributions to the entanglement entropy (EE) from regions
that are disconnected and can be far away from the bath [3–7]. These contributions become
dominant at late times and lead to Page curves for the time evolution of the entropy, in
line with expectations based on unitarity. Reviews can be found in [8, 9].

The discussions so far are largely based on bottom-up models and on low-dimensional
theories where the features of gravity are qualitatively different. A prominent role is played
by Karch/Randall models [10, 11]. The special case of a Karch/Randall model with a ten-
sionless end-of-the-world brane, discussed in [12], can be embedded into Type IIB string
theory as an orbifold of AdS5 × S5. But that case is somewhat peculiar in that the 4d
graviton has a mass that can not be separated from the UV cut-off in the 4d gravita-
tional description.

The aim of the present work is to demonstrate in a UV-complete string theory setting
the emergence of entanglement islands and Page curves for black holes in four-dimensional
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theories of gravity in which the graviton mass can be controlled, including theories with
massless gravitons. Starting point are the discussions of islands and Page curves in general
5d Karch/Randall models [12–16], which can be used to model gravitating systems coupled
to non-gravitating and gravitating baths. These models have the appealing feature that the
quantum extremal surfaces [17, 18] exhibiting island contributions are entirely geometrized,
due to the doubly-holographic nature of these models. This allows for the identification
of entanglement islands through classical Ryu/Takayanagi surfaces [19]. We will uplift the
discussions in these bottom-up models to Type IIB string theory, to provide UV completions
and concrete holographically dual QFTs.

The string theory constructions are based on holographic duals for 4d boundary CFTs
and for 3d SCFTs engineered by configurations of D3, D5 and NS5 branes [20–22]. Holo-
graphic duals for large classes of such theories were constructed in [23–26], and they provide
natural string theory realizations of the Karch/Randall models with non-gravitating and
gravitating baths. We will study quantum extremal/minimal surfaces in these solutions
and identify quantities that exhibit Page curve behavior. The key findings of [12, 15], such
as the existence of critical brane angles separating different phases of minimal surfaces, will
find string theory realizations. We will also identify 10d versions of the “left/right EE”
that was found to exhibit Page curve behavior in the 5d models with gravitating bath,
where the usual notion of geometric EE becomes subtle.

In the following we will first review relevant aspects of the discussion in the
Karch/Randall models to set the stage and then summarize the main results of this paper.

Islands and Page curves in Karch/Randall models: the Karch/Randall models
for 4d gravity coupled to a non-gravitating bath are based on a part of AdS5 cut off
by an end-of-the-world (ETW) brane extending along an AdS4 slice (figure 1(a)). The
conformal boundary is cut off at the point where it is intersected by the ETW brane, so
that these models are holographically dual to boundary conformal field theories (BCFTs)
(see also [27, 28]). The advantage of these setups from the entanglement islands perspective
is that they have 3 holographically related descriptions:

(a) Einstein gravity on (asymptotically) AdS5 + ETW brane

(b) a 4d CFT with UV cut-off + gravity on (asymptotically) AdS4, coupled via trans-
parent boundary conditions at the boundary of AdS4 to a 4d CFT on half of R1,3

(c) a non-gravitational 4d CFT on half of R1,3 coupled to 3d boundary degrees of freedom

These descriptions can be understood to arise from applying AdS/CFT twice: description
(b) is obtained by converting the 3d boundary degrees of freedom in (c) to a gravitational
theory on AdS4, and description (a) geometrizes the entire BCFT.

Description (b) is the one of interest for the black hole information paradox. To pose
the paradox, the AdS4 slices are replaced by AdS4 black holes. This realizes a black hole
on the ETW brane and on the remaining half of the conformal boundary of AdS5, which
serves as bath. It can be interpreted as coupling the gravity system on the ETW brane to
a bath at the same temperature as the black hole. To quantify the entropy of the radiation
one picks a region far in the bath system and computes its EE. One type of surface relevant
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Figure 1. Left: Karch/Randall model for non-gravitating bath. The figure shows part of AdS5
with the ETW brane cutting off the shaded region. The dashed curve is the black hole horizon and
R is the radiation region (blue). The green curve ending on the horizon represents the HM surface;
the green curve extending from the boundary of R to the ETW brane is the island surface. I is
the island (red). Right: for a gravitating bath a second ETW brane is introduced, leaving only a
3-dimensional part of the conformal boundary.

for computing the EE holographically are Hartman-Maldacena (HM) surfaces [29], which
connect the boundary of the radiation region to the corresponding point in the thermofield
double. Due to the stretching of the space behind the horizon the area of these surfaces
grows in time, suggesting an unbounded growth of the entropy. This is the version of the
information paradox described in [4]. The paradox is resolved by the existence of “island
minimal surfaces” that stretch from the bath into the gravity system (figure 1(a)). The
part of the ETW brane near the black hole that is captured by the surface constitutes the
island contribution. Its computation is entirely geometrized through the existence of the
5d bulk. The area of the island surfaces is constant in time, which limits the growth of
the entropy and leads to Page curves. As emphasized in [12], the graviton is generically
massive in models with a non-gravitating bath.

A gravitating bath can be realized by introducing a second ETW brane as bath (fig-
ure 1(b)) [15]. This modifies description (b) to now comprise two CFTs coupled to gravity
on distinct AdS4 spaces, and coupled to each other at the conformal boundaries. De-
scription (c) is reduced to a 3d CFT. Since both ETW branes have dynamical gravity, a
conventional geometric EE can not be defined on the second ETW brane. If one allows
the end points of minimal surfaces on both ETW branes to be chosen dynamically, the
surfaces can settle on the horizon and lead to a flat entropy curve, in line with the general
arguments of [30]. The quantity that was found to exhibit Page curve behavior in [15]
instead corresponds to minimal surfaces anchored at the remaining point of the conformal
boundary of AdS5, and was interpreted as EE between defect degrees of freedom repre-
sented by the left and right ETW branes. The form of the entropy curve was found to have
interesting dependence on the ETW brane angles, as will be discussed in more detail below.

Islands and Page curves in Type IIB: in this work we will study 10d string theory
versions of the Karch/Randall models and show that the qualitative features captured by
the bottom-up models are realized in a UV-complete theory of quantum gravity. We will
discuss black holes coupled to non-gravitating and to gravitating baths, realized through
10d black hole solutions based on the AdS4 × S2 × S2 × Σ solutions of Type IIB con-
structed in [23–26].
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Figure 2. Left: geometry of AdS4 × S2 × S2 × Σ solutions with Σ = {x + iy ∈ C| 0 ≤ y ≤ π
2 }

for non-gravitating baths. On each boundary component an S2 collapses, so the 10d geometry is
closed. D5/NS5 brane sources are located on the y = 0/y = π

2 boundaries. The limit x → −∞ is
a regular point of the internal space. For x → ∞ the solutions approach locally AdS5 × S5; this
region corresponds to the conformal boundary in figure 1(a). The ETW brane in figure 1(a) can
be seen as effective description for the remaining 10d geometry. Right: associated configuration of
D5, NS5 and D3 branes, with D3-branes suspended between 5-branes and semi-infinite D3-branes
emerging in one direction. The distribution of 5-brane sources in the supergravity solution encodes
how many D5/NS5 branes there are and how the D3-branes end on them.

We start the discussion with non-gravitating baths. The solutions constructed
in [23–25] can be used to describe semi-infinite D3-branes terminating on a system of D5
and NS5 branes with additional D3-branes suspended between the 5-branes. The brane
configurations engineer N = 4 SYM on a half space, corresponding to the semi-infinite D3-
branes, coupled to a 3d SCFT on the boundary, corresponding to the D3-branes suspended
between the D5 and NS5 branes. The structure of the supergravity solutions and brane
setups is illustrated in figure 2. At each point of Σ there is an AdS4 and two 2-spheres, with
independently varying radii. The region x → ∞ where the geometry becomes AdS5 × S5

is modeled in the Karch/Randall models in figure 1(a) by the AdS5 region far away from
the ETW brane. The ETW brane itself can be understood as effective description for the
remaining part of the 10d solution, i.e. the region around the 5-brane sources in figure 2.
The intermediate holographic description, in which only the defect degrees of freedom
are geometrized (description (b) above), corresponds to AdS4 gravity in the region away
from the AdS5 × S5 part coupled at the conformal boundary of AdS4 to N = 4 SYM
on a half space. The 4d graviton has a mass, which, in the limit where the number of
semi-infinite D3-branes is small, is set by the ratio of 4d and 3d central charges [31]. We
will modify these solutions by introducing black holes on the AdS4 spaces, which leads to
non-supersymmetric solutions of Type IIB that are asymptotic to the supersymmetric seed
solutions and describe the dual QFTs at finite temperature.

