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1 Introduction

Observables specified by boundary data, such as the S matrix in flat space and boundary
correlation functions in anti-de-Sitter space, are at the core of modern developments in
high energy physics. For example, the latter often correspond to correlation functions of
gauge-invariant operators in unitary CFTs [1–4], providing a concrete realization of the
holographic principle [5, 6]. In flat space, significant progress has been made in both
understanding the underlying structure of scattering amplitudes and developing new com-
putation methods. While scattering amplitudes and AdS boundary correlators are different
in many respects, their shared properties have led to significant synergy between the scat-
tering amplitudes program and the study of holographic correlators. For example, the
AdS generalization of the Froissart-Gribov formula led to the famous OPE inversion for-
mula [7, 8].

In this paper, we discuss the AdS generalizations of color/kinematics duality and BCJ
relations of flat space scattering amplitudes, focusing on Yang-Mills (YM) theory and the
nonlinear sigma model (NLSM). YM in AdS has been studied largely from the perspective
of holography, as there are a variety of holographic models that include a bulk, non-abelian
gauge theory as a closed subsector [9, 10].1 Weak coupling aspects of color/kinematics
duality for boundary correlation functions and form factors were discussed in refs. [20, 21].
NLSMs targeted in a G/H coset manifold, where G is the U -duality group and H is
the R-symmetry group, are the standard description of scalar fields of matter-coupled
supergravity theories. Thus, NLSMs in AdS space are an integral part of AdS supergravity
theories. More recently, certain NLSM in AdS, such as the O(N) model, have gained
attention as tractable models to study QFT in curved space, independent of any high
energy completion [22–24].

Color/kinematics duality [25], identifying the algebraic properties of color and kine-
matic factors of amplitudes, and the double copy construction [26] have been extensively
studied with gauge theories in flat space. An impressive array of remarkable results show
that there is a veritable web of quantum theories connected by these properties, see ref. [27]
for a review. Originally formulated for maximally-supersymmetric gauge and gravity the-
ories, the duality has also been identified in wider classes of theories [20, 28–48], including
theories with fields in representations other than the adjoint [49–57], the NLSM and Born-
Infeld theories [58–64].

Color/kinematics duality and the double copy have been instrumental in higher-loop
computations in both colored and uncolored theories. For the latter, the double copy
expresses the integrands of amplitudes in terms of building blocks extracted from colored
amplitudes. These in turn are constrained by color/kinematics duality, so only a small
number of terms need to be computed. At tree-level, a sufficient but not necessary condition

1A well-known example is that of the SO(6) vector fields of maximal supergravity on AdS5×S5. More
involved ones exhibit D-branes or M-branes near singularities such that the bulk theory has a singular locus
of the form AdSd × S3, see e.g. [11–15]. Alternatively, one could consider adding probe branes which wrap
an S3 inside the bulk compactified dimension [16–19].
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for color/kinematics duality is the existence of BCJ relations among partial amplitudes in
a minimal color basis [25]. For example, the four-gluon color-ordered tree-level amplitudes
are related by

s12Aflat(1, 2, 3, 4) = s13Aflat(1, 3, 2, 4) , (1.1)

where sij = (pi + pj)2 are Mandelstam invariants, implying that a single four-point partial
amplitude determines the complete color-dressed amplitude at tree-level.

For theories with fields in the adjoint representation and couplings governed by the
antisymmetric structure constants, the BCJ relations imply that only (n − 3)! tree-level
partial amplitudes are independent at n-point. Color/kinematics duality, however, does
not always imply amplitude relations. For example, theories with fields transforming in
the (anti-)fundamental representation exhibit color/kinematics duality, but fewer relations
among partial amplitudes [49, 51, 65–68]. It is natural to ask whether or not in AdS space
color/kinematics duality, if present, implies nontrivial relations between partial correlation
functions.2

Despite steady effort and significant progress in several directions, a systematic formu-
lation of color/kinematics duality and of the double copy in curved space remains elusive.
Tree-level AdS boundary correlators are a natural starting point to study color/kinematics
duality. Their computation using Witten diagrams in position space is, however, cumber-
some. This prompted the development of other representations such as AdS momentum
space [77–82] and position-Mellin space [4, 83–89] and momentum-Mellin space [90, 91].
AdS momentum space might be expected to be the most natural representation when
searching for generalizations of amplitude relations as AdS boundary correlation func-
tions in momentum space contain flat-space scattering amplitudes [78]. However, imposing
color/kinematics duality on integrated, color-ordered momentum space correlators does not
seem to yield BCJ relations [92, 93]. In contrast to AdS momentum space, scalar Witten
diagrams in Mellin space are simple and yield correlation functions that exhibit colour-
kinematics duality [10, 94]. However, with some notable exceptions, see refs. [90, 95],
current state-of-the-art techniques in Mellin space often rely on using supersymmetry to
relate scalar correlators to those of spin-1 and spin-2 states [88, 96–99]. Furthermore,
while the Mellin space formalism does lead to a form of color/kinematics duality and dou-
ble copy [10, 94] for (maximally) supersymmetric theories, it does not immediately lead
to additional relations between color-ordered correlators. Our results, demonstrating that
such relations exist in a position representation of correlation functions, imply that they
should also have momentum- and Mellin-space realizations.

In this paper, we use the embedding space formalism [100–104] as a means to gener-
alize color/kinematics duality and amplitude relations to AdS space. In embedding space,

2Although we restrict ourselves to massless external states in this paper, we note that the double copy
also applies when external states are massive [69–76]. If the mass can be interpreted as momentum in
compactified dimensions, and therefore obeys momentum conservation, the massless double copy generalizes
without (many) subtleties. Notably, holographic theories in AdS generically include higher Kaluza-Klein
modes whose “mass” can be interpreted as momentum in a compactified space. Therefore, although these
higher-dimensional modes are massive and do not obey any analog of gauge invariance, they should also
obey color/kinematics duality in AdS.
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the action of conformal representations is linear and conformal symmetry takes on a role
analogous to that of momentum conservation in flat space. Using this formalism, we un-
cover novel relations for tree-level correlators in AdS space. We conjecture that certain
AdS boundary correlators can generically be expressed as (nonlocal) differential operators
acting on a single contact diagram, thus giving a differential representation of the cor-
relator and quantifying in what sense this differential operator exhibits color/kinematics
duality.3 We are partially motivated by the recent generalization of the ambitwistor string
to AdS3 × S3 [108], which provides an explicit example of color/kinematics duality in an
AdS space.4 Our conjectures are the natural generalization of the results in ref. [108]
to higher dimensions and the natural extension of the results of ref. [113] to non-scalar
theories.

Using our conjectural AdS generalization of color/kinematics duality, we derive novel
relations for AdS boundary correlators, which are schematically similar to flat space BCJ
relations with the suitable replacement of Mandelstam invariants with combinations of
conformal generators DAB

i , given in section 2:

sI →
(∑
i∈I

DAB
i

)2

. (1.2)

We construct the explicit color/kinematics-satisfying representation of the NLSM AdS
boundary correlators at four- and six-points and show that these correlators indeed obey
the AdS generalization of the BCJ amplitude relations. We also construct the four-point
gluon correlator of YM theory in AdS of general dimension and verify that, for a four-
dimensional boundary, it obeys these relations(

DAB
1 +DAB

2

)2
A (1, 2, 3, 4) =

(
DAB

1 +DAB
3

)2
A(1, 3, 2, 4) . (1.3)

We expect (but do not prove) that they are obeyed for general dimensions. The existence of
the relation (1.3) supports the existence of a representation for the AdS boundary correla-
tors that manifests the color/kinematics duality therein, although there is no proof for that
yet. Nevertheless, in section 3, we propose one possible realization of the color/kinematics
duality for AdS boundary correlators in terms of differential operators. We then explicitly
show that up to six points NLSM correlators can be arranged into this form.

A natural next step is to extend our proposal for color/kinematics duality to a double
copy relation for gauge theories. We consider a variety of proposals that appear to be
valid in different limits for three-point correlators. We first study a differential double
copy procedure that naturally generalizes our proposal for color/kinematics duality in
AdS, which seems to yield self-consistent results in AdS3. For higher dimensional AdS
spacetimes, we find that the differential double copy leads to a current conserving three-
point graviton correlator only if we supplement the YM with specific higher dimensional

3Amplitude representations that are similar in spirit are used in the double copy of celestial amplitudes
in flat space [105–107].

4In flat space, particular BCJ representations of a variety of theories can be derived from ambitwistor
string models [109–112].
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operators. We also consider other double copy procedures in position space and Mellin
space. We reproduce the result of ref. [114], giving a double copy-like relation for the
three-point Mellin amplitude without supersymmetry in the limit d → ∞. Furthermore,
we compare our results with the Mellin space double copy construction of ref. [94], which
gives super-graviton AdS boundary correlators on AdS5 × S5 in terms of super-gluon AdS
boundary correlators on AdS5×S3. We conclude with a heuristic discussion of double copy
procedures for various formulations of AdS boundary correlators in the high energy limit.

The paper is organized as follows. In section 2 we review properties of AdS boundary
correlators in embedding space. In section 3 we motivate and conjecture a color/kinematics
duality for tree level correlators in AdS, generalizing the BCJ representation of ref. [25].
We use our conjectural BCJ representation of correlators to find the AdS generalization
of BCJ amplitude relations. In section 4 we review the AdS Feynman rules in embedding
space for NLSM and YM. In section 5 we show that NLSM AdS boundary correlators
obey color/kinematics duality, verify the amplitudes relations and construct the manifest
color/kinematic-satisfying representation of the four- and six-point correlators. In section 6
we construct a differential representation of the on-shell and off-shell YM three-point cor-
relators; using them we construct the four-point correlator and confirm that it obeys AdS
BCJ relations. section 7 gives a brief discussion of the double copy in AdS space and
section 8 contains our conclusions. Appendices A and B include a short review of the
embedding space formalism and a review of D-functions and of the relations they obey.

Notation. We use A and A(α) to denote color-dressed AdS boundary correlators and
color-ordered partial AdS boundary correlators, respectively;M refers to the AdS boundary
correlators of uncolored theories, such as gravity. We will use the subscript “flat” when
referring to flat-space scattering amplitudes.

2 AdS boundary correlators in the embedding space

In this section, we review certain general properties of boundary correlators on AdSd+1
background. We are particularly interested in their embedding space form, since they
exhibit interesting properties that are analogous to those of flat space scattering amplitudes
in momentum space.

We write AdS boundary correlators as A(Pi, Zi), where Pi is a point on the conformal
boundary ∂AdSd+1 and Zi is a polarization vector. In the following, all the quantities
we discuss are given in the embedding space. If the external particles have spin, then the
AdS boundary correlator A is also a multilinear function in the polarization vector Zi. The
complete definitions of Pi and Zi, which are not necessary for the discussion here, are given
in appendix A. A boundary correlator A is a homogeneous function in both Pi and Zi,

A(λPi, Zi) = λ−∆iA(Pi, Zi) , A(Pi, λZi) = λliA(Pi, Zi) , (2.1)

where ∆i is the conformal weight of particle i and li is its spin. Note that the conformal
weight is defined as the negative of the scaling dimension. AdS boundary correlators are ex-
pected to be scalar quantities invariant under the action of the conformal group SO(d+1, 1),
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which is isomorphic to the Lorentz group of the embedding space. The conformal generator
acting on the i-th particle is

DAB
i = PAi

∂

∂Pi,B
− PBi

∂

∂Pi,A
+ ZAi

∂

∂Zi,B
− ZBi

∂

∂Zi,A
. (2.2)

Because the embedding space realizes the conformal transformations linearly, the conformal
Ward identity (CWI) capturing the conformal invariance of A is

n∑
i=1

DAB
i A = 0 . (2.3)

It resembles the momentum conservation of flat space amplitudes. For an external spinning
particle, we can peel off a polarization vector, such that

A = Zi,MAM . (2.4)

Written as an embedding space vector, AM is transverse to the conformal boundary
∂AdSd+1 if and only if

Pi,MAM = 0 . (2.5)

See appendix A for more details. Therefore, for A(Pi, Zi) to be an AdS boundary correlator,
it has to satisfy the transversality condition,

A(Pi, Zi)
∣∣∣
Zi→Pi

= 0 , (2.6)

which is analogous to the linearized gauge invariance of flat space amplitudes.
In flat space, momentum conservation leads to relations between Mandelstam variables,

for example, s + t + u = 0 for four-point massless kinematics. We now show how similar
relations among conformal generators arise for AdS boundary correlators. We first define
for convenience the inner product of conformal generators as

D2
ij ≡ Di ·Dj = ηACηBDD

AB
i DCD

j , D2
i ≡ Di ·Di . (2.7)

Clearly, D2
ij = D2

ji since Di commutes with Dj as they act on different variables. D2
i is

proportional to the quadratic Casimir operator of particle i,

−1
2D

2
i =

(
Pi ·

∂

∂Pi

)(
d+ Pi ·

∂

∂Pi

)
+
(
Zi ·

∂

∂Zi

)(
d− 2 + Zi ·

∂

∂Zi

)
+ 2

(
Zi ·

∂

∂Pi

)(
Pi ·

∂

∂Zi

)
(2.8)

∼= ∆i(∆i − d) + li(li + d− 2) .

When acting on an AdS boundary correlator, or more generally a conformal partial wave,
the second line of the above equation does not contribute due to transversality (2.6). We
use ∼= to denote “equivalent when acting on a conformal partial wave”. Therefore, we can
use the eigenvalue of D2

i to define the on-shell mass of particle i. A scalar particle is

– 5 –
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massless if ∆i = d while a vector particle is massless if ∆i = d − 1 (see section 4.3 for
further comments on this definition). Thus, massless scalar and vector correlators satisfy

D2
iA = 0 for all i . (2.9)

Massless vector correlators further satisfy the current conservation [104],

∂

∂Pi,M

[(
d

2 − 1 + Zi ·
∂

∂Zi

)
∂

∂ZMi
− 1

2Zi,M
∂2

∂Zi · ∂Zi

]
A = 0 . (2.10)

Eq. (2.10) assumes that the i-th particle has conformal weight ∆i = d − 2 + li. Notably,
current conservation for graviton boundary correlators requires ∆i = d, which leads to
−1

2D
2
i
∼= 2d. This is an exception to the naive definition of masslessness described above.

The massless condition and the CWI (2.3) together give rise to very simple relations
among conformal generators. As a simple example, we consider the four-point CWI,(

DAB
1 +DAB

2 +DAB
3 +DAB

4

)
A = 0 , (2.11)

from which we can derive

(D1 +D2)2A = −(D1 +D2) · (D3 +D4)A = (D3 +D4)2A . (2.12)

For massless AdS boundary correlators, we thus get

D2
12A = D2

34A , or D2
12
∼= D2

34 . (2.13)

Similarly, we can derive that

D2
12 +D2

13 +D2
23
∼= 0 , (2.14)

which is the AdS incarnation of the flat space relation s + t + u = 0. For correlators of
higher multiplicity, we define

D2
I ≡

1
2

(∑
a∈I

Da

)2

. (2.15)

Using a slight generalization of eq. (2.12), we can show that

D2
I
∼= D2

Ī
, (2.16)

where Ī is the complement of set I in the set of labels of all external particles. Furthermore,
we can show that the relations between massless on-shell Mandelstam variables can all be
realized as relations between various D2

I when acting on a conformal partial wave. One
can also prove that [113][

D2
I , D

2
I′

]
= 0 if

(
I ∩ I ′ = ∅

)
or
(
I ⊂ I ′

)
or
(
I ′ ⊂ I

)
. (2.17)

We will often be interested in understanding how the inverse of D2
I acts on conformal

correlators. We will show in the next section that the inverse of D2
I acting on a con-

tact diagram can be related to a bulk-bulk propagator in Witten diagram computations.
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However, one can understand how (D2
I )−1 acts on more generic conformal correlators by

decomposing the conformal correlator into conformal partial waves [115]. Conformal partial
waves are, by construction, eigenfunctions of D2

I . Therefore, since any conformal correlator
can be expanded as a linear combination of conformal partial waves, one can use such a
conformal partial wave decomposition to systematically understand how D2

I acts on any
conformal correlator. Conformal partial waves beyond four-point were recently considered
in refs. [116, 117].

Gauge invariance and on-shell kinematics are crucial for flat space amplitudes to have
additional structures, like color/kinematics duality, BCJ amplitude relations, and double
copy. Due to the properties listed above, we therefore intuitively expect that embedding
space is a promising stage to explore such hidden structures in AdS boundary correlators.

3 BCJ relations for AdS boundary correlators

In this section, we begin by discussing the cubic bi-adjoint scalar (BAS) theory in AdS
space. We then use the results we obtain to motivate a generalization of color/kinematics
duality and of the BCJ amplitudes relations for certain AdS boundary correlators.

