PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: July 30, 2021
ACCEPTED: August 3, 2021
PUBLISHED: August 20, 2021

Islands and Page curves in 4d from Type |IB

Christoph F. Uhlemann

Leinweber Center for Theoretical Physics, Department of Physics, University of Michigan,
Ann Arbor, MI 4/8109-1040, U.S.A.

E-mail: uhlemann@umich.edu

ABSTRACT: Variants of the black hole information paradox are studied in Type IIB string
theory setups that realize four-dimensional gravity coupled to a bath. The setups are
string theory versions of doubly-holographic Karch/Randall brane worlds, with black holes
coupled to non-gravitating and gravitating baths. The 10d versions are based on fully back-
reacted solutions for configurations of D3, D5 and NS5 branes, and admit dual descriptions
as N'=4 SYM on a half space and 3d T [SU(NV)] SCFTs. Island contributions to the en-
tanglement entropy of black hole radiation systems are identified through Ryu/Takayanagi
surfaces and lead to Page curves. Analogs of the critical angles found in the Karch/Randall
models are identified in 10d, as critical parameters in the brane configurations and dual
field theories.

KeEyworDS: AdS-CFT Correspondence, Black Holes, Black Holes in String Theory

ARX1v EPRINT: 2105.00008

OPEN AccCESS, © The Authors.

Article funded by SCOAP?, https://doi.org/10.1007/JHEP08(2021)104


mailto:uhlemann@umich.edu
https://arxiv.org/abs/2105.00008
https://doi.org/10.1007/JHEP08(2021)104

Contents

1 Introduction and summary 1
2 Type IIB supergravity solutions 7
2.1 Finite temperature 10
3 Extremal surfaces 11
3.1 Island surfaces 11
3.2 Boundary conditions 12
3.3 Near-pole behavior 13
3.4 HM surfaces 14
4 Solving for minimal surfaces 15
5 Islands with non-gravitating baths 16
5.1 Island vs. HM surfaces 16
5.2  Critical brane setups 20
6 Islands with gravitating baths 21
7 Outlook 26

1 Introduction and summary

A recent advance in the understanding of black holes are the computations [1, 2] of the
time evolution of the entanglement entropy between a holographic black hole system and an
external bath to which the black hole is coupled. A crucial ingredient in these computations
are entanglement islands — contributions to the entanglement entropy (EE) from regions
that are disconnected and can be far away from the bath [3-7]. These contributions become
dominant at late times and lead to Page curves for the time evolution of the entropy, in
line with expectations based on unitarity. Reviews can be found in [8, 9].

The discussions so far are largely based on bottom-up models and on low-dimensional
theories where the features of gravity are qualitatively different. A prominent role is played
by Karch/Randall models [10, 11]. The special case of a Karch/Randall model with a ten-
sionless end-of-the-world brane, discussed in [12], can be embedded into Type IIB string
theory as an orbifold of AdSs x S°. But that case is somewhat peculiar in that the 4d
graviton has a mass that can not be separated from the UV cut-off in the 4d gravita-
tional description.

The aim of the present work is to demonstrate in a UV-complete string theory setting
the emergence of entanglement islands and Page curves for black holes in four-dimensional



theories of gravity in which the graviton mass can be controlled, including theories with
massless gravitons. Starting point are the discussions of islands and Page curves in general
5d Karch/Randall models [12-16], which can be used to model gravitating systems coupled
to non-gravitating and gravitating baths. These models have the appealing feature that the
quantum extremal surfaces [17, 18] exhibiting island contributions are entirely geometrized,
due to the doubly-holographic nature of these models. This allows for the identification
of entanglement islands through classical Ryu/Takayanagi surfaces [19]. We will uplift the
discussions in these bottom-up models to Type IIB string theory, to provide UV completions
and concrete holographically dual QFTs.

The string theory constructions are based on holographic duals for 4d boundary CFTs
and for 3d SCFTs engineered by configurations of D3, D5 and NS5 branes [20-22]. Holo-
graphic duals for large classes of such theories were constructed in [23-26], and they provide
natural string theory realizations of the Karch/Randall models with non-gravitating and
gravitating baths. We will study quantum extremal/minimal surfaces in these solutions
and identify quantities that exhibit Page curve behavior. The key findings of [12, 15], such
as the existence of critical brane angles separating different phases of minimal surfaces, will
find string theory realizations. We will also identify 10d versions of the “left/right EE”
that was found to exhibit Page curve behavior in the 5d models with gravitating bath,
where the usual notion of geometric EE becomes subtle.

In the following we will first review relevant aspects of the discussion in the
Karch/Randall models to set the stage and then summarize the main results of this paper.

Islands and Page curves in Karch/Randall models: the Karch/Randall models
for 4d gravity coupled to a non-gravitating bath are based on a part of AdSs cut off
by an end-of-the-world (ETW) brane extending along an AdSy slice (figure 1(a)). The
conformal boundary is cut off at the point where it is intersected by the ETW brane, so
that these models are holographically dual to boundary conformal field theories (BCFTSs)
(see also [27, 28]). The advantage of these setups from the entanglement islands perspective
is that they have 3 holographically related descriptions:

(a) Einstein gravity on (asymptotically) AdSs + ETW brane

(b) a 4d CFT with UV cut-off 4+ gravity on (asymptotically) AdS4, coupled via trans-
parent boundary conditions at the boundary of AdS, to a 4d CFT on half of R"3

(c) anon-gravitational 4d CFT on half of R coupled to 3d boundary degrees of freedom

These descriptions can be understood to arise from applying AdS/CFT twice: description
(b) is obtained by converting the 3d boundary degrees of freedom in (c) to a gravitational
theory on AdSy, and description (a) geometrizes the entire BCFT.

Description (b) is the one of interest for the black hole information paradox. To pose
the paradox, the AdSy slices are replaced by AdS, black holes. This realizes a black hole
on the ETW brane and on the remaining half of the conformal boundary of AdSs, which
serves as bath. It can be interpreted as coupling the gravity system on the ETW brane to
a bath at the same temperature as the black hole. To quantify the entropy of the radiation
one picks a region far in the bath system and computes its EE. One type of surface relevant
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Figure 1. Left: Karch/Randall model for non-gravitating bath. The figure shows part of AdSs
with the ETW brane cutting off the shaded region. The dashed curve is the black hole horizon and
R is the radiation region (blue). The green curve ending on the horizon represents the HM surface;
the green curve extending from the boundary of R to the ETW brane is the island surface. I is
the island (red). Right: for a gravitating bath a second ETW brane is introduced, leaving only a
3-dimensional part of the conformal boundary.

for computing the EE holographically are Hartman-Maldacena (HM) surfaces [29], which
connect the boundary of the radiation region to the corresponding point in the thermofield
double. Due to the stretching of the space behind the horizon the area of these surfaces
grows in time, suggesting an unbounded growth of the entropy. This is the version of the
information paradox described in [4]. The paradox is resolved by the existence of “island
minimal surfaces” that stretch from the bath into the gravity system (figure 1(a)). The
part of the ETW brane near the black hole that is captured by the surface constitutes the
island contribution. Its computation is entirely geometrized through the existence of the
5d bulk. The area of the island surfaces is constant in time, which limits the growth of
the entropy and leads to Page curves. As emphasized in [12], the graviton is generically
massive in models with a non-gravitating bath.