The radiation region R will be defined in the asymptotic AdS5 × S5 region at x→∞
in figure 2, while the “physical black hole” corresponds to the region around the 5-brane
sources. The surfaces computing the entanglement entropy of the radiation region wrap
both S2’s and are anchored in the AdS5 × S5 region at a fixed value of the AdS4 radial
coordinate. For the non-gravitating baths we construct the HM surfaces explicitly at the
time t = 0 when their area is smallest. The minimal surfaces can be described by specifying
the AdS4 radial coordinate r as function of the coordinates on the Riemann surface x and y.
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The surfaces extend along the Riemann surface Σ, and either drop into the horizon in AdS4
along a curve xh(y) (HM surfaces), or extend all the way to x→ −∞, where they can close
off smoothly before reaching the horizon in AdS4 (island surfaces).

The extremality condition is a non-linear PDE on Σ. The boundary conditions will be
derived from regularity of the induced metric on the minimal surface, which will give a string
theory justification for the use of Neumann boundary conditions at the ETW brane in the
Karch/Randall models (other boundary conditions in 5d were discussed in [32]). Solutions
to the PDE are obtained numerically. The class of AdS4 × S2 × S2 × Σ solutions is very
broad, reflecting the breadth of brane configurations that can be realized with D3, D5 and
NS5 branes. We will choose representative solutions with N5 D5-branes at (x, y) = (0, 0),
N5 NS5-branes at (x, y) = (0, π2 ) and 2N5K semi-infinite D3-branes. Studying more general
solutions will be left for the future.

The 8d minimal surfaces can be visualized as 2d surfaces in the 3d space spanned by
Σ and the AdS4 radial direction r, with the horizon at some finite rh. The conformal
boundary of AdS4 at r → ∞ corresponds to the defect in figure 1(a). A sample of island
and HM surfaces is shown in figures 5, 6. The island surfaces show distinct behavior near
the 5-brane sources, which is discussed in section 3.3. The area differences between island
surfaces and HM surfaces at t = 0 are shown in figure 7. The results show that for radiation
regions starting far in the bath (small r), the HM surface dominates at t = 0. The area of
the HM surface grows in time and sets the initial growth of the entropy, but the entropy
growth is bounded by the constant area of the island surface. This evades an information
paradox and shows that the entropy follows a Page curve.

Critical angle: the analysis of [15] found a critical value for the tension/angle of the
ETW brane (θ in figure 1), where the behavior of the island surfaces changes qualitatively.
The critical angle θc can be defined as follows: at zero temperature, for an island surface
anchored at a fixed point in the bath system, one can ask for the end point on the ETW
brane as function of θ. For θ > θc this is a finite point. As θc is approached, the end point
on the ETW brane diverges towards the Poincaré horizon and below θc there are no more
island minimal surfaces.

Remarkably, a similar phenomenon can be identified in 10d. The angle θ in 5d is set
by the tension of the ETW brane, which can be understood as a measure for the number
of degrees of freedom represented by the ETW brane. The relevant parameters in the 10d
solutions considered here are the radius of the asymptotic AdS5 × S5 region, which is set
by the number of semi-infinite D3-branes, and the number of D5 and NS5 branes on which
the D3-branes terminate. The latter determines the 3d SCFT that N = 4 SYM is coupled
to at the boundary of the half space. One may expect that the brane angle in 5d captures
the ratio of the number of D3-branes suspended between 5-branes and the number of semi-
infinite D3-branes. This is indeed the case: for island surfaces at zero temperature, with
fixed anchor point in the AdS5×S5 region, the end point at x = −∞ is shown as function
of N5/K, which controls the ratio of suspended and semi-infinite D3-branes, in figure 8.
The results indicate that there is a critical ratio at which the end point at x = −∞ runs
off towards the Poincaré horizon. For black hole solutions with finite temperature this
behavior is regulated (figure 9), and island surfaces can be found beyond the critical ratio.
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Figure 3. Left: AdS4×S2×S2×Σ solutions for gravitating baths. The AdS5 × S5 region is
closed off; the limits x → ±∞ both lead to regular points in the internal space. This leaves the
3d conformal boundary of AdS4, corresponding to the remaining point of the conformal boundary
in figure 1(b). Right: the associated brane configurations have no semi-infinite D3-branes, only
D3-branes suspended between 5-branes.

Gravitating baths: for the description of a gravitating bath the asymptotic AdS5× S5

region in figure 2 is closed off. This corresponds to removing the semi-infinite D3-branes
from the brane setup, leaving only D3-branes suspended between D5 and NS5 branes
(figure 3). This is captured in the 5d Karch/Randall models by the introduction of a
second ETW brane. The 10d solutions are holographic duals for 3d T σρ [SU(N)] SCFTs [26]
and have massless 4d gravitons. Closing off the AdS5 × S5 region removes the part in
which the radiation region was defined, and a minimal surface stretching from x = −∞ to
x = +∞ now has to satisfy Neumann boundary conditions on both ends. This allows it to
settle onto the black hole horizon and leads to a constant entropy identical to the thermal
entropy of the bath, in line with the general arguments of [9, 30].

One can instead consider minimal surfaces splitting the internal space, which are ex-
pected to compute non-geometric entanglement entropies (whose holographic interpretation
was initiated in [33, 34]). In the Karch/Randall models a “left/right EE”, represented by
surfaces ending on the point where the two ETW branes meet in figure 1(b), was found
to exhibit Page curve behavior, and was interpreted as an internal entanglement entropy
in [15]. The Type IIB solutions realize the dual of the defect as full 10d geometry, mak-
ing them an ideal setting for studies of minimal surfaces separating degrees of freedom
according to their representation in the internal space.

We consider surfaces wrapping the spatial part of AdS4, both S2’s, and a curve in Σ
which depends on the AdS4 radial coordinate. The surfaces are anchored at the conformal
boundary of AdS4 along a curve x(y) in Σ which separates the 5-brane sources and defines
a split into black hole system and bath. Such surfaces may be expected to compute
EEs associated with decompositions of the quiver diagram in the UV description of the
dual 3d SCFT. One again has to consider HM surfaces, extending through the horizon
in AdS4 into the thermofield double, and island surfaces which close off in one of the
x → ±∞ regions before reaching the horizon in AdS4. These are 10d versions of the
surfaces in figure 1(b). The class of AdS4×S2×S2×Σ solutions that could be considered
is again broad, and we focus on simple representatives. We include two groups of D5-
branes and two groups of NS5 branes, placed symmetrically at x = ±δ on the boundary
components of Σ. The separation of the 5-brane sources determines how the D3-branes
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in the associated brane configuration are suspended between the 5-branes. Comparing to
the Karch/Randall models in figure 1(b), these particular 10d solutions correspond to two
equal ETW brane angles.

Some 10d island surfaces are shown in figure 10. The corresponding HM surface is
described by x = 0 and a time-dependent embedding in the AdS4 part of the geometry.
The difference in areas between island and HM surfaces at t = 0 is shown in figure 11(b).
We find that for δ above a “Page value” δP the HM surface initially dominates at t = 0.
The entropy growth indicated by the HM surfaces is bounded by the constant area of the
island surfaces, leading again to Page curves, shown in figure 12(b). A second distinguished
value for δ can be seen in figure 11(a): at a critical value δc the cap-off point of the island
surface at x = −∞ diverges towards the conformal boundary of AdS4, and no island
minimal surfaces are found for δ < δc. The numerical results suggest that δc is slightly
smaller than δP , though we leave the possibility that the difference could be a numerical
artifact. In the small (and possibly empty) range δc < δ < δP the island surfaces are
found to dominate already at t = 0, leading to a flat entropy curve. These results bear
striking resemblance with critical and Page angles found in the Karch/Randall models
in [15], suggesting that the ETW brane angles capture aspects of how the 5-brane sources
are distributed on Σ in 10d.

In the regime where no island minimal surfaces were found in the 5d Karch/Randall
models in [15], “tiny island” limiting surfaces, which degenerate to an infinitesimal segment
at the defect in figure 1(b), were found to dominate and limit the entropy growth indicated
by the HM surface. In 10d we find that similar tiny island surfaces connecting the x = 0
locus to x = ±∞ arise for δ < δc.

