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1 Introduction

Beginning with the pioneering discovery of Kawai-Lewellen-Tye (KLT) [1], the existence of
a multiplicative structure, called the double-copy, on the space of relativistic field theories
and string theories has become an indispensable tool for the study of scattering amplitudes
and beyond. The review [2] provides an excellent introduction and overview.

In this paper, we present a generalization of the double-copy inspired by the KLT
formula. Our approach is to bootstrap the double-copy multiplication rule that takes the
color-ordered tree amplitudes from a pair of (possibly distinct) models, often referred to as
single copies, and returns a non-color-ordered tree amplitude in a different model known
as the double-copy. The map takes the general bilinear form

AL⊗R
n =

∑
α,β

AL
n[α]Sn[α|β]AR

n [β] , (1.1)

where α and β index the set of color-orderings and Sn[α|β] is some a priori unknown,
universal function of Mandelstam invariants called the double-copy kernel. The well-known
field theory and string theory kernels are reviewed in sections 1.1 and 1.2. Generalizations
of Sn are non-trivial: the kernel plays a key role in canceling potential double-poles in the
product of single-copy amplitudes and it also supplies “missing” poles. Naive modifications
can have dire consequences for locality and may result in an nonsensical result on the l.h.s.
of (1.1).

Within our proposed generalized framework, the problems we address in this paper are:

• What are the rules for generalizing the kernel Sn? Are there multiple distinct double-
copy “multiplication rules”?

• For a given kernel, which models can be used as single-copies: what constraints do
they need to satisfy?

• Which models can be produced as a double-copy?

The double-copy can be considered a map

(theory)L ⊗ (theory)R = (theory)L⊗R , (1.2)

in which the multiplication rule ⊗ is determined by the double-copy kernel Sn. A key
feature is that both the field theory and string theory KLT double-copy maps contain an
identity element: a model whose tree amplitudes double-copy with the L/R tree amplitudes
of single-copy models to give those same L/R amplitudes as output. This is summarized
as the KLT algebra

L⊗ 1 = L, 1⊗ R = R, 1⊗ 1 = 1 . (1.3)
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We refer to the identity element as the zeroth copy [3]. Intuitively, changing the multi-
plication rule (1.3) also changes the identity element, and vice versa. In fact, the tree
amplitudes of the zeroth copy uniquely determine the double-copy kernel.

To systematically explore generalizations of KLT, our fundamental assumption is that
any KLT double-copy has an identity element 1 that satisfies (1.3). Hence, the first question
above can be restated as:

• What are the allowed choices of zeroth copy?

The zeroth copy must have a certain double color-structure, however, not every such choice
of local field theory defines a valid double-copy multiplication rule: important constraints
arise when we demand the absence of spurious singularities in the double-copy amplitudes.
In other words, non-trivial conditions come from requiring that the output of the double-
copy are indeed tree amplitudes of a local field theory.

In this paper, we develop a systematic analysis of the constraints imposed by the
KLT algebra (1.3) and locality on generalizations of the double-copy kernel. In short, the
identity 1⊗ 1 = 1 becomes a bootstrap equation for the double-copy kernel while the two
other conditions L⊗1 = L and 1⊗R = R determine the generalizations of the Kleiss-Kuijf
(KK) [4] and Bern-Carrasco-Johansson (BCJ) [5] relations.

Let us outline the ideas and some results before diving more into the details. For the
field theory KLT map, the identity element is the cubic bi-adjoint scalar theory (BAS)
with Lagrangian

LBAS = −1
2
(
∂µφ

aa′
)2
− g

6f
abcf̃a

′b′c′φaa
′
φbb
′
φcc
′
, (1.4)

in which the scalar field φaa′ carries adjoint indices of two groups, say U(N) and U(N ′). We
sometimes call this the BAS zeroth copy. Furthermore, the string theory zeroth copy [6]
can, in the small α′-expansion, be viewed as the BAS model with a very particular selection
of higher-derivative corrections, all with coefficients completely fixed in terms of α′.

This motivates the study of the class of double-copy kernels that arise from the most
general deformations of the BAS zeroth copy model with local higher-derivative (h.d.)
operators,

LBAS+h.d. = LBAS +
∑
i

ci
Λ∆i−d

Oi . (1.5)

Here Oi ∼ ∂2k(φaa′)n are local scalar operators of dimension ∆i and the constants ci are
the Wilson coefficients.

The KLT kernel bootstrap equation 1⊗ 1 = 1 can be understood as a rank-condition
on the matrix of doubly color-ordered zeroth-copy tree amplitudes; we elaborate on this in
sections 1.2 and 2.1. The rank is (n − 3)! for n-particle scattering in the BAS and string
zeroth copies [6], but for other zeroth copies it could in principle be different. We argue
that in the context of BAS+h.d., the rank of doubly color-ordered amplitudes should be
independent of Λ; in particular if the rank changed as Λ→∞, the double-copy procedure
would be singular. Since this is the limit in which the UV physics decouples, our observation
is that for finite Λ the rank of the associated matrix of scattering amplitudes must be
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the same as for the BAS zeroth copy. We call rank (n − 3)! minimal rank. Higher-
derivative operators generically increase the rank, so imposing the minimal rank condition
requires delicate cancellations between contributions of higher-dimension operators with
an associated infinite set of non-trivial constraints on the Wilson coefficients ci.

Our analysis shows that the leading higher-dimension operators compatible KLT boot-
strap equations are

L ⊃ −aL + aR
2Λ4 fabxf cdxfa

′b′x′f c
′d′x′(∂µφaa

′)(∂µφbb′)φcc′φdd′

+ aL
Λ4 f

abxf cdxda
′b′x′dc

′d′x′(∂µφaa
′)φbb′(∂µφcc′)φdd′

+ aR
Λ4 d

abxdcdxfa
′b′x′f c

′d′x′(∂µφaa
′)φbb′(∂µφcc′)φdd′ + . . . .

(1.6)

The presence of the symmetric tensors dabc = Tr
[
T a{T b, T c}

]
modify the U(1) decoupling

identity; a feature familiar from the strings zeroth copy which has aL/Λ4 = aR/Λ4 =
−1/(6πα′). The generalized double-copy kernel, based on (1.6), has arbitrary coefficients
for the L and R sectors and it therefore treats the L and R sector single-copy amplitudes
differently; in this sense, it can be thought of as a “heterotic”-type double-copy. We have
solved for the double-copy kernel up to and including 16-derivative order at 4-point and
6-derivative order at 5-point. These results are valid in general d ≥ 4 dimensions.

We apply the generalized double-copy to several examples, specifically 4d Yang-Mills
theory with higher-derivative terms (YM+h.d.) up to 10-derivative order. Specifically,
up to 4-derivative order, we find that the most general L sector single-copy model of
non-abelian gauge bosons, compatible with the generalized KK and BCJ relations, takes
the form

LL = −1
4F

a
µνF

aµν +
gL
F 3

Λ2 f
abcF aµ

νF bν
ρ
F cρ

µ + 2aLg
L
YM

g2Λ4 dabcd(F 4
ss)abcd + . . . , (1.7)

where the ellipsis indicates that the complete effective action contains higher-derivative
operators of the form DkFn with k > 0 and n ≥ 4. In (1.7), F 4

ss denotes the linear
combination

dabcd(F 4
ss)abcd ≡ Tr [FµνFνρFρσFσµ] + 2Tr [FµνFρσFνρFσµ]

− 1
2Tr [FµνFµνFρσF ρσ]− 1

4Tr [FµνFρσFµνF ρσ] , (1.8)

which also appears in the open superstring effective action [7], but here with the free
coefficient aL. The result is a generalization of the α′-expansion of the open-string gluon
amplitude and of previous work to extend the double-copy to higher-derivative operators [8].
(See also [9, 10].) In particular, since the above Yang-Mills deformation contains operators
with more general color-tensor structures, it is not restricted to contractions of fabc.

The double-copy of 4d YM+h.d. gives dilaton-axion (NS-NS) gravity with higher-
derivative interactions. Due to the F 3-term in (1.7), the graviton amplitudes have contri-
butions from exchanges of both dilatons and axions.

Separately, we study the double-copy bootstrap equations with rank greater than (n−
3)!, including zeroth-copy candidates that are not simply BAS+h.d. In each of the higher-
rank examples, we find potential obstructions from spurious poles at higher points. This
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leads us to suspect that a well-defined local double-copy requires a zeroth copy whose
matrix of doubly color-ordered tree amplitudes must have rank (n− 3)!.