A gravitating bath can be realized by introducing a second ETW brane as bath (fig-
ure 1(b)) [15]. This modifies description (b) to now comprise two CFTs coupled to gravity
on distinct AdS, spaces, and coupled to each other at the conformal boundaries. De-
scription (c) is reduced to a 3d CFT. Since both ETW branes have dynamical gravity, a
conventional geometric EE can not be defined on the second ETW brane. If one allows
the end points of minimal surfaces on both ETW branes to be chosen dynamically, the
surfaces can settle on the horizon and lead to a flat entropy curve, in line with the general
arguments of [30]. The quantity that was found to exhibit Page curve behavior in [15]
instead corresponds to minimal surfaces anchored at the remaining point of the conformal
boundary of AdSs, and was interpreted as EE between defect degrees of freedom repre-
sented by the left and right ETW branes. The form of the entropy curve was found to have
interesting dependence on the ETW brane angles, as will be discussed in more detail below.

Islands and Page curves in Type IIB: in this work we will study 10d string theory
versions of the Karch/Randall models and show that the qualitative features captured by
the bottom-up models are realized in a UV-complete theory of quantum gravity. We will
discuss black holes coupled to non-gravitating and to gravitating baths, realized through
10d black hole solutions based on the AdS; x S? x S? x ¥ solutions of Type IIB con-
structed in [23-26].
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Figure 2. Left: geometry of AdS; x S? x §? x ¥ solutions with ¥ = {z +iy € C[0 < y < 5}
for non-gravitating baths. On each boundary component an S? collapses, so the 10d geometry is
closed. D5/NS5 brane sources are located on the y = 0/y = 7 boundaries. The limit  — —oo is
a regular point of the internal space. For 2 — oo the solutions approach locally AdSs x S°; this
region corresponds to the conformal boundary in figure 1(a). The ETW brane in figure 1(a) can
be seen as effective description for the remaining 10d geometry. Right: associated configuration of
D5, NS5 and D3 branes, with D3-branes suspended between 5-branes and semi-infinite D3-branes
emerging in one direction. The distribution of 5-brane sources in the supergravity solution encodes
how many D5/NS5 branes there are and how the D3-branes end on them.

We start the discussion with non-gravitating baths. The solutions constructed
in [23-25] can be used to describe semi-infinite D3-branes terminating on a system of D5
and NS5 branes with additional D3-branes suspended between the 5-branes. The brane
configurations engineer N' = 4 SYM on a half space, corresponding to the semi-infinite D3-
branes, coupled to a 3d SCFT on the boundary, corresponding to the D3-branes suspended
between the D5 and NS5 branes. The structure of the supergravity solutions and brane
setups is illustrated in figure 2. At each point of X there is an AdSy and two 2-spheres, with
independently varying radii. The region & — oo where the geometry becomes AdSs x S°
is modeled in the Karch/Randall models in figure 1(a) by the AdSs region far away from
the ETW brane. The ETW brane itself can be understood as effective description for the
remaining part of the 10d solution, i.e. the region around the 5-brane sources in figure 2.
The intermediate holographic description, in which only the defect degrees of freedom
are geometrized (description (b) above), corresponds to AdSy gravity in the region away
from the AdSs x S° part coupled at the conformal boundary of AdS; to N' = 4 SYM
on a half space. The 4d graviton has a mass, which, in the limit where the number of
semi-infinite D3-branes is small, is set by the ratio of 4d and 3d central charges [31]. We
will modify these solutions by introducing black holes on the AdSy spaces, which leads to
non-supersymmetric solutions of Type IIB that are asymptotic to the supersymmetric seed
solutions and describe the dual QFTs at finite temperature.

The radiation region R will be defined in the asymptotic AdS5 x S° region at x — oo
in figure 2, while the “physical black hole” corresponds to the region around the 5-brane
sources. The surfaces computing the entanglement entropy of the radiation region wrap
both S?’s and are anchored in the AdSs x S° region at a fixed value of the AdSy radial
coordinate. For the non-gravitating baths we construct the HM surfaces explicitly at the
time ¢t = 0 when their area is smallest. The minimal surfaces can be described by specifying
the AdS, radial coordinate r as function of the coordinates on the Riemann surface x and y.



The surfaces extend along the Riemann surface X, and either drop into the horizon in AdSy
along a curve xp(y) (HM surfaces), or extend all the way to x — —oo, where they can close
off smoothly before reaching the horizon in AdSy (island surfaces).

The extremality condition is a non-linear PDE on Y. The boundary conditions will be
derived from regularity of the induced metric on the minimal surface, which will give a string
theory justification for the use of Neumann boundary conditions at the ETW brane in the
Karch/Randall models (other boundary conditions in 5d were discussed in [32]). Solutions
to the PDE are obtained numerically. The class of AdSs x S? x S? x ¥ solutions is very
broad, reflecting the breadth of brane configurations that can be realized with D3, D5 and
NS5 branes. We will choose representative solutions with N5 D5-branes at (z,y) = (0,0),
N5 NS5-branes at (x,y) = (0, %) and 2N5 K semi-infinite D3-branes. Studying more general
solutions will be left for the future.

The 8d minimal surfaces can be visualized as 2d surfaces in the 3d space spanned by
Y and the AdS, radial direction r, with the horizon at some finite ;. The conformal
boundary of AdSy at r — oo corresponds to the defect in figure 1(a). A sample of island
and HM surfaces is shown in figures 5, 6. The island surfaces show distinct behavior near
the 5-brane sources, which is discussed in section 3.3. The area differences between island
surfaces and HM surfaces at t = 0 are shown in figure 7. The results show that for radiation
regions starting far in the bath (small r), the HM surface dominates at ¢ = 0. The area of
the HM surface grows in time and sets the initial growth of the entropy, but the entropy
growth is bounded by the constant area of the island surface. This evades an information
paradox and shows that the entropy follows a Page curve.