Outline: the main part is organized as follows. The 10d supergravity solutions are intro-
duced in section 2. In section 3 the ansatz for extremal surfaces is discussed along with the
extremality and boundary conditions and the behavior near the 5-branes. The method for
constructing minimal surfaces is summarized in section 4. Island surfaces and Page curves
are discussed for non-gravitating baths in section 5 and for gravitating baths in section 6.
We close with a brief outlook in section 7.

2 Type IIB supergravity solutions

The general local form of the AdS4 × S2 × S2 × Σ solutions that will be used here was
constructed in [23, 24]. For the study of minimal surfaces we will only need the geometry,
which is a warped product of AdS4 and two 2-spheres, S2

1 and S2
2 , over a Riemann surface

Σ. For the solutions of interest here Σ can be taken as a strip,

Σ = {z ∈ C | 0 ≤ Im(z) ≤ π/2} . (2.1)

On each of the boundary components of the strip one of the S2’s closes off smoothly, so
that the 10d geometry has no boundary. Depending on the nature of the points at infinity,
solutions for different types of field theories can be constructed: Janus solutions, dual to
interface CFTs, can be realized if the points Re(z)→ ±∞ both correspond to asymptotic
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AdS5 × S5 regions. Solutions with one asymptotic region closed off were constructed
in [25] and are dual to BCFTs. Duals for 3d SCFTs were constructed in [26] by closing
both asymptotic AdS5 × S5 regions.

The solutions are generally parametrized by two harmonic functions h1, h2 on Σ. The
Einstein-frame metric takes the form

ds2 = f2
4ds

2
4 + f2

1ds
2
S2

1
+ f2

2ds
2
S2

2
+ 4ρ2|dz|2 , (2.2)

where ds2
4 and ds2

S2
i
are line elements of unit-radius AdS4 and S2, respectively. The coeffi-

cient functions are given by

f8
4 = 16N1N2

W 2 , f8
1 = 16h8

1
N2W

2

N3
1

, f8
2 = 16h8

2
N1W

2

N3
2

, ρ8 = N1N2W
2

h4
1h

4
2

, (2.3)

where

W = ∂∂̄(h1h2) , Ni = 2h1h2|∂hi|2 − h2
iW . (2.4)

The expressions for the fluxes and dilaton will not be needed here; they can be found
in [23–26].

Based on this local form broad classes of supergravity solutions can be constructed
which describe D3-branes intersecting, ending on, or suspended between D5 and NS5
branes. For the realization of Karch/Randall models with gravitating and non-gravitating
baths we will employ representative solutions dual to BCFTs and 3d SCFTs, noting that
more general solutions could be considered. The form of the harmonic functions h1, h2 is

h1 = πα′

4 Kez − α′

4
∑
a

N
(a)
D5 ln tanh

(
z − δa

2

)
+ c.c.

h2 = − iπα
′

4 Kez − α′

4
∑
b

N
(b)
NS5 ln tanh

(
iπ

4 −
z − δb

2

)
+ c.c. (2.5)

The solutions describe semi-infinite D3-branes ending on D5-branes and NS5-branes which
have additional D3-branes suspended between them. The number of semi-infinite D3-
branes is controlled by K; for K = 0 the solutions describe D3-branes suspended between
D5 and NS5 branes. Groups of D5/NS5 branes are represented by the poles of ∂h1/∂h2
on the boundary of Σ. The specific brane configuration can be characterized in terms of
linking numbers, which are encoded in the distribution of the 5-brane sources on Σ [25, 26].
For K 6= 0 an AdS5 × S5 region emerges at Re(z)→ +∞, with Re(z) becoming the radial
coordinate of AdS5 in AdS4 slicing and Im(z) becoming an angular coordinate on S5. For
K = 0 the limit Re(z) → ∞ leads to a regular point in the internal space. The limit
Re(z)→ −∞ leads to a regular point in both cases.

We discuss the concrete solutions that will be used below first and briefly comment on
the more general picture and dual field theories afterwards. The solutions we will study for
non-gravitating baths are dual to N = 4 SYM on a half space coupled to 3d T σρ [SU(N)]
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2
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Figure 4. Brane configurations for representative non-gravitating bath solutions (left) and gravi-
tating bath solutions (right). Hanany-Witten transitions can be used to make the 3d quiver gauge
theories more apparent, as in figures 2, 3. The numbers of D3-branes on the right are controlled by
δ through ∆ = 1

2 + 2
π arctan e2δ.

theories on the boundary. They are given by h1/2 of the form

h1 = πα′

4 Kez − α′

4 N5 ln tanh
(
z

2

)
+ c.c.

h2 = − iπα
′

4 Kez − α′

4 N5 ln tanh
(
iπ

4 −
z

2

)
+ c.c. (2.6)

The radii of AdS5 and S5 in the AdS5×S5 region at Re(z)→∞ are set by L4 = 8πα′2N5K.
The asymptotic string coupling is limx→∞ e

φ = 1. These solutions are string theory real-
izations of the Karch/Randall models with one ETW brane (figure 1(a)): the asymptotic
region at Re(z) → ∞ corresponds to the AdS5 part, while the region with the NS5/D5
sources is the string theory version of the ETW brane itself. The brane configuration
involves 2N5K semi-infinite D3-branes ending on a combination of N5 D5-branes and N5
NS5-branes (figure 4(a)). N5K D3-branes end on the D5 branes and N5K D3-branes end
on the NS5-branes, and there are in addition N2

5 /2 D3-branes suspended between the D5
and NS5 branes.

The solutions for gravitating baths that will be considered below are holographic duals
for 3d T σρ [SU(N)] SCFTs. The functions h1 and h2 are given by

h1 = −α
′

4
N5
2

[
ln tanh

(
z − δ

2

)
+ ln tanh

(
z + δ

2

)]
+ c.c.

h2 = −α
′

4
N5
2

[
ln tanh

(
iπ

4 −
z − δ

2

)
+ ln tanh

(
iπ

4 −
z + δ

2

)]
+ c.c. (2.7)

These solutions describe N2
5 /2 D3-branes suspended between two groups of D5-branes and

two groups of NS5-branes, with N5/2 5-branes in each group. There are no semi-infinite
D3-branes and the asymptotic AdS5 × S5 region at Re(z) → ∞ is closed off. The limits
Re(z)→ ±∞ both correspond to regular points in the internal space. The 5-brane groups
are represented in the supergravity solutions by sources with N5/2 D5 and N5/2 NS5-
branes, respectively, at z = ±δ and z = ±δ + iπ/2. The parameter δ determines how the
D3-branes terminate on the D5 and NS5 branes (figure 4(b)); for δ = 0 the numbers of
D3-branes terminating on each group of 5-branes are equal. The dual 3d SCFTs are special

– 9 –



J
H
E
P
0
8
(
2
0
2
1
)
1
0
4

cases of the theories discussed in section 5.3 of [35]. Comparing to the 5d Karch/Randall
models, the closing off of the asymptotic AdS5×S5 region corresponds to the introduction
of the second ETW brane in figure 1(b). The entire 10d solution corresponds to the
remaining wedge of AdS5 in figure 1(b).

The solutions (2.6) and (2.7) are invariant under S-duality (exchange of h1 and h2
combined with z → iπ

2 −z), reflecting that the associated brane configurations are invariant
under S-duality (in figure 4(a) up to Hanany-Witten transitions). This will be useful below.
From now on we set α′ = 1.

Solutions with more general arrangements of 5-brane sources (poles in ∂h1/2) and no
asymptotic AdS5 × S5 region describe configurations of D3-branes suspended between D5
and NS5 branes that can be characterized by two Young tableaux ρ and σ, which determine
how precisely the D3-branes terminate on the 5-branes. The general relation between
the distribution of the 5-brane sources on the boundary of Σ and the Young tableaux ρ
and σ can be found in [26]. The brane configurations engineer 3d N = 4 quiver gauge
theories, and the supergravity solutions are dual to their IR fixed points. For solutions
with AdS5 × S5 region and semi-infinite D3-branes the dual field theory is N = 4 SYM
on a half space coupled to a 3d T σρ [SU(N)] SCFT on the boundary [25]. The free energies
obtained holographically were matched to field theory computations using supersymmetric
localization for the former in [35, 36] and for the latter in [37].