In the following subsections, we review the KLT formula and the KLT algebra in
more detail and then we describe how a naive choice of zeroth copy results in spurious
singularities. The Introduction ends with an overview of results and an outline of the rest
of the paper.

1.1 Field theory KLT

At 4-point, the KLT formula (1.1) has only one term and can be written in various equiv-
alent forms, for example1

AL⊗R
4 = AL

4 [1234]S4[1234|1234]AR
4 [1234] , S4[1234|1234] = − su

g2t
,

AL⊗R
4 = AL

4 [1234]S4[1234|1243]AR
4 [1243] , S4[1234|1243] = − s

g2 ,
(1.9)

where g denotes a scale which soon will be identified more precisely. The fact that both
versions produce the same result AL⊗R

4 for the double-copy relies on the identity

BCJ: A4[1234]− t

u
A4[1243] = 0 , (1.10)

as can be seen from subtracting the two equations in (1.9). The condition (1.10) is an
example of a BCJ relation. Similarly, the independence of “basis choice”, i.e. choice of which
of the possible color-orderings of amplitudes participate in the double-copy, is ensured by
the L and R single-copy amplitudes satisfying, in addition to (1.10), the following KK
relations

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324] ,
(1.11)

and
U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 . (1.12)

These 5 requirements (1.10)–(1.12) reduce the 6 independent color-ordered tree amplitudes
to just 1.

At n-point there are similar requirements, jointly called KKBCJ relations in the follow-
ing, which reduce the number of independent color-ordered amplitudes from (n− 1)! (due
to the cyclicity of the single trace in the color-decomposition) to (n− 3)!. This is exactly
the number of color-orderings summed over in the n-point field theory KLT relations (1.1)
and the KKBCJ relations ensure that the result of the double-copy is independent of the
choice of (n− 3)! color-orderings used in the double-copy.

The tree amplitudes of Yang-Mills (YM) theory and super Yang-Mills (SYM) theory
solve the field theory KKBCJ relations. The same is true for the tree amplitudes of chiral
perturbation theory (χPT), which is the nonlinear sigma model (NLSM) based on the coset
U(N) × U(N)/U(N). Finally, the doubly color-ordered tree amplitudes of the bi-adjoint

1We use the Mandelstam conventions s ≡ (p1 + p2)2, t ≡ (p1 + p3)2 and u ≡ (p1 + p4)2.
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L / R BAS χPT YM N = 4 SYM
BAS BAS χPT YM N = 4 SYM
χPT χPT sGal BI N = 4 sDBI
YM YM BI NS-NS gravity N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L ⊗ R for a selection of different choices of L
and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in the
main text. The single-color models are χPT = chiral perturbation theory, YM = Yang-Mills theory,
and N = 4 super Yang-Mills theory (SYM). These theories double-copy as shown to: the special
Galileon (sGal), Born-Infeld theory (BI), N = 4 supersymmetric Dirac-Born-Infeld theory (sDBI),
and NS-NS gravity which is the α′ → 0 limit of the NS-NS sector of superstring theory describing
Einstein gravity coupled to a dilaton and a 2-form gauge field (in 4d the latter is dualized to an
axion). Finally, SG stands for supergravity. The important point we want to make here is that
BAS acts as the identity under the field theory KLT map.

scalar model defined by the Lagrangian (1.4) also satisfy the field theory KKBCJ relations.
The result of using each of these models as the L and R inputs of the double-copy is shown
in table 1.

Interestingly, the table shows that the BAS model acts as the identity element for the
double-copy multiplication rule, as advertised. The tree amplitudes mn[α|β] in the BAS
model are doubly color-ordered with single-trace structures under each of the two color-
group factors. Diagrams that contribute to a given doubly color-ordered amplitude must
be compatible with the color-orderings of both group factors; for example

m4[1234|1234] = g2

s
+ g2

u
, m4[1234|1243] = −g

2

s
. (1.13)

When BAS amplitudes are used as input in the KLT formula, one color-group is actively
taking part in the double-copy while the other is inert. The output amplitude inherits the
inert color-orderings. Specifically, with γ and δ the inert color-orderings, we have

AR
n [γ] =

∑
α,β

mn[γ|α]Sn[α|β]AR
n [β] , AL

n[δ] =
∑
α,β

AL
n[α]Sn[α|β]mn[β|δ] , (1.14)

and
mn[γ|δ] =

∑
α,β

mn[γ|α]Sn[α|β]mn[β|δ] , (1.15)

where the sums on α and β are over a choice of two (possibly distinct) subsets of (n− 3)!
color-orderings. The formulas (1.14) and (1.15) are the mathematical manifestations of the
KLT algebra (1.3).

We can view (1.15) as matrix multiplication of the (n− 3)!× (n− 3)! KLT kernel Sn
with two (n−3)!× (n−3)! submatrices of BAS tree amplitudes mn. These submatrices are
invertible, hence if (1.15) is multiplied from both the left and right by (mn)−1, we find that

Sn =
(
mn
)−1

. (1.16)
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This relationship was first noted for the BAS zeroth copy in [11]. For the 4-point case, the
relation is particularly simple. For example, using (1.13), we find

S4[1234|1234] =
(
m4[1234|1234]

)−1 = − su
tg2 ,

S4[1234|1243] =
(
m4[1243|1234]

)−1 = − s

g2 .
(1.17)

Indeed, this result matches the kernel in (1.9) and we have now identified g as the BAS
cubic coupling constant. Using the expressions for S4 and m4, one can reproduce the 4-
point KKBCJ relations (1.10)–(1.12) from (1.14). This discussion illustrates the statement
we made previously that 1⊗ 1 = 1 links the field theory kernel to the tree amplitudes of
BAS (1.16) while L⊗ 1 = L and 1⊗ R = R encode the KKBCJ conditions.

As described above, the KKBCJ conditions (1.14) allow some single-copy models (such
as YM, SYM, χPT) to be double-copied but not others. For example, the amplitudes of a
model with an adjoint scalar ϕ and a fully symmetric interaction tr

(
ϕ{ϕ,ϕ}

)
do not obey

KKBCJ. Similarly, it was shown in [8] that adding an operator Tr[F 3] to YM theory is
KKBCJ-compatible, but adding any form of Tr[F 4] is not. A central motivation for our
work is to understand and expand the space of theories that can be double-copied.

1.2 Beyond field theory KLT

Perhaps the reader is surprised that YM with a Tr[F 4] fails the KKBCJ constraints; after
all, the low-energy α′-expansion of the open string gluon amplitude does indeed produce
an operator of the form Tr[F 4], and the KLT formula originated as a map from open string
amplitudes to closed string amplitudes [1]. These statements appear to be in conflict with
Tr[F 4] not passing the KKBCJ constraints. The resolution is simple: the string KLT
formula uses a string KLT kernel S(α′)

n in place of the field theory KLT kernel Sn. In
the α′ → 0 limit, the strings KLT kernel reduces at the leading order to the field theory
KLT kernel Sn described above. If we replace Sn in the KKBCJ relations (1.14) by the
α′-expansion of S(α′)

n , one can indeed show that the Tr[F 4] operator is allowed. Moreover,
its Wilson coefficient is fixed to be exactly its value in the open string gluon amplitude.
This example indicates that in order to systematically examine the double-copy in the
context of higher-derivative operators with general Wilson coefficients, we need to consider
generalizations of the KLT kernel.

As discussed around (1.16), the field theory KLT kernel, Sn is the inverse of a sub-
matrix of BAS tree-amplitudes mn [11]. Mizera [6] showed that the string theory KLT
kernel S(α′)

n similarly is the inverse of a (n− 3)! × (n− 3)! submatrix of amplitudes m(α′)
n

that are obtained from the BAS tree-amplitudes mn by replacing g2/p2 by 1/ sin(πα′p2)
or 1/ tan(πα′p2). For example,

m4[1234|1243] = −g
2

s
−→ m

(α′)
4 [1234|1243] = − 1

sin(πα′s) . (1.18)

When one replaces

mn → m(α′)
n and Sn → S(α′)

n = (m(α′)
n )−1 , (1.19)
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the KKBCJ relations (1.14) become the open string monodromy relations [12–16]. More-
over, m(α′)

n solves (1.15). Thus, the model associated with the amplitudes m(α′)
n is indeed

the identity for the KLT algebra (1.3) with multiplication kernel S(α′)
n .