Critical angle: the analysis of [15] found a critical value for the tension/angle of the
ETW brane (0 in figure 1), where the behavior of the island surfaces changes qualitatively.
The critical angle 6. can be defined as follows: at zero temperature, for an island surface
anchored at a fixed point in the bath system, one can ask for the end point on the ETW
brane as function of #. For 6 > 0. this is a finite point. As 6. is approached, the end point
on the ETW brane diverges towards the Poincaré horizon and below 6. there are no more
island minimal surfaces.

Remarkably, a similar phenomenon can be identified in 10d. The angle 6 in 5d is set
by the tension of the ETW brane, which can be understood as a measure for the number
of degrees of freedom represented by the ETW brane. The relevant parameters in the 10d
solutions considered here are the radius of the asymptotic AdSs x S° region, which is set
by the number of semi-infinite D3-branes, and the number of D5 and NS5 branes on which
the D3-branes terminate. The latter determines the 3d SCFT that N/ =4 SYM is coupled
to at the boundary of the half space. One may expect that the brane angle in 5d captures
the ratio of the number of D3-branes suspended between 5-branes and the number of semi-
infinite D3-branes. This is indeed the case: for island surfaces at zero temperature, with
fixed anchor point in the AdS5 x S° region, the end point at x = —oo is shown as function
of N5/K, which controls the ratio of suspended and semi-infinite D3-branes, in figure 8.
The results indicate that there is a critical ratio at which the end point at x = —oo runs
off towards the Poincaré horizon. For black hole solutions with finite temperature this
behavior is regulated (figure 9), and island surfaces can be found beyond the critical ratio.
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Figure 3. Left: AdS,; x S? x S? x ¥ solutions for gravitating baths. The AdSs x S° region is
closed off; the limits x — +o0o both lead to regular points in the internal space. This leaves the
3d conformal boundary of AdSy, corresponding to the remaining point of the conformal boundary
in figure 1(b). Right: the associated brane configurations have no semi-infinite D3-branes, only
D3-branes suspended between 5-branes.

Gravitating baths: for the description of a gravitating bath the asymptotic AdSs x S°
region in figure 2 is closed off. This corresponds to removing the semi-infinite D3-branes
from the brane setup, leaving only D3-branes suspended between D5 and NS5 branes
(figure 3). This is captured in the 5d Karch/Randall models by the introduction of a
second ETW brane. The 10d solutions are holographic duals for 3d Ty [SU(N)] SCFTs [26]
and have massless 4d gravitons. Closing off the AdSs x S° region removes the part in
which the radiation region was defined, and a minimal surface stretching from x = —oo to
x = 400 now has to satisfy Neumann boundary conditions on both ends. This allows it to
settle onto the black hole horizon and leads to a constant entropy identical to the thermal
entropy of the bath, in line with the general arguments of [9, 30].

One can instead consider minimal surfaces splitting the internal space, which are ex-
pected to compute non-geometric entanglement entropies (whose holographic interpretation
was initiated in [33, 34]). In the Karch/Randall models a “left /right EE”, represented by
surfaces ending on the point where the two ETW branes meet in figure 1(b), was found
to exhibit Page curve behavior, and was interpreted as an internal entanglement entropy
in [15]. The Type IIB solutions realize the dual of the defect as full 10d geometry, mak-
ing them an ideal setting for studies of minimal surfaces separating degrees of freedom
according to their representation in the internal space.

We consider surfaces wrapping the spatial part of AdSy, both S?’s, and a curve in ¥
which depends on the AdSy radial coordinate. The surfaces are anchored at the conformal
boundary of AdSy along a curve x(y) in ¥ which separates the 5-brane sources and defines
a split into black hole system and bath. Such surfaces may be expected to compute
EEs associated with decompositions of the quiver diagram in the UV description of the
dual 3d SCFT. One again has to consider HM surfaces, extending through the horizon
in AdSy into the thermofield double, and island surfaces which close off in one of the
x — Zoo regions before reaching the horizon in AdS;. These are 10d versions of the
surfaces in figure 1(b). The class of AdS, x S? x S? x 3 solutions that could be considered
is again broad, and we focus on simple representatives. We include two groups of D5-
branes and two groups of NS5 branes, placed symmetrically at x = +§ on the boundary
components of 3. The separation of the 5-brane sources determines how the D3-branes



in the associated brane configuration are suspended between the 5-branes. Comparing to
the Karch/Randall models in figure 1(b), these particular 10d solutions correspond to two
equal ETW brane angles.

Some 10d island surfaces are shown in figure 10. The corresponding HM surface is
described by x = 0 and a time-dependent embedding in the AdS; part of the geometry.
The difference in areas between island and HM surfaces at ¢ = 0 is shown in figure 11(b).
We find that for § above a “Page value” dp the HM surface initially dominates at t = 0.
The entropy growth indicated by the HM surfaces is bounded by the constant area of the
island surfaces, leading again to Page curves, shown in figure 12(b). A second distinguished
value for ¢ can be seen in figure 11(a): at a critical value d. the cap-off point of the island
surface at * = —oo diverges towards the conformal boundary of AdSs, and no island
minimal surfaces are found for § < §.. The numerical results suggest that . is slightly
smaller than dp, though we leave the possibility that the difference could be a numerical
artifact. In the small (and possibly empty) range 6. < § < dp the island surfaces are
found to dominate already at t = 0, leading to a flat entropy curve. These results bear
striking resemblance with critical and Page angles found in the Karch/Randall models
in [15], suggesting that the ETW brane angles capture aspects of how the 5-brane sources
are distributed on ¥ in 10d.

In the regime where no island minimal surfaces were found in the 5d Karch/Randall
models in [15], “tiny island” limiting surfaces, which degenerate to an infinitesimal segment
at the defect in figure 1(b), were found to dominate and limit the entropy growth indicated
by the HM surface. In 10d we find that similar tiny island surfaces connecting the z = 0
locus to x = oo arise for § < ..

Outline: the main part is organized as follows. The 10d supergravity solutions are intro-
duced in section 2. In section 3 the ansatz for extremal surfaces is discussed along with the
extremality and boundary conditions and the behavior near the 5-branes. The method for
constructing minimal surfaces is summarized in section 4. Island surfaces and Page curves
are discussed for non-gravitating baths in section 5 and for gravitating baths in section 6.
We close with a brief outlook in section 7.