3.1 Cubic bi-adjoint scalar in AdS

To motivate the BCJ amplitude relations in an AdS setup, we first consider the simplest
theory in AdS that could exhibit color/kinematics duality — cubic BAS, defined by the
Lagrangian

L = 1
2(∇φ)2 − g

6f
abcf̃a

′b′c′φaa
′
φbb
′
φcc
′
. (3.1)

The scalars transform in the bi-adjoint representation of SU(N) × SU(N ′). Perturbative
computations of amplitudes and of AdS boundary correlators involve summing cubic Feyn-
man and Witten diagrams respectively, dressed with appropriate color factors. We will
review a particular representation of the cubic BAS boundary correlators given in ref. [108]
for d = 2 and in ref. [113] for general d. We will first consider the four-point formula before
generalizing to the n-point case.

First, we posit and justify later that the four-point BAS AdS boundary correlator can
be represented as

ABAS =
(
CsC̃s
D2

12
+ CtC̃t

D2
23

+ CuC̃u
D2

13

)(
Γ(d)

2πd/2Γ(d/2 + 1)

)4

Dd,d,d,d , (3.2)

where the color factors are Cs = fa1a2xfxa3a4 , Ct = fa2a3xfxa1a4 , Cu = fa3a1xfxa2a4 and
similarly for C̃s,t,u. We define 1

D2
ij

as the inverse of the operator D2
ij . They act on Dd,d,d,d,

which is defined as

Dd,d,d,d =
∫
AdS

dX
4∏
i=1

1
(−2Pi ·X)d , (3.3)

and corresponds to the four-point scalar contact diagram. Since we are working with
external scalars, we can ignore the Z component of DAB

i . To justify the structure described

– 7 –
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above, we now show that the first term in eq. (3.2) is equivalent to an s-channel Witten
diagram. We first write the action of 1

D2
12

on Dd,d,d,d as

1
D2

12

∫
AdS

dX
4∏
i=1

1
(−2Pi ·X)d

=
∫
AdS

dX
1

(−2P3 ·X)d
1

(−2P4 ·X)d
1
�X

[
1

(−2P1 ·X)d
1

(−2P2 ·X)d

]
, (3.4)

where �X ≡ 1
2D

2
X can be identified with the AdS Laplacian,

�X = 1
2D

2
X = −∇2

AdS , (3.5)

and the measure is
∫
AdS dX =

∫ dzddx
zd+1 in the Poincaré coordinates. See appendix A for more

details. Eq. (3.4) can be proved by noticing that the action of DAB
X and DAB

i on the bulk-
boundary propagator 1

(−2Pi·X)d are the same. Getting the Witten diagram representation
of the right-hand side of eq. (3.4) now only involves some straightforward algebra:∫

AdS
dX

1
(−2P3 ·X)d

1
(−2P4 ·X)d

1
�X

[
1

(−2P1 ·X)d
1

(−2P2 ·X)d

]

=
∫
AdS

dX1dX2
1

(−2P1 ·X1)d
1

(−2P2 ·X1)d
1

(−2P3 ·X2)d
1

(−2P4 ·X2)d
[ 1
�X1

δd+1(X1−X2)
]

=
∫
AdS

dX1dX2
1

(−2P1 ·X1)d
1

(−2P2 ·X1)dG(X1,X2) 1
(−2P3 ·X2)d

1
(−2P4 ·X2)d . (3.6)

We have used the fact that the bulk-bulk propagator can be viewed as the inverse of the
Laplacian,

�X1G(X1, X2) = δd+1(X1 −X2) ⇒ G(X1, X2) = 1
�X1

δd+1(X1 −X2) , (3.7)

to obtain the last line, which is nothing but an s-channel Witten diagram. Analogous
manipulations show that the other two terms in eq. (3.2) are equivalent to t-channel and
u-channel Witten diagrams.

The above calculation can be easily generalized to higher points. For example, the
following expression corresponds to a five-point Witten diagram [113],

5

4
3

2

1

1
D2

34

1
D2

12

=
( Γ (d)

2πd/2Γ (d/2 + 1)

)5 1
D2

12D
2
34
Dd,d,d,d,d . (3.8)

The n-point color-dressed BAS correlator can then be written as

ABAS =
( Γ(d)

2πd/2Γ(d/2 + 1)

)n ∑
cubic g

C(g|αg)C̃(g|αg)
∏
I∈g

1
D2
I

Dd,d,...,d︸ ︷︷ ︸
n

, (3.9)
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where the sum runs over all cubic graphs, and C(g|αg) and C̃(g|αg) are the color factors
associated with the cubic graph g. They are simply contractions of structure constants,

C(g|α) =
∏
v

favbvcv , (3.10)

and the index contraction is implicitly assumed. We introduce an ordering αg for each
graph g to specify the orderings of the adjoint indices in the product in eq. (3.10). This
fixed a sign ambiguity in the definition. We have to choose the same αg for both C and C̃.
Of course, the boundary correlator does not depend on this choice. We will use eq. (3.9)
to motivate the AdS analogs of many flat-space formulas.

3.2 Color/kinematics duality for flat space amplitudes

We now take a slight detour and review the derivation of the flat-space BCJ amplitudes
relations before generalizing them to AdS boundary correlators. In flat space, amplitudes
that satisfy color/kinematics duality can be written as a sum over cubic graphs [25],

Aflat =
∑

cubic g
C(g|αg)N(g|αg)

∏
I∈g

1
sI

. (3.11)

where both the kinematic numerators (sometimes referred to as BCJ numerators) and
color factors obey Jacobi-like relations corresponding to triplets of cubic graphs as shown
in figure 1,

N (gs|I1I2I3I4) +N (gt|I1I4I2I3) +N (gu|I1I3I4I2) = 0 ,
C (gs|I1I2I3I4) + C (gt|I1I4I2I3) + C (gu|I1I3I4I2) = 0 .

(3.12)

For cubic BAS, the numerator N(g|αg) is simply another the color factor C̃(g|αg) so that
the Jacobi identity trivially holds. We can expand the color factors in eq. (3.11) into the
(n− 2)! dimensional Del Duca-Dixon-Maltoni (DDM) basis, consisting of the color factors
of the half ladder graphs [118],

C1,α(2,3,...,n−1),n ≡ C


1 n

α(2) α(3) α(n−1)
· · ·

∣∣∣∣1, α, n


= fa1aα(2)x2fx2aα(3)x3 · · · fxn−2aα(n−1)an . (3.13)

As an example, we give the decomposition of the following five-point color factor explicitly,

C


1 5

2 4
3

∣∣∣∣∣1, 2, 3, 4, 5
 = fa1xa5fxa2yfya3a4

= C1,2,3,4,5 − C1,2,4,3,5 − C1,3,4,2,5 + C1,4,3,2,5 . (3.14)

The decomposition of both color factors in the BAS amplitude leads to the double (color-
ordered) partial amplitude denoted as m,

ABAS
flat =

∑
α,β∈Sn−2

C1,α(2,3,...,n−1),nm(1, α, n|1, β, n)C̃1,β(2,3,...,n−1),n . (3.15)
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sI1I2

I1

I2 I3

I4
gs

sI1I4

I1

I4 I2

I3
gt

sI1I3

I1

I3 I4

I2
gu

Figure 1: A triplet of three cubic tree graphs that differ by one propagator.

In general, m(α|β) receives contributions from all cubic Feynman diagrams that are planar
for both permutations α and β. Here we give a few low multiplicity examples,

m (1, 2, 3, 4|1, 2, 3, 4) = 1
s12

+ 1
s23

, m (1, 3, 2, 4|1, 2, 3, 4) = − 1
s23

,

m (1, 2, 3, 4, 5|1, 2, 3, 4, 5) = 1
s12s34

+ 1
s12s45

+ 1
s23s45

+ 1
s15s23

+ 1
s15s34

, (3.16)

m (1, 3, 2, 4, 5|1, 2, 3, 4, 5) = − 1
s23

( 1
s45

+ 1
s15

)
, m (1, 3, 4, 2, 5|1, 2, 3, 4, 5) = − 1

s15s34
,

and the full definition of m(α|β) can be found in ref. [119]. For a generic amplitude that
exhibits color/kinematics duality, the DDM basis decomposition gives

Aflat =
∑

α∈Sn−2

C1,α(2,3,...,n−1),nAflat(1, α, n) , (3.17)

where Aflat(1, α, n) is the (color-ordered) partial amplitude given by

Aflat(1, α, n) =
∑

β∈Sn−2

m(1, α, n|1, β, n)N1,β(2,3,...,n−1),n . (3.18)

Here N1,β,n are DDM-basis numerators associated with half ladder graphs as in eq. (3.13).
They also form a basis for all the BCJ numerators. As a consequence of the color structure,
we can use the Kleiss-Kuijf relation [120]

Aflat(1, α, n, β) = (−1)|β|
∑

σ∈α�βT
Aflat(1, σ, n) (3.19)

and cyclicity to expand any partial amplitudes in terms of the DDM basis ones.
We note that the DDM basis is minimal for color factors, but over-complete for partial

amplitudes on the support of on-shell massless kinematics. This is reflected by the fact
that the rank of m(α|β), as a matrix in the DDM basis, is only (n−3)!. Crucially, the null
vectors of m(α|β) translate to BCJ amplitude relations for partial amplitudes,∑

β∈Sn−2

v(β)m(1, β, n|α) = 0 −→
∑

β∈Sn−2

v(β)Aflat(1, β, n) = 0 . (3.20)

For example, at four points the m(α|β) matrix,[
m(1, 2, 3, 4|1, 2, 3, 4) m(1, 2, 3, 4|1, 3, 2, 4)
m(1, 3, 2, 4|1, 2, 3, 4) m(1, 3, 2, 4|1, 3, 2, 4)

]
=
[ 1
s12

+ 1
s23

− 1
s23

− 1
s23

1
s13

+ 1
s23

]
, (3.21)
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has a null vector v = [s12, −s13], which leads to the BCJ amplitude relation

s12Aflat(1, 2, 3, 4) = s13Aflat(1, 3, 2, 4) . (3.22)

More generally, the fundamental BCJ relations can be written as [25]

0 = s12Aflat (1, 2, . . . , n) +
n−1∑
j=3

s12 +
j∑

k=3
s2j

Aflat (1, 3, . . . , j, 2, j + 1, . . . , n) . (3.23)

3.3 Color/kinematics duality for AdS boundary correlators

To define an extension of color/kinematics duality to field theories in AdS space, we need to
first assume a suitably general form for their boundary correlators. Motivated by eq. (3.9),
a natural generalization of eq. (3.11) is that an AdS boundary correlator A can be cast
into the form

A =
∑

cubic g
C(g|αg)

∏
I∈g

1
D2
I

 N̂(g|αg)Dd,d,...,d︸ ︷︷ ︸
n

, (3.24)

where the numerators N̂(g|αg) are now differential operator-valued, act directly on the
D-functions and absorb the normalization factors of the bulk-boundary propagators. Note
that we have placed the product of (D2

I )−1 to the left of the kinematic numerators in
eq. (3.24) for reasons that will be clarified shortly. A more general form of the boundary
correlator replaces the factor N̂(g|αg)Dd,d,...,d by some more general structure N(g|αg)
which may perhaps be written as a linear combination of differential operators acting on
D functions.

With the definition (3.24), the kinematic Jacobi relations are taken to be the operator
relations,

N̂(gs|I1I2I3I4) + N̂(gt|I1I4I2I3) + N̂(gu|I1I3I4I2) = 0 . (3.25)

With the more general form of correlators, the kinematic Jacobi relations are functional
relations, in close similarity with flat space scattering amplitudes. We will comment briefly
on its consequences at the end of section 3.4.

Kinematic numerators as differential operators have already appeared in the study of
celestial amplitudes in flat space [105–107], so it should not be surprising that it may also
happen in AdS space. In this paper, the representation (3.24) is realized manifestly for the
NLSM at four and six points.

The kinematic Jacobi relation (3.25) can be relaxed so that the combination of nu-
merator factors on the right-hand side is required to vanish only when acting on functions
of the type D∆1,∆2,..., as it is the case when the numerator factors are assembled into a
correlator. While we have not explicitly verified, it is natural to expect that only this
weaker relation is required by the gauge invariance of eq. (3.24). There is no analog of
this weaker relation for tree-level flat space amplitudes in momentum space; at loop level,
however, this is analogous to the requirement that the kinematic Jacobi relations hold only
up to total derivatives.
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The leap from eq. (3.9) to eq. (3.24) is partially motivated by a recent generalization of
ambitwistor string models to AdS3 × S3 [108]. These models can be interpreted as taking
the infinite tension limit of a WZW model with AdS3×S3 target space. For a non-abelian
spin-1 theory on AdS3×S3, the ambitwistor model in ref. [108] provides a CHY-like formula
for the differential representation of A(α) in a YM-Chern-Simons theory. We expect that
these formulas for the differential correlator simplify to eq. (3.24), just as in flat space.
Furthermore, we tentatively expect that the AdS3 × S3 ambitwistor model generalizes to
higher dimensions, at least for the YM sector. Proving these expectations, however, is
beyond the scope of this paper. Therefore, we simply take the AdS3 × S3 computation
as inspiration and conjecture that eqs. (3.12) and (3.24) hold for certain single-colored
theories in higher dimensional AdS.

Before we proceed, let us note that our discussion has been restricted to colored theories
in AdS. There is a natural generalization of eq. (3.24) to gravitational theories which will
be discussed in section 7.

3.4 BCJ relations for AdS boundary correlators

We now demonstrate that the color/kinematics dual form (3.24) of the AdS boundary
correlators naturally lead to additional relations among the AdS partial correlators. First,
we use the color Jacobi identity (3.12) to expand the AdS correlator in the DDM basis,

A =
∑

α∈Sn−2

C1,α(2,3,...,n−1),nA(1, α, n) , (3.26)

where A(1, β, n) are the AdS partial correlators. We then perform the same expansion for
the kinematic numerators, N̂(g|α), now finding

A(1, α, n) =
∑

β∈Sn−2

m̂(1, α, n|1, β, n)N̂1,β(2,3,...,n−1),nDd,d,...,d︸ ︷︷ ︸
n

, (3.27)

where m̂(α|β) is the double partial correlator of BAS obtained by simply replace sI by
D2
I in the flat space amplitude m(α|β). We note that D2

I and D2
I′ always commute if

they belong to the same Feynman diagram since I and I ′ always satisfy the condition in
eq. (2.17). The DDM basis partial correlators form a basis for all partial correlators due
to the Kleiss-Kuijf relation (3.19) and cyclicity, which depends on color Lie algebra only.

Similar to flat space amplitudes, eq. (3.27) yields relations among the partial correla-
tors, since the null vectors of m̂(α|β) are orthogonal to the vector of partial correlators,

∑
β∈Sn−2

v̂(β)m̂(1, β, n|α) = 0 −→
∑

β∈Sn−2

v̂(β)A(1, β, n) = 0 , (3.28)

cf. eq. (3.20). The null vectors v̂(β) in general are themselves differential operators. If v(β)
is a null vector of m(α|β) that is first order in Mandelstam variables, then it is not difficult
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to see that v̂(β) is still a null vector of m̂(α|β) after the replacement sI → D2
I .5 We can

then conjecture that the rank of m̂(α|β) is still (n − 3)! on the support of CWI (2.3). In
particular, it leads to the conclusion that the partial correlators of the form (3.27) satisfy
the fundamental BCJ relations

0 = D2
12A (1, 2, . . . , n) +

n−1∑
j=3

D2
12 +

j∑
k=3

D2
2j

A (1, 3, . . . , j, 2, j + 1, . . . , n) , (3.29)

which may formally be obtained from eq. (3.23) through the replacement sI → D2
I .

To better understand the above statement, we now consider some explicit examples.
From eq. (3.27), the four-point DDM basis partial correlators are given by

[
A(1, 2, 3, 4)
A(1, 3, 2, 4)

]
=

 1
D2

12
+ 1

D2
23

− 1
D2

23

− 1
D2

23

1
D2

13
+ 1

D2
23


︸ ︷︷ ︸

m̂

[
N̂1,2,3,4
N̂1,3,2,4

]
Dd,d,d,d . (3.30)

We would like to show that

v̂ =
[
D2

12
−D2

13

]
(3.31)

annihilates the vector of partial correlators when acted from the left. To this end, it is
sufficient to show that v̂ annihilates the m̂,

D2
12m̂(1, 2, 3, 4|α)−D2

13m̂(1, 3, 2, 4|α) ∼= 0 for α = (1, 2, 3, 4) and (1, 3, 2, 4) , (3.32)

which can be checked explicitly. For example, fixing α = (1, 2, 3, 4), we get

D2
12m̂(1, 2, 3, 4|1, 2, 3, 4)−D2

13m̂(1, 3, 2, 4|1, 2, 3, 4)

∼= D2
12

( 1
D2

12
+ 1
D2

23

)
− (D2

23 +D2
12) 1

D2
23

= 1 +D2
12

1
D2

23
− 1−D2

12
1
D2

13
= 0 . (3.33)

The expressions for m̂ are obtained from eq. (3.16) through the replacement sij → D2
ij , and

using the “momentum conservation” identity (2.14). One can repeat the above exercise
to show that eq. (3.32) holds for α = (1, 3, 2, 4). Therefore, taking the dot product of
eq. (3.31) and eq. (3.30) yields

D2
12A(1, 2, 3, 4) = D2

13A(1, 3, 2, 4) . (3.34)

As one of the main results of this paper, we will show that the four-point partial correlators
of NLSM and of YM theory satisfy this relation.