From a conventional field theory point of view, it may be surprising that the m(α′)
n

are called amplitudes. However, in the α′-expansion, it makes perfect sense. For example,
consider the low-energy expansion s� (α′)−1 of (1.18):

m
(α′)
4 [1234|1243] = − 1

πα′s
− 1

6πα
′s− 7

360(α′πs)3 + . . . . (1.20)

The leading term matches that in m4[1234|1243] in (1.18) with g2 = 1/(πα′) and the sub-
leading terms arise from higher-derivative corrections to the BAS model (1.4). Schemati-
cally, we can write

Lα′ = LBAS + α′ ∂2φ4 + α′3 ∂6φ4 + . . . . (1.21)

Hence, the amplitudes m(α′)
n are the re-summed tree amplitudes of an effective field theory

consisting of the cubic bi-adjoint scalar model with higher-derivative corrections. One way
to view this is that the string KLT kernel provides an explicit one-parameter deformation of
the field theory KLT kernel with an associated KLT algebra (1.3) and it generates healthy
double-copy amplitudes.

It is clear even from the schematic form (1.21) that Lα′ involves a particular selection
of higher-derivative terms; notably φ4 or ∂4φ4 are absent. One goal of our analysis is
to determined which local operators are allowed in a generalized zeroth copy of the form
BAS+higher-derivative terms.

To illustrate how this is done, consider the 4-point case with (n−3)! = 1. In that case,
equation (1.16) simply gives S4[α|β] = 1/m4[β|α] and the sum in (1.15) is over just a single
choice of color-orderings α and β, so the double-copy bootstrap equation 1⊗1 = 1 becomes

m4[γ|δ] = m4[γ|α] 1
m4[β|α] m4[β|δ] . (1.22)

Rearranging (1.22), it says

det
(
m4[β|α] m4[β|δ]
m4[γ|α] m4[γ|δ]

)
= 0 . (1.23)

Since this holds for all choices of the (n − 1)! = 6 color-orderings α, β, γ, δ, this says that
all such 2 × 2 minors vanish. In other words, the 6 × 6 matrix of doubly color-ordered
zeroth-copy tree amplitudes m4 must have rank 1. The determinant in (1.23) trivially
vanishes for amplitudes of the cubic BAS model, but once higher-derivative operators are
included, (1.23) becomes a non-trivial constraint. This is an example of how 1 ⊗ 1 = 1

becomes a bootstrap equation for the zeroth copy and hence for the double-copy kernel.
More generally, at n-point, the equation 1⊗1 = 1 links the number of color-orderings

summed over in the double-copy (1.1) to the rank Rn of the (n− 1)! × (n− 1)! matrix of
tree amplitudes of the zeroth copy. For the BAS and string theory zeroth-copy models,
the rank is Rn = (n− 3)!, but in a general setting, Rn is not predetermined and different
values can be explored.

– 7 –



J
H
E
P
0
3
(
2
0
2
2
)
0
7
7

Thus, to examine the possible generalizations of the double-copy kernel, one can con-
sider any local model of a bi-adjoint scalar field φaa′ , compute its color-ordered tree ampli-
tudesmn[α|β], and subject them to the double-copy bootstrap equation 1⊗1 = 1 with some
choice of rank Rn. Inverting the resulting Rn-rank matrix gives the generalized double-copy
kernel. Amplitudes of L and R single-copy models can then be subjected to the generalized
KKBCJ relations L⊗ 1 = L and 1⊗ R = R and finally double-copied.

Returning to the 4-point example, the 6×6 matrix of amplitudes m4 can in full gener-
ality be parameterized using just 3 functions after using cyclic symmetry and momentum
relabelings. The rank R4 = 1 double-copy bootstrap equations (1.23) then fix two of
those functions in terms of the third one which must solve a self-consistency condition.
This latter equation is then solved perturbatively in the momentum expansion, and sub-
ject to additional constraints of locality, we find the most general allowed higher-derivative
corrections to the BAS model. This is presented in detail in section 4.

1.3 Locality constraints

The requirements of locality impose additional constraints on zeroth-copy solutions to the
bootstrap equation 1⊗ 1 = 1. Moreover, for a given kernel, one must make sure that the
result of the double-copy represents the tree amplitude of some local theory; it must have
the correct simple poles and factorize correctly on each of them, and it must be free of
spurious poles.

Even in the familiar case of the field theory KLT formula, the statement that the
double-copy amplitudes contain the expected physical factorization singularities, and only
those singularities, is not manifest. The problem is three-fold: first, expressions such
as (1.1) naively contain double-poles from the product of single-copy amplitudes with sin-
gularities in the same channel. Second, zeroes of det(mn) may naively produce nonphysical
or spurious singularities in the double-copy via poles in the kernel. Third, since we sum
over a restricted set of (n− 3)! orderings, the combined set of singularities in the L and R
single-copies could, in general, not contain all the expected singularities of the double-copy
amplitude.

It is instructive to see explicitly how these problems are resolved in the field theory
KLT formula. As a simple example, consider the product of YM tree amplitudes

AL
4 [1234]AR

4 [1234] . (1.24)

It has double poles in the s- and u-channels, but is missing the t-channel singularity which
must be present if the double-copy is a model of gravity with graviton exchange in every
channel. However, in the actual field theory KLT formula (1.9), the product (1.24) is
multiplied by the kernel

S4[1234|1234] = (m4[1234|1234])−1 = − su
g2t

, (1.25)

which cures all the problems: it reduces the s- and u-channel double-poles to simple poles,
and while det(m4) = −g2t/(su) does have a zero at t = 0, rather than generating a spurious
singularity, it provides precisely the “missing” t-channel pole in the double-copy!
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In general, to avoid spurious or higher-order singularities, the correspondence between
zeros of determinants and “missing” poles must persist at multiplicity n and for all basis
choices of (n− 3)! color-orderings. The fact that there exists any model with this property
is something of a miracle! It is incredible that such an intricate structure can be provided
by the mundane-looking BAS model.2

To illustrate the delicate nature of the double copy, let us analyze the pole structure
again after making an innocent-looking deformation to the BAS Lagrangian by adding to it

∆L = λ dabcdd̃a
′b′c′d′φaa

′
φbb
′
φcc
′
φdd

′
, (1.26)

where dabcd ≡ Tr
[
T aT (bT cT d)]. Turning on this deformation modifies the amplitudes as

m4 [1234|1234] = m4 [1234|1432] = −g
2t

su
+ λ, m4 [1234|1243] = −g

2

s
+ λ , (1.27)

with all other orderings given by relabelling. The rank of the full 6×6 matrix, at a generic
point in kinematic space, is found to be 2. Therefore, this deformed BAS theory solves the
bootstrap equations associated with a 2 × 2 kernel at 4-point. Repeating the analysis of
potential spurious poles, we calculate the determinant of one of these full-rank submatrices

det
(
m4 [1234|1234] m4 [1234|1243]
m4 [1243|1234] m4 [1243|1243]

)
= −g

2λ(s+ 2t)2

stu
. (1.28)

This expression has a zero at s+2t = 0 which does not correspond to a physical singularity
in the double-copy. Furthermore, since this pole can occur at arbitrarily low energies,
it cannot be discarded as an artifact of the EFT description. Clearly, turning on the
deformation (1.26) appears to have broken whatever special property of cubic BAS (1.4)
was responsible for the formula (1.1) producing a physical scattering amplitude.

Based on this example, one could take a very pessimistic view and conclude that the
cubic BAS model is the unique model with the special properties that ensure locality. As
discussed in the previous section, we can immediately dismiss this possibility as we know
the string kernel produces a healthy KLT formula free of spurious poles. At 4-point the
determinant that potentially generates spurious singularities is given by

det
(
mstring

4 [1234|1234]
)

= − sin(πα′t)
sin(πα′s) sin(πα′u)

= −t
πα′su

+ πα′

3 t− 1
45π

3α′3(s3 + u3) +O(α′4).
(1.29)

In the EFT context, the singularity at t = 0 in the E � (α′)−1/2 expansion corresponds
to the otherwise missing t-channel singularity, just as in discussion around (1.25).3

2As a cubic scalar model, its potential is unbounded from below and there is no sign in the Lagrangian
that this model should play as fundamental a role as it does for the double-copy. The BAS model does
however arise naturally from the BCJ or CHY formulations of the double copy by replacing the kinematic
numerator factors in a single-copy amplitude in color-kinematic form by a set of color-factors.