2 Type IIB supergravity solutions

The general local form of the AdS; x S? x S? x ¥ solutions that will be used here was
constructed in [23, 24]. For the study of minimal surfaces we will only need the geometry,
which is a warped product of AdSy and two 2-spheres, S? and S7, over a Riemann surface
Y. For the solutions of interest here X can be taken as a strip,

Y={2€C|0<Im(z) <7/2}. (2.1)

On each of the boundary components of the strip one of the S?’s closes off smoothly, so
that the 10d geometry has no boundary. Depending on the nature of the points at infinity,
solutions for different types of field theories can be constructed: Janus solutions, dual to
interface CFTs, can be realized if the points Re(z) — +oo both correspond to asymptotic



AdSs x S° regions. Solutions with one asymptotic region closed off were constructed
in [25] and are dual to BCFTs. Duals for 3d SCFTs were constructed in [26] by closing
both asymptotic AdS5 x S° regions.

The solutions are generally parametrized by two harmonic functions hy, he on 3. The
Einstein-frame metric takes the form

ds® = fids? + ffds?q% + fgds?gg + 4p%|dz|?, (2.2)

where ds? and dség are line elements of unit-radius AdSy and S?, respectively. The coeffi-
cient functions are given by

Ny N- NoyW?2 N{W?2 Ny N, W2
8 14V2 8 84V2 8 84Vl 8 14V2
f4 =16 w2 1 — 16h’1 Nf’ ’ f - 16h2 N23 ) p = hzllh% ’ (23)
where
W = 989(h1ha), N; = 2h1ho|Oh)? — h2W . (2.4)

The expressions for the fluxes and dilaton will not be needed here; they can be found
in [23-26].

Based on this local form broad classes of supergravity solutions can be constructed
which describe D3-branes intersecting, ending on, or suspended between D5 and NS5
branes. For the realization of Karch/Randall models with gravitating and non-gravitating
baths we will employ representative solutions dual to BCFTs and 3d SCFTs, noting that
more general solutions could be considered. The form of the harmonic functions hy, he is

ed o (a) 2 —0
hi = TK@‘z vy za:ND% In tanh <2a) + c.c.

. / / s _ 6
he = Y ger az Znglbs)E) In tanh (Z;T _Z b) + c.c. (2.5)
b

4 2

The solutions describe semi-infinite D3-branes ending on D5-branes and NS5-branes which
have additional D3-branes suspended between them. The number of semi-infinite D3-
branes is controlled by K; for K = 0 the solutions describe D3-branes suspended between
D5 and NS5 branes. Groups of D5/NS5 branes are represented by the poles of dhy/0hs
on the boundary of 3. The specific brane configuration can be characterized in terms of
linking numbers, which are encoded in the distribution of the 5-brane sources on ¥ [25, 26].
For K # 0 an AdS5 x S° region emerges at Re(z) — +o0, with Re(z) becoming the radial
coordinate of AdSs in AdSy slicing and Im(z) becoming an angular coordinate on S°. For
K = 0 the limit Re(z) — oo leads to a regular point in the internal space. The limit
Re(z) — —oo leads to a regular point in both cases.

We discuss the concrete solutions that will be used below first and briefly comment on
the more general picture and dual field theories afterwards. The solutions we will study for
non-gravitating baths are dual to N’ =4 SYM on a half space coupled to 3d T}J [SU(N)]
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Figure 4. Brane configurations for representative non-gravitating bath solutions (left) and gravi-
tating bath solutions (right). Hanany-Witten transitions can be used to make the 3d quiver gauge
theories more apparent, as in figures 2, 3. The numbers of D3-branes on the right are controlled by
6 through A = % + %arctan e,

theories on the boundary. They are given by hy/, of the form

/ /
hi = %K@Z — %Ng) In tanh (;) + c.c.
) / .
he = _z7r4a Ke* — %N5 In tanh (ZT - ;) + c.c. (2.6)

The radii of AdSs and S5 in the AdS5 x 57 region at Re(z) — oo are set by L* = 87> N5 K.
The asymptotic string coupling is lim,_,o ¢? = 1. These solutions are string theory real-
izations of the Karch/Randall models with one ETW brane (figure 1(a)): the asymptotic
region at Re(z) — oo corresponds to the AdSs part, while the region with the NS5/D5
sources is the string theory version of the ETW brane itself. The brane configuration
involves 2N5 K semi-infinite D3-branes ending on a combination of N5 D5-branes and N5
NS5-branes (figure 4(a)). NsK D3-branes end on the D5 branes and N5 K D3-branes end
on the NS5-branes, and there are in addition N2/2 D3-branes suspended between the D5
and NS5 branes.

The solutions for gravitating baths that will be considered below are holographic duals
for 3d T7[SU(NV)] SCFTs. The functions hy and hg are given by

"N, -4 )
hy = _a [lntanh <Z2> + In tanh (ﬁ)] + c.c.

4 2
"N, ; -4 ; )
hy = —%75 [lntanh (ZZ _Z 5 ) + Intanh <ZZ — Z;_ )} +c.c. (2.7)

These solutions describe N2 /2 D3-branes suspended between two groups of D5-branes and
two groups of NS5-branes, with N5/2 5-branes in each group. There are no semi-infinite
D3-branes and the asymptotic AdSs x S° region at Re(z) — oo is closed off. The limits
Re(z) — oo both correspond to regular points in the internal space. The 5-brane groups
are represented in the supergravity solutions by sources with N5/2 D5 and Nj5/2 NS5-
branes, respectively, at z = £ and z = 460 + iw/2. The parameter § determines how the
D3-branes terminate on the D5 and NS5 branes (figure 4(b)); for 6 = 0 the numbers of
D3-branes terminating on each group of 5-branes are equal. The dual 3d SCFTs are special



cases of the theories discussed in section 5.3 of [35]. Comparing to the 5d Karch/Randall
models, the closing off of the asymptotic AdSs x S° region corresponds to the introduction
of the second ETW brane in figure 1(b). The entire 10d solution corresponds to the
remaining wedge of AdSs in figure 1(b).

The solutions (2.6) and (2.7) are invariant under S-duality (exchange of h; and ho
combined with z — %T —z), reflecting that the associated brane configurations are invariant
under S-duality (in figure 4(a) up to Hanany-Witten transitions). This will be useful below.
From now on we set o/ = 1.