5The reasoning goes as follows. In flat space, proving BCJ relations requires using on-shell identities
to cancel certain numerators with propagators. Now for AdS correlators, CWI works the same as on-shell
identites, and cancellation between numerators and denominators will not be affected by non-commutativity
since for each term every D2

I in the denominator commutes and there is only a single term in the numerator.
Of course, finding more generic null vectors is difficult.
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For our second example we consider the five-point BCJ relation

0 = D2
12A (1, 2, 3, 4, 5) +

(
D2

12 +D2
23

)
A (1, 3, 2, 4, 5) .

+
(
D2

12 +D2
23 +D2

24

)
A (1, 3, 4, 2, 5) . (3.35)

According to eq. (3.27), it suffices to prove that

0 ∼= D2
12m̂ (1, 2, 3, 4, 5|1, α, 5) +

(
D2

12 +D2
23

)
m̂ (1, 3, 2, 4, 5|1, α, 5)

+
(
D2

12 +D2
23 +D2

24

)
m̂ (1, 3, 4, 2, 5|1, α, 5)

(3.36)

for all α ∈ S3. Here we choose α = (2, 3, 4) such that the relevant double partial correlators
are all given in eq. (3.16). It is now straightforward to show that

D2
12m̂ (1, 2, 3, 4, 5|1, 2, 3, 4, 5) +

(
D2

12 +D2
23

)
m̂ (1, 3, 2, 4, 5|1, 2, 3, 4, 5)

+
(
D2

12 +D2
23 +D2

24

)
m̂ (1, 3, 4, 2, 5|1, 2, 3, 4, 5) (3.37)

∼= D2
12

( 1
D2

12D
2
34

+ 1
D2

12D
2
45

+ 1
D2

45D
2
23

+ 1
D2

23D
2
51

+ 1
D2

15D
2
34

)
−
(
D2

12 +D2
23

) 1
D2

23

( 1
D2

45
+ 1
D2

15

)
−
(
D2

12 +D2
15 −D2

34

) 1
D2

15D
2
34

= 0 ,

where we have also used D2
23 + D2

24 + D2
34
∼= D2

234
∼= D2

15 for the conformal generators on
the second line.

Before proceeding, we note that while the AdS boundary correlators of the form (3.24)
naturally give rise to the BCJ relations (3.29), the inverse does not hold. In other words,
color/kinematics duality in the AdS boundary correlators might have a different manifes-
tation than eq. (3.24). For example, at four-points, the following correlator,

A = fa1a2xfa3a4x

D2
12

Ns(Zi, Pi) + fa1a4xfa2a3x

D2
23

Nt(Zi, Pi) + fa1a3xfa4a2x

D2
13

Nu(Zi, Pi) , (3.38)

where
Ns(Zi, Pi) +Nt(Zi, Pi) +Nu(Zi, Pi) = 0 , (3.39)

still leads to eq. (3.34). However, eq. (3.38) is not equivalent to eq. (3.24) as Ns,t,u need not
necessarily be written in the form N̂s,t,uDd,d,d,d. In practice, it is easier to verify relations
like eq. (3.34) than to directly construct kinematic numerators. While we have argued for
the form (3.24), it is nevertheless important to keep an open mind.

4 Vertex rules from embedding space action

By manifesting all of its symmetries, the embedding space formalism has proven an im-
portant framework for organizing the results of calculations in AdS spaces of various di-
mensions. While the translation of contact term Feynman graphs between AdS and the
embedding space is straightforward, it becomes less so for exchange diagrams of vector and
tensor fields.
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In this section, we discuss an action-based approach to the embedding space Feynman
rules. We will construct actions for the NLSM and YM theory in embedding space from
which vertices can be extracted in the usual way and used for Witten-diagram calculations.
While we do not spell it out, Einstein’s gravity has a similar (though slightly more involved)
presentation. In addition, we will review the split-representation of the propagators and
an algorithm for computing n-point AdS boundary correlators as explicit polynomials of
Zi, Pi and D-functions.

Those already familiar with the embedding space formalism, and its subtleties, may
skip this section.

4.1 Nonlinear sigma model

The action for the nonlinear sigma model in a curved space with metric g is

LNLSM = −Tr
(
U−1∇µU

) (
U−1∇µU

)
(4.1)

with U an element in some group G and ∇ is (formally) the gravitational covariant deriva-
tive. In AdS embedding space, the action remains essentially unchanged, with the exception
of the metric. While the embedding space is flat, to ensure that the metric reduces to the
desired one, it is necessary to choose

GAB = ηAB − XAXB

X2 , (4.2)

see refs. [121–123] and appendix A. The Feynman rules depend on the parametrization of
the group element U ; with the standard exponential parametrization, U = exp(iφata) with
real fields φ, and generators ta obeying [ta, tb] = ifabctc and Tr[tatb] = 1

2δ
ab. The relevant

Lagrangian to sixth order in fields is

LNLSM = 1
2G

AB∂Aφa∂Bφbδ
ab + 1

24G
ABfa1a2xfa3a4xφa1 (∂Aφa2) (∂Bφa3)φa4

+ 1
720G

ABfa1a2xfxa3yfa4a5zfza6yφa1 (∂Aφa2)φa3φa4 (∂Bφa5)φa6 +O
(
φ8
)
,

(4.3)

For this choice of fields, the Lagrangian contains no terms with an odd number of fields,
so all odd-point amplitudes vanish identically.6 The four- and six-point vertices that enter
the Feynman rules can be read off from eq. (4.3). In addition to the vertices, the bulk-
boundary and bulk-bulk propagators are necessary to calculate generic correlators. In terms
of the embedding space coordinates, the scalar equation of motion on the AdS background
X2 = −1 is given by

∂A
(
GAB∂Bφ

)
−∆ (∆− d)φ = J , (4.4)

6This holds, of course, also in flat space where all odd-point amplitudes also vanish identically. In flat
space we may choose nonvanishing color-kinematics-satisfying numerators [124]. While we will not discuss
this here, we expect that the same is true in AdS space.

– 15 –



J
H
E
P
1
0
(
2
0
2
1
)
1
4
1

where J corresponds to scalar source terms. From eq. (4.4), the scalar bulk-boundary
propagator is7

E∆(Pk, X) = N∆
(−2Pk ·X)∆ , N∆ = Γ(∆)

2πd/2Γ(∆− d/2 + 1)
, (4.5)

The assumption that z ≥ 0 implies X ·P ≤ 0. Another solution is the bulk-bulk propagator,
which we write using the split representation

G∆(X,Y ) =
∫ i∞

−i∞

dc

2πif∆(c)Ωc(X,Y ) (4.6)

where

Ωc(X,Y ) = −2c2
∫
∂AdS

dQEd/2+c(Q,X)Ed/2−c(Q,Y )

f∆ = 1
(∆− d/2)2 − c2 .

(4.7)

The bulk-bulk propagator is normalized such that[
∂A
(
GAB∂B

)
−∆ (∆− d)

]
G∆ (X,Y ) = −δd+1 (X,Y ) . (4.8)

Physically, the split representation corresponds to a decomposition of the AdS bulk-bulk
propagator in terms of AdS harmonic functions, Ωc(X,Y ), which are eigenfunctions of
the AdS Laplacian that are divergence free. It is easy to check that eq. (4.6) is the bulk
propagator by using that eq. (4.5) is the bulk-boundary propagator and an identity that
decomposes the AdS delta function into AdS harmonic functions. The crucial insight of
the split representation is that the AdS harmonic functions can be represented as products
of bulk-boundary propagators integrated over the boundary. Therefore, the split represen-
tation allows us to sew three-point correlators together in a manner reminiscent of BCFW
recursions in flat space.

4.2 Yang-Mills

We now turn to Yang-Mills, a theory of massless spin-1 states in AdS. The Lagrangian is
given by

LYM = −1
4F

a
µνF

a,µν (4.9)

where the indices are contracted with the AdS metric, F aµν = ∇µAaν −∇νAaµ − gfabcAbµAcν
and, as before, ∇ is the gravitational covariant derivative. Similiar to the NLSM, the AdS
embedding of eq. (4.9) is essentially unchanged. Under the Lorentz gauge, it is given by

L = −1
2G

ABGCD∂AA
a
C∂BA

a
D + gfabcGABGCD(∂AAaC)AbBAcD (4.10)

− g2

4 G
ABGCDfabxfxcdAaAA

b
CA

c
BA

d
D , (4.11)

7We follow here the normalization in [85, 86], which is slightly different from that of [125], for the scalar
bulk-boundary propagator. Together with the normalization for the vector-field bulk-boundary propagator
in eq. (4.13), they are convenient to simplify certain overall factors for d 6= 2 in later sections.
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from which we can read off the three-point and four-point vertices in the embedding space.
The equations of motion for the spin-1 state are(

∇2 −∆ (∆− d) + 1
)
Aa,A = Ja,A (4.12)

where Ja,A corresponds to vector source terms. From eq. (4.12), the bulk-boundary prop-
agator is

EMA
∆ (P,X) =

(
ηMA − XMPA

P ·X

)
N∆,1

(−2P ·X)∆ , N∆,1 = ∆
∆− 1N∆ , (4.13)

which is well defined on the AdS hypersurface because EMA
∆ XA = 0 and PME

MA
∆ = 0.

Crucially, we can write eq. (4.13) in terms of the scalar bulk-boundary propagator using a
differential operator, DMA:

EMA
∆ = ∆

∆− 1D
MAE∆, where DMA

∆ = ηMA + 1
∆PA

∂

∂PM
. (4.14)

Another solution to the equations of motion is the bulk-bulk propagator, which we again
write using the split-representation,

GAB∆ (X,Y ) =
∫ i∞

−i∞

dc

2πif∆(c)ΩAB
c (X,Y ) (4.15)

where f∆ is the same as for a scalar field and

ΩAB
c (X,Y ) = −2c2

∫
∂AdS

dQηMNE
MA
d/2+c(Q,X)ENBd/2−c(Q,Y ) (4.16)

Similar to the scalar split representation, the vector split representation also corresponds
to a decomposition of the bulk-bulk propagator in terms of spin-1 AdS harmonic functions,
ΩAB
c (X,Y ), which is well defined in the bulk embedding because XAΩAB

c (X,Y ) = 0 and
ΩAB
c (X,Y )YB = 0. The same property is also satisfied by GAB∆ . Using eqs. (4.14) and (4.15)

in the evaluation of position space correlators prevents the appearance of uncontracted
bulk integration variables in the AdS boundary correlators and will allow us to write the
correlator manifestly in terms of Zi, Pi and D-functions.

4.3 On-shell and off-shell correlators

As it is well-known, field equations in AdS space generically exhibit two solutions with
distinct asymptotics near the boundary,

φ (z, x) = φ0
(
z∆0 + . . .

)
+ φ1

(
z∆1 + . . .

)
, (4.17)

where ∆0 and ∆1 are the smaller and larger solutions to a second-order equation which
relates the SO(d + 1, 1) quantum numbers of the field and its AdS mass term, respec-
tively. They are distinguished by the fact that a solution with φ0 asymptotics is not
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normalizable near the boundary while a solution with φ1 asymptotics is normalizable,∫
AdS d

dx
∫

0 dz
√
g|φ|2 <∞.8

For scalar fields, the traditional definition of AdS mass is related to the conformal
weight by the formula

∆(∆− d) = m2 . (4.18)

Therefore, for a massless scalar, such as the fields of the NLSM, we get

∆1 = ∆ = d , ∆0 = d−∆ = 0 . (4.19)

A similar consideration for vectors and gravitons in the bulk yields ∆ = d− 1 and ∆ = d

respectively [2, 3]. It is worth mentioning that there is no invariant meaning to the AdS
mass because fields with the same properties and belonging to the same multiplet have
different AdS energies [127]. A possible definition of massless fields in AdS is that they
occur in the tensor product of two doubleton multiplets, which correspond to massless
conformal fields on the boundary [128]; the mass can then be interpreted as a suitable
shift of the corresponding quadratic Casimir of SO(d + 1, 1).9 For N = 8 supergravity
in AdS5 × S5, the corresponding operators are conserved currents in N = 4 sYM theory,
belonging to the stress tensor multiplet.

The leading field asymptotics on a surface parallel to the boundary at z = ε serves as
a source for gauge-invariant operators of dimension ∆, as

Sboundary ∼
∫
AdS

ddx
√
−γεφ(ε, x)O(ε, x) =

∫
AdS

ddxφ0(x)ε−∆O(ε, x) , (4.20)

and O(ε, x) = ε∆O(x) render this term independent of ε. Thus, by differentiating the
effective action with respect to φ0, one evaluates [3] correlation functions of gauge-invariant
operators in the boundary theory. From the perspective of the bulk theory, they can be
interpreted as correlation functions of the fields with these prescribed asymptotics; we
shall refer to them as on-shell correlation functions. By analogy with the case of flat space
correlation functions with external states not obeying the free equations of motion, we will
refer to bulk correlation functions whose asymptotics are not φ0 as off-shell.

In general, off-shell correlation functions do not have an immediate boundary interpre-
tation for specific values of the conformal weight. However, they feature prominently in the
split representation of the bulk-bulk propagator. In that form, the propagator is written
as a sum of products of bulk-boundary propagators, see e.g. eq. (4.6), and thus higher-
point correlators are written as sums of products of lower-point correlators which have
at least one leg off-shell in the sense defined above. For scalar fields, one bulk-boundary
propagator factor corresponds to the conformal weight ∆ of the scalar field while the other
corresponds to a weight d − ∆ associated to the normalizable mode of the same scalar
field. While the former is a non-normalizable mode and thus leads to an on-shell field, the

8Technically, if ∆ lies in the range (d − 2)/2 < ∆ < d/2, either φ0 or φ1 can correspond to the source
term. The choice between φ0 and φ1 as the source term simply corresponds to how there are two different
quantizations of the bulk scalar field [126].

9We thank Murat Günaydin for discussion on this point.
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latter is a normalizable mode of the same field; its usual interpretation is that it defines a
particular state in the boundary theory so the correlator with one such insertion may be
interpreted as a term in the perturbative expansion of an on-shell correlator in that state.
A similar interpretation should hold for correlators with more than one off-shell leg, except
that the relevant state corresponds to turning on normalizable modes of several fields. The
bulk-bulk propagators of higher-spin fields have support on bulk-boundary propagators
with AdS energies beyond those corresponding to the normalizable and non-normalizable
modes. They have a less straightforward boundary interpretation, but may perhaps be
understood as needed to obtain a representation of the (d+ 1)-dimensional rotation group.

In flat space, field redefinitions change the correlation functions of fundamental fields,
but these changes are projected out of S-matrix elements by the LSZ reduction. It is
interesting to ask whether our definition of on-shellness has similar properties. One might
expect this to be the case in light of the holographic duality between on-shell correlators
and gauge theory correlation functions of gauge-invariant operators. Indeed, the Schwinger-
Dyson equation10

〈 δS

δφ(x)φ(x1) . . . φ(xn)
〉

=
n∑
i=1

δ(x− xi)〈φ(x1) . . . φ̂(xi) . . . φ(xn)〉 , (4.21)

holds in AdS space (and more generally in curved space); since the field sources at xi,
i = 1, . . . , n are placed on the boundary while the argument of δS

δφ(x) is a bulk point,
they cannot coincide so the right-hand side vanishes identically implying that AdS on-
shell correlation functions in the sense defined above are invariant under suitable field
redefinitions.11

The Schwinger-Dyson equation, however, does not hold for off-shell correlation func-
tions. This is easiest to see by looking at a free field theory for n = 1; the off-shell
two-point function of as defined above does not correlate the conformal weight with the
AdS Lagrangian mass term while δS

δφ(x) depends on the AdS Lagrangian mass term, so
〈 δS
δφ(x)φ(x1)〉 cannot be proportional to δ(x − x1). This is consistent with the earlier ob-
servation that off-shell correlation functions do not have a straightforward gauge theory
interpretation. It is interesting that this dependence on the choice of fields cancels out
when off-shell correlators are assembled into on-shell ones.

It has been recently shown that it is interesting to consider varying the mass of bulk
fields. For example, one can extract the proper time from the event horizon to a black hole
singularity by studying how thermal one point functions vary with the mass of the bulk

10Here the hat signifies that the field at that position is absent from the correlation function and φ denotes
a generic field, not necessarily a scalar.