2.1 Finite temperature

For each AdS4×S2×S2×Σ solution one may replace AdS4 by a finite temperature black
hole and still obtain a solution to the Type IIB supergravity field equations: to verify the
field equations one only needs that the 4d space is Einstein with negative curvature. This
is true for the AdS4 black hole metrics we will use, so that replacing AdS4 by a black hole
yields non-supersymmetric solutions which asymptotically approach the supersymmetric
seed solution. From a more general perspective, the AdS4 × S2 × S2 × Σ solutions are in
the class for which [38] conjecture that a consistent truncation exists. Having a consistent
truncation to 4d gauged supergravity would allow to uplift more general 4d solutions to
10d, but this is not needed for our purposes here.

To introduce finite temperature, we replace the AdS4 metric in (2.2) by the AdS4 black
hole metric

ds2
4 = dr2

b(r) + e2r
(
−b(r)dt2 + ds2

R2

)
, b(r) = 1− e3(rh−r) . (2.8)

The horizon is at r = rh, the conformal boundary at r →∞. It will be convenient to also
introduce the tortoise coordinate u by

du = dr√
b(r)

, u = 2
3 cosh−1

(
e

3
2 (r−rh)

)
. (2.9)

The range u ∈ R+ corresponds to the exterior region covered by the original coordinate r,
with the horizon at u = 0. The metric becomes

ds2
4 = du2 + e2rh cosh4/3

(3u
2

)[
− tanh2

(3u
2

)
dt2 + ds2

R2

]
. (2.10)
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From the CFT perspective replacing AdS4 by a planar black hole corresponds to adding
a finite temperature for N = 4 SYM on AdS4 for solutions with an AdS5 × S5 region.
The black hole solutions without AdS5 × S5 region are dual to 3d T σρ [SU(N)] SCFTs at
finite temperature.

3 Extremal surfaces

In this section we discuss the embedding ansatz for the surfaces that will be used for the
entanglement entropy computations, the extremality and boundary conditions, and the
behavior near the 5-brane sources.

3.1 Island surfaces

The surfaces of interest are 8d minimal surfaces in the 10d geometry (2.2) that wrap both
S2’s, (part of) the Riemann surface Σ, and a part of the AdS4 black hole geometry. For the
AdS4 black hole we choose coordinates (2.8), such that the 10d metric is given by (2.2) with

ds2
4 = dr2

b(r) + e2r
(
−b(r)dt2 + ds2

R2

)
. (3.1)

The surfaces can be described by specifying the AdS4 radial coordinate r for any given
point of Σ. On Σ we introduce real coordinates

z = x+ iy , (3.2)

with x ∈ R and 0 ≤ y ≤ π
2 . The embeddings are thus described by a single embedding

function

r = r(x, y) . (3.3)

The induced metric on the surface reads

ds2
γ = e2rf2

4ds
2
R2 + f2

1ds
2
S2

1
+ f2

2ds
2
S2

2
+ 4ρ2(dx2 + dy2) + f2

4
b(r) (dx ∂xr + dy∂yr)2 . (3.4)

The area of a general surface of this form is given by A = VR2VS2
1×S

2
2
Sγ , with

Sγ = 4
∫
dxdy e2rf2

4 f
2
1 f

2
2ρ

2

√
1 + f2

4
4b(r)ρ2 ((∂xr)2 + (∂yr)2) . (3.5)

The combinations of metric functions appearing in this expression are given by

f2
4 f

2
1 f

2
2ρ

2 = 8 |h1h2W | ,
f2

4
ρ2 = 2

∣∣∣∣h1h2
W

∣∣∣∣ . (3.6)

With these expressions the area simplifies to

Sγ = 32
∫
dxdy e2r |h1h2W |

√
1 + 1

2b(r)

∣∣∣∣h1h2
W

∣∣∣∣ (∇r)2 . (3.7)

Since 4W = ∆(h1h2), the area depends on h1 and h2 only through the combination h1h2.
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The extremality condition resulting from variation of Sγ (with Sγ =
∫
Lγ) can be

written as

0 != δLγ
Lγ

= 1
1 + g(∇r)2

[
2−∇(g∇r) + 1

2g∇r · ∇ ln
(

1 + g(∇r)2)
b(r)f2

)]
, (3.8)

where ∇ is the covariant derivative with respect to the metric on Σ and

f = |h1h2W | , g = 1
2b(r)

∣∣∣∣h1h2
W

∣∣∣∣ . (3.9)

The dependence on r itself drops out for zero temperature, i.e. when b(r) = 1. If r(x, y)
is a solution to the extremality condition at zero temperature then so is r(x, y) + c with
a constant c, with different asymptotic values at x → ±∞; this reflects the defect confor-
mal symmetry.

3.2 Boundary conditions

We now discuss the boundary conditions for surfaces extending along Σ, starting with
the two boundary components of the strip at y = 0 and y = π

2 . Near y = 0 the sphere
S2

1 , collapses, with f2
1 ∼ 4y2ρ2 so that the background has no conical singularity in the

space parametrized by y and S2
1 . The induced metric (3.4) near y = 0 consequently takes

the form

ds2
γ ≈ e2rf2

4ds
2
R2 + f2

2ds
2
S2

2
+ 4ρ2

(
dx2 + dy2 + y2ds2

S2
1

)
+ f2

4
b(r) (dx ∂xr + dy∂yr)2 . (3.10)

The contribution proportional to (∂yr)2dy2 threatens to introduce a conical singularity in
the (y, S2

1) part of the induced metric on the surface. A smooth metric is obtained with
the Neumann boundary condition ∂yr|y=0 = 0. The reasoning for the second boundary
component, where S2

2 collapses, is analogous. We conclude

∂yr(x, y)
∣∣
y=0 = 0 , ∂yr(x, y)

∣∣
y=π

2
= 0 . (3.11)

For x → −∞ the space closes off smoothly; the limit corresponds to a single regular
point on the boundary of Σ. For the surface to be smooth, limx→−∞ r(x, y) should be
independent of y. The asymptotic behavior of the metric functions, with coordinate v = 2ex

and v → 0, is given by (see (3.15) of [26])

f2
4 ≈ L2 , f2

1 ≈ 4 sin2y ρ2 , f2
2 ≈ 4 cos2y ρ2 , 4ρ2 ≈ L2v2 . (3.12)

The induced metric on the minimal surface becomes (noting that ∂yr → 0)

ds2
γ ≈ L2

[
e2rds2

R2 + dv2 + v2
(
dy2 + sin2y ds2

S2
1

+ cos2y ds2
S2

2

)
+ (∂xr)2dv

2

v2

]
. (3.13)

The part in the round bracket is the line element for S5, and a smooth R8 with no conical
singularity is obtained if

lim
x→−∞

e−x∂xr(x, y) = 0 . (3.14)
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The conditions (3.11) and (3.14) are the 10d analog of the Neumann boundary conditions
imposed at the ETW brane in the 5d Karch/Randall models.

The nature of the limit x → +∞ is different for the solutions in (2.6) for a non-
gravitating bath, where an AdS5 × S5 region emerges in this limit, compared to the solu-
tion (2.7) for a gravitating bath. For the latter the limits x → ±∞ both lead to regular
boundary points, and the boundary condition at x→ +∞ is given by (3.14) with x→ −x.
For the former, with the emerging AdS5 × S5 region, a Dirichlet condition anchoring the
surface is imposed instead. The general form is

lim
x→+∞

r(x, y) = r0(y) . (3.15)

The form of r0(y) can be determined by considering global AdS5 × S5, corresponding to
h1 = cosh z + c.c. and h2 = −i sinh z + c.c. In that case |h1h2/W | = 2 cosh2(x), which is
independent of y. As a result one can find extremal surfaces with no dependence on y,
which is an angular coordinate on S5. For more general solutions the boundary condition
in the asymptotic AdS5 × S5 region at x → ∞ therefore is that r(x, y) should become
independent of y and satisfy a Dirichlet condition with r0(y) = rR. In summary,

lim
x→+∞

r(x, y) = rR for (2.6), lim
x→+∞

e+x∂xr(x, y) = 0 for (2.7). (3.16)

3.3 Near-pole behavior

At zero temperature the minimal surfaces will show distinct behavior near the 5-brane
sources, and cap off there.1 In this section we will discuss this behavior analytically, using
the form of the supergravity solutions near the 5-brane sources. At finite temperature the
behavior near the 5-brane sources will be regulated by the horizon.