Solutions with more general arrangements of 5-brane sources (poles in dhq /2) and no
asymptotic AdSs x S° region describe configurations of D3-branes suspended between D5
and NS5 branes that can be characterized by two Young tableaux p and o, which determine
how precisely the D3-branes terminate on the 5-branes. The general relation between
the distribution of the 5-brane sources on the boundary of ¥ and the Young tableaux p
and o can be found in [26]. The brane configurations engineer 3d N' = 4 quiver gauge
theories, and the supergravity solutions are dual to their IR fixed points. For solutions
with AdSs x S® region and semi-infinite D3-branes the dual field theory is N' = 4 SYM
on a half space coupled to a 3d T7[SU(IV)] SCFT on the boundary [25]. The free energies
obtained holographically were matched to field theory computations using supersymmetric
localization for the former in [35, 36] and for the latter in [37].

2.1 Finite temperature

For each AdSy x S? x S? x ¥ solution one may replace AdSs by a finite temperature black
hole and still obtain a solution to the Type IIB supergravity field equations: to verify the
field equations one only needs that the 4d space is Einstein with negative curvature. This
is true for the AdS, black hole metrics we will use, so that replacing AdS4 by a black hole
yields non-supersymmetric solutions which asymptotically approach the supersymmetric
seed solution. From a more general perspective, the AdS; x S? x §? x ¥ solutions are in
the class for which [38] conjecture that a consistent truncation exists. Having a consistent
truncation to 4d gauged supergravity would allow to uplift more general 4d solutions to
10d, but this is not needed for our purposes here.

To introduce finite temperature, we replace the AdS; metric in (2.2) by the AdSy black
hole metric

d 2
ds? = % + e (=b(r)de? + dss ) | b(r) =1 — 30n=r) (2.8)
,
The horizon is at r = rp, the conformal boundary at r — oo. It will be convenient to also

introduce the tortoise coordinate u by
_ _dr _2 —1 (p3(r=rn)
du = W , u=gz cosh <e2 ) . (2.9)

The range u € R™ corresponds to the exterior region covered by the original coordinate r,
with the horizon at u = 0. The metric becomes

ds? = du® + €*™ cosh?/? (32“) [— tanh? <32u) dt* + ds]QRQ] . (2.10)

~10 -



From the CFT perspective replacing AdS4 by a planar black hole corresponds to adding
a finite temperature for N' = 4 SYM on AdS; for solutions with an AdS5 x S° region.

The black hole solutions without AdSs x S® region are dual to 3d T7[SU(N)] SCFTs at
finite temperature.

3 Extremal surfaces

In this section we discuss the embedding ansatz for the surfaces that will be used for the
entanglement entropy computations, the extremality and boundary conditions, and the
behavior near the 5-brane sources.

3.1 Island surfaces

The surfaces of interest are 8d minimal surfaces in the 10d geometry (2.2) that wrap both
S?’s, (part of) the Riemann surface ¥, and a part of the AdSy black hole geometry. For the
AdSy black hole we choose coordinates (2.8), such that the 10d metric is given by (2.2) with

dr?
2 2r 2 2
ds] = o) +e ( b(r)dt +ds]R2) . (3.1)

The surfaces can be described by specifying the AdS, radial coordinate r for any given
point of 3. On ¥ we introduce real coordinates

z=x+1y, (3.2)

with z € R and 0 < y < 5. The embeddings are thus described by a single embedding

function
r=r(z,y). (3.3)
The induced metric on the surface reads

2
ds% = % fidshe + ffds?gf + f;dszg + 4p%(dz? + dy?) + b](ﬂ;) (dx Oyr + dyayr)2 . (3.4)

The area of a general surface of this form is given by A = Vi V2, 525, with

. /2
S, = 4/dxdy e? fff%f%pQ\/l + W ((07r)% + (0y1)?) . (3.5)
The combinations of metric functions appearing in this expression are given by
2
24242 2 fi hihs
= 8|h1haW = =2 3.6
f4f1f2p ’ 1742 ‘7 p2 ‘ W ( )
With these expressions the area simplifies to
1 |hiheo
S, =32 [ dedye* |hihoW| |1+ = | = 2. 3.7
=32 [ dedy e o \\/+zbmlw<w> (37)

Since 4W = A(hjhg), the area depends on hy and hg only through the combination hjhs.
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The extremality condition resulting from variation of S, (with S, = [ L,) can be

written as
| 6L 1 1+g(Vr)?)

0= —1 = 2 — - -Vln | ———*= 3.8
L, "1t g(vr)y V(gVr) + Qer Vin ( o) 2 , (3.8)

where V is the covariant derivative with respect to the metric on ¥ and

1 [|hihs

= |hihaW = 3.9
[ = hihaW[, ga(r)W (3.9)

The dependence on r itself drops out for zero temperature, i.e. when b(r) = 1. If r(x,y)
is a solution to the extremality condition at zero temperature then so is r(z,y) + ¢ with
a constant ¢, with different asymptotic values at x — +oo; this reflects the defect confor-
mal symmetry.

3.2 Boundary conditions

We now discuss the boundary conditions for surfaces extending along ¥, starting with
the two boundary components of the strip at y = 0 and y = 7. Near y = 0 the sphere
S? collapses, with fZ ~ 4y?p? so that the background has no conical singularity in the
space parametrized by y and S?. The induced metric (3.4) near y = 0 consequently takes

the form

i
b(r)

The contribution proportional to (9,7)?dy? threatens to introduce a conical singularity in

dsi ~ ezrffds%RQ + fgdség + 4p? (dx2 + dy® + y2d8§%) + (dx Oy + dyﬁyr)z . (3.10)

the (y,S?) part of the induced metric on the surface. A smooth metric is obtained with
the Neumann boundary condition dyr|y—o = 0. The reasoning for the second boundary
component, where S5 collapses, is analogous. We conclude

Oyr(z, y)|y:0 =0, Oyr(z, y)|y:% =0. (3.11)

For x — —oo the space closes off smoothly; the limit corresponds to a single regular
point on the boundary of 3. For the surface to be smooth, lim;_,_ 7(z,y) should be
independent of y. The asymptotic behavior of the metric functions, with coordinate v = 2e*
and v — 0, is given by (see (3.15) of [26])

fi~ L7, f? ~ 4sin’y p?, f3 ~ 4cos?y p?, 4p? = L*v*. (3.12)
The induced metric on the minimal surface becomes (noting that d,r — 0)

dv?
2 72| .2r .2 2,2 ( 02 | 2 702 2, 7.2 2
ds? ~ L* |e* dsgo + dv® + v (dy + sin ydssf + cos ydssg) + (Oy1) 1)21 . (3.13)

The part in the round bracket is the line element for S®, and a smooth R® with no conical
singularity is obtained if

lim e *0,r(z,y) =0. (3.14)

T——00
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The conditions (3.11) and (3.14) are the 10d analog of the Neumann boundary conditions
imposed at the ETW brane in the 5d Karch/Randall models.