11Similar to field redefinitions that leave invariant the S matrix of a flat-space field theory, field redefi-
nitions that leave correlators invariant should not change quadratic term of bulk fields and vanish at the
boundary. For example, φi 7→ φ′i =

∑
j
aijφj + nonlinear yields a sum of the original correlation func-

tions weighted by coefficients aij . This may be easily understood by noticing that the boundary operators
sourced by the fields φ′ are linear combinations of those sourced by the fields φ. More generally, it is not
difficult to see that, if a nonlinear field redefinition do not change the boundary conditions of a field, then
the nonlinear terms are subleading at the boundary and therefore do not change the on-shell correlators.
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field [129], allowing one to probe the bulk geometry of thermal states beyond the quantum
entanglement wedge. Furthermore, analytic continuations in spin and in ∆ are famously
connected [7, 8] to light ray operators and the OPE inversion formula. Further discussion
is beyond the scope of this paper.

5 NLSM in AdS

It is not difficult to evaluate the four-point boundary correlator of the NLSM fields in AdS
using the embedding space action discussed in the previous section. We will then verify
that they obey the AdS BCJ relations discussed in section 3.4 and put them into a form
that manifests color/kinematics duality.

As we will see, the X dependence in the n-point vertex following from the presence of
the projector (4.2) in eq. (4.3) does not contribute to the on-shell n-point contract-term
contributions to n-point functions. It however becomes important in the contributions of
n-point vertices to higher multiplicity correlators or even in their contribution to at the
same-multiplicity correlators if at least one of the external lines is taken off-shell.

5.1 NLSM correlators from AdS vertices

The four-point Witten diagram for the NLSM in AdS is straightforward to evaluate using
the four-point vertex from eq. (4.3) and the bulk-boundary propagator in eq. (4.5). The
result contains three related color structures,

Aa1a2a3a4
∆∆∆∆ = fa1a2xfxa3a4A1,2,3,4 + fa2a3xfxa1a4A2,3,1,4 + fa3a1xfxa2a4A3,1,2,4 , (5.1)

A1,2,3,4 = −N
4
∆

6

∫
AdS

dX
4∏
i=1

1
(−2Pi ·X)∆

(
ηAB +XAXB

)
× 2∆2

(
P1,A

(−2P1 ·X) −
P2,A

(−2P2 ·X)

)(
P3,B

(−2P3 ·X) −
P4,B

(−2P4 ·X)

)
, (5.2)

where A2,3,1,4 and A3,1,2,4 can be obtained from A1,2,3,4 by an index relabeling. Here we
also assume that all four external scalars have the same weight ∆. The color-ordered partial
correlators can then be evaluated in the usual way, for example,

A (1∆, 2∆, 3∆, 4∆) = A1,2,3,4 −A2,3,1,4 ,

A (1∆, 3∆, 2∆, 4∆) = A2,3,1,4 −A3,1,2,4 , etc. (5.3)

and, as is the case for all theories whose color factor only contains structure constants fabc,
they obey the Kleiss-Kuijf relation (3.19).

Using that the X-dependent factors in GAB drop out, the integral can be expressed in
terms of D-functions:

A1,2,3,4 = ∆2N 4
∆

6
(
P13D∆+1,∆,∆+1,∆ + P24D∆,∆+1,∆,∆+1

− P23D∆,∆+1,∆+1,∆ − P14D∆+1,∆,∆,∆+1
)
, (5.4)
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where Pij = −2Pi · Pj . The other two coefficients are obtained by permuting the labels
of external lines, making sure to appropriately permute the indices of the D-functions.
However, a form that is more useful for our purpose of exploring relations between partial
correlators,

A1,2,3,4 = N
4
∆

24
(
D2

13 +D2
24 −D2

23 −D2
14

)
D∆,∆,∆,∆ , (5.5)

may be derived using the integral representation of the D-functions as well as the defini-
tion (2.7) of the D2

ij operators. Using eq. (2.16), the position-dependent coefficients of the
correlator (5.1) become

A1,2,3,4 = N
4
∆

12
(
D2

13 −D2
23

)
D∆,∆,∆,∆ , (5.6a)

A2,3,1,4 = N
4
∆

12
(
D2

12 −D2
13

)
D∆,∆,∆,∆ , (5.6b)

A3,1,2,4 = N
4
∆

12
(
D2

23 −D2
12

)
D∆,∆,∆,∆ . (5.6c)

Interestingly, we notice

A1,2,3,4 +A3,1,2,4 +A2,3,1,4 = 0 . (5.7)

While this relation is reminiscent of color/kinematics duality, it is also different from its
flat-space counterpart as it effectively includes the denominators of diagrams, not only their
numerators. We will see shortly a form of the four-point NLSM AdS boundary correlator
that obeys color/kinematics duality in a sense closer to that of flat space.

First however, let us explore whether the four-point partial correlator of the NLSM
obeys the AdS generalization of the BCJ relations, as conjectured in section 3. Using
eq. (5.3) and identities in appendix B.3, we get

A (1∆, 2∆, 3∆, 4∆) = N
4
∆

4 D2
13D∆,∆,∆,∆ , A (1∆, 3∆, 2∆, 4∆) = N

4
∆

4 D2
12D∆,∆,∆,∆ , (5.8)

with the third partial correlator being determined either by explicit calculation as above
or through the Kleiss-Kuijf relation (3.19).

The expected four-point AdS BCJ relation (3.34) is

D2
12A (1∆, 2∆, 3∆, 4∆)−D2

13A (1∆, 3∆, 2∆, 4∆) = N
4
∆

4
[
D2

12, D
2
13

]
D∆,∆,∆,∆ (5.9)

∝ fAB,CD,EFDAB
1 DCD

2 DEF
3 D∆,∆,∆,∆ ,

where fAB,CD,EF are the structure constants of SO(d + 1, 1). While the commutator
[D2

12, D
2
13] is generically nonvanishing, the fact that the integrand of D∆,∆,∆,∆ is in its

kernel,

fAB,CD,EFD
AB
1 DCD

2 DEF
3

n≥3∏
i=1

1
(−2Pi ·X)∆ = 0 , (5.10)
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can be understood by noticing that the variables that can appear, X ·Pi and Pi ·Pj , do not
allow the construction of a scalar function that is completely antisymmetric in the labels
1, 2 and 3. Of course, this statement can be verified by a direct calculation by using the
relation (B.16).

We therefore see that the four-point NLSM partial correlators obey the AdS general-
ization

D2
12A(1∆, 2∆, 3∆, 4∆)−D2

13A(1∆, 3∆, 2∆, 4∆) = 0 . (5.11)

of the flat-space BCJ amplitudes relations [25]. While this does not require that the external
lines be massless, we will see that masslessness will be required by the BCJ relation for
the six-point amplitude computed in section 5.3. We will now construct a representation
of the four-point NLSM AdS boundary correlator that manifests color/kinematics duality.
We find that this representation only exists for massless external particles. Therefore, for
scalars, we need ∆ = d. Thus, for massless AdS boundary correlators, we omit the labels
of the conformal weight and write

Aa1a2···an
∆1∆2···∆n

massless−−−−−→ Aa1a2...an
n . (5.12)

The same shorthand notation will also be used in later sections for boundary correlators
of AdS vector fields, for which the massless limit is ∆i = d− 1.

5.2 BCJ representation of NLSM correlator

To construct a color/kinematics-satisfying representation of the massless color-dressed cor-
relator found above, we use eq. (3.4) to represent the exchange graphs in the s, t and u

channels. For example,

Eij ≡
∫
AdS

dX
1

(−2Pk ·X)d(−2Pl ·X)d
1
�X

1
(−2Pi ·X)d(−2Pj ·X)d = 1

D2
ij

Dd,d,d,d (5.13)

with i 6= j 6= k 6= l = 1, . . . , 4 represents the scalar four-point exchange graph with external
legs i and j meeting at a cubic vertex, and legs k and l meeting at the other cubic vertex.
The two bulk vertices are connected by a bulk-bulk propagator resulting from the action
of 1

D2
ij

on the contact term Dd,d,d,d.

Since both vertex factors and bulk-bulk propagators are represented as non-commuting
differential operators in the position-space framework we are employing here, the precise
definition of kinematic numerators is not a priori clear. We will define the kinematic
numerator operators N̂s,t,u as:

Aa1a2a3a4
4 = N

4
d

4

(
Cs
D2

12
N̂s + Ct

D2
23
N̂t + Cu

D2
13
N̂u

)
Dd,d,d,d , (5.14)

with the color factors Cs,t,u corresponding to the three color factors in eq. (5.1), respectively.
The yet-be-determined kinematic numerators are interpreted as operators acting towards
the right. Here we pull out a normalization factor in order to simplify the kinematic
numerators presented below.
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Taking inspiration from the known flat-space color/kinematic-satisfying NLSM numer-
ators [60, 63, 130, 131]

Ns,flat = su Nt,flat = 0 Nu,flat = −su , (5.15)

and requiring the NLSM partial correlators (5.8) be reproduced, we find that a suitable
set of kinematic numerators exhibiting a kinematic analog of the color Jacobi relation is

N̂s = D2
12D

2
13 , N̂u = −D2

13D
2
12 , N̂t = −[D2

12, D
2
13] . (5.16)

While N̂t is generically a nonvanishing operator, its action on Dd,d,d,d vanishes according
to eq. (5.10), so the partial correlators (5.8) are correctly reproduced. The analog of the
generalized gauge symmetry allows us to modify these operators as

δN̂s = D2
12O +Os , δN̂u = D2

13O +Ou , δN̂t = D2
23O +Ot , (5.17)

for some operator O and Os,t,u that satisfy Os,t,uDd,d,d,d = 0 and Os +Ot +Ou = 0, while
maintaining the color/kinematics. It is trivial to see that, similarly to its flat space analog,
this modification does not alter the partial correlator. For example, the choice

O = −1
3D

2
23 −

2
3D

2
13 ,

Os = 1
3
[
D2

12, D
2
23

]
, Ou = 1

3
[
D2

13, D
2
12

]
, Ot =

[
D2

12, D
2
13

]
+ 1

3
[
D2

23, D
2
13

]
, (5.18)

can be used to make the numerators satisfy the symmetry of respective graphs,

N̂s + δN̂s
∼=

1
3
(
D2

12D
2
13 −D2

23D
2
12

)
,

N̂u + δN̂u
∼=

1
3
(
D2

13D
2
23 −D2

12D
2
13

)
, (5.19)

N̂t + δN̂t
∼=

1
3
(
D2

23D
2
12 −D2

13D
2
23

)
.

We use ∼= here because we have used identities that hold on the support of CWI, for
example, eq. (2.14), to reach the right hand side.

Next, we argue that a color/kinematics-satisfying representation is not present if we
instead try to use the representation in which 1/D2

ij is placed to the right of the numer-
ator factors. In this alternative form, the four-point AdS boundary correlator, which is
intuitively more similar to the flat space one, is

Aa1a2a3a4
4 = CsÑsE12 + CtÑtE23 + CuÑuE13 , (5.20)

with the scalar exchange graphs Eij defined in eq. (5.13). Similar to eq. (5.17), we can
modify the ñi by operators that do not change the final AdS boundary correlator,

Ñs =
(
D2

13 +O +Os
)
D2

12 , Ñu =
(
−D2

12 +O +Ou
)
D2

13 ,

Ñt = 1
D2

23

([
D2

13, D
2
12

]
+D2

23O +D2
23Ot

)
D2

23 . (5.21)
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The would-be kinematic Jacobi relations reduce to
1
D2

23

[[
D2

13,D
2
12

]
,D2

23

]
+O

(
D2

12+D2
13+D2

23

)
+OsD2

12+OtD2
23+OuD2

13
?= 0 . (5.22)

To formally solve for the O’s, one can study the matrix elements of the above combination
in the space spanned by the conformal partial waves. However, since only the first term in
eq. (5.22) has nonvanishing matrix elements, imposing the kinematic Jacobi relations leads
to a contradiction.

5.3 The six-point correlator

Computing the six-point NLSM boundary correlator requires both the four-point and six-
point vertices in the Lagrangian (4.3). There are four contributing Witten diagrams,

Aa1a2···a6
6 = 5

43

2

1 6

+ 6

54

3

2 1

+ 4

32

1

6 5

+ 5

43

2

1 6

. (5.23)

Similar to the four-point computation, it is straightforward to write the six-point contact
diagram contribution in terms of derivative operators. We expand the result in terms of
the DDM basis color factors C1,σ(2,3,4,5),6,

5

43

2

1 6

= −N
6
d

720
∑
σ∈S4

C1,σ(2,3,4,5),6Acontact
1,σ(2,3,4,5),6 , (5.24)

where the position dependent piece is given by

Acontact
1,2,3,4,5,6 =

(
D2

12 − 4D2
13 + 3D2

14 + cyclic(1, 2, 3, 4, 5, 6)
)
Dd,d,d,d,d,d . (5.25)

For the first three diagrams in eq. (5.23), we would like to write the bulk-bulk propagators
therein by the corresponding derivative operators, for example,∫

AdS
dXdY G(X,Y )

3∏
i=1

1
(−2Pi ·X)d

6∏
i=4

1
(−2Pi · Y )d = 1

D2
123

Dd,d,d,d,d,d,d . (5.26)

In the presence of nontrivial vertex functions, this can be done following different strate-
gies. First, we notice that the above replacement is directly applicable when there are no
derivatives acting on the bulk-bulk propagators. We can thus use integration-by-parts to
move all derivatives with respect to the bulk point to the bulk-boundary propagators. As
an example, we consider the first Witten diagram in eq. (5.23). The scalar current that
flows from the bulk point X to Y can then be written as

3

2

1

Y
X

= N
3
d

12
[
fa1a2bf ba3xÂ1,2,3 + (2↔ 3)

] ∫
AdS

dX G(X,Y )
3∏
i=1

1
(−2Pi ·X)d , (5.27)
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where Â1,2,3 = D2
123− 3D2

13. We can obtain the contribution from the full Witten diagram
by gluing the above current with the one flowing out of Y ,

5

43

2

1 6

= −N
6
d

144
[
fa1a2bf ba3xÂ1,2,3 + (2↔ 3)

] [
fa4a5cf ca6xÂ4,5,6 + (5↔ 6)

]

×
∫
AdS

dXdY G(X,Y )
3∏
i=1

1
(−2Pi ·X)d

6∏
i=4

1
(−2Pi · Y )d , (5.28)

where the last line is now of the form (5.26). The operators in the first square bracket
commute with those in the second square bracket, and they all commute with 1/D2

123 as
well. This feature allows us to simplify the final result significantly, which leads to

5

43

2

1 6

= −N
6
d

144
(
C1,2,3,4,5,6A1,2,3,4,5,6 + C1,3,2,4,5,6A1,3,2,4,5,6

+ C1,2,3,5,4,6A1,2,3,5,4,6 + C1,3,2,5,4,6A1,3,2,5,4,6
)
, (5.29)

where C’s are DDM basis color factors. In the on-shell limit ∆ = d, we have

A1,2,3,4,5,6 =
[ 9
D2

123
D2

13D
2
46 − 3D2

13 − 3D2
46 +D2

123

]
Dd,d,d,d,d,d . (5.30)

The full color-ordered six-point correlator is given by

A(1,2,3,4,5,6) =−N
6
d

96

[ 3
D2

123
D2

13D
2
46−D2

135+cyclic(1,2,3,4,5,6)
]
Dd,d,d,d,d,d . (5.31)

The derivative operators in each term commute. One can then check that the six-point
fundamental BCJ relations does hold, for example,

0 = D2
12A (1, 2, 3, 4, 5, 6) +

(
D2

12 +D2
23

)
A (1, 3, 2, 4, 5, 6) (5.32)

+
(
D2

12 +D2
23 +D2

24

)
A (1, 3, 4, 2, 5, 6) +

(
D2

12 +D2
23 +D2

24 +D2
25

)
A (1, 3, 4, 5, 2, 6) .

The AdS BCJ relations can in principle be generalized to higher Kaluza-Klein modes with
∆ 6= d, similar to eq. (5.9) at four points. We leave this study to a future work.

We have also constructed the six-point NLSM differential numerators that manifestly
obey the Jacobi relations (3.25). As at four points, one can again start from the flat space
DDM-basis numerators [60, 63, 130, 131] and make the replacement sI → D2

I . For example,
a possible choice is

N̂1,2,3,4,5,6 = −N
6
d

16 D
2
12

(
D2

13 +D2
23

)
D2

56

(
D2

45 +D2
46

)
; (5.33)

the other DDM-basis numerators are obtained by relabeling. One can of course further use
the analog of generalized gauge freedom (5.17) to make this numerator more symmetric.
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Remarkably, just as the four-point case, these numerators yield the partial correlator (5.31)
despite the non-commutative nature of its various building blocks. To see an explicit
example, consider the following numerator constructed using the procedure (3.25),

N̂


1 6

2 3
4 5

∣∣∣∣∣1, 2, 3, 4, 5, 6
 = N̂1,2,3,4,5,6 − N̂1,3,2,4,5,6 (5.34)

= −N
6
d

16
[
D2

12

(
D2

13 +D2
23

)
−D2

13

(
D2

12 +D2
23

)]
×D2

56

(
D2

45 +D2
46

)
= −N

6
d

16 D
2
23D

2
56

(
D2

12 −D2
13

) (
D2

45 +D2
46

)
+ . . . ,

where the ellipsis stands for operators having the commutator [D2
ij , D

2
ik] at the right-most

position, for example, D2
56(D2

45 +D2
46)[D2

12, D
2
13]. As discussed in eq. (5.10), such commu-

tators annihilate the six-point D-function Dd,d,d,d,d,d. Note that the D2
23D

2
56 factor in the

left-most position in the last line of eq. (5.34) cancels two propagators in the associated
trivalent diagram, as expected. It is remarkable that the non-commutativity of the D2

I in
N̂ merely leads to commutators at the right-most position of numerator factors and anni-
hilate the D-function, thus effectively dropping out of the six-point correlator. It would be
interesting to confirm that this holds at higher points.