3Of course the string kernel also produces a healthy KLT formula free of spurious poles even when
E & (α′)−1/2, outside the EFT regime. In that case, the infinite tower of zeros in (1.18) with t < 0
are “missing” physical poles corresponding to massive string states exchanged in the t-channel. For the
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In both of our healthy examples, the cubic BAS and string theory kernels, the rank
of the zeroth-copy matrix is (n − 3)!. In the string theory case, this requires intricate
cancellations between the Wilson coefficients of higher-derivative operators at different
mass dimensions. In the unhealthy case (1.26), the rank was increased to 2 at 4-point.
This distinction is representative of a more general (empirically observed) pattern. If the
generalized zeroth copy is cubic BAS deformed by higher-derivative operators suppressed
by an EFT scale Λ, then spurious determinant zeroes do not appear if the rank of the
zeroth-copy matrix is continuous as Λ → ∞. In this case, just as in the string theory
example, the higher-derivative operators must be tuned to ensure that the rank remains
(n − 3)!. For such generalized kernels, physical scattering amplitudes, without spurious
low-energy singularities, are observed to be produced by the formula (1.1), for all choices
of single-copy amplitudes satisfying the associated generalized KKBCJ conditions without
any additional constraints.

In much of the Introduction we have focused on generalizations of the double-copy that
arise from adding higher-derivative operators to the BAS model, but one can also look for
other types of solutions to the KLT bootstrap equations. We initiate such a search for
zeroth copies at various ranks. The locality constraints are again essential and indicate
that minimal rank (n− 3)! may play a special role for generalizations of the double-copy.

1.4 Previous work

Let us note previous work toward generalizing the double-copy of tree amplitudes in the
context of field theory. Extending the double-copy to include higher-derivative local op-
erators with arbitrary Wilson coefficients was first studied in [8] and further explored
in [18–22]. Using the BCJ formulation of the double-copy to include higher-derivative op-
erators, including some with different color-structures was recently studied in [9, 10]; we
comment further on this in section 8.

The double-copy has also been studied in the context of massive theories. Much work
on the massive double-copy focuses on massive string modes [23, 24] or the dimensional
reduction of massless theories [25–31]. A sharp break from this trend was the bottom-up
approach taken in [32, 33]. In particular, [33] showed that spurious singularities appear in
the KLT kernel at 5-point for generic mass deformations unless the minimal rank condition
was imposed. The work [33] was an early inspiration for the approach in this paper.

Finally, significant work has focused on generalizing the double-copy to states in
more general representations, such as the pseudo-real [34] and (anti-)fundamental rep-

double-copy to make sense the physical spectrum must contain the corresponding massive states. The other
infinite tower in (1.18) with t > 0 are tachyonic and non-physical. In this case, these tachyonic poles must
cancel against corresponding zeros in the single-copy amplitudes for the double-copy to make sense when
E � (α′)−1/2. This is precisely what happens in the double-copy of open string theory, where the tachyonic
poles precisely cancel against an infinite tower of zeros of the Veneziano amplitude. The connection between
the zeros of the Veneziano amplitude and the double-copy was previously identified in [17].

This example may inspire one to consider the logical possibility that the spurious pole at s+2t = 0 in (1.28)
cancels against a zero arising from the sum in the KLT formula. This requires additional cancellations that
go beyond those of the usual field theory KLT formula. While one can devise examples at 4-point where
such cancellations do happen, it is not clear if it works at higher point.
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resentations [35–42]. Furthermore, the double copy can be extended to quiver gauge
theories, which contain states in a variety of representations [43]. Finally, in three di-
mensions, the double-copy is applicable to gauge theories with states transforming in Lie
3-algebras [44, 45].

1.5 Outline of this paper

In section 2, we give a precise technical description of the generalized KLT double-copy
program. In particular, we detail the relation between the zeroth-copy scattering ampli-
tudes, the generalized KLT kernel, and the generalized KKBCJ conditions. We also show
how the KLT bootstrap equation is a rank condition on the matrix of doubly color-ordered
zeroth-copy amplitudes.

In section 3, we study the KLT bootstrap at 3-point as an informative warm-up for
the higher-point analyses.

In section 4, we show how the rank 1 KLT bootstrap conditions at 4-point reduce to a
simple non-linear constraint on a single function of Mandelstam invariants and this function
determines all the zeroth-copy amplitudes. For higher-derivative corrections to BAS, this
condition (together with a set of additional locality constraints) can be solved order-by-
order in the derivative expansion. The most general solution is presented explicitly up to
and including operators of the form ∂6φ4.4

In section 5, the perturbative generalized KLT kernel is used to calculate the most
general higher-derivative corrected Yang-Mills amplitudes consistent with the generalized
KKBCJ conditions up to and including operators of the form Tr[D6F 4]. The resulting
single-copy amplitudes are observed to contain operators that do not appear when either
the cubic BAS or the string theory KLT kernel is used. The resulting generalized double-
copy is examined up to order ∇10R4. We examine all three helicity sectors: MHV, self-dual
(all-plus), and next-to-self-dual (NSD).

In section 6, we study the 5-point rank 2 double-copy bootstrap equations and calculate
the perturbative generalized KLT kernel at 5-point up to ∂6φ5. Importantly, this imposes
no constraints on the Wilson coefficients of the 4-point zeroth-copy amplitudes. This is
a crucial check because if the higher-point double-copy bootstrap imposed conditions on
parameters in the lower-point kernel, then we would not be able to solve for the generalized
double-copy kernel individually at each n since we would not know all the constraints from
higher-point. We solve the generalized KKBCJ conditions for Yang-Mills with higher-
derivative corrections in the self-dual (all-plus) helicity sector up to operators Tr[D6F 5].

In section 7, we explore the possibility of constructing a generalized KLT kernel based
on zeroth-copy models that are not higher-derivative corrections to cubic BAS. Specifically,
we consider the addition of more general φ3 interactions including totally symmetric, dabc,
color tensors, as well as a quartic bi-adjoint theory with a leading φ4 interaction. In both
cases, the matrix rank is found to be larger than the rank of the original cubic BAS theory,
and at sufficient multiplicity, the kernel contains would-be spurious singularities.

4It is straightforward to go to much higher orders and we have done so.
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In the Discussion and Outlook (section 8), we outline the possibility of moving terms
between the kernel and the L and R single-copy amplitudes using similarity transforma-
tions. At 4-point this elucidates some of our results from the generalized double-copy with
higher-derivative terms. We further discuss potential constraints from Swampland posi-
tivity constraints and how that may provide some understanding of the particular form
of the α′-expansion of the string KLT kernel. We then discuss the possible connections
to the BCJ-form of generalized color-kinematics of [9, 10] and make some initial contact
with that formalism using an exact solution to the bootstrap equation. We discuss various
forms of exact solutions, both those that truncate the higher-derivative expansion and also
a completely different one from Z-theory. Finally, we mention some other future directions.

Various technical details are relegated to the appendices. Appendix A gives the null
vectors of the (n−1)!×(n−1)! matrix of zeroth copy amplitudes and shows that they imply
generalized KKBCJ relations for the L and R sector single-copy amplitudes. Appendix B
gives the results for the generalized double-copy of χPT with itself and with YM including
the leading orders of compatible higher-derivative operators. Appendix C lists analytic
solutions to the KLT bootstrap at 5-point.

2 Double-copy bootstrap

In the Introduction, we have outlined the ideas of the double-copy bootstrap. The purpose
of this section is to make each step of the procedure precise.

2.1 Double-copy kernel and zeroth-copy models: bootstrap 1⊗ 1 = 1

In the KLT double-copy formula,

AL⊗R
n =

∑
α,β

AL
n[α]Sn[α|β]AR

n [β], (2.1)

the L (R) sector refers to field theories with all states in the adjoint representation of color
groups GL (GR), which could for example be SU(N) (SU(Ñ)). The single-copy amplitudes
AL
n[α] (AR

n [β]) are color-ordered with respect to a single-trace of n generators of GL (GR).
The structure of the formula (2.1) shows that the double-copy kernel Sn has a color-
structure associated with the product GL ×GR. As we indicated in the Introduction, the
kernel is the inverse of a submatrix of doubly color-ordered mn amplitudes, so they must
have a color-structure GR ×GL. The candidates for the zeroth-copy models are local field
theories with a single scalar field φaa′ that transforms in the adjoint of each group factors.