To discuss the behavior near a pole at z = z0 it is convenient to introduce coordinates
centered on the pole, z = z0+Reiϕ for z0 on the real line and z = z0−Reiϕ for Im(z0) = π/2.
The combinations that appear in the area functional (3.7) behave at zero temperature
as follows,

f = |h1h2W | ≈ f0 sin2(ϕ)(− lnR) , g = 1
2

∣∣∣∣h1h2
W

∣∣∣∣ ≈ −R2 lnR , (3.17)

where f0 is a constant which depends on the solution under consideration. The value of
f0 will not be relevant, since the extremality condition (3.8) is invariant under constant
rescalings of f .

To discuss the near-pole behavior it is convenient to drop the overall factor in the
extremality condition (3.8) and use the condition in the form

0 = 2−∇ (g∇r) + 1
2g∇r · ∇ ln

(
1 + g(∇r)2

f2

)
. (3.18)

1This differs from the behavior of the spherical entangling surface centered on the defect studied in [37],
which has a simple universal embedding which is insensitive to the 5-brane sources.
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The two non-trivial terms on the right hand side are generically of the same order, noting
that ∇ ln(. . .) = O(1/R). A scaling analysis suggests to take ∇r = O(1/(R lnR)) and
make an ansatz

r(R,ϕ) = r0 ln(− lnR) + r1(ϕ)
lnR + . . . (3.19)

where the ellipsis denotes regular and subleading terms. The leading non-trivial order in
the extremality condition (3.18) then is its finite part. The near-pole solution without
divergences in ϕ is given by r0 = −1 and r1 constant. In summary, the behavior of the
embedding near a 5-brane source at z = z0 is given by

r(z, z̄) = − ln(− ln |z − z0|) + . . . . (3.20)

Since limz→z0 r(z, z̄) = −∞, the minimal surface drops into the Poincaré horizon at the
source. At the point z0 the background geometry is singular, as appropriate for a solu-
tion near a 5-brane source, and we do not impose additional regularity conditions for the
minimal surface.

3.4 HM surfaces

We will focus on the non-gravitating bath solutions (2.6) for the discussion of HM surfaces;
those for the gravitating bath solutions will be discussed in section 6. We use the tortoise
coordinate u defined in (2.9) and parametrize the embedding at t = 0 in terms of x(u, y)
instead of r(x, y). The minimal surfaces range in u from the value enforced by the Dirichlet
boundary condition (3.16) through the horizon into the thermofield double. We focus on
surfaces anchored at the same point rR in the thermofield double, which are symmetric
with respect to reflection across u = 0 at t = 0. So we can restrict to u ≥ 0 to find the
embeddings. From that perspective the HM surfaces end on the horizon at u = 0 along a
curve xh(y) which is determined by the extremality condition.

The induced metric with the tortoise coordinate u and the parametrization x(u, y)
becomes

ds2 = e2rh cosh4/3
(3u

2

)
f2

4ds
2
R2 + f2

1ds
2
S2

1
+ f2

2ds
2
S2

2
+
[
f2

4 + 4ρ2(∂ux)2
]
du2

+ 4ρ2
[
dy2

(
1 + (∂yx)2

)
+ (∂ux)(∂yx)(du dy + dy du)

]
. (3.21)

The area evaluated using (3.6) becomes

S = 32
∫
dudy e2rh cosh4/3

(3u
2

)
|h1h2W |

√
1
2

∣∣∣∣h1h2
W

∣∣∣∣ (1 + (∂yx)2) + (∂ux)2 . (3.22)

For the boundary conditions we start with the boundaries of Σ at y = 0 and y = π
2 .

Having no conical singularities at y = 0, π2 leads to the Neumann boundary conditions

∂yx(u, y)
∣∣
y=0 = 0 , ∂yx(u, y)

∣∣
y=π

2
= 0 , (3.23)
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analogously to the arguments for (3.11) before. The Dirichlet condition which anchors the
surface, given in (3.16) for the parametrization r(x, y), here becomes

lim
u→u(rR)

x(u, y) =∞ . (3.24)

On the other end the surface should intersect the horizon and end from the one-sided
perspective at u = 0. The symmetry under reflection across u = 0 leads to the Neumann
condition

∂ux(u, y)|u=0 = 0 . (3.25)

This condition also ensures that boundary terms in the variation of the area at u = 0 vanish.

4 Solving for minimal surfaces

To summarize, the extremality conditions are non-linear second-order PDEs on the strip
Σ = {x + iy|x ∈ R, 0 ≤ y ≤ π

2 }, with Neumann boundary conditions at y = 0 and y = π
2 .

The domain and boundary conditions in the x direction depend on the background solution
and type of surface under consideration. The solutions are expected to be smooth, except
for the locations on the two boundary components at y ∈ {0, π2 } where the D5/NS5 sources
are in (2.6) and (2.7).

To solve these PDEs numerically we start with a trial surface satisfying the boundary
conditions and let it dynamically settle on a minimal area configuration. To this end
an auxiliary external time parameter τ is introduced, and the embedding, say for island
surfaces, is described by a τ -dependent function r(x, y, τ). The τ -evolution for r(x, y, τ) is
chosen as

∂τr(x, y, τ) = −L−1
γ

δLγ
δr(x, y, τ) , (4.1)

where Lγ is the volume element of the surface in (3.7). This exerts a force on the embedding
in the direction in which the area decreases. The right hand side is given by (3.8) with
r(x, y) replaced by r(x, y, τ).

To numerically implement the relaxation the embedding function r(x, y, τ) is dis-
cretized in x and y, and eq. (4.1) is replaced by a set of ODEs for the values of r at
the lattice points, rij(τ). We use x̃ = tanh(x) to obtain a finite domain and a rectangular
lattice with equidistant points. The derivatives are discretized using second-order finite
differences and the boundary conditions are implemented such that they are compatible
with the second-order accuracy of the finite differences.2 The resulting set of ODEs is
integrated numerically using Mathematica.

Asymptotically the evolution of the rij(τ) is expected to settle on an equilibrium con-
figuration r?ij , which is a discretized solution to the extremality condition for the minimal

2For Neumann boundary conditions the lattice is extended by one row beyond the actual domain. The
Neumann boundary conditions in the y direction, (3.11), apply for regular points of ∂Σ, not at the locations
of the 5-brane sources. This has to be taken into account in the discretization.
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surface. Letting the evolution (4.1) run for a large time τmax � 1 will yield an approxima-
tion to this equilibrium configuration. The quality of the final configuration rij(τmax) can
be assessed from the residuals

Rij =
∣∣∣∣L−1
γ

δLγ
δr(x, y, τ)

∣∣∣∣
τ=τmax

. (4.2)

We typically use a lattice with O(100) nodes in the x̃ and y directions, though coarser
lattices already capture the qualitative form of the surfaces well. For the surfaces and data
shown below the residuals have decreased to O(10−6) or less. A limitation of this method
is that it is unlikely to capture extremal surfaces for which the area functional does not
take a local minimum (i.e. saddle points). However, the interest here is primarily in actual
minimal surfaces.

Due to the symmetry of the D5/NS5 brane sources in the supergravity solutions (2.6)
and (2.7) under S-duality combined with z → iπ/2 − z, the Einstein-frame metric is in-
variant under y → π

2 −y. For the minimal surfaces discussed here the boundary conditions
respect this symmetry, so that the surfaces themselves are symmetric. The PDEs thus only
have to be solved on the half of the strip Σ with 0 ≤ y ≤ π

4 , with a Neumann boundary
condition at y = π

4 to enforce the symmetry.

5 Islands with non-gravitating baths

In this section we discuss minimal surfaces, island contributions and the emergence of Page
curves in the 10d solutions for non-gravitating baths, given in (2.6). The general structure
of the supergravity solutions is illustrated in figure 2, and we have D5 and NS5-brane
sources, respectively, at (x, y) = (0, 0) and (x, y) = (0, π/2). The 8d minimal surfaces
can be visualized as 2d surfaces in the 3d space spanned by the x and y coordinates
parametrizing Σ and the AdS4 radial direction. They are obtained using the relaxation
method of section 4. We will start with a discussion of general features, before moving on
to comparing the areas of island and HM surfaces.