6 YM in AdS

In this section, we investigate YM theory in AdS space. Its three- and four-point functions
have been discussed in various contexts, both as tests of the AdS/CFT correspondence [125,
132] and as illustrations of the embedding and Mellin space techniques [4, 85, 87, 104, 133].
Here we obtain their explicit position-space representation and verify that the four-point
correlator satisfies the AdS BCJ relations conjectured in section 3. We also construct
differential representations of the off-shell three-point YM correlator, recovering the results
of ref. [114] when ∆i = d− 1.

6.1 The three-point correlator

To set the stage for the calculation of the four-point correlator, we begin by reviewing and
extending existing constructions of the position-space three-point correlator for YM theory
in AdS space. We will give an explicit position-space representation as well as a differential
representation for this correlator. The former will be useful for the double copy discussion
in section 7.

We computed the three-point YM AdS boundary correlator using the Feynman rules
discussed in section 4. The structure of the vertex together with the property EMA

∆ XA = 0
of the vector bulk-boundary propagator imply that the embedding space projector GAB

defined in eq. (4.2) can simply be replaced with ηAB. We will compute the correlator for
arbitrary weight ∆i, as this form will be useful for the four-point calculation in the next
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section. The three-point correlator is

Aa1a2a3
∆1∆2∆3

=−fa1a2a3Z1,M1Z2,M2Z3,M3

∫
AdS

dX (6.1)

×
[
EM1A1

∆1
(P1,X)ηA2A3

(
∂A1E

M2A2
∆2

(P2,X)EM3A3
∆3

(P3,X)−(2↔ 3)
)

+cyclic(1,2,3)
]
.

Using the expression for EM,A
∆ in eq. (4.13), [DMiAi

∆i
, ∂B] = 0, and

∂AE∆i
(Pi, X) = − ∆iPi,A

(Pi ·X)E∆i
(Pi, X) ≡ Ki,AE∆(Pi, X) . (6.2)

The correlator can be organized as

Aa1a2a3
∆1∆2∆3

= −fa1a2a3

( 3∏
i=1

Zi,MiD
MiAi
∆i

)
P∆1∆1∆3
A1A2A3

(P1, P2, P3) , (6.3)

P∆1∆1∆3
A1A2A3

(P1, P2, P3) =
∫
AdS

dX
[
ηA2,A3(K2 −K3)A1 + cyclic(1, 2, 3)

] 3∏
i=1

N∆i,1
(−2Pi ·X)∆i

.

It is straightforward to recognize the remaining bulk integrals as three-point D-functions.
See appendix B and ref. [134] for general definitions and properties of D-functions. Unlike
their four-point counterparts that will appear in the next section, embedding space isome-
tries (or, equivalently, AdS isometries) completely fixes their dependence on the boundary
points, leaving only the overall numerical factor to be determined.

Accounting for the bulk point dependence in the vectors Ki,Aj , the tensor PA1A2A3 in
eq. (6.3) evaluates to

P∆1∆1∆3
A1A2A3

(P1,P2,P3) = 2
[ 3∏
i=1
N∆i,1

]
ηA2,A3

(
∆2P2,A1D∆1,∆2+1,∆3−∆3P3,A1D∆1,∆2,∆3+1

)
+cyclic(1,2,3)

=πd/2
[ 3∏
i=1

N∆i,1
Γ(∆i)

][
ηA2A3

(
P2,A1P13

δ13− 1
2
−P3,A1P12

δ12− 1
2

)
+cyclic(1,2,3)

]

×Γ
(∆1+∆2+∆3−d+1

2

)
PT(1∆1 ,2∆2 ,3∆3) , (6.4)

where δij is defined as

δij = ∆i + ∆j −∆k

2 (6.5)

for {i, j, k} being a permutation of {1, 2, 3}. We also define for convenience the “Parke-
Taylor factor” as

PT (1∆1 , 2∆2 , 3∆3) =
Γ
(
δ12 + 1

2

)
Γ
(
δ23 + 1

2

)
Γ
(
δ13 + 1

2

)
P
δ12+ 1

2
12 P

δ23+ 1
2

23 P
δ13+ 1

2
13

. (6.6)
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One may verify that the resulting three-point correlator is both transverse and obeys the
conformal Ward identity,

Aa1a2a3
∆1∆2∆3

∣∣∣
Zi→Pi

= 0 ,
3∑
i=1

DAB
i A

a1a2a3
∆1∆2∆3

= 0 . (6.7)

The former relation may be understood as a consequence of the manifest transversality
of the bulk-boundary vector field propagator while the latter implies that the formalism
manifestly preserves conformal invariance and together they imply that the three-point
function can be pulled back from the embedding space to AdS [85, 104].

The correlator does not obey the current conservation for generic ∆i. This is, of course,
to be expected as boundary current conservation is a reflection of a bulk gauge symmetry
for the vector fields, which fixes ∆ = d− 1 for spin-1 fields. Other “massive” vector fields
may be interpreted as higher Kaluza-Klein modes and, while corresponding to BPS currents
in a supersymmetric holographic framework, do not exhibit gauge invariance.

The on-shell correlator follows from eqs. (6.4) and (6.3) with ∆i = d − 1. It can be
put in a compact form in terms of the Vi,jk and Hij functions introduced in ref. [104]:

Vi,jk = (Pj · Zi)(Pi · Pk)− (Pk · Zi)(Pi · Pj)
Pj · Pk

,

Hij = −2
[
(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)

]
. (6.8)

With the notation V1 ≡ V1,23, V2 ≡ V2,31 and V3 ≡ V3,12, the full YM AdS boundary
correlator becomes

Aa1a2a3
3 = −fa1a2a3 dΓ(d− 2)

8πd(d− 2)
N3

(P12P23P13)d/2
, (6.9)

where

N3 = (4Λ1 − V1V2V3)− 6
d

Λ1 (6.10)

Λ1 = V1V2V3 + 1
2(V1H23 + cyclic) (6.11)

This form reproduces the result of ref. [135]. In section 7 we will use this form of the
correlator and the analogous one corresponding to massive vectors.

In addition to the position space representation, we also construct a differential repre-
sentation of the off-shell three-point correlator. Its existence is a nontrivial indication for
our conjecture that on-shell YM correlators can be written in the form of eq. (3.26). With
the definitions

EABi = PAi Z
B
i − PBi ZAi , (6.12)
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the differential form of Aa1a2a3
∆1∆2∆3

is

Aa1a2a3
∆1∆2∆3

=
fa1a2a3Γ

(
∆1+∆2+∆3−d+1

2

)
16πd

∏3
i=1

[
Γ
(
∆i−d

2+1
)

(∆i−1)
]Â∆1∆2∆3PT (1∆1 , 2∆2 , 3∆3) , (6.13a)

Â∆1∆2∆3 =
[
(2δ12 − 1) (E1 · E2) (E3 ·D1) + 2

(
∆2

1 − 2∆1∆2 + 2∆1 − 1
)
Tr (E1E2E3)

+ cyclic (1, 2, 3)
]
, (6.13b)

where the dot products are defined in the sense of eq. (2.7). In the massless limit ∆i = d−1,
the differential representation becomes

Aa1a2a3
3 = fa1a2a3 Γ(d− 2)

16πd(d− 2)2 Â3
1

P
d/2
12 P

d/2
23 P

d/2
13

, (6.14a)

Â3 = (d− 2)
[
(E1 · E2)(E3 ·D1) + cyclic(1, 2, 3)

]
− 6(d− 2)2Tr(E1E2E3) . (6.14b)

This reproduces the result of ref. [114]. As assumed in section 3, this expression has uniform
scaling dimension −1 for each external state.

We note that the factor E defined in eq. (6.12) may be identified with the numerator
of the bulk-boundary propagator for the linearized vector field strength; it is curious that,
unlike in flat space, it is natural to organize the three-point YM correlator in terms of
this tensor. We moreover note that the contribution of a Tr[F 3] interaction to the AdS
boundary correlator involves the same kinematic terms as the YM expression, just with
different numeric coefficients. We will return to this observation in section 7.1.

Notably, the off-shell differential correlator in eq. (6.13) depends explicitly on the
conformal weight ∆i of external states, in sharp contrast to the differential form of the
NLSM four-point correlator. In particular, it signals that certain manipulations used in
the construction of the six- and possibly higher-point NLSM correlators may not have a
direct counterpart in AdS YM calculations. For example, one could have derived the results
in section 5.3 using the split representation and how the differential represention of the
NLSM four-point correlator is unchanged off-shell. This computation does not generalize
to YM since the YM differential representation is not independent of ∆i. Instead, we must
directly compute the correlator as a polynomial in Pi, Zi, and D-functions.

6.2 The four-point correlator

We now describe a direct evaluation of the four-point on-shell YM correlator and verify that
it satisfies the BCJ relations discussed in section 3.4. We follow the computation in ref. [87]
and extend it to obtain an explicit polynomial of boundary coordinates Pi, polarization
vectors Zi and D-functions [134]. There are two topologies of diagrams that contribute —
the exchange graphs and the contact diagram — and the color-dressed correlator has the
general form

Aa1a2a3a4
4 = Aa1a2a3a4

contact +Aa1a2a3a4
s +Aa1a2a3a4

t +Aa1a2a3a4
u (6.15)

= Aa1a2a3a4
contact +Aa1a2a3a4

s +
(
Aa1a2a3a4
s

∣∣
1→2→3→1

)
+
(
Aa1a2a3a4
s

∣∣
1→3→2→1

)
,

where on the second line we used the symmetry properties of Witten diagrams.
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We start with the contribution from the four-point contact diagram, which can be
read-off from the four-field term in YM Lagrangian (4.10),

Aa1a2a3a4
contact =

32

1 4

=
∫
AdS

dX Ia1a2a3a4
A1A2A3A4

 4∏
j=1

Zi,MiE
MiAi
d−1

 , (6.16)

Ia1a2a3a4
A1A2A3A4

= g2fa1a2xfa3a4x (ηA1A3ηA2A4 − ηA1A4ηA2A3) + cyclic (2, 3, 4) . (6.17)

Using the expression for the vector bulk-boundary propagator EM1,A1
∆ in eq. (4.13) and the

definition of the D-function in eq. (B.3), it is straightforward to obtain:

Aa1a2a3a4
contact = g2

[ (d− 1) Γ (d− 1)
2πd/2 (d− 2) Γ (d/2)

]4
Ia1a2a3a4
A1A2A3A4

[ 4∏
i=1

Zi,MiD
MiAi
d−1

]
Dd−1,d−1,d−1,d−1 .

(6.18)

Acting with the derivatives in DMi,Ai
d−1 generates a significant number of terms, which can be

expressed in terms of D-functions with shifted indices using the identities in appendix B.
We now turn to the evaluation of the s-channel exchange diagram. We use the split

representation of the bulk-bulk propagator (4.15) to write the exchange graph as a product
of two partly off-shell three-point correlators integrated over a boundary point Q and over
the dimension/mass of the field corresponding to that point. The three-point correlators
are written in Mellin space; this makes the integral over the boundary point straightforward
and converts the product of three-point correlators to a Mellin-space four-point correlator.
After the integral over the dimension of the intermediate field is evaluated, an inverse Mellin
transform yields the desired position-space correlator. Although the computation strategy
may appear somewhat convoluted compared to direct integration in the bulk points, it
ultimately allows us to write the four-point correlator as an explicit polynomial of Pi,
Zi, and D-functions. Furthermore, the above computation strategy can be systematically
generalized to n-point correlators at tree level [85, 87].12

Proceeding to the actual computation and using eq. (4.14), the s-channel contribution
to the correlator written in terms of the pre-correlator is

Aa1a2a3a4
s =

32

1 4

= g2fa1a2xfa3a4x

[ 4∏
i=1

Zi,MiD
MiAi
d−1

]
PsA1A2A3A4 , (6.19)

12As we will see, the main difficulty in going to higher order is explicitly evaluating the contour integrals
that appear due to using the split representation. For example, at four-points, the only non-trivial integral
that appears is eq. (6.32). However, one can show that the c-contours that appear are always equivalent
to the c-contour integrals that appear in evaluating scalar correlators. Such scalar correlators in AdS are
trivial to calculate using Mellin space Feynman rules [86]. Therefore, although technically more challenging
than flat space, one can algorithmically calculate tree level YM correlators in AdS in terms of Zi, Pi and
D-functions at n-point without evaluating any integrals.
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where PA1A2A3A4 is an integral over the locations of the two three-point vertices. The split
representation of the massless spin-1 propagator in eq. (4.14) expresses it as an integral of
the product of two off-shell three-point pre-correlators in eq. (6.4):

PsA1A2A3A4

=
∫ i∞

−i∞

dc

2πi
−2c2

c2−(d/2−1)2 (6.20)

×
∫
∂AdS

dQηNM
[
DNAQd/2+cP

d−1d−1d/2+c
A1A2AQ

(P1,P2,Q)
][
DMBQ
d/2−cP

d−1d−1d/2−c
A3A4BQ

(P3,P4,Q)
]
.

The derivatives of the three-point pre-correlators are obtained by simply evaluating the
derivatives with respect to an off-shell leg in eq. (6.4),

DNAQd/2+cP
d−1 d−1 d/2+c
A1A2AQ

=

(
d−1
d−2

)2
Γ
(

3d/2+c−1
2

)
4πd (d/2 + c− 1) Γ (d/2)2 Γ (1 + c)

PT
(
1d−1, 2d−1, Qd/2+c

)
×
[(
ηA1A2PN1 − 2ηA1NPA2

1

)
P2Q −

(
ηA1A2PN2 − 2ηA2NPA1

2

)
P1Q

]
+ (. . .) , (6.21)

where PiQ = −2Pi ·Q and similarly for DNAQd/2−cP
d−1 d−1 d/2−c
A3,A4,AQ

. The terms in (. . .) will vanish
when the leg P1 and P2 are taken on-shell. More specifically, they are removed as the result
of the identity [87]

DMA
∆

∂

∂PA
F∆−1(P ) = 0 , (6.22)

where F∆−1(P ) is any function of weight ∆− 1 in P . Thus in the following we will neglect
the (. . .) terms in eq. (6.21).

The two terms on the second line of eq. (6.21) are related by the interchange of labels
1 and 2; the terms in the analogous factor in DNAQd/2−cP

d−1 d−1 d/2−c
A3,A4,AQ

are related by the
interchange of labels 3 and 4. Thus, replacing these expressions in eq. (6.20) yields four
terms, three of which can be obtained from the fourth through the transformations 1↔ 2,
3↔ 4 and (1, 3)↔ (2, 4). It is not difficult to find that∫

∂AdS
dQηNMD

NAQ
d/2+cP

d−1 d−1 d/2+c
A1A2AQ

DMBQ
d/2−cP

d−1 d−1 d/2−c
A3A4BQ

=
Γ
(

3d/2+c−1
2

)2
Γ
(

3d/2−c−1
2

)2

64π2dΓ (d/2)4 Γ (1 + c) Γ (1− c)

×
(
d− 1
d− 2

)4 [ P13K(P1P2P3P4)
A1A2A3A4

P
3d/2−c−1

2
12 P

3d/2+c−1
2

34

I
(
P1 P2 P3 P4
∆̃1 ∆̃2 ∆̃3∆̃4

)
−

P23K(P2P1P3P4)
A2A1A3A4

P
3d/2−c−1

2
12 P

3d/2+c−1
2

34

I
(
P1 P2 P3 P4
∆̃2 ∆̃1 ∆̃3∆̃4

)

−
P14K(P1P2P4P3)

A1A2A4A3

P
3d/2−c−1

2
12 P

3d/2+c−1
2

34

I
(
P1 P2 P3 P4
∆̃1 ∆̃2 ∆̃4∆̃3

)
+

P24K(P2P1P4P3)
A2A1A4A3

P
3d/2−c−1

2
12 P

3d/2+c−1
2

34

I
(
P1 P2 P3 P4
∆̃2 ∆̃1 ∆̃4∆̃3

)]
, (6.23)
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where K and ∆̃i are defined as

K(P1P2P3P4)
A1A2A3A4

=

(
ηA1A2P

N
1 − 2δNA1

P1,A2

)
(ηA3A4P3,N − 2ηA3NP3,A4)
P13

, (6.24)

∆̃1 = d/2+c+1
2 , ∆̃2 = d/2+c−1

2 , ∆̃3 = d/2−c+1
2 , ∆̃4 = d/2−c−1

2 .