At n-point there are n! possible color-orderings for each color-group factor, but only
(n− 1)! are independent under the cyclicity of each color-trace. We use mn to denote the
(n− 1)!× (n− 1)! matrix of color-ordered tree amplitudes of the zeroth copy. For example,
at 4-point we choose the ordering {1234, 1243, 1324, 1342, 1423, 1432} and the 6× 6 matrix
of zeroth-copy tree amplitudes is then

m4 =


m4[1234|1234] m4[1234|1243] m4[1234|1324] · · · m4[1234|1432]
m4[1243|1234] m4[1243|1243] m4[1243|1324] · · · m4[1243|1432]

...
...

...
...

m4[1432|1234] m4[1432|1243] m4[1432|1324] · · · m4[1432|1432]

 . (2.2)
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We do not make any assumptions a priori about the properties of the color-ordered ampli-
tudes mn. For example, we do not assume trace-reversal, so in general

m[β|αT ] 6= m[β|α] or m[βT |α] 6= m[βT |α], (2.3)

where for example {1234}T = {4321} = {1432}. Also, we do not assume that the mn is
symmetric, i.e. in general we have

m4[β|α] 6= m4[α|β] . (2.4)

For the BAS or string zeroth-copy models, the rank of the matrix mn is (n − 3)!; this is
what we call minimal rank. Moreover, in those two cases, trace-reversal does hold and mn

is symmetric. Allowing for generalizations makes it possible to incorporate more ‘heterotic’
double-copies in which the L and R constraints are genuinely distinct.

Suppose more generally that, for some integer Rn, there are invertible Rn×Rn subma-
trices of mn. We label such submatrices by a specification of a choice of a subset of Rn order-
ings for the rows and columns in mn. We denote the row or R basis as BR = {β1, . . . , βRn}
and the column or L basis as BL = {α1, . . . , αRn}. In matrix notation, we then have

mn(BR, BL) ≡


mn[β1|α1] · · · mn[β1|αRn ]

... . . . ...
mn[βRn |α1] · · · mn[βRn |αRn ]

 . (2.5)

The condition that the zeroth copy is the identity element under the double-copy multipli-
cation rule, 1⊗1 = 1, is that the tree amplitudes copy to themselves using the double-copy
kernel; in matrix notation, this is the requirement

1⊗ 1 = 1 : mn
(
B′R, BL

)
Sn (BL, BR) mn

(
BR, B

′
L

)
= mn

(
B′R, B

′
L

)
. (2.6)

Now set B′L = BL and B′R = BR in (2.6) and multiply on both the L and R by(
mn (BR, BL)

)−1. It then follows that

Sn(BL, BR) ≡
(
mn(BR, BL)

)−1
. (2.7)

Thus, requiring the zeroth copy to be an identity element under the double-copy inevitably
links its tree amplitudes to the double-copy kernel.

This, however, does not exhaust the contents of (2.6). Using (2.7), we have

bootstrap eq: mn
(
B′R, BL

) (
mn (BR, BL)

)−1mn
(
BR, B

′
L

)
= mn

(
B′R, B

′
L

)
, (2.8)

This equation is non-trivial for elements of B′L that are not in BL and elements of B′R not
in BR. As such, it constrains the zeroth-copy amplitudes mn: thus (2.8) is our double-copy
bootstrap equation.

To interpret the constraint (2.8), consider for a given basis choice, BL and BR, the
extension of mn(BR, BL) to the (Rn + 1)× (Rn + 1) submatrix

M =


mn[β1|α1] · · · mn[β1|αRn ] mn[β1|δ]

... . . . ...
...

mn[βRn |α1] · · · mn[βRn |αRn ] mn[βRn |δ]
mn[γ|α1] · · · mn[γ|αRn ] mn[γ|δ]

 , (2.9)
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where αi ∈ BL and βi ∈ BR while δ /∈ BL and γ /∈ BR. Using that the determinant of a
block matrix with detA 6= 0 can be expressed as

det
[
A B

C D

]
= det(A) det

(
D − CA−1B

)
, (2.10)

we can write the determinant of (2.9) as

det(M) = det
(
mn (BR, BL)

)
×
(
mn[γ|δ]−mn[γ|BL]

(
mn (BR, BL)

)−1 mn[BR|δ]
)
, (2.11)

By (2.7), the (negative of the) second factor can be written∑
α∈BL, β∈BR

mn[γ|α] Sn (BL, BR) [α|β]mn[β|δ]−mn[γ|δ] . (2.12)

The vanishing of this condition is exactly the same as the written-out matrix multiplication
of (2.8). Thus we learn that

the “self-copy” 1⊗1 = 1 condition (2.8) is equivalent to the requirement
that the full (n− 1)!× (n− 1)! matrix mn of zeroth-copy amplitudes has
rank Rn.

This means that the rank Rn of the double-copy kernel must be equal to the rank of the full
matrix mn.

2.2 Single-copy models: generalized KKBCJ from 1⊗R = R and L⊗ 1 = L

It is convenient also to use a matrix notation to represent the single-copy amplitudes with
orderings restricted to a given choice of basis

AL
n (BL) ≡

(
AL
n[α1] · · · AL

n[αRn ]
)>

, AR
n (BR) ≡

(
AR
n [β1] · · · AR

n [βRn ]
)>

, (2.13)

where > denotes transpose. In this notation, the double-copy formula (2.1) can be written
as a simple matrix product

AL⊗R
n =

(
AL
n (BL)

)>
Sn(BL, BR) AR

n (BR) . (2.14)

and the generalized KKBCJ relations arise from the KLT algebra:

1⊗ R = R : mn
(
B′R, BL

)
Sn (BL, BR) AR

n (BR) = AR
n

(
B′R
)
, (2.15)

L⊗ 1 = L :
(
AL
n (BL)

)>
Sn (BL, BR) mn

(
BR, B

′
L

)
=
(
AL
n

(
B′L
))>

. (2.16)

These conditions are non-trivial only for elements in B′R (B′L) that are not in BR (BL).
The relations (2.15) and (2.16) are the generalized KKBCJ conditions. They ensure

that the result of the double-copy is independent of the choice of bases BL and BR. To see
this, rewrite (2.15) as

Sn (BL, BR) AR
n (BR)− Sn

(
BL, B

′
R

)
AR
n

(
B′R
)

= 0 . (2.17)
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When multiplied from the left by (AL
n (BL))>, equation (2.17) states that the double copy

resulting from the two basis choices of BR and B′R are the same. Similarly, (2.16) ensures
that the double-copy is independent of the choice of L-basis. Without basis independence,
we cannot think of the double-copy as a map between field theories.

When themn are the amplitudes of the BAS model, the generalized KKBCJ conditions
become the standard KKBCJ relations discussed in the Introduction. Likewise, they are
equivalent to the string monodromy relations when the mn are the amplitudes of the string
zeroth copy.

When the full matrix (n−1)!×(n−1)! of zeroth-copy amplitudes mn has non-maximal
rank Rn, it must have (n− 1)!−Rn null vectors nL

i and nR
i for multiplication from the left

and right, respectively. We show in appendix A that these null vectors precisely encode
the generalized KKBCJ relations as∑

allβ
nR
i [β]AR

n [β] = 0 and
∑
allα
AL
n[α]nL

i [α] = 0 (2.18)

for each i = 1, 2, . . . , (n− 1)!−Rn. The relation between null vectors and BCJ conditions
was introduced previously in the context of a massive double-copy formalism in [33]. They
are useful for understanding how the generalized KKBCJ relations modify the regular field
theory KKBCJ relations.

2.3 Roadmap for the generalized double-copy

Let us summarize how the double-copy bootstrap proceeds:

1. Choose a candidate for a zeroth-copy model, i.e. a local field theory with a bi-adjoint
scalar field φaa

′ and some choice of interactions. Compute its color-ordered tree
amplitudes mn[α|β].

2. Subject the matrix of these amplitudes to the double-copy bootstrap equation 1⊗1 =
1 in the form (2.8) with some choice of rank Rn, possibly restricting the couplings in
the model. Inverting the resulting rank Rn matrices gives the generalized double-copy
kernel Sn via (2.7).

3. Tree amplitudes of L and R single-copy local models are then subjected to the gen-
eralized KKBCJ relations L ⊗ 1 = L and 1⊗ R = R in the form (2.15) and (2.16).

4. Double-copy using (2.14).

Along the way, locality constraints must be imposed. In particular, we have pointed out
that zeroes of det(mn(BR, BL)) may signal issues with spurious poles in the double-copy.