The nature of the limit ©+ — oo is different for the solutions in (2.6) for a non-
gravitating bath, where an AdSs x S® region emerges in this limit, compared to the solu-
tion (2.7) for a gravitating bath. For the latter the limits © — +oo both lead to regular
boundary points, and the boundary condition at © — +o0 is given by (3.14) with z — —z.
For the former, with the emerging AdSs x S® region, a Dirichlet condition anchoring the
surface is imposed instead. The general form is

S 7(z.y) = ro(y). (3.15)
The form of r¢(y) can be determined by considering global AdSs x S°, corresponding to
hi = cosh z + c.c. and hy = —isinh z + c.c. In that case |hyha/W| = 2cosh?(z), which is
independent of y. As a result one can find extremal surfaces with no dependence on y,
which is an angular coordinate on S°. For more general solutions the boundary condition
in the asymptotic AdSs x S° region at © — oo therefore is that r(z,y) should become
independent of y and satisfy a Dirichlet condition with r¢(y) = rg. In summary,

lim r(x,y)=rp for (2.6), lim e™d,r(z,y) =0 for (2.7). (3.16)

r—+00 r—+00
3.3 Near-pole behavior

At zero temperature the minimal surfaces will show distinct behavior near the 5-brane
sources, and cap off there.! In this section we will discuss this behavior analytically, using
the form of the supergravity solutions near the 5-brane sources. At finite temperature the
behavior near the 5-brane sources will be regulated by the horizon.

To discuss the behavior near a pole at z = zg it is convenient to introduce coordinates
centered on the pole, z = 2o+ Re'? for zp on the real line and z = zg— Re’? for Im(zg) = 7/2.
The combinations that appear in the area functional (3.7) behave at zero temperature
as follows,

1|h1h
f=1hihaW| = fo sin2(g0)(—lnR), 9=75 ‘1/1/2

~-R’InR, (3.17)

where fj is a constant which depends on the solution under consideration. The value of
fo will not be relevant, since the extremality condition (3.8) is invariant under constant
rescalings of f.

To discuss the near-pole behavior it is convenient to drop the overall factor in the
extremality condition (3.8) and use the condition in the form

(3.18)

1 1 Vvr)?
0=2-V(gVr)+ 59Vr-Vin <+g(r)> .

f2

!This differs from the behavior of the spherical entangling surface centered on the defect studied in [37],
which has a simple universal embedding which is insensitive to the 5-brane sources.
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The two non-trivial terms on the right hand side are generically of the same order, noting
that VIn(...) = O(1/R). A scaling analysis suggests to take Vr = O(1/(RIn R)) and

make an ansatz

r(R,¢) =roIn(—InR) + rﬁl(g) +... (3.19)

where the ellipsis denotes regular and subleading terms. The leading non-trivial order in
the extremality condition (3.18) then is its finite part. The near-pole solution without
divergences in ¢ is given by rg = —1 and r; constant. In summary, the behavior of the
embedding near a 5-brane source at z = zp is given by

r(z,z2) = —In(—1In|z — 20|) + ... . (3.20)

Since lim,_,,, r(z,2) = —oo, the minimal surface drops into the Poincaré horizon at the
source. At the point zy the background geometry is singular, as appropriate for a solu-
tion near a 5-brane source, and we do not impose additional regularity conditions for the
minimal surface.

3.4 HM surfaces

We will focus on the non-gravitating bath solutions (2.6) for the discussion of HM surfaces;
those for the gravitating bath solutions will be discussed in section 6. We use the tortoise
coordinate u defined in (2.9) and parametrize the embedding at ¢t = 0 in terms of z(u,y)
instead of r(z,y). The minimal surfaces range in u from the value enforced by the Dirichlet
boundary condition (3.16) through the horizon into the thermofield double. We focus on
surfaces anchored at the same point rg in the thermofield double, which are symmetric
with respect to reflection across u = 0 at t = 0. So we can restrict to v > 0 to find the
embeddings. From that perspective the HM surfaces end on the horizon at w = 0 along a
curve z,(y) which is determined by the extremality condition.

The induced metric with the tortoise coordinate u and the parametrization z(u,y)
becomes

ds? = e*™ cosh?/? (32u> fidshe + ffds?g% + fgds%% + [f42 + 4p2(3ux)2} du?
+4p2 [dy? (14 (9,2)?) + (9u2) (9y) (dudy + dy du)| . (3.21)

The area evaluated using (3.6) becomes

hihg
w

1
S = 32/dudy ¢ cosh?/3 (32u) |h1h2W]\/2

(1+ (0yz)?) + (Ouz)?. (3.22)

For the boundary conditions we start with the boundaries of ¥ at y = 0 and y = 7.

Having no conical singularities at y = 0, 5 leads to the Neumann boundary conditions

8ya:(u,y)|y:0 =0, @x(u,y)]y:% =0, (3.23)
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analogously to the arguments for (3.11) before. The Dirichlet condition which anchors the
surface, given in (3.16) for the parametrization r(x,y), here becomes
lim z(u,y) = 0. (3.24)
u—u(rR)
On the other end the surface should intersect the horizon and end from the one-sided

perspective at u = 0. The symmetry under reflection across © = 0 leads to the Neumann
condition

O (U, Y)|lu=0 = 0. (3.25)

This condition also ensures that boundary terms in the variation of the area at « = 0 vanish.

4 Solving for minimal surfaces

To summarize, the extremality conditions are non-linear second-order PDEs on the strip
Y ={z+iylr € R,0 <y < T}, with Neumann boundary conditions at y = 0 and y = 7.
The domain and boundary conditions in the x direction depend on the background solution
and type of surface under consideration. The solutions are expected to be smooth, except
for the locations on the two boundary components at y € {0, 7} where the D5/NS5 sources
are in (2.6) and (2.7).

To solve these PDEs numerically we start with a trial surface satisfying the boundary
conditions and let it dynamically settle on a minimal area configuration. To this end
an auxiliary external time parameter 7 is introduced, and the embedding, say for island
surfaces, is described by a T-dependent function r(z,y, 7). The T-evolution for r(x,y, ) is
chosen as

o-r(x,y,7) = Lt 0Ly

T or(x,y,T)’ (4.1)

where L, is the volume element of the surface in (3.7). This exerts a force on the embedding
in the direction in which the area decreases. The right hand side is given by (3.8) with
r(z,y) replaced by r(x,y, 7).