(6.25)

Importantly, ∆̃i satisfy the relation
∑4
i=1 ∆̃i = d. The function I

(
P1 P2 P3 P4
∆̃1 ∆̃2 ∆̃3∆̃4

)
is the

result of converting a certain four-point contact integral over the boundary to its Mellin
representation [87],

I
(
P1 P2 P3 P4
∆̃1 ∆̃2 ∆̃3∆̃4

)
=
∫
∂AdS

dQ
4∏
i=1

Γ
(
∆̃i

)
(−2Pi ·Q)∆̃i

(
under the constraint

∑4
i=1 ∆̃i = d

)

= πd/2
∫ i∞

−i∞

 4∏
16i<j

dδ̃ij
2πi Γ

(
δ̃ij
)
P
−δ̃ij
ij

 4∏
k=1

δ

∆̃k −
4∑

l=1, l 6=k
δ̃lk

 , (6.26)

where we also assume that the integration variable δ̃ij is symmetric in its indices. We note
that the four integrals entering eq. (6.23) differ by interchange of ∆̃i with fixed ordering of
Pi. Thus, they are different even though I

(
P1 P2 P3 P4
∆̃1 ∆̃2 ∆̃3∆̃4

)
is invariant under the interchange

of pairs (Pi, ∆̃i).
Now that we have converted the integral over the boundary point insertion into Mellin

form, we can proceed and perform the contour integral over c. We start with the change
of variables,

δ12 = δ̃12 + 3d/2− c− 1
2 , δ34 = δ̃34 + 3d/2 + c− 1

2 , (6.27)

δ13 = δ̃13 − 1 , δij = δ̃ij for all others ,

for the integral I∆̃1∆̃2∆̃3∆̃4
given in eq. (6.26), together with its images under the specified

permutation maps for the other three terms in the sum of eq. (6.23), to align the constraints
on the Mellin integration variables, which now become

4∏
k=1

δ

∆̃k −
4∑

l=1, ,l 6=k
δ̃lk

→ 4∏
k=1

δ

d− 1−
4∑

l=1, ,l 6=k
δlk

 (6.28)

in all four terms in eq. (6.23). The pre-correlator then has the rather compact expression:

PsA1A2A3A4 = −

(
d−1
d−2

)4

32π3d/2Γ (d/2)4

∫ i∞

−i∞

 4∏
16i<j

dδij
2πi

Γ (δij)
P
δij
ij

 4∏
k=1

δ

d−1−
4∑

l=1,l 6=k
δlk


×
∫ i∞

−i∞

dc

2πiS (δ12, c)
[
KA1A2A3A4 δ13 − (1↔ 2)− (3↔ 4) +

(
1↔ 2
3↔ 4

)]
,

(6.29)
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where the permutation map acts on Pi, Ai and the indices of δij . For example, under the
permutation 1↔ 2 we exchange P1 ↔ P2, A1 ↔ A2, δ13 ↔ δ23 and δ14 ↔ δ24. The entire
c dependence is contained in the function S(δ12, c),

S(δ12, c) = l(δ12, c)l(δ12,−c)
(d/2− 1)2 − c2

∣∣∣∣∣
∆12=∆34=2d−1

, (6.30)

where l(δ12, c) with generic ∆12 = ∆1 + ∆2 and ∆34 = ∆3 + ∆4 is given by

l (δ12, c) =
Γ
(
δ12 − ∆12−c−d/2

2

)
Γ
(

∆12+c−d/2
2

)
Γ
(

∆34+c−d/2
2

)
Γ (δ12) Γ (c) . (6.31)

Choosing the contour such that nonphysical poles do not contribute, the c integral in
eq. (6.29) yields

∫ i∞

−i∞

dc

2πi
l (δ12, c) l (δ12,−c)

(d/2− 1)2 − c2
= Γ

(∆12 + ∆34 − d
2

) m∑
l=1

(∑
i
∆i−d
2

)
−l

(δ12)−l(
∆12−d+1

2

)
1−l

(
∆12−1

2

)
1−l

=
2Γ
(

∆12+∆34−d
2

)
3F2

(
1, 3−∆12

2 , d+1−∆12
2 ; 2−δ12,

d−∆12−∆34+4
2 ; 1

)
(δ12 − 1) (∆12 + ∆34 − d− 2) , (6.32)

where m = 1
2(∆12 − d + 1) and (a)n is the Pochhammer symbol [4, 136]. Although the

expression in the second line is derived assuming m is a positive integer, it holds for more
generic parameters as a result of analytic continuation.13 For d = 4, we find that∫ i∞

−i∞

dc

2πiS(δ12, c)
∣∣∣∣∣
d=4

= 12
[Γ(δ12 − 2)

3Γ(δ12) + Γ(δ12 − 1)
2Γ(δ12)

]
= 4
δ12 − 2 + 2

δ12 − 1 . (6.33)

As we have evaluated the c integral, we are left with the evaluation of the Mellin
integrals in eq. (6.29). They can be converted into D-functions using the identity

M−1

 4∏
16i<j

Γ (δij + lij)
Γ (δij)

 = 2
πd/2

∏4
i=1 Γ

(
∆̃i

)
Γ
(

Σ̃−d
2

)
 4∏

16i<j
P
lij
ij

D∆̃1∆̃2∆̃3∆̃4
, (6.34)

∆̃i = ∆i +
4∑

j=1, j 6=i
lij , Σ̃ =

4∑
i=1

∆̃i ,

which will be proven in appendix C. Here M−1 denotes the inverse Mellin transform,

M−1 [f (δij)] =
∫ i∞

−i∞

 4∏
16i<j

dδij
2πi

Γ (δij)
P
δij
ij

[ 4∏
k=1

δ

(
∆k −

4∑
l=1

δlk

)]
f(δij) . (6.35)

Specialized to d = 4, eqs. (6.33) and (6.34) together can bring the pre-correlator in eq. (6.29)
to a linear combination of D-functions weighted by polynomial of Pi, Zi. An expression

13To arrive at the right-hand side of eq. (6.32), a specific choice of contour for the c integral is required,
which is the same one made in eq. (133) of [4].
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valid for generic boundary dimension d can be obtained by using eq. (6.34) together with
the sum representation [4] of eq. (6.32). In the following, we focus on d = 4. The pre-
correlator is given by

Ps
A1A2A3A4

∣∣∣
d=4

= − 243
32π8

P13RA1A2A3A4

P12
D3,2,4,3 −

P14R(3↔4)
A1A2A3A4

P12
D3,2,3,4

+P13RA1A2A3A4

P 2
12

D2,1,4,3 −
P14R(3↔4)

A1A2A3A4

P 2
12

D2,1,3,4

 , (6.36)

where

RA1A2A3A4 = KA1A2A3A4 +
(

1↔ 2
3↔ 4

)
, R(3↔4)

A1A2A3A4
= RA1A2A3A4

∣∣∣P3↔P4
A3↔A4

. (6.37)

Finally, we apply the D-derivatives in eq. (6.19) and express the result in terms of D-
functions by repeated use of the identity

∂D∆1,∆2,∆3,∆4

∂P1,A
= 4∆1∑4

i=1 ∆i − d

(
∆2P

A
2 D∆1+1,∆2+1,∆3,∆4 + ∆3P

A
3 D∆1+1,∆2,∆3+1,∆4

+ ∆4P
A
4 D∆1+1,∆2,∆3,∆4+1

)
. (6.38)

It is then straightforward, albeit tedious, to find an explicit expression for the s-channel
correlator Aa1a2a3a4

s as a linear combination ofD-functions, from which the t- and u-channel
correlators can subsequently be obtained by the relabelings given in eq. (6.15).

The partial correlators can be extracted from eq. (6.15) in the usual way, either by
directly going to a trace basis or by using the Jacobi identity

fa1a4xfa2a3x + fa1a2xfa3a4x + fa1a3xfa4a2x = 0 , (6.39)

to pass to the DDM basis,

Aa1a2a3a4
4 = fa1a2xfa3a4xA4(1, 2, 3, 4) + fa1a3xfa2a4xA4(1, 3, 2, 4) . (6.40)

We are now in a position to verify that the AdS BCJ relation (3.34),

D2
12A4(1, 2, 3, 4) = D2

13A4(1, 3, 2, 4) , (6.41)

is satisfied. The conformal generators DAB
i are defined in eq. (2.7). While it is in princi-

ple possible, albeit tedious, to do so analytically through judicious use of the D-function
identities in appendix B.3, we have verified eq. (6.41) numerically at d = 4 at random
kinematic points with very high precision. The part of the conformal generator that acts
on the polarization vectors Zi is crucial for the AdS BCJ relations to hold.

The fact that the four-point AdS BCJ relation is satisfied suggests that it may be pos-
sible to put the four-point YM AdS boundary correlator in the form put forth in eq. (3.26).
Similar to the three-point YM AdS boundary correlator, we expect that the four-point BCJ
representation will match the flat space result up to possible additional terms that result
from the non-commutativity of factors in the AdS kinematic numerators. Algorithms for
efficiently computing such differential representations are left to future investigation.
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7 Towards a bosonic double copy in AdS space

In this section, we discuss possible double copy procedures in AdS space. We first analyze
a “differential” double copy that is analogous to the celestial double copy in flat space. The
differential turns out to yield consistent AdS boundary correlators for d = 2, in agreement
with expectations based on the AdS3×S3 ambitwistor string [108], but issues develop in
higher dimensions even at three-points. We then study the double copy in position space
and find that the most naive construction holds for three-point correlators only in the limit
of large AdS dimension, thus recovering results of ref. [114]. Finally, we discuss limiting
cases in which connections between AdS boundary correlators and flat space amplitudes
should expose double-copy structures in momentum and Mellin space.

7.1 A differential double copy

In section 3 we suggested that the NLSM and YM AdS boundary correlators can be written
as sums of differential operators acting on a single contact diagram,

A =
∑

cubic g
C(g|αg)

∏
I∈g

1
D2
I

 N̂(g|αg)Dd,d,d,... , (7.1)

and that, as in flat space, color/kinematics duality identifies the algebraic properties of the
color factor with those of the kinematic numerators N̂ when acting on the contact diagram.
Given such a differential representation, the most natural attempt at an AdS double copy
procedure is to simply replace the color factors, C(g|αg), with their associated kinematic
numerators, N̂(g|αg). However, direct counting of the conformal weight for each external
state suggests that certain modifications are necessary. Indeed, for YM theory, we assumed
in section 7.1 and explicitly demonstrated in section 6.1 that the conformal weight of the
kinematic numerators N̂ with respect to every external state is −1. Combining this with
the d conformal weight of Dd,d,d,... for each of its external points implies that the action of
two kinematic numerators leads to a d− 2 overall conformal weight for each external state
of the putative differential double copy. Thus, in addition to replacing the color factors
with kinematic numerators, to obtain the requisite conformal weight ∆ = d it is necessary
to also increase the conformal weight of each of the external legs of the contact diagram
by two units. The full double copy procedure should then amount to the replacements

C(g|αg)→ N̂(g|αg) ,
Dd,d,d,... → Dd+2,d+2,d+2,... ,

(7.2)

where N̂ here might differ from the one in eq. (7.1) by some operators that annihilate
Dd,d,d,.... Remarkably, the ambitwistor string construction of ref. [108] strongly suggests
that spin-2 AdS3×S3 boundary correlators can be derived by applying the substitution rules
in eq. (7.2). Specifically, one would apply eq. (7.2) to the differential representation (7.1)
of correlators in a YM-Chern-Simons theory deformed by a specific linear combination of
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certain higher-dimension operators. The generalization of this double copy procedure from
d = 2 to arbitrary d turns out to be more subtle than one might naively expect.14

To see this, it suffices to consider the differential double copy at three points. We
derived the differential form of the three-point AdS YM correlator in section 6.1. The
normalization of the bulk-boundary vector-field propagator in eq. (4.13) is singular for
d = 2; so to have a smooth analytic continuation in dimension for the purpose of this
discussion, we will change it by removing the offending factor of (∆ − 1)−1 = (d − 2)−1.
We will also deform the YM theory with the operator Tr[F 3] with an arbitrary (Wilson)
coefficient gF 3 .

With these preparations and up to an overall constant which is finite for all positive
values of d, the differential form of the YM+gF 3Tr[F 3] three-point correlator is

N̂
gF3
3 ∝

[
1 + 6gF 3 (d− 2)2

]
[(E2 · E2) (E3 ·D1) + cyclic]

+ 6 (d− 2) [−1 + 2gF 3(d− 2)(d+ 2)]Tr(E1E2E3) (7.3)

where E is defined in eq. (6.12). We note that our Tr[F 3] contribution is consistent with
that in [137] at d = 3. The differential double-copy proposal then suggests that the
corresponding AdS double-copy boundary correlator is

MDC
3 ∝ N̂gF3

3 N̂
g′
F3

3 Dd+2,d+2,d+2 , (7.4)

with independent gF 3 and g′F 3 coefficients to allow for a general heterotic double copy [138].
In d = 2, the double copy works straightforwardly. This is due to additional linear

relations between V1V2V3 and Λ1 in eq. (6.10). Consequently, in d = 2 we have

N̂
gF3
3 D2,2,2 ∝

V1V2V3
P12P23P13

, N̂
gF3
3 N̂

g′
F3

3 D4,4,4 ∝
(V1V2V3)2

(P12P23P13)2 . (7.5)

It is also easy to check that both expressions in eq. (7.5) satisfy current conservation for
d = 2 and therefore can be interpreted as an AdS three-graviton correlator. This result
is a non-trivial generalization of ref. [108], which only studied YM-Chern-Simons theory
in AdS deformed by a fixed linear combination of higher-dimension operators while here
the Wilson coefficient gF 3 is arbitrary. In fact, to give nonzero contribution at d = 2, it
needs to be proportional to (d− 2)−2. We see that, just as in flat space, the AdS3 double
copy appears to be compatible with pure YM theory deformed by certain higher derivative
operators, such as Tr[F 3], with arbitrary Wilson coefficients [139].

For d > 2, the current conservation ofMDC
3 requires gF 3 to take specific values. If we

follow eq. (7.4), there are only two solutions,

gF 3 = − 1
6(d− 2)2 , g′F 3 = d

6(d− 2)2(3d− 4) ;

gF 3 = 2d− 3
6(d− 2)2 , g′F 3 = − 1

6(d− 2)2 . (7.6)

14There are subtleties even in d = 2 related to how gravitons do not obey eq. (2.9); the equation of motion
for a free graviton in AdS is (− 1

2D
2
X + 2)hAB = 0, rather than D2

Xh
AB = 0. This implies that the 1/D2

I

factors in eq. (7.1) should also be shifted in order to interpret these factors as propagators in the associated
Witten diagrams. However, the formulas of ref. [108] seem to suggest that this shift is not necessary.
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which impose that one of the N̂gF3
3 is proportional to Tr(E1E2E3). The resultant gravity

correlator is a linear combination of the Einstein-Hilbert term and certain higher derivatives
operators. Moreover, we can modify eq. (7.4) to make it symmetric with respect to gF 3

and g′F 3 , MDC
3 ∝ (N̂gF3

3 N̂
g′
F3

3 + N̂
g′
F3

3 N̂
gF3
3 )Dd+2,d+2,d+2. Then the current conservation

leads to a unique solution with gF 3 = − 1
6(d−2)2 and g′F 3 = 5d−6

6(d−2)2(3d−2) .
We have seen that to realize the AdS double-copy construction requires certain gener-

alizations of the flat space case. A possible approach to understanding it may be higher-
dimensional generalizations of the ambitwistor string theory of ref. [108]. Possible obstacles
relate to the stringy realization of the massless spectrum in AdS5×S5, see refs. [140, 141].
In flat space, the interplay between gauge invariance and color/kinematics duality guar-
antees that the result of the double copy exhibits diffeomorphism invariance. Thus, an
alternative approach could rely on a thorough exploration of the analogous interplay for
AdS boundary correlators.

7.2 Position-space three-point double copy and comments on Mellin-space
double copy

Recent results suggest that the differential double copy (7.2) may not be the only double
copy procedure applicable to AdS boundary correlators. To gain some insight into the
possible structure of alternative double copy relations between gauge and gravity theories
in AdS space, it is useful to examine the simple example of the three-point AdS boundary
correlator in position space.