A particularly prominent example is the bootstrap of a zeroth-copy model based on
BAS with higher-derivative corrections, so let us comment more on this.

2.4 Perturbative KLT bootstrap

To study a double-copy kernel based on BAS + higher-derivative (h.d.) operators, let m(0)
n

denote the BAS amplitudes and An the single-copy amplitudes that obey the regular field
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YM+h.d.

YM

Gravity+h.d.

Gravity

Double-Copy
w/ BAS+h.d.

Double-Copy
w/ BAS

UV Decoupling
Λ→∞

UV Decoupling
Λ→∞

Figure 1. Illustration of the physical meaning of the perturbative double-copy. Physics at the UV
scale Λ decouples in both the single- and double-copies as Λ→∞ (i.e. this diagram commutes) only
if the rank of the higher-derivative corrected BAS is the same as the rank of the uncorrected BAS.

theory KKBCJ relations associated with the BAS zeroth copy. We can then write the BAS
+ h.d. amplitudes and single-copy amplitudes (suppressing L and R superscripts) as

mn[β|α] = m(0)
n [β|α] +m(1)

n [β|α] + . . . ,

An[α] = A(0)
n [α] +A(1)

n [α] + . . . ,
(2.19)

where m(i)[β|α] and A(i)
n [α] with i > 0 are the contributions from higher-dimension oper-

ators. They are systematically organized by increasing powers in 1/Λ of the UV scale of
BAS+h.d. EFT such that the limits

lim
Λ→∞

mn[β|α] = m(0)
n [β|α], lim

Λ→∞
An[α] = A(0)

n [α] (2.20)

are smooth. This is the expected behavior in a physical EFT where the Λ corresponds to
the scale of some, perhaps unknown, UV physics which decouples from the IR dynamics in
an appropriate limit.5

Taking the double-copy to be perturbative in 1/Λ means that the double-copy ampli-
tude also has an expansion in 1/Λ. For example, the double copy of YM+h.d. with itself
should give NS-NS gravity plus higher dimension operators and the contributions from
these operators should go smoothly to zero as Λ → ∞. This physically sensible require-
ment has implications for the rank of the double-copy kernel. As we saw in section 1.3,
generic deformations of cubic BAS will increase the rank from (n − 3)! of BAS. Since the
double-copy kernel is the inverse of a rank Rn matrix of BAS+h.d. amplitudes, the kernel
would be divergent in the limit Λ → ∞ where the cubic BAS amplitudes are recovered.
This would imply that the double-copy amplitudes do not have sensible Λ→∞ limits and
then we can no longer identify Λ→∞ as the limit of decoupling UV physics.

5We are not considering mass-deformations of the BAS model. See [33] for a discussion of double-copy
construction with masses.
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To avoid a situation of unnatural UV-IR mixing in the double-copy, we must therefore
require that the rank of the zeroth copy does not change as a function of Λ.6 This means
that to study the most general double-copy kernel based on BAS+h.d. we must work with
the rank Rn = (n− 3)!.

The double-copy bootstrap with rank (n − 3)! is studied at 3-, 4-, and 5-point in
sections 3–6. In section 7 we consider examples of models with rank Rn > (n − 3)! that
are not UV deformations of the BAS model.

3 KLT bootstrap at 3-point

Let us begin at 3-point as an informative warm-up for the higher-point analysis. In 3-
particle kinematics, all Mandelstam variables vanish on-shell, so it is impossible for an
on-shell 3-point scalar amplitude to have momentum dependence. At the level of the
Lagrangian, this means that any higher-derivative corrections at 3-point can be moved
into higher-point by a field redefinition. Thus we only need to consider constant 3-point
scalar amplitudes.

By cyclic symmetry, there are two independent options for the double color ordered
bi-adjoint scalar amplitudes and we parameterize them using couplings g and λ3 as

m3[123|123] = g + λ3, m3[123|132] = −g + λ3 . (3.1)

These amplitudes arise from Lagrangian interactions of the form7

L3 = −g6 f
abcf̃a

′b′c′φaa
′
φbb
′
φcc
′ + λ3

6 dabcd̃a
′b′c′φaa

′
φbb
′
φcc
′
. (3.2)

The first term is the cubic interaction from the cubic BAS model (1.4) and the second one
is its fully symmetric counterpart. In terms of generators, we have

i fabc = Tr
[
T a[T b, T c]

]
, dabc = Tr

[
T a{T b, T c}

]
. (3.3)

The invariant dabc is sometimes called the anomaly coefficient and it is non-zero for generic
representations of SU(N) groups with N > 2.

The general 2 × 2 bi-adjoint scalar matrix labeled by the (n − 1)! = 2 independent
color-orderings {123, 132} is then

m3 =
(
m3[123|123] m3[123|132]
m3[132|123] m3[132|132]

)
=
(
g + λ3 −g + λ3
−g + λ3 g + λ3

)
, (3.4)

and its determinant is
det(m3) = 4gλ3 . (3.5)

6Of course, it is logically possible that the UV dynamics may not fully decouple, and we are free to
entertain the possibility of a discontinuity in the rank of the zeroth copy. Curiously, for all examples
studied in this paper, relaxing this naturalness assumption also leads to spurious poles in the double-copy.

7A mixed term, fabcd̃a′b′c′
φaa′

φbb′
φcc′

= 0, vanishes due to the symmetric-antisymmetric index contrac-
tions.
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Thus, for non-zero values of g and λ3 the matrix m3 has rank 2, however, whenever one
of the two couplings vanishes, the rank is reduced to 1. In section 7, we show that the
model with λ3 6= 0 does not satisfy the minimal-rank condition at 4-point and it leads to
a generalized KLT kernel with spurious poles at 5-point. For this reason, we set

λ3 = 0 (3.6)

in our studies of generalizations of the KLT double-copy. This in particular means that
the null vectors of m3 are {1, 1}, which via (2.18) imply the usual 3-point KK relation

A3[132] +A3[123] = 0 (3.7)

on the L and R sector 3-point amplitudes.

4 KLT bootstrap at 4-point

In this section, we solve the KLT bootstrap equation at 4-point for minimal rank (n−3)! =
1. The general solution can be written in terms of a single function and we derive from
it the generalized KKBCJ relations. Next, we use these results to find the most general
higher-derivative corrections to the BAS model at 4-points subject to constraints of locality
and minimal rank. This gives a generalized KLT formula for double-copying single-color
EFTs at 4-point. We compare the result to the string KLT kernel and comment in general
properties of the result.

4.1 4-point bootstrap equations

The KLT bootstrap for minimal rank (n − 3)! = 1 imposes that all 2-by-2 minors of the
matrix m4 in (2.2) must vanish,

m4[α|β]m4[δ|γ] = m4[α|γ]m4[δ|β], (4.1)

for any choice of α, β, γ, δ ∈ {1234, 1243, 1324, 1342, 1423, 1432}.
Using cyclic symmetry and momentum relabeling, the six different doubly color-

ordered 4-point amplitudes m4 can be expressed in terms of three functions, f1, f2, and
f6, as follows:

m4[1234|1234] = f1(s, t) with f1(s, t) = f1(u, t) ,
m4[1234|1243] = f2(s, t) ,
m4[1234|1324] = f3(s, t) = f2(u, t) ,
m4[1234|1342] = f4(s, t) = f2(s, t) ,
m4[1234|1423] = f5(s, t) = f2(u, t) ,
m4[1234|1432] = f6(s, t) with f6(s, t) = f6(u, t) .