5.1 Island vs. HM surfaces

A sample of island surfaces with varying anchor points rR = limx→∞ r(x, y) in the AdS5×S5

region, for supergravity solutions (2.6), with temperature rh = 0 and N5/K = 2, is shown
in figure 5. Simultaneous rescalings of N5 and K lead to an overall rescaling of the metric
functions in (2.2), so the form of the minimal surfaces only depends on the ratio N5/K.
The ratio N5/K controls the ratio of the number of D3-branes suspended between the
5-branes and the number of semi-infinite D3-branes. For N5/K = 2 these numbers are
equal (figure 4(a)). For surfaces with large rR, anchored far from the horizon, the impact
of the 5-brane sources is clearly visible in figure 5, in line with the behavior discussed in
section 3.3 (example surfaces at zero temperature are shown in figure 8(b)). As the anchor
point rR is decreased, moving towards the horizon, the entire surface moves towards the
horizon and the near-pole behavior becomes less pronounced.

For the surfaces in figure 5 a discretization with (200, 100) points in (tanh x, y) was
used, and the residuals (4.2) at τ = 103 are reduced to O(10−10). The quality of the
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Figure 5. Island surfaces from top left to bottom right anchored at rR ∈ {5, 3, 2.1, 1}. The horizon
is at rh = 0 and N5/K = 2. The AdS5 × S5 region emerges at tanh x = 1, the 5-brane sources are
at tanh x = 0 and tanh x = −1 is a regular point in the internal space. For smaller rR (smaller
radiation region) the surfaces stay closer to the horizon. Near the 5-brane sources the surfaces reach
to the horizon for all rR.

Figure 6. HM surfaces at t = 0 for rR = 1 (left) and rR = 2.1 (right), with rh = 0 and N5/K = 2.
The plots show the tortoise radial coordinate u, in which the horizon is intersected orthogonally.
The further the HM surfaces are anchored from the horizon at rh = 0, the further they reach
towards negative x.
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solutions can also be investigated using the undiscretized extremality condition (3.8): from
a discretized solution one can construct a twice differentiable interpolating function r̃(x, y).
The interpolation should not necessarily be expected to capture the true solution accurately
away from the lattice points, especially near the D5/NS5 sources where the true solution is
not smooth. Evaluating (3.8) on the interpolation nevertheless only produces small errors
near the poles, which decrease further with increased lattice resolution, suggesting that
they are benign and not systematic.

Examples of t = 0 HM surfaces for N5/K = 2 are shown in figure 6. For radiation
regions that start far in the bath system, the surfaces are anchored close to the horizon at
tanh x = 1, i.e. with rR close to rh. These surfaces drop into the horizon along a curve
xh(y) which is located well before reaching the D5/NS5 sources at x = 0.3 Upon moderately
increasing rR, the surfaces reach further towards smaller values of x. The curve xh(y) starts
to bulge out towards negative values in the interior of Σ, i.e. for y 6= {0, π/2}, while the
boundary values xh(0) and xh(π/2) remain at larger values and stay shy of reaching the
5-brane sources at x = 0. The behavior upon further increasing rR depends on N5/K, and
will be discussed below.

With the surfaces in hand we can compare the areas between island and t = 0 HM
surfaces anchored at the same rR and discuss the time evolution of the entropy. The
areas have the usual divergences associated with entanglement entropies in 4d. Rather
than isolating the divergences separately for island and HM surfaces, we directly compute
the finite area difference between island and HM surfaces anchored at the same rR. For
numerical stability it is desirable to take the difference at the level of the integrands, at least
in the region of large x. Since the HM surface is obtained with a different parametrization,
we transform the HM surface described by xHM(r, y) to a parametrization in terms of
rHM(x, y), by inverting xHM(r, y) with respect to the first argument. The derivatives of
rHM can be expressed in terms of xHM,

∂xrHM(x, y) = 1
∂rxHM(r, y)

∣∣∣
r=rHM(x,y)

, ∂yr(x, y) = −∂yxHM(r, y)
∂rxHM(r, y)

∣∣∣
r=rHM(x,y)

. (5.1)

This is used to replace the derivatives in the area functional (3.7) before replacing rHM(x, y)
itself by the inverse of xHM, to avoid taking derivatives of the inverted function and improve
numerical stability. The area integrands obtained this way are numerically smooth, and
are used to compute the area differences with a cut-off tanh x ≤ 1− ε. The dependence on
the cut-off is very mild, with percent level variation between ε = 10−2 and ε = 10−3, and
the latter is used for the plots.

The results are shown in figure 7. They show that the island surface has larger area
than the t = 0 HM surface when rR is not too far from the horizon rh. This leads to Page
curves: the radiation region is identified far from the location where the gravity and bath
systems meet (r = ∞), as the part of the AdS5 × S5 region at x → ∞ with AdS4 radial
coordinate r ≤ rR, with rR close to rh. The results in figure 7 show that for these regions
the area of the HM surface at t = 0 is smaller than the area of the island surface. The

3If the initial trial surface reaches beyond the 5-brane sources, the relaxation transitions it into the
x > 0 region.
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200

400

600

800

rR

∆S

Figure 7. Area difference ∆S = Sisland−SHM as function of the anchor point rR in the asymptotic
AdS5 × S5 region. The defect is at r = ∞, the horizon at rh = 0. For ∆S > 0 the HM surface
dominates at t = 0. The radius of the AdS5 × S5 region is controlled by N5K, the number of
defect degrees of freedom by N2

5 . The color-coded dots are, from top to bottom, for N5/K ∈
{1.2, 1.6, 2.0, 2.4} with K = 1.

area of the HM surface grows with time, but the entropy is bounded by the constant area
of the island surface, leading to a Page curve.

The results in figure 7 show that the area difference between the island and t = 0 HM
surfaces is larger for larger N5/K. One may compare this to expectations based on the
Karch/Randall models: larger N5/K corresponds to a BCFT with more 3d defect degrees
of freedom relative to 4d bulk degrees of freedom, which in the 5d models amounts to larger
tension of the ETW brane. Larger tension bends the ETW brane towards the conformal
boundary of AdS5 in figure 1 (i.e. smaller θ; a tensionless brane has θ = π/2). From this
5d perspective one would expect the island surface to have larger area relative to the t = 0
HM surface for smaller θ, since the ETW brane is further from the bath. This is the 5d
version of the area difference being larger for larger N5/K in 10d.

The curves in figure 7 further show transition points r̂R at which the areas of the island
and HM surfaces are equal at t = 0, suggesting constant entropies for rR > r̂R. Near the
end points of the curves, which for small N5/K are close to r̂R, the evolution of trial HM
surfaces via (4.1) changes: beyond values r?R near the end points, the relaxation extends the
trial surface all the way to x = −∞ and ceases to settle on an equilibrium configuration.
If the HM surface becomes a shallow minimum or a saddle point, the relaxation could
transition over it towards the island surface. One may also suspect that HM surfaces
extending to negative x also on the boundary of Σ become relevant (those would reach to
the horizon along a curve xh(y) and in a disconnected region around the 5-brane sources,
and can not be parametrized globally by x(u, y)). The value of r?R starts small for small
N5/K, increases to r?R ≈ 2.1 for N5/K = 2 (the surface on the right in figure 6 is close
to r?R), and appears to diverge towards N5/K ≈ 4. For larger N5/K HM surfaces can
be found explicitly with no noticeable bound on rR. The limit N5 � K corresponds to
the number of 3d degrees of freedom being large compared to the number of 4d degrees
of freedom. This corresponds in the 5d bottom-up models to an ETW brane close to the
conformal boundary of AdS5, which is the limit considered in [13, 14]. The separation
between r?R and r̂R appears to grow with N5/K. For radiation regions far in the bath
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Figure 8. Left: rR − rL, where rR = limx→+∞ r(x, y) is the anchor of the minimal surface in the
non-gravitating bath and rL = limx→−∞ r(x, y), as function of N5/K at zero temperature. Right:
island surfaces, from top to bottom for N5/K ∈ {1.2, 1.6, 2.0, 2.4}. At zero temperature rR − rL is
independent of rR.

(small rR) we find Page curves. For rR > r̂R figure 7 suggests that the island surfaces lead
to constant entropies, though if new types of HM surfaces become relevant the entropy
curve may remain non-trivial. In either case, the entropy is bounded by the area of the
island surfaces, which we find explicitly for small and large rR.