To numerically implement the relaxation the embedding function r(z,y,7) is dis-
cretized in x and y, and eq. (4.1) is replaced by a set of ODEs for the values of r at
the lattice points, r;;(7). We use & = tanh(x) to obtain a finite domain and a rectangular
lattice with equidistant points. The derivatives are discretized using second-order finite
differences and the boundary conditions are implemented such that they are compatible
with the second-order accuracy of the finite differences.? The resulting set of ODEs is
integrated numerically using Mathematica.

Asymptotically the evolution of the 7;;(7) is expected to settle on an equilibrium con-

*

figuration r7;, which is a discretized solution to the extremality condition for the minimal

2For Neumann boundary conditions the lattice is extended by one row beyond the actual domain. The
Neumann boundary conditions in the y direction, (3.11), apply for regular points of 93, not at the locations
of the 5-brane sources. This has to be taken into account in the discretization.
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surface. Letting the evolution (4.1) run for a large time Tyax > 1 will yield an approxima-
tion to this equilibrium configuration. The quality of the final configuration 7;;(Tmax) can
be assessed from the residuals

5L
. v
Hij ‘ v oor(x,y,T)

(4.2)
T=Tmax
We typically use a lattice with @(100) nodes in the Z and y directions, though coarser
lattices already capture the qualitative form of the surfaces well. For the surfaces and data
shown below the residuals have decreased to O(107%) or less. A limitation of this method
is that it is unlikely to capture extremal surfaces for which the area functional does not
take a local minimum (i.e. saddle points). However, the interest here is primarily in actual
minimal surfaces.

Due to the symmetry of the D5/NS5 brane sources in the supergravity solutions (2.6)
and (2.7) under S-duality combined with z — iw/2 — 2z, the Einstein-frame metric is in-
variant under y — 5 —y. For the minimal surfaces discussed here the boundary conditions
respect this symmetry, so that the surfaces themselves are symmetric. The PDEs thus only
have to be solved on the half of the strip ¥ with 0 <y < 7, with a Neumann boundary
condition at y = % to enforce the symmetry.

5 Islands with non-gravitating baths

In this section we discuss minimal surfaces, island contributions and the emergence of Page
curves in the 10d solutions for non-gravitating baths, given in (2.6). The general structure
of the supergravity solutions is illustrated in figure 2, and we have D5 and NS5-brane
sources, respectively, at (z,y) = (0,0) and (z,y) = (0,7/2). The 8d minimal surfaces
can be visualized as 2d surfaces in the 3d space spanned by the z and y coordinates
parametrizing ¥ and the AdS, radial direction. They are obtained using the relaxation
method of section 4. We will start with a discussion of general features, before moving on
to comparing the areas of island and HM surfaces.

5.1 Island vs. HM surfaces

A sample of island surfaces with varying anchor points rp = lim, .+ 7(x,y) in the AdSsx S5
region, for supergravity solutions (2.6), with temperature 7, = 0 and N5/K = 2, is shown
in figure 5. Simultaneous rescalings of N5 and K lead to an overall rescaling of the metric
functions in (2.2), so the form of the minimal surfaces only depends on the ratio N5/K.
The ratio N5/K controls the ratio of the number of D3-branes suspended between the
5-branes and the number of semi-infinite D3-branes. For N5/K = 2 these numbers are
equal (figure 4(a)). For surfaces with large rg, anchored far from the horizon, the impact
of the 5-brane sources is clearly visible in figure 5, in line with the behavior discussed in
section 3.3 (example surfaces at zero temperature are shown in figure 8(b)). As the anchor
point rg is decreased, moving towards the horizon, the entire surface moves towards the
horizon and the near-pole behavior becomes less pronounced.

For the surfaces in figure 5 a discretization with (200, 100) points in (tanhz,y) was
used, and the residuals (4.2) at 7 = 103 are reduced to O(1071°). The quality of the

~16 —



0.0
tanh(x)

0.0
tanh(x)

0.0
tanh(x)

0.0
tanh(x)

Figure 5. Island surfaces from top left to bottom right anchored at rg € {5,3,2.1,1}. The horizon
is at 7, = 0 and N5/K = 2. The AdSs x S° region emerges at tanh z = 1, the 5-brane sources are
at tanhz = 0 and tanhz = —1 is a regular point in the internal space. For smaller rp (smaller
radiation region) the surfaces stay closer to the horizon. Near the 5-brane sources the surfaces reach
to the horizon for all 7.

0.0
-05 tanh(x)

Figure 6. HM surfaces at t = 0 for rg = 1 (left) and rg = 2.1 (right), with 7, = 0 and N5/K = 2.
The plots show the tortoise radial coordinate u, in which the horizon is intersected orthogonally.
The further the HM surfaces are anchored from the horizon at r, = 0, the further they reach
towards negative x.
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solutions can also be investigated using the undiscretized extremality condition (3.8): from
a discretized solution one can construct a twice differentiable interpolating function 7(z, y).
The interpolation should not necessarily be expected to capture the true solution accurately
away from the lattice points, especially near the D5/NS5 sources where the true solution is
not smooth. Evaluating (3.8) on the interpolation nevertheless only produces small errors
near the poles, which decrease further with increased lattice resolution, suggesting that
they are benign and not systematic.

Examples of ¢ = 0 HM surfaces for N5/K = 2 are shown in figure 6. For radiation
regions that start far in the bath system, the surfaces are anchored close to the horizon at
tanhx = 1, i.e. with rg close to r,. These surfaces drop into the horizon along a curve
z,(y) which is located well before reaching the D5/NS5 sources at x = 0.> Upon moderately
increasing rr, the surfaces reach further towards smaller values of x. The curve xj(y) starts
to bulge out towards negative values in the interior of ¥, i.e. for y # {0,7/2}, while the
boundary values z5,(0) and zj(7/2) remain at larger values and stay shy of reaching the
5-brane sources at x = 0. The behavior upon further increasing rr depends on N5/ K, and
will be discussed below.

With the surfaces in hand we can compare the areas between island and ¢ = 0 HM
surfaces anchored at the same rp and discuss the time evolution of the entropy. The
areas have the usual divergences associated with entanglement entropies in 4d. Rather
than isolating the divergences separately for island and HM surfaces, we directly compute
the finite area difference between island and HM surfaces anchored at the same rr. For
numerical stability it is desirable to take the difference at the level of the integrands, at least
in the region of large x. Since the HM surface is obtained with a different parametrization,
we transform the HM surface described by zpwm(r,y) to a parametrization in terms of
ram(z,y), by inverting zmy(r,y) with respect to the first argument. The derivatives of
rum can be expressed in terms of xy,

1

8nyM(T7 y)
Orxum(r,y)

 Opxmm(r,y)

8xTHM(x7y) = @,r(l’,y) = (51)

bl
r=ram(,y) r=rum(z,y)

This is used to replace the derivatives in the area functional (3.7) before replacing rgn(x, y)
itself by the inverse of x\, to avoid taking derivatives of the inverted function and improve
numerical stability. The area integrands obtained this way are numerically smooth, and
are used to compute the area differences with a cut-off tanh x < 1 —e. The dependence on
the cut-off is very mild, with percent level variation between € = 1072 and € = 1073, and
the latter is used for the plots.