(4.2)

where here and in the following it is always understood that s + t + u = 0. For example,
to obtain the 3rd line, we use that

f3(s, t) = m4[1234|1324] = m4[4123|4132] = m4[1234|1243]
∣∣∣
1→4→3→2→1

= f2(s, t)
∣∣∣
1→4→3→2→1

= f2(u, t) .
(4.3)
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We allow for the possibility that mn[β|α] 6= mn[α|β] and we do not assume trace reversal
symmetry, e.g. mn[α|βT ] is not necessarily related to mn[α|β]. In terms of f1, f2, and f6,
the matrix m4 of (2.2) then takes the form

m4 =



f1(s, t) f2(s, t) f2(u, t) f2(s, t) f2(u, t) f6(s, t)
f2(s, u) f1(s, u) f2(t, u) f6(s, u) f2(t, u) f2(s, u)
f2(u, s) f2(t, s) f1(t, s) f2(t, s) f6(t, s) f2(u, s)
f2(s, u) f6(t, u) f2(t, u) f1(t, u) f2(t, u) f2(s, u)
f2(u, s) f2(t, s) f6(u, s) f2(t, s) f1(u, s) f2(u, s)
f6(u, t) f2(s, t) f2(u, t) f2(s, t) f2(u, t) f1(u, t)


. (4.4)

Generically this matrix has rank 6, so we must impose the rank 1 bootstrap condition
by setting all 2-by-2 minor to zero. This can be done very simply. Consider the vanishing
of the 2-by-2 minor of (4.4) with rows 1 and 2 and columns 1 and 6:

(
f1(s, t)− f6(s, t)

)
f2(s, u) = 0 . (4.5)

This implies8

f6(s, t) = f1(s, t). (4.6)

Next, the 2-by-2 minor of (4.4) with rows 1 and 3 and columns 1 and 2 vanishes when

0 = f1(s, t)f2(t, s)− f2(s, t)f2(u, s) , (4.7)

while the vanishing of the minor with rows 1 and 2 and columns 1 and 3 requires

0 = f1(s, t)f2(t, u)− f2(s, u)f2(u, t) . (4.8)

It follows from (4.7) that f1 is fixed in terms of f2 as

f1(s, t) = f2(s, t)f2(u, s)
f2(t, s) , (4.9)

and combining (4.7) and (4.8) gives a final self-consistency condition for f2,

f2(s, t)f2(u, s)f2(t, u) = f2(t, s)f2(u, t)f2(s, u) . (4.10)

When the three equations (4.6), (4.9), and (4.10) are imposed, the matrix (4.4) has rank
1, as desired; thus, these three conditions are the 4-point KLT bootstrap equations.

The cubic bi-adjoint scalar amplitudes (1.13) have

fBAS
1 (s, t) = fBAS

6 (s, t) = g2

s
+ g2

u
, fBAS

2 (s, t) = −g
2

s
, (4.11)

and it is easy to see that they solve the three 4-point bootstrap equations (4.6), (4.9),
and (4.10). They are likewise solved by the string theory 4-point amplitudes of Mizera
which have [6]

f string
1 (s, t) = f string

6 (s, t) = 1
tan(α′πs) + 1

tan(α′πu) , f string
2 (s, t) = − 1

sin(α′πs) . (4.12)

8When f2 = 0, the other rank 1 conditions set f1 = f6 = 0. So we assume f2 to be non-zero.
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As we shall see, the bootstrap equations are not quite sufficient to guarantee that (4.2)
correspond to doubly color-ordered amplitudes of a local theory, i.e. that the only singu-
larities in the amplitudes correspond to physical poles. This is a nontrivial constraint. For
example, f2(s, t) = s solves (4.10), but gives f1(s, t) = su/t which has a t-pole not permit-
ted by the color structure of m4[1234|1234] = f1(s, t). Therefore, locality constraints on f1
and f2 generally further restrict the solution.

4.2 Generalized KKBCJ conditions

Equations (4.6), (4.9), and (4.10) ensure that the 6× 6 matrix has rank 1. Hence it must
have five null vectors under left and right multiplication. One can directly verify that

(1, 0, 0, 0, 0,−1) , (0, 1, 0,−1, 0, 0) , (0, 0, 1, 0,−1, 0), (4.13)

are null vectors under both left and right multiplication for any solution f2. Via (2.18),
the null vectors imply the following relations among both L and R sector single-copy
amplitudes:

Trace reversal: A4[1234] = A4[1432] , A4[1243] = A4[1342] , A4[1324] = A4[1423] .
(4.14)

These are exactly the three 4-point KK relations (1.11) that are not the U(1)-decoupling
relation. This means that any L or R sector amplitudes must satisfy the trace-reversal
identity

A4[α] = A4[αT ] , (4.15)

where the αT denotes the color-ordering that has the reverse ordering of α, for exam-
ple (1234)T = (4321).

Under right multiplication, the two remaining null vectors can be written as(
1, 1, 0, 0,− f2(s, t)

f2(u, t) −
f2(s, u)
f2(t, u) , 0

)
,

(
1,−f2(u, s)

f2(t, s) , 0, 0, 0, 0
)
. (4.16)

By (2.18), they imply

L generalized U(1): AL
4 [1234] +AL

4 [1243]−
(
f2(s, t)
f2(u, t) + f2(s, u)

f2(t, u)

)
AL

4 [1423] = 0 , (4.17)

L generalized BCJ: AL
4 [1234]− f2(u, s)

f2(t, s)A
L
4 [1243] = 0 . (4.18)

When f2(s, t) = −g2/s, these relations reduce to the familiar U(1)-decoupling rela-
tion (1.12) and BCJ conditions (1.10). Note that if one insists that the usual BCJ re-
lation (1.10) hold, i.e. if we impose

f2(u, s)
f2(t, s) = t

u
, (4.19)

then (4.17) reduces to the usual U(1) decoupling identity (1.12) after using s+ t+ u = 0.
This is natural; the BCJ relation can be derived from color-kinematics duality [5] in which
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the color-structures are all generated by the structure constants fabc and therefore U(1)-
decoupling must hold. Our generalized KKBCJ relations (4.14) allow for more general
color-structures, such as dabc and dabcd in the higher-derivative operators and therefore
they modify the U(1) decoupling identity and the BCJ relations.

For the R sector, if follows from the left-multiplication null vectors that

R generalized U(1): AR
4 [1234] +AR

4 [1243]−
(
f2(s, t)
f2(t, s) + f2(s, u)

f2(u, s)

)
AR

4 [1423] = 0 , (4.20)

R generalized BCJ: AR
4 [1234]− f2(u, t)

f2(t, u)A
R
4 [1243] = 0 . (4.21)

The generalized R and L sector KKBCJ relations are generally distinct. This differs from
the usual field theory KKBCJ relations or the string monodromies.9 In particular, this
means that the criteria for being a valid input for the KLT relations are different for the
R and L sector models. For example, the higher-derivative corrections allowed for YM
may be different for the R and L sectors. We discuss the generalized KKBCJ further in
section 4.5.

4.3 Perturbative solution

We now determine the most general local higher-derivative corrections to the BAS model
that are compatible with the minimal rank condition at 4-point. We begin with an ansatz
for f2 whose leading term is the usual bi-adjoint s-pole. Since there can be no higher-
derivative corrections to the 3-point amplitudes, there can be no other pole terms and
hence any higher-derivative corrections at 4-point must be a power-expansion in s and t.
The most general ansatz for f2 is, therefore,10

f2(s, t) = −g
2

s
+

N∑
k=0

k∑
r=0

ak,r
Λ2(k+1) s

r tk−r , (4.22)

where N is the highest power in Mandelstams used in the expansion and ak,r are coefficients
that encode the higher-derivative corrections. We use Λ as a mass-dimension parameter
that keeps track of the power-expansion such that we reduce to the BAS model in the
limit Λ→∞.

Using the ansatz for f2 in (4.9), we find

f1(s, t) = g2

s
− g2

s+ t
+ 2a0,0

Λ2
t2

s(s+ t) + . . . , (4.23)

The t-dependent residue of the s and u poles is not possible in a pure scalar theory, so we
must set a0,0 = 0. Going to higher orders in the power-expansion, one finds unphysical
poles with coefficients a2r,2r, so we must take

a2r,2r = 0 for any r = 0, 1, 2, 3, . . . (4.24)
9Note that the modified U(1) decoupling relations above are not exactly the same as the string theory

monodromy relations for the choice (4.12); rather the string monodromy relations arise from combinations
of our general KKBCJ relations with f2 chosen as in (4.12).