5.2 Critical brane setups

The ratio N5/K plays a prominent role also at zero temperature. A sample of island
minimal surfaces for different values of N5/K at zero temperature is shown in figure 8(b).
For fixed anchor point in the asymptotic AdS5 × S5 region, the point where the surfaces
close off at x → −∞ moves towards the Poincaré horizon as N5/K is increased. This
is shown more quantitatively in figure 8(a), which shows the difference between rR =
limx→+∞ r(x, y) and rL = limx→−∞ r(x, y) as function of N5/K. For small N5/K the
difference rR − rL grows linearly, but for larger N5/K it starts to grow rapidly. The plot
suggests the existence of a critical value,(

N5
K

)
crit
≈ 4.0 , (5.2)

at which rR − rL diverges. For the surfaces from which the data in figure 8(a) is extracted
the residuals (4.2) are reduced to at most O(10−7). Increasing N5/K beyond the critical
value appears to lead to irreducible residuals (4.2), which remain finite and keep driving
the anchors rL and rR further apart with increasing runtime in τ , rather than settling
on an equilibrium configuration. This is consistent with rR − rL diverging when N5/K

approaches (5.2), and there being no island minimal surfaces beyond the critical value at
zero temperature.

These results line up well with the observations in the Karch/Randall models: as noted
before, the angle θ of the ETW brane in 5d is expected to be an effective description for
the number of defect degrees of freedom relative to the number of 4d degrees of freedom,
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Figure 9. Difference rR−rL between the end points at x→ ±∞ at finite temperature, with rh = 0,
from bottom to top for N5/K ∈ {2.25, 2.75, 3.25, 3.75, 4.25}. The solid black line shows rL = 0.

which in this particular example of a 10d solution is determined by the ratio N5/K. The
discussion in [15] found that, as the angle is decreased, the point where the island minimal
surface with fixed anchor on the bath brane hits the ETW brane moves towards the infrared,
and diverges towards the Poincaré horizon at a critical angle. This is consistent with the
behavior of the 10d solutions considered here if 1/θ is identified with N5/K. It would be
interesting to investigate more general 10d solutions, e.g. with multiple 5-brane sources, in
which one may expect a more complicated phase structure.

At finite temperature the runaway behavior of the cap-off point rL at the critical
N5/K is regulated by the black hole horizon, and island surfaces can be found beyond
the critical N5/K. The behavior can again be diagnosed by the difference rR − rL. At
zero temperature and below the critical N5/K this difference is finite and independent of
rR, with its value growing rapidly towards the critical N5/K. At finite temperature and
below the critical value of N5/K, the difference rR − rL is not constant, but it approaches
a constant for large rR. This behavior can be seen in figure 9 as the curves that saturate
towards a constant. The constant is set by the zero temperature value of rR−rL. As N5/K

approaches the critical value, the point where the growth of rR − rL saturates increases
rapidly. The results are consistent with rR − rL staying linear without bound for N5/K

beyond the critical value. The end point rL appears stuck below a critical value, similar
to the behavior found in the 5d models in [15].

6 Islands with gravitating baths

We now turn to the gravitating bath solutions (2.7), in which the AdS5 × S5 region at
x→∞ is reduced to a regular point of the internal space (figure 3). These solutions have
massless 4d gravitons (the 4d Newton constant is related to the free energy of the dual
3d SCFTs which is proportional to

∫
Σ h1h2W ). Without the AdS5 × S5 region there is no

natural place to geometrically define radiation regions (compatible with diffeomorphism
invariance) at x = ∞, or to anchor minimal surfaces. Minimal surfaces stretching from
x = −∞ to x = +∞ instead satisfy Neumann boundary conditions on both ends, as
discussed in section 3.2, and are found to settle onto the horizon. This leads to a flat
entropy curve, in line with the arguments of [30] for gravitating baths.4

4Attempts to define notions of effective geometric entropies with dynamical gravity and discussions of
their Page curves can be found in [39–41].
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As suggested in [30], a Page curve may still arise for other quantities in situations with
gravitating baths. An alternative is to consider surfaces that divide the internal space,
which may be expected to compute non-geometric EE’s. Though the general interpretation
of such surfaces may not be entirely understood, one can view some of them in the current
context as limiting cases of surfaces computing geometric EE’s, as suggested in [15] (an
earlier example where geometric EE’s turn non-geometric in the IR can be found in [42]).
The proposal of [15] can be made precise in 10d: consider brane configurations where
D3-branes suspended between 5-branes are kept finite in extent, to realize N = 4 SYM
on an interval. One may compute conventional geometric EE’s on that interval. Though
holographic duals for N = 4 SYM on an interval are not explicitly known, these geomet-
ric EE’s would be represented by conventional Ryu/Takayanagi surfaces in the putative
holographic duals. As IR fixed points one obtains 3d T σρ [SU(N)] SCFTs, with holographic
duals of the form discussed here.5 At the IR fixed point the geometric EE’s on the interval
become non-geometric EE’s, and the Ryu/Takayanagi surfaces become minimal surfaces
in the internal space. We thus expect at least certain minimal surfaces separating regions
in the internal space to compute non-geometric EE’s. In lower-dimensional examples such
EE’s are discussed in [44].

There are numerous ways to separate regions in the internal space in the 10d Type IIB
solutions. One may for example divide one of the S2’s, which should be related to a split of
the Hilbert space based on the R-symmetry [34]. The surfaces which arise from geometric
EE’s as outlined above are expected to split the Riemann surface Σ instead, where they
can separate the 5-brane sources. As shown in [45], minimal surfaces dividing the internal
space end, when reaching the conformal boundary of the AdS part, on an extremal sub-
surface in the internal space. Boundary conditions can be imposed to fix the subleading
behavior as the conformal boundary in the AdS part is approached, instead of the leading
behavior (e.g. for surfaces splitting the S5 in AdS5 × S5 the slipping mode away from the
equator). In the solutions (2.7) there is a natural candidate extremal surface in Σ: due to
the reflection symmetry of the solution under x → −x, the locus x(y) = 0 is extremal in
Σ and can serve as an anchor point for 8d minimal surfaces wrapping the spatial part of
AdS4, both S2’s and a curve in Σ which depends on the AdS4 radial coordinate u.

A symmetric HM surface which is anchored at x(y) = 0 also in the thermofield double
is given by x(u, y) = 0. This entire surface is extremal thanks to the reflection symmetry
in x → −x. More general surfaces may be obtained by specifying non-trivial subleading
behavior in the AdS4 radial coordinate as the x = 0 locus is approached.6 We only impose
that the surface be anchored at x(y) = 0 for u → ∞ and in the thermofield double, and
then let the relaxation method settle on a surface. This procedure selects the x(u, y) = 0
HM surface at t = 0. Since x(y) = 0 is an extremal curve in Σ, finding the HM surfaces
for t 6= 0 reduces to a problem within the AdS4 part of the geometry, which is identical to
the discussion in appendix A of [15].

5The setup can be seen as string theory realization of wedge holography in the sense of [43]. The internal
space in the 10d AdS4 solution is the string theory uplift of the wedge region.

6Admissible choices for the fall-off behavior near the boundary of AdS4 can be determined by linearizing
the extremality condition around the x(u, y) = 0 surface and performing a mode expansion in the y direction.
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Figure 10. Island surfaces in gravitating bath solutions, from left to right for δ ∈ {0.5, 0.4, 0.3}.
The vertical axis shows the tortoise AdS4 radial coordinate u. The surfaces are anchored at the
conformal boundary of AdS4 (u→∞) on the curve x(y) = 0 in Σ. The plots only cover the x ≤ 0
part of Σ. Near the 5-brane sources the surface caps off close to the horizon. The cap-off point at
x = −∞ increases as δ decreases.

For the island surfaces we impose that they are similarly anchored for u → ∞ along
the x(y) = 0 curve. They should reach one of the x = ±∞ regions with the Neumann
boundary condition (3.14) for some value uL > 0, which is determined dynamically. Since
the supergravity solution is invariant under x → −x the surfaces ending at x = +∞ and
x = −∞ are symmetry-related, and we only construct the ones ending at x = −∞ explicitly.

A sample of island surfaces for different values of the 5-brane source locations δ on Σ
is shown in figure 10 (the plots show only half the range of x). For larger δ the surfaces
more rapidly approach the horizon and then stay close to it. This behavior is captured
more quantitatively in figure 11(a), which shows the end point at x = −∞ in the tortoise
coordinate u as function of δ. The cap-off points uL show an exponential fall-off towards
large δ, which is shown as the fitted dashed line. Towards small δ the cap-off points start
to grow more rapidly. The data is consistent with uL diverging towards the conformal
boundary for a critical value

δc ≈ 0.28 . (6.1)

In line with this interpretation, the relaxation method does not settle on equilibrium mini-
mal surfaces below δc. Instead, the trial surfaces keep approaching the conformal boundary
of AdS4 at generic points of Σ, while staying close to the horizon at the 5-brane sources
(in line with behavior derived in section 3.3). This will be discussed further below.