The results are shown in figure 7. They show that the island surface has larger area
than the t = 0 HM surface when 7 is not too far from the horizon rj. This leads to Page
curves: the radiation region is identified far from the location where the gravity and bath
systems meet (r = co), as the part of the AdSs x S° region at  — oo with AdS, radial
coordinate r < rg, with rg close to r,. The results in figure 7 show that for these regions
the area of the HM surface at ¢ = 0 is smaller than the area of the island surface. The

3If the initial trial surface reaches beyond the 5-brane sources, the relaxation transitions it into the
x > 0 region.
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Figure 7. Area difference AS = Siglana — Sum as function of the anchor point g in the asymptotic
AdSs x S° region. The defect is at r = oo, the horizon at 7, = 0. For AS > 0 the HM surface
dominates at t = 0. The radius of the AdS5 x S® region is controlled by NsK, the number of
defect degrees of freedom by NZ2. The color-coded dots are, from top to bottom, for N5/K €
{1.2,1.6,2.0,2.4} with K = 1.

area of the HM surface grows with time, but the entropy is bounded by the constant area
of the island surface, leading to a Page curve.

The results in figure 7 show that the area difference between the island and ¢ = 0 HM
surfaces is larger for larger N5/K. One may compare this to expectations based on the
Karch/Randall models: larger N5/ K corresponds to a BCFT with more 3d defect degrees
of freedom relative to 4d bulk degrees of freedom, which in the 5d models amounts to larger
tension of the ETW brane. Larger tension bends the ETW brane towards the conformal
boundary of AdSs in figure 1 (i.e. smaller #; a tensionless brane has § = 7/2). From this
5d perspective one would expect the island surface to have larger area relative to the t =0
HM surface for smaller 8, since the ETW brane is further from the bath. This is the 5d
version of the area difference being larger for larger N5/K in 10d.

The curves in figure 7 further show transition points 7 at which the areas of the island
and HM surfaces are equal at ¢t = 0, suggesting constant entropies for rg > 7. Near the
end points of the curves, which for small N5/K are close to 7, the evolution of trial HM
surfaces via (4.1) changes: beyond values r} near the end points, the relaxation extends the
trial surface all the way to x = —oo and ceases to settle on an equilibrium configuration.
If the HM surface becomes a shallow minimum or a saddle point, the relaxation could
transition over it towards the island surface. One may also suspect that HM surfaces
extending to negative = also on the boundary of ¥ become relevant (those would reach to
the horizon along a curve zp,(y) and in a disconnected region around the 5-brane sources,
and can not be parametrized globally by x(u,y)). The value of r} starts small for small
Ns/K, increases to rj ~ 2.1 for N5/K = 2 (the surface on the right in figure 6 is close
to %), and appears to diverge towards Ns/K ~ 4. For larger N5/K HM surfaces can
be found explicitly with no noticeable bound on rr. The limit N5 > K corresponds to
the number of 3d degrees of freedom being large compared to the number of 4d degrees
of freedom. This corresponds in the 5d bottom-up models to an ETW brane close to the
conformal boundary of AdSs5, which is the limit considered in [13, 14]. The separation
between r}, and 7r appears to grow with N5/K. For radiation regions far in the bath
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Figure 8. Left: rg — rz, where rg = lim,_, o 7(x, y) is the anchor of the minimal surface in the
non-gravitating bath and ry, = lim,_, o r(z,y), as function of N5/K at zero temperature. Right:
island surfaces, from top to bottom for N5/K € {1.2,1.6,2.0,2.4}. At zero temperature rg — ry, is
independent of rg.

(small rg) we find Page curves. For rg > i figure 7 suggests that the island surfaces lead
to constant entropies, though if new types of HM surfaces become relevant the entropy
curve may remain non-trivial. In either case, the entropy is bounded by the area of the
island surfaces, which we find explicitly for small and large rg.

5.2 Critical brane setups

The ratio N5/K plays a prominent role also at zero temperature. A sample of island
minimal surfaces for different values of N5/K at zero temperature is shown in figure 8(b).
For fixed anchor point in the asymptotic AdSs x S° region, the point where the surfaces
close off at * — —oo moves towards the Poincaré horizon as N5/K is increased. This
is shown more quantitatively in figure 8(a), which shows the difference between rp =
limg, 400 7(x,y) and rr, = lim, o r(x,y) as function of N5/K. For small N5/K the
difference rr — rz, grows linearly, but for larger N;5/K it starts to grow rapidly. The plot
suggests the existence of a critical value,

N5>
) x40, 5.2
<K crit ( )

at which rgp — r, diverges. For the surfaces from which the data in figure 8(a) is extracted
the residuals (4.2) are reduced to at most O(1077). Increasing N5/K beyond the critical
value appears to lead to irreducible residuals (4.2), which remain finite and keep driving
the anchors r;, and rr further apart with increasing runtime in 7, rather than settling
on an equilibrium configuration. This is consistent with rp — r7, diverging when N5/K
approaches (5.2), and there being no island minimal surfaces beyond the critical value at
zero temperature.

These results line up well with the observations in the Karch/Randall models: as noted
before, the angle 6 of the ETW brane in 5d is expected to be an effective description for
the number of defect degrees of freedom relative to the number of 4d degrees of freedom,
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Figure 9. Difference rg —7, between the end points at z — +oo at finite temperature, with r;, = 0,
from bottom to top for N5/K € {2.25,2.75,3.25,3.75,4.25}. The solid black line shows ry, = 0.

which in this particular example of a 10d solution is determined by the ratio N5/K. The
discussion in [15] found that, as the angle is decreased, the point where the island minimal
surface with fixed anchor on the bath brane hits the ETW brane moves towards the infrared,
and diverges towards the Poincaré horizon at a critical angle. This is consistent with the
behavior of the 10d solutions considered here if 1/6 is identified with N5/K. It would be
interesting to investigate more general 10d solutions, e.g. with multiple 5-brane sources, in
which one may expect a more complicated phase structure.

At finite temperature the runaway behavior of the cap-off poin