10The analysis is valid in d-dimensions and as such we leave g to have mass-dimension 3 − d/2. To
keep Λ mass-dimension 1 dimension-counting parameter then implies that the coefficients ak,r have mass-
dimension 6− d.
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With this choice, f1 only has physical poles.
Imposing the bootstrap condition (4.10) on the ansatz (4.22) with (4.24), we find that

a2,1 = a2,0 , a4,3 = a4,2 − a4,1 + a4,0 + . . . , (4.25)

so that the result for f2 is

f2(s, t) =− g2

s
+ 1

Λ4 (a1,0t+ a1,1s) + a2,0
Λ6 t(s+ t)

+ 1
Λ8

[
a3,0t

3 + a3,1st
2 + a3,2s

2t+ a3,3s
3
]

+ 1
Λ10

[
a4,0t

4 + a4,1st
3 + a4,2s

2t2 + (a4,0 − a4,1 + a4,2)s3t
]

+ 1
Λ12

[
a5,0t

5 + a5,1st
4 + a5,2s

2t3 + a5,3s
3t2

+
(
a1,0a1,1(a1,0 − a1,1)

g4 + a1,1(a3,1 − a3,2)− a1,0(a3,0 − a3,2 + a3,3)
g2

+ a5,0 − a5,1 + a5,3

)
s4t+ a5,5s

5
]

+O

( 1
Λ14

)
,

(4.26)

and for f1 we then have,

f1(s, t) = g2
(1
s
− 1
s+ t

)
+ a1,0 − 2a1,1

Λ4 t− a2,0
Λ6 t

2

− 1
Λ8

[(
2a3,3 − a3,2 + a3,1 − a3,0 − g−2a1,1(a1,1 − a1,0)

)
st(s+ t)

+
(
(4a3,3 − 2a3,2 + a3,0) + 2g−2a1,1(a1,1 − a1,0)

)
t3
]

+O

( 1
Λ10

)
.

(4.27)

Equations (4.26) and (4.27) correspond to the most general solution to the bootstrap
equations assuming that the leading contribution to the partial amplitudes is cubic BAS.

4.4 Comparison with string theory

The results for the bi-adjoint 4-point amplitude with higher-derivative corrections are more
general than the string kernel result [6]. Let us now expand the string functions (4.12) in
small α′,

f string
1 (s, t) = 1

α′πs
+ 1
α′πu

+ 1
3α
′t− 1

45α
′3π3(s3 + u3) +O

(
α′5
)

f string
2 (s, t) = − 1

α′πs
− 1

6α
′πs− 7

360(α′πs)3 +O
(
α′5
)
.

(4.28)

Setting g2 = 1/(πα′) and identifying Λ2 = 1/(πα′), we compare f string
2 with our f2

in (4.26) and find the choice of ai,j ’s that reproduce the string result, namely:

a2k,i = 0 for all k, i ,

ak,i = 0 for k > i , (4.29)

a1,1 = − 1
6πα′ , a3,3 = − 7

360πα′ , a5,5 = − 31
15120πα′ , a7,7 = − 127

604800πα′ , . . . .

We use this to compare our results for generalized KLT to that of string theory.
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4.5 Comments on perturbative solution

Consider the lowest orders of the higher-derivative bi-adjoint 4-point amplitudes

m4[1234|1234] = f1(s, t) = g2

s
+ g2

u
+ a1,0 − 2a1,1

Λ4 t− a2,0
Λ6 t2 + . . . ,

m4[1234|1243] = f2(s, t) = −g
2

s
+ a1,0

Λ4 t+ a1,1
Λ4 s− a2,0

Λ6 tu+ . . . .

(4.30)

These matrix elements derive from a Lagrangian of the form11

L = LBAS

−aL + aR
2Λ4 fabxf cdxfa

′b′x′f c
′d′x′(∂µφaa

′)(∂µφbb′)φcc′φdd′

+aL
Λ4 f

abxf cdxda
′b′x′dc

′d′x′(∂µφaa
′)φbb′(∂µφcc′)φdd′ (4.31)

+aR
Λ4 d

abxdcdxfa
′b′x′f c

′d′x′(∂µφaa
′)φbb′(∂µφcc′)φdd′

−a2,0
2Λ6 f

abxf cdxfa
′b′x′f c

′d′x′(∂ν∂µφa,a
′
∂ν∂µφb,b

′
φc,c

′
φd,d

′ + ∂ν∂µφ
a,a′∂µφb,b

′
∂νφc,c

′
φd,d

′)

+ . . . ,

where
aL = 1

4(a1,1 − a1,0) , aR = 1
4a1,1 . (4.32)

There are no φ4 operators; they are simply not permitted by the rank 1 bootstrap equations
at 4-point. That is consistent with the example in the Introduction, where including a φ4

operator led to non-minimal rank. The lowest dimension operators allowed by the KLT
bootstrap are of the form ∂2φ4.

At 2-derivative order, the effective action has two independent couplings, aR and aL,
that encode different color-structures in the L and R sectors. This reflects that generalized
KLT kernel built from the m4-amplitudes is not symmetric: it treats the L and R sectors
separately and it is in this sense “heterotic”. If we insist on a symmetric kernel, this
requires m4 in (4.4) to be symmetric which is achieved by taking f2(s, u) = f2(s, t); this
is one particular solution to the bootstrap equation (4.10). It is solved perturbatively
by a1,0 = 0, i.e. aR = aL, while a2,0 can remain non-zero. Thus we see that the string
solution (4.29) is an example of a symmetric kernel, but it is not the most general one.

It is clear from the effective action (4.31) that the contribution at order ∂2φ4 is necess-
sarily linked to violation of the U(1)-decoupling relation due to the presence of the sym-
metric dabc color-structures. It is explicitly aL that is responsible for the leading-order
modifications of the BCJ and U(1)-decoupling identities in the L sector; and likewise aR
that is responsible for the modifications in the R sector, e.g.

0 =AR
4 [1234] +AR

4 [1243] +
(

1− 12aR
g2Λ4 tu+O(Λ−8)

)
AR

4 [1423] ,

0 =AR
4 [1234]−

(
t

u
− 4aR
g2Λ4

st(t− u)
u

+O(Λ−8)
)
AR

4 [1243] .
(4.33)

11The normalization is chosen such that
∑

a
Tr[XT a]Tr[Y T a] = Tr[XY ].
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The 1/Λ6 term in (4.31) controlled by a2,0 does not modify the BCJ and U(1)-decoupling
identities. If we wanted a generalized KLT kernel that preserved the U(1)-decoupling iden-
tity, we would set aR = aL = 0 while keeping a2,0. The KKBCJ constraints generalize the
string theory monodromy relations and allow the L and R sector amplitudes to be distinct.

5 Example: higher-derivative YM to gravity

In this section we present the double-copy of YM plus higher dimension operators at 3-
and 4-point as an illustrative example of our generalized double-copy. Another interesting
example is chiral perturbation theory (χPT) with higher-derivative operators: we give
results for that its double copy with itself and YM+h.d. in appendix B.

5.1 3-point

Up to the choice of coupling constants, 3-point amplitudes are uniquely fixed by little group
scaling and locality. For gluons, there are only two options: the MHV and anti-MHV
helicity amplitudes arising from the usual YM 3-point vertex of TrF 2 and the all-minus
and all-plus amplitudes of TrF 3. We have

A3[1−g 2−g 3+
g ] = gYM

〈12〉3
〈23〉〈31〉 , A3[1−g 2−g 3−g ] = gF 3

Λ2 〈12〉〈23〉〈13〉 . (5.1)

We write out only the mostly-minus amplitudes explicitly; the conjugate amplitudes are
obtained by exchanging angle brackets with square brackets. These amplitudes satisfy the
rank-1 KKBCJ relations (3.7).

The double-copy of YM with itself gives gravity coupled to the dilaton ϕ and the
antisymmetric 2-form. In 4d, the latter can be dualized to an axion-scalar B with a shift-
symmetry, B → B+ constant. The precise map of the 4d on-shell states is

L R
h+ + +
h− − −
Z + −
Z̄ − +

(5.2)

where ± denote the L and R sector gluon helicity states, h± are the graviton helicity states,
and the complex scalar is Z = 1√

2(ϕ+ iB).
Using (5.1) and the map (5.2), we construct all possible 4d gravity-dilaton-axion 3-

point amplitudes arising from the double-copy relation

M3(123) = 1
g
AL

3 [123]AR
3 [123] , (5.3)

The pure graviton amplitudes

M3
(
h−h−h+

)
= κ

〈12〉6
〈23〉2〈31〉2 , (5.4)

M3
(
h−h−h−

)
= κR3

Λ4 〈12〉2〈23〉2〈13〉2 . (5.5)
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and their conjugates correspond to the 3-point interactions of √gR and √gR3, respectively.
We have identified the couplings as

κ ≡ gR
YMg

L
YM

g
, κR3 ≡

gR
F 3gL

F 3

g
. (5.6)

Note that we are allowing for the possibility that the YM and F 3 couplings are different
in the L and R sectors.

The double-copy of the leading-order YM amplitudes also includes the coupling of the
dilaton to the graviton. Specifically, in the MHV sector we get

M3(−ZZ̄) = κ
〈12〉2〈13〉2