The area differences between the island and t = 0 HM surfaces are computed similarly
to the non-gravitating bath case. To implement the subtraction at the integrand level,
the embedding for the island surface, uisland(x, y), has to be inverted with respect to the
first argument to match the parametrization of the HM surface. The embeddings are not
invertible on the entire domain, so the subtraction is implemented at the integrand level in
a patch around x = 0 and at the integral level for the remaining parts. The resulting area
differences are shown in figure 11(b), as colored curves for different choices of cut-off on
the AdS4 radial coordinate. The cut-off on the radial coordinate is imposed in Fefferman-
Graham gauge, e−u ≥ ε corresponding to tanh u ≤ 1 − 2ε2, with ε varied between 0.005
and 0.05. The curves are indistinguishable for generic values of δ. They only spread in a
narrow region around δc, where the island surfaces approach the conformal boundary of
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Figure 11. Left: cap-off point uL = limx→−∞ u(x, y) at x = −∞ as function of the separation
of brane sources δ. For large δ, uL approaches the horizon at u = 0 exponentially; the dashed
line shows uL = 1.17 exp(−4.28 δ). At a finite δc, uL diverges towards the conformal boundary (at
tanh u = 1 in the plot). Right: area difference ∆S = Sisland − SHM, as colored curves for different
choices of cut-off on the AdS4 radial coordinate. The dashed black curve shows an extrapolation
to zero cut-off.

AdS4 (though the cap-off point for the surfaces considered remains well below the cut-off)
and residual cut-off dependence can be seen. The residual cut-off dependence is smooth,
and is fitted for each δ to obtain an extrapolation to zero cut-off. The result is shown as
dashed black curve.

The area differences in figure 11 show that generically for large δ the HM surface at
t = 0 has smaller area than the island surface. The area of the HM surface grows in time,
and when it equals that of the island surface the island surface becomes dominant, leading
to a Page curve. The curves in figure 11 suggest a second distinguished value for δ, a “Page
value” δP where ∆S at t = 0 vanishes. The value of δP obtained from the numerical data,

δP ≈ 0.29 , (6.2)

is close to but slightly larger than the critical δc in (6.1). Since the difference between
δc and δP is small and the island surfaces become numerically challenging for δ ≈ δc, as
evidenced in the spread of the curves in figure 11, the possibility remains that the true area
difference may be non-negative for all δ > δc. In the (possibly empty) range δc < δ < δP ,
the island surface dominates already at t = 0 and leads to a flat entropy curve. Regardless
of the relation between δc and δP , for all δ > δc the entropy growth indicated by the HM
surface is limited by island surfaces whose area is constant.

Finding time-dependent HM surfaces reduces to a problem within the AdS4 part of
the geometry, since x = 0 is an extremal curve in Σ. Up to an overall factor, the area
as function of time can then be determined as in appendix A of [15], to which we refer
for details on that part of the computation. The overall factor arises from the parts of
the internal space wrapped by the 8d minimal surfaces in the 10d solutions. It can be
determined by integrating the area functional in (3.22) evaluated on the x = 0 embedding
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Figure 12. Left: area differences ∆S = Sisland − SHM normalized to the constant in (6.3). The
plot shows the extrapolated curve of figure 11(b). Right: Page curves. The solid line shows the
time-dependent finite part of the area of the HM surface. The corresponding constant areas of
island surfaces are shown as dashed lines, from bottom to top for δ ∈ {0.29, 0.32, 0.4, 0.5, 0.6}. The
Page time increases monotonically with δ.

over y. This leads to the factor

C = 32
∫ π

0
dy

√
1
2
∣∣h3

1h
3
2W

∣∣ ∣∣∣∣∣
x=0

. (6.3)

It will be convenient to discuss the time-dependent entropy curves normalized to this factor,
so that the (re)normalized area of the HM surface does not depend on the details of the
10d solution. The area differences between island and HM surfaces at t = 0 normalized
to C are shown in figure 12(a) as function of 1/δ. The normalized area differences are
monotonically increasing with δ. The time-dependent entropy curves, up to factors of
C and the 10d Newton constant, are shown in figure 12(b). To obtain the curves a time-
independent divergent part has been minimally subtracted, and a factor 2 has been included
to account for the parts of the surfaces in the thermofield double. Figure 12(b) shows the
transition from the HM surface to the island surfaces for various δ. The Page time, at which
the transition occurs, increases monotonically with δ: though the t = 0 area differences in
figure 11(b) are not monotonic, the Page time depends also on the growth rate of the HM
surface, which decreases with δ. The Page time vanishes at δP .

The 10d results are remarkably consistent with the phase structure found in 5d
Karch/Randall models if the inverse brane angle θ in 5d is seen as effective description
for the brane stack separation δ on Σ: the analysis of [15] identified critical angles and
Page angles, with a phase structure of minimal surfaces that, with the aforementioned
identification, qualitatively matches the results found here (compare e.g. figure 5 of [15]
to figure 12(a)). The symmetry of the 10d solutions (2.7) under x → −x suggests that
they give rise to Karch/Randall models with two equal ETW brane angles. More general
Karch/Randall models with two unequal brane angles descend from 10d solutions with
asymmetric distributions of 5-brane sources on Σ.

The range δ < δc, where no island minimal surfaces are found, corresponds to the
regime above the critical ETW brane angle in 5d. The dominant contribution in 5d was
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identified as “tiny islands”, which arise as limiting surfaces that connect the defect to one of
the ETW branes infinitesimally close to the conformal boundary. In 10d the behavior of the
island surfaces for δ → δc and of the trial island surfaces below δc, summarized around (6.1),
both indicate that similar tiny island limiting surfaces arise for δ < δc. The evolution of
trial island surfaces for δ < δc indicates that the 10d tiny islands approach the conformal
boundary of AdS4 almost everywhere on Σ, except for narrow throats around the 5-brane
sources where they reach to the horizon. In 5d the tiny islands were further motivated
in [15] through a deformation in which the ETW branes are separated and the tiny islands
arise as limits of extremal surfaces computing geometric EE’s. This deformation has a
clear analog in 10d, as keeping some D3 branes finite in extent to describe N = 4 SYM
on an interval. It would be interesting to study this deformation also in 10d, which would
require as a first step the corresponding supergravity solutions.

7 Outlook

The results presented here demonstrate in a UV-complete string theory setting the emer-
gence of entanglement islands and Page curves for black holes in four-dimensional theories
of gravity. The gravity theories certainly differ from the one we experience in nature. But
they have dynamical gravitons, with a mass that can be controlled, and show versions of the
information paradox whose resolution can be analyzed using concrete AdS/CFT dualities.
We close with some thoughts on avenues for future exploration.

The discussions were based on representative Type IIB supergravity solutions that
realize 5d Karch/Randall braneworlds with non-gravitating and gravitating baths in 10d.
These solutions are members of a broad class of solutions corresponding to more general
configurations of D3, D5 and NS5 branes. It would be interesting to study further examples.
The brane angles that play a crucial role in the phenomenology of the Karch/Randall
models were given analogs in the representative 10d solutions, where the entanglement
entropies exhibit a similar phase structure. One may suspect more complicated phase
structures to emerge for more general 10d solutions.

It would be desirable to understand the time evolution of the entanglement entropies
from the perspective of the dual QFTs. The (critical) parameters in the supergravity solu-
tions translate in a precise way to brane configurations and in turn to parameters in N = 4
SYM on a half space and 3d T σρ [SU(N)] SCFTs. This should provide a concrete start-
ing point for investigating the resolution of information paradoxes through entanglement
islands in 4d using QFT methods.

A key holographic aspect appears to be a better understanding of minimal surfaces
in the internal space and their associated field theory quantities. These are apparently
quantities which exhibit Page curve behavior with a gravitating bath, both in the 5d
Karch/Randall models and in the string theory versions. The 10d setups, with the full
internal space present, should be a viable starting point for more detailed investigations
of Page curve behavior in surfaces bisecting the internal space. The surfaces studied in
section 6 are natural candidates for computing EEs associated with decompositions of the
quiver diagram in the UV description of the dual 3d SCFTs.
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