Using the three-point Feynman rule following from the Einstein-Hilbert action in AdS
space (with cosmological constant Λ = −d(d−1)/2) and following the same computational
strategy as for the YM AdS boundary correlator, we found that the three-graviton AdS
boundary correlator is

M3 = d2 Γ(d)
16πd(d+ 1)3

M3
(P12P13P23)1+d/2 , (7.7)

M3 = f1Λ2
1 + f2Λ1V1V2V3 + f3(V1V2V3)2 + f4Λ2 + f5Λ3

where Vi, Hi,j , and Λ1 are defined in eqs. (6.8), Λ2 and Λ3 are

Λ2 = H1,2H2,3H3,1 , (7.8)
Λ3 = V1V2H1,3H2,3 + cyclic .

and the functions f1,...5 are

f1 = 16− 16
d
− 8
d2 , f2 = −8− 8

d
+ 24
d2 + 16

d3 ,

f3 = 1 + 4
d
− 4
d2 −

16
d3 , f4 = 8

d
, f5 = 4

d2 + 8
d3 . (7.9)
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This expression forM3 agrees with ref. [135] up to some notational translation:

Λ(here)
1 = −(−2P1 · P2)(−2P2 · P3)(−2P3 · P1)Λ(there)

1 ,

(V1V2V3)(here) = −(−2P1 · P2)(−2P2 · P3)(−2P3 · P1)(V1V2V3)(there) ,

Λ(here)
2 = (−2P1 · P2)2(−2P2 · P3)2(−2P3 · P1)2Λ(there)

2 ,

Λ(here)
3 = (−2P1 · P2)2(−2P2 · P3)2(−2P3 · P1)2Λ(there)

3 . (7.10)

It is not difficult to see the numerator M3 above and the analogous quantity N3 in the
three-point YM correlator in eq. (6.10) are related by

lim
d→∞

M3 = lim
d→∞

(N3)2 , (7.11)

That is, to leading order in the expansion in the large dimension of the AdS space, the
three-graviton correlator equals the square of the three-gluon correlator in eq. (6.10), in
agreement with ref. [114].

We note that, for three-point correlators, the position-space factors M3 and N3 co-
incide (up to possible overall normalization factors) with the corresponding Mellin-space
amplitudes. With this observation, eq. (7.11) above also implies that simple squaring re-
lations between gauge and gravity three-point amplitudes may hold in Mellin space only
in the large-d limit. In contrast, ref. [94] reports such a squaring relation for the scalar
components of the super-gluon and super-graviton multiplet at d = 4. The difference is
presumably due to the action of supercharges which introduces a nontrivial dependence on
the conformal weight.

We will refrain from conjecturing the generalization of this relation to higher-point
correlators or how it might be formulated for the differential form of correlators. It is
however difficult not to note, as was also noted in [10], certain similarities between the
large-dimension limit above and the relation between flat space S-matrix and AdS boundary
correlators. Indeed, it was argued in refs. [4, 86, 142] that these two quantities are closely
related; a formulation of this connection which holds for amplitudes of massive fields is [142]

ma
1T (ki) = lim

∆i→∞

∆a
1
N
M

(
γij = ∆i∆j∑n

k=1 ∆k

(
1 + ki · kj

mimj

))
(7.12)

where M is a Mellin-space amplitude, γij are Mellin variables obeying the standard con-
straints, T is a flat space amplitude, ki are flat-space momenta, a = n(d−1)

2 − d− 1 and

N = πd

2 Γ
(∑n

i=1 ∆i − d
2

) n∏
i=1

√
N∆i

Γ(∆i)
, N∆ = Γ(∆)

2πd/2Γ(∆− d/2 + 1)
. (7.13)

It clearly implies that, at least in the limit of large AdS energies, the Mellin-space ampli-
tude exhibits a double-copy structure which is inherited from the corresponding flat space
S-matrix element. The large-∆ limit may be realized either by considering very massive
particles or, as in the three-point example discussed above, by taking the space-time dimen-
sion to be large. It would be interesting to understand better in what sense AdSd→∞ may
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be interpreted as flat space. More involved relations [4, 86, 143] connecting Mellin-space
and flat space amplitudes are also suggestive of a double-copy structure in this limit.

Taking at face value the observation that we may assume the dimension to be large,
let us discuss another limit on AdS boundary correlators that points to a double-copy
structure in AdS momentum space.

7.3 An argument for double copy at high energies

The AdS Poincaré patch that we have been using exhibits translational invariance — and
thus conserved momentum — in the directions parallel to the boundary. It is therefore
natural to consider momentum-space AdS boundary correlators — i.e. Fourier-transforms
of AdS boundary correlators along the boundary coordinates. Properties of momentum-
space correlation functions of gauge-invariant operators have been discussed from dual
gauge theory perspective in refs. [21, 79, 144, 145].

A hard high energy scattering process (i.e. a scattering process for which the mo-
mentum transfer is large) may be expected to be localized in a small region of the space.
Thus, for weakly-curved spaces, the scattering effectively occurs in flat space. An impor-
tant point, emphasized in refs. [146, 147] and used there to provide a connection between
the soft high-energy string theory S-matrix elements and the hard S-matrix elements of
gauge theories, is that the momenta of particles in the scattering region are not the same
as the momenta at infinity/boundary. Rather than the boundary momentum p, it is the
momentum p̃ in the local inertial frame,

p̃a = eµapµ (7.14)

with the vielbein eaµ and pµ ∼ ∂/∂xµ, that governs the local scattering process. Moreover,
since the propagation from the boundary to the interaction region probes a large region of
the curved space, the asymptotic states are captured by the curved-space bulk-boundary
propagators.

Thus, if the extent of the scattering region is not too large, the correlation function
labeled by boundary momenta is schematically

M∆1...∆n(p) = 〈O∆1(p1) . . .O∆n(pn)〉 =
∫
M
Mflat(p̃)

n∏
i=1

E∆i
, (7.15)

where E∆i
are the bulk-boundary propagators labeled by boundary momenta for the fields

dual to the operators O∆i
, Mflat is the flat space amplitude for these fields and M is

the entire space (e.g. AdS5×X). For tree-level boundary correlators the integration runs
over the coordinates that are not Fourier-transformed (e.g. in AdS it is only the transverse
direction). The asymptotic states for fields with spin naturally carry tangent space indices,
so their bulk-boundary propagators are similarly labeled.

The Poincaré patch the metric is

ds2 = R2

z2

(
ηµνdx

µdxν + dr2
)
. (7.16)
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In these coordinates, the boundary is at z = 0 and the momentum in the local inertial
frame is

p̃ = z

R
p . (7.17)

Thus, for any finite boundary momentum p, the local momentum is large if the scat-
tering occurs away from the boundary. One may extend the range of validity of this
approximation by taking the boundary momenta to be parametrically large, but the scat-
tering region is required to have a relatively small extent in the AdS transverse direction.
Therefore, the double-copy structure of the flat space gravitational amplitudes, formally
written asMflat(p̃) = DC[AL, flat(p̃),AL, flat(p̃)], implies that in the regime eq. (7.15) holds
the transverse-space integrand of AdS boundary correlators also have certain double-copy
properties. For graviton asymptotic states:

M∆1...∆n(p) =
∫
M

DC[AM1...Mn
L, flat (p̃),AN1...Nn

L, flat (p̃)]
n∏
i=1

EMiNi,AiBi
∆i

Zi,AiBi , (7.18)

where graviton Zi are polarization tensors, EMiNi,AiBi
∆i

are graviton bulk-boundary prop-
agators and AL,R are the left and right gauge theory amplitudes entering the flat space
double copy.

Inspection of the bulk-boundary propagators reveals that these properties may be
further enhanced in the limit of large AdS dimension or large ∆. As discussed in section 4.2,
the vector-field propagator may be written as a differential operator acting on the scalar
propagator, cf. eq. (4.14). The graviton propagator has a similar form

EMN,AB
∆ = DMN,ABE∆ , (7.19)

DMN,AB = ηMAηNB + 1
∆

(
ηMAPB

∂

∂PN
+ ηNBPA

∂

∂PM

)
+ 1

∆(∆+1)P
APB

∂2

∂PM∂PN
.

In the limit of large ∆ or for massless fields in the limit of large AdS dimension, this
operator may also be written as

EMN,AB
∆→∞ = DMN,ABE∆→∞ = DMADNBE∆→∞ = DNBDMAE∆→∞ (7.20)

DMA = ηMA + 1
∆PA

∂

∂PM
. (7.21)

Even though D contains terms with a manifest ∆−1 which might seem possible to ignore
in the large-∆ limit, the derivatives with respect to the bulk point provide an additional
factor O(∆) which render this term finite in this limit. The factorization of DMN,AB relies
on dropping various terms O(∆−1) after the derivatives are evaluated. Thus, in the high
energy (from the boundary perspective) and large AdS dimension, the integrand of the
momentum-space gravitational AdS boundary correlator can be written as the square of a
differential operator acting on scalar bulk-boundary propagators:

M∆1...∆n(p) =
∫
M

DC[AM1...Mn
L, flat (p̃),AN1...Nn

L, flat (p̃)]
n∏
i=1

Zi,AiDMi,AiZi,BiDNi,Bi E∆i→∞ .

(7.22)
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A single power of this differential operator,

A∆1...∆n(p) =
∫
M
AM1...Mn

flat (p̃)
n∏
i=1

Zi,AiDMi,AiE∆i→∞ (7.23)

where we suppressed color indices, is a color-dressed gauge theory AdS boundary correlator.
While in general the weight of vector fields and gravitons is different, their differences are
subleading in the large dimension or large energy limit so E∆i→∞ are the same in both
eq. (7.22) and eq. (7.23).

Similar reasoning suggests AdS boundary correlators with other asymptotic states can
be double-copied in the same sense as outlined here. Fourier-transforming the boundary
momenta provides a possible connection to the position-space representation of AdS bound-
ary correlators. It would be very interesting to understand whether a more direct relation
can be formulated.

8 Conclusion

The scattering amplitudes program has uncovered remarkable structures in flat space quan-
tum field theories, most of which are not manifest from a Lagrangian perspective. Their
far-reaching consequences make it worthwhile to explore and develop their curved space
analog. Its maximal symmetry and central role in the most concrete realization of the holo-
graphic principle make AdS space an important arena fur such investigations. In this paper,
we proposed a framework to discuss color/kinematics duality and the associated BCJ ampli-
tude relations for AdS boundary correlators in position space. Other approaches [10, 92–94]
focus on the AdS momentum space and Mellin space representations of boundary correla-
tors. While somewhat technical, we argue that the linearly-realized conformal symmetry of
the position embedding space has certain advantageous consequences analogous the on-shell
properties of flat space scattering amplitudes.

We conjectured an AdS analog of color/kinematics duality and of the BCJ amplitudes
relations. We supported our conjecture by showing the AdS5 boundary correlators of the
NLSM and YM theory obey the AdS BCJ relations through six and four points, respec-
tively. As in flat space, these properties are obscure from a Lagrangian perspective. The
AdS amplitudes relations suggest the existence of a differential representation of the tree
level boundary correlators of the form of eq. (3.26), which we explicitly found for both the
four- and six-points NLSM correlators. We also gave a broad overview of several possible
double-copy procedures in AdS space, focusing on two distinct ones that satisfy certain
necessary consistency conditions for the d = 2 and d→∞ limits, respectively.

The relations we conjectured from the perspective of weakly-coupled theories in AdS
space translate, through the holographic duality, to conditions on strongly-coupled CFT
flavor correlation functions. Incorporating them in the CFT bootstrap program would help
identify theories with a weakly coupled bulk dual.

Since our analysis covers only (appropriately-defined) massless states, our conclusions
apply at leading order in the large ‘t Hooft coupling limit of the boundary theory. It would
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clearly be interesting to extend them to the complete string theory in AdS space (suitably
extended by a compact space) and thus access (through tree-level string calculations) sub-
leading terms in the large ‘t Hooft coupling limit or 1/N corrections to correlators through
string loops. Such calculations may be aided by the differential representation studied
in this paper, as it makes manifest the analytic structure of correlators. While such cal-
culations are expected to be IR finite [148–150], the specific spectrum and interactions
of string theory should be necessary to ensure their UV consistency. It would moreover
be interesting to understand if the differential representations discussed here have a su-
persymmetric generalization analogous to the on-shell superspace formalism of scattering
amplitudes [151–156].

While the discussion of color/kinematics-satisfying representations for boundary cor-
relators and of the relations they satisfy was carried out in AdS space, the results are
applicable with minor modifications to computing the wave-function in the Bunch-Davies
vacuum de Sitter (dS) space. To find the Bunch-Davies wave-function, the relevant Witten
diagrams correspond to integrating over dS instead of AdS space. There are a number of
techniques available for computing experimentally-measurable, late-time correlators using
the Bunch-Davies wave-function.15 In particular, the relation between dS late time corre-
lators and AdS boundary correlators in momentum-Mellin space amounts to including a
simple pre-factor [90, 91, 159, 160]. Studying whether the differential representation is use-
ful for directly computing late-time correlators, not just the Bunch-Davies wave-function,
could be very rewarding.16

Our discussion of the double-copy in AdS space is clearly incomplete; identifying a
construction that relates gauge and gravitational theories at finite boundary dimension d

is clearly an important problem. Celestial amplitudes are perhaps the closest flat space
analog to our AdS boundary correlators and their structure [105–107] is analogous to that
of the differential representations discussed here. Notably, they are constrained by sym-
metries [161–164] exposed by soft-momentum properties of the corresponding momentum-
space amplitudes. An interesting question is whether such symmetries could generalize in
some form to the AdS boundary correlators, providing an AdS analog of the flat space soft
theorems. More conceptually, it is important to understand the meaning of the double
copy from the point of view of the boundary theory and in particular the sense in which
the product of two operators is local in the quantum theory, as a double-copy construction
might suggest.

We briefly discussed in section 7.1 a simple deformation of YM theory by a higher-
dimension operator. Extensive work has been carried out in flat space directed at un-
derstanding the interplay between higher dimension operators and color/kinematics dual-
ity [61, 139, 165]. Specifically, ref. [138] proposed a bootstrap procedure for identifying
higher dimension operators compatible with color/kinematics duality and a BCJ-like con-

15appendix A of ref. [157] summarizes the precise relation between the Bunch-Davies wave-function,
which can be computed using analytically continued Witten diagrams, and late time correlators. See also
ref. [158].

16We thank Sebastian Mizera for discussion on this point.
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struction in the presence of such operators was discussed in refs. [166, 167]. It would be
interesting to understand their realization in curved space, and study the double copy at
higher points.
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A Embedding space formalism

The AdSd+1 background can be realized as a space-like hypersurface in the (d+2) di-
mensional flat spacetime Rd+1,1. Under Cartesian coordinates XA = (Xa, Xd, Xd+1), the
hypersurface is given by the equation

(X0)2 + (X1)2 + · · ·+ (Xd−1)2 + (Xd)2 − (Xd+1)2 = −R2 . (A.1)

The Poincaré coordinates of AdSd+1 are given by the following parametrization,

Xa = R

z
xa , Xd = R

z

1− x2 − z2

2 , Xd+1 = R

z

1 + x2 + z2

2 , (A.2)

such that for R = constant we have

ds2
AdSd+1 = gµνdx

µdxν = R2

z2

(
dz2 + dxadx

a
)
. (A.3)

We can also view eq. (A.2) as a coordinate transformation from the Cartesian coorinates
XA to the coordinates (R, z, xa), under which metric of Rd+1,1 becomes

ds2
R2,d = −dR2 + ds2

AdSd+1 . (A.4)

In fact, (R, z, xa) are Gaussian normal coordinates adapted to the AdS hypersurface and
the gµν in eq. (A.3) is the induced metric.

When we study a scalar field φ on AdSd+1, it is convenient to extend its definition to
the entire embedding space. However, we need to make sure that the dynamics does not
depend on the variation normal to the AdS hypersurface. It is not difficult to show that

ηAB∂Aφ∂Bφ = −(∂Rφ)2 + gµν∂µφ∂νφ ,
1
R
XA∂Aφ = ∂Rφ . (A.5)

We can thus define

GAB = ηAB −
XAXB

X2 = gµν
∂XA

∂xµ
∂XB

∂xν
, (A.6)
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such that

GAB∂Aφ∂Bφ = gµν∂µφ∂νφ . (A.7)

One can also prove that the AdS Laplacian is given by

∂A(GAB∂B) = −1
2D

2
X = ∇2

AdS . (A.8)

The matrix form of GAB under the (R, z, xa) coordinates is

GAB
transformation (A.2)−−−−−−−−−−−−−→

(
0 0
0 gµν

)
, (A.9)

namely, GAB is indeed a projector to AdSd+1. One can easily show that GAB is idempotent
and transverse to the normal vector XA,

GA
BGB

C = GA
C , GABX

B = 0 . (A.10)

Geometrically, GAB is the first fundamental form associated to the hypersurface (A.1).
From now on, we fix R = 1 for the AdS hypersurface, such that the AdS integration
measure becomes ∫

AdS
dX ≡

∫
AdS

δ(R− 1)Rd+1dRdzddx

zd+1 =
∫
AdS

dzdxd

zd+1 . (A.11)

Thus we can perform integration-by-parts for ∂/∂XA if it appears in the integrand as
∂

∂XA (GAB · · · ) or GBA ∂
∂XA (· · · ), since the projector GAB removes ∂

∂R so the measure re-
mains invariant.

A tensor HA1A2...An in the embedding space defines a tensor on AdS if it is transverse
to the AdS hypersurface,

XAiHA1A2...An = 0 , 1 6 i 6 n . (A.12)

The AdS tensor can be recovered through the projection

hµ1µ2...µn = ∂XA1

∂xµ1

∂XA2

∂xµ2
. . .

∂XAn

∂xµn
HA1A2...An . (A.13)

From this equation and the relation (A.6) between gµν and GAB, we can show that the
contraction between two AdS tensors can be uplifted into the embedding space,

hµ1µ2...µng
µiνjfν1ν2...νm = HA1A2...AnG

AiBjFB1B2...Bm = HA1A2...Anη
AiBjFB1B2...Bm ,

(A.14)

where the second equality is due to the transversality. Conditions like being symmetric
and traceless of an AdS tensor can be directly imposed on its embedding space uplift. A
more formal discussion on this topic can be found in ref. [133].
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The conformal boundary of AdS is located at z → 0. We can represent a boundary
point xa

i by a projective null vector in the embedding space,

Pi =
(
xa
i ,

1− x2
i

2 ,
1 + x2

i

2

)
. (A.15)

Obviously we have P 2
i = 0 and we identify Pi ∼ λPk. A polarization vector εai on the

boundary can also be represented in the embedding space,

Zi = (εai ,−εi · xi, εi · xi) , (A.16)

such that Pi · Zi = 0 and Zi · Zi = ε2i = 0. A tensor current FA1A2...An(P ) defined on the
null cone P 2 = 0 is physical only if it is homogeneous and transverse,

FA1A2...An(λP ) = λ−∆FA1A2...An(P ) , PAiFA1A2...An(P ) = 0 , 1 6 i 6 n . (A.17)

Finally, we list a few useful relations that connect the embedding space and physical space
expressions,

−2X · Pi = z + z−1(x− xi)2 , −2Pi · Pj = (xi − xj)2 ,

Pi · Zj = εj · (xi − xj) , Zi · Zj = εi · εj , (A.18)

where X is a bulk point defined as in eq. (A.2).

B Contact diagrams in AdS

Contact diagrams of scalar operators play a crucial role in flat space scattering amplitudes.
Crucially, the delta function that imposes momentum conservation on an n-point scattering
amplitudes arises from the contact diagram of an n-point scalar vertex

Aflat
contact =

∫
ddx

∏
i

eipix

= δd
(∑

i

pµi

) (B.1)

The contact diagrams of n-point scalar vertex operators play an analogous role in AdS,
giving the AdS analog of the flat space delta function. The contact diagram associated
with the vertex

∏
i φi in AdS is

Ancontact =
(

n∏
i=1

Γ(∆i)
2πd/2Γ(∆i − d/2 + 1)

)
D∆1...∆n (B.2)

where

D∆1...∆n =
∫
AdS

dX
n∏
i=1

1
(−2Pi ·X)∆i

(B.3)
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is theD-function. Any tree-level position space correlator in AdS will be a polynomial in D-
functions, Z-variables and P -variables. Similar to how all flat space scattering amplitudes
contain a universal momentum conserving delta function, each term in the polynomial
expansion of the position space correlator contains its own D-function. A major challenge
for evaluating position space correlators in AdS is finding representations of D-functions
amiable to numeric approximation.

B.1 Three-point D-functions

The D-functions that appear in three-point correlators can be integrated directly:

D∆1∆2∆3 =
∫
AdS

dX
3∏
i=1

1
(−2Pi ·X)∆i

= πd/2

2
∏
i Γ(∆i)

Γ
(∆1 + ∆2 + ∆3 − d

2

)∏
i<j

Γ(δij)
(−2Pi · Pj)δij

(B.4)

δij = 1
2(∆i + ∆j −∆k) .

The three-point D-function is the one which has a rational dependence on coordinates;
higher point D-functions are rather non-trivial functions.

B.2 Exact solution of four-point D-functions

In this section, we review a derivation of an exact solution to the four-point D-function
in terms of derivatives of polylogarithms. Advantages (and disadvantages) of alternative
methods are discussed at the end.

To find a numerically tractable representation of eq. (B.3), we first rewrote the D-
function into a Feynman parameterization:

D∆1,∆2,∆3,∆4 =
πd/2Γ(Σ−d

2 )Γ(Σ
2 )

2
∏
i Γ(∆i)

∫ ∏
j α

∆j−1
j δ(

∑
i αi − 1)

(
∑
k,l αkαlPk,l)Σ/2 , (B.5)

where Σ = ∆1 + ∆2 + ∆3 + ∆4. Our goal is to find an exact solution for the integral
in eq. (B.5) that can be used for numerical analysis in Mathematica. We first solve for
the integral in eq. (B.5) for the simplest case when ∆i = 1 for all i’s, which we denote as
B(Pij). It is nothing but the four-mass box integral [168, 169],

B(Pij) =
∫ ∏

j dαjδ(
∑
i αi − 1)(∑

k,l αkαlPk,l
)

= 1√
∆′

[1
2 log

(
u+u−

(1− u+)2(1− u−)2

)
log u+

u−

− Li2(1− u+) + Li2(1− u−)− Li2
(
1− 1

u−

)
+ Li2

(
1− 1

u+

)]
,

(B.6)
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where

∆′ = X2 + Y 2 + Z2 − 2XY − 2Y Z − 2ZX , X = P12P34 , Y = P13P24 ,

u± = Y +X − Z ±
√

∆′
2Y , Z = P14P23 . (B.7)

Note that eq. (B.6) is simply the standard four-mass box integral whose solution has been
known for 20 odd years.17 We then identify a simply relation between derivatives of B(Pij)
and D∆1,∆2,∆3,∆4 to find a generic solution for four-point D-functions:

πd/2 (−1)
∑

i<j
cij Γ

(
Σ′−d

2

)
Γ
(

Σ′
2

)
2Γ
(
2 +

∑
i<j cij

)
(
∏
i Γ (∆′i))

∏
i<j

(
∂

∂Pij

)cijB (Pij)

=
πd/2Γ

(
Σ′−d

2

)
Γ
(

Σ′
2

)
2 (
∏
i Γ (∆′i))

∫ ∏
a dαaα

∆′a−1
a δ (

∑
b αb − 1)(∑

i,j αiαjPij
)Σ′/2

= D∆′1,∆′2,∆′3,∆′4 ,

(B.8)

where ∆′i =
∑
j 6=i cij + 1 and Σ′ =

∑
i ∆′i. Equations (B.6) and (B.8) together provide a

closed form expressions for arbitrary four-point D-functions in terms of derivatives of poly-
logarithms. Unfortunately, although this representation is advantageous in that it provides
an exact representation of the D-function in terms of polylogarithms, the D-function ex-
pressions become cumbersome very quickly, even for symbolic computation programs such
as Mathematica. We ultimately used numeric differentiation algorithms in combination
with eqs. (B.6) and (B.8) to solve for the D-functions at arbitrary kinematic points. These
results were cross-checked with more direct numeric integrations of eq. (B.5).

Finding numerically tractable representations of D-functions is generically quite hard.
For example, although standard Mellin integral representations of the D-function can be
integrated numerically with high precision, defining the actual contour for integration is
somewhat subtle. While the Mellin representation of Feynman integrals is largely under-
stood, the problem seems to be slightly more technically challenging for the D-functions
corresponding to AdS contact diagrams. One might hope that numeric integration in the
Feynman representation would offer a more realistic approach, as it suffers from no con-
tour ambiguities. Unfortunately, direct numeric integration of Feynman parameterized
integrals is often unstable for arbitrary kinematics and ∆i unless sophisticated weighted
Monte-Carlo sampling techniques are applied. For example, see ref. [171].

B.3 D-function identities

When computing NLSM and YM AdS boundary correlators, we have used some D-function
identities to simplify the results. In this appendix, we derive these identities starting from

17The same integral was evaluated in eq. (39) in ref. [170], but their solution appears to have a typo.
One can test the relative sign of individual terms in a given convention by checking whether the resulting
D-function obeys the properties given in appendix B.3.
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the conformal Ward identity. We start with the four-point case,(
DAB

1 +DAB
2 +DAB

3 +DAB
4

)
D∆1,∆2,∆3,∆4 = 0 . (B.9)

We can act respectively (D1 +D3)AB and (D2 +D4)AB onto this equation, giving(
2D2

13 +D2
1 +D2

3

)
D∆1,∆2,∆3,∆4 = − (D1 +D3)AB (D2 +D4)AB D∆1,∆2,∆3,∆4 ,(

2D2
24 +D2

2 +D2
4

)
D∆1,∆2,∆3,∆4 = − (D2 +D4)AB (D1 +D3)AB D∆1,∆2,∆3,∆4 . (B.10)

Since (D1 +D3) commutes with (D2 +D4) and D2
i = −2m2

i = −2∆i(∆i − d) when acting
on a conformal partial wave, we get(

D2
23 −m2

2 −m2
3

)
D∆1,∆2,∆3,∆4 =

(
D2

14 −m2
1 −m2

4

)
D∆1,∆2,∆3,∆4 . (B.11)

In particular, when ∆i = ∆, we have

D2
13D∆,∆,∆,∆ = D2

24D∆,∆,∆,∆ . (B.12)

The above relation can be easily generalized to n-points,(
D2
I −

∑
i∈I

m2
i

)
D∆1,∆2,...,∆n =

D2
Ī
−
∑
i∈Ī

m2
i

D∆1,∆2,...,∆n , (B.13)

where I ∪ Ī = {1, 2, . . . , n} and I ∩ Ī = ∅.
We can also carry out the derivatives in eq. (B.11) explicitly to obtain relations in-

volving boundary positions. For example, we can use

−1
2D

2
13D∆1,∆2,∆3,∆4 = 4∆1∆3(P1 · P3)D∆1+1,∆2,∆3+1,∆4 + ∆1∆3D∆1,∆2,∆3,∆4 , (B.14)

and a similar equation for D2
24 to show that

(P1 · P3)D∆+1,∆,∆+1,∆ = (P2 · P4)D∆,∆+1,∆,∆+1 for ∆i = ∆ . (B.15)

One can also show that acting D2
12 and D2

13 consecutively gives

1
4D

2
12D

2
13D∆1,∆2,∆3,∆4 = 16∆1(∆1 + 1)∆2∆3(P1 ·P2)(P1 ·P3)D∆1+2,∆2+1,∆3+1,∆4 (B.16)

+ 4∆1(∆1 + 1)∆2∆3
[
(P1 ·P2)D∆1+1,∆2+1,∆3,∆4 + (2↔ 3)

]
− 4∆1∆2∆3(P2 ·P3)D∆1,∆2+1,∆3+1,∆4 + ∆2

1∆2∆3D∆1,∆2,∆3,∆4 ,

which is symmetric under the 2↔ 3 exchange. This also means that D∆1,∆2,∆3,∆4 lives in
the kernel of [D2

12, D
2
13], namely, [D2

12, D
2
13]D∆1,∆2,∆3,∆4 = 0.

Next, we act DAB
1 onto eq. (B.9) and then use eq. (B.11) to eliminate D2

14. This gives(
D2

12 +D2
13 +D2

23

)
D∆1,∆2,∆3,∆4 +

(
m2

4 −m2
1 −m2

2 −m2
3

)
D∆1,∆2,∆3,∆4 = 0 . (B.17)
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When ∆i = ∆, we get(
D2

12 +D2
13 +D2

23

)
D∆,∆,∆,∆ = 2∆(∆− d)D∆,∆,∆,∆ . (B.18)

This equation also implies the identity

(P1 · P2)D∆+1,∆+1,∆,∆ + (P1 · P3)D∆+1,∆,∆+1,∆

+ (P2 · P3)D∆,∆+1,∆+1,∆ = −4∆− d
4∆ D∆,∆,∆,∆ . (B.19)

In the on-shell limit ∆ = d, we thus derive the relation(
D2

12 +D2
13 +D2

23

)
Dd,d,d,d, = 0 , (B.20)

which resembles the relation s+ t+ u = 0 for flat space Mandelstam variables.
The above identities can also be derived using integration-by-parts relations. Below

we show the derivation of eq. (B.11). Our calculation will be given in the embedding space,
which is in parallel with the one in the physical space [134]. To start with, we define

D∂∆1,∆2,∂∆3,∆4 ≡
∫
AdS

dXGAB
[

∂

∂XA

1
(−2P1 ·X)∆1

]
1

(−2P2 ·X)∆2

×
[

∂

∂XB

1
(−2P3 ·X)∆3

]
1

(−2P4 ·X)∆4

= 4∆1∆3(P1 · P3)D∆1+1,∆2,∆3+1,∆4 + ∆1∆3D∆1,∆2,∆3,∆4 . (B.21)

We then use the identity

∂AG
AB∂B

[ 1
(−2P1 ·X)∆1

1
(−2P3 ·X)∆3

]
= 2GAB ∂

∂XA

1
(−2P1 ·X)∆1

∂

∂XB

1
(−2P3 ·X)∆3

+ m2
1 +m2

3
(−2P1 ·X)∆1(−2P3 ·X)∆3

(B.22)

to write eq. (B.21) as

D∂∆1,∆2,∂∆3,∆4 + 1
2
(
m2

1 +m2
3

)
D∆1,∆2,∆3,∆4

= 1
2

∫
AdS

dX
(
∂AG

AB∂B
) [ 1

(−2P1 ·X)∆1

1
(−2P3 ·X)∆3

]
1

(−2P2 ·X)∆2

1
(−2P4 ·X)∆4

= 1
2

∫
AdS

dX
(
∂AG

AB∂B
) [ 1

(−2P2 ·X)∆2

1
(−2P4 ·X)∆4

]
1

(−2P1 ·X)∆1

1
(−2P3 ·X)∆3

= D∆1,∂∆2,∆3,∂∆4 + 1
2
(
m2

2 +m2
4

)
D∆1,∆2,∆3,∆4 , (B.23)

where integration-by-parts has been used to obtain the second equation. This leads to the
identity

4∆1∆3 (P1 · P3)D∆1+1,∆2,∆3+1,∆4 + 1
2
(
2∆1∆3 +m2

1 +m2
3

)
D∆1,∆2,∆3,∆4

= 4∆2∆4 (P2 · P4)D∆1,∆2+1,∆3,∆4+1 + 1
2
(
2∆2∆4 +m2

2 +m2
4

)
D∆1,∆2,∆3,∆4 . (B.24)
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When ∆i = ∆, we can recover (P1 ·P3)D∆+1,∆,∆+1,∆ = (P2 ·P4)D∆,∆+1,∆,∆+1. Now using
eq. (B.14) to replace Pi · Pj by D2

13 immediately leads to(
D2

23 −m2
2 −m2

3

)
D∆1,∆2,∆3,∆4 =

(
D2

14 −m2
1 −m2

4

)
D∆1,∆2,∆3,∆4 . (B.25)

C Derivation of eq. (6.34)

In this appendix, we give a derivation of eq. (6.34), copied here as

M−1
[ 4∏

16i<j

Γ(δij + lij)
Γ(δij)

]
= 2
πd/2

∏4
i=1 Γ(∆̃i)
Γ
(

Σ̃−d
2

) [ 4∏
16i<j

P
lij
ij

]
D∆̃1∆̃2∆̃3∆̃4

. (C.1)

It suffices to consider the inverse Mellin transform of
Γ(δ12 + l)

Γ(δ12) . (C.2)

We first parameterize the delta functions in the inverse Mellin transform (6.35)

δ

∆i −
∑
j

δij

 =
∫ ∞

0

dti
ti
t
∆i−

∑
j
δij

i (C.3)

and then evaluate the δij contour integral using∫ i∞

−i∞

dδij
2πi Γ(δij + l)(titjPij)−δij = (titjPij)le−titjPij . (C.4)

This leads to

M−1
[

Γ(δ12 + l)
Γ(δ12)

]
= (P12)l

∫ ∞
0

[ 4∏
i=1

dti
ti

]
t∆1+l
1 t∆2+l

2 t∆3
3 t∆4

4
∏
i<j

e−titjPij . (C.5)

To convert this expression to a D-function, we first insert the identity element

1 = 1
Γ[(∆1 + l)/2 + (∆2 + l)/2 + ∆3/2 + ∆4/2− d/2]

×
∫ ∞

0

dz

z
z−d/2+(∆1+l)/2+(∆2+l)/2+∆3/2+∆4/2e−z

(C.6)

and then rescale ti → t′i/
√
z. Now we can carry out the z integral as

πd/2

2

∫ ∞
0

dz

z
z−d/2 exp

−z + 1
z

(∑
i

t′iPi

)2
 =

∫
AdS

dX
∏
i

e2t′iX·Pi . (C.7)

Finally, we perform the t′i integral as∫ ∞
0

dt′i
t′i

(t′i)∆′iet
′(2X·Pi) = Γ(∆′i)

(−2X · Pi)∆′i
(C.8)

to reach our desired result

M−1
[

Γ(δ12 + l)
Γ(δ12)

]
= 2
πd/2

P l1,2
Γ(∆1 + l)Γ(∆2 + l)Γ(∆3)Γ(∆4)D∆1+l1,∆2+l2,∆3,∆4

Γ[(∆1 + l)/2 + (∆2 + l)/2 + ∆3/2 + ∆4/2− d/2] . (C.9)

It is trivial to see that eq. (C.9) generalizes to eq. (6.34).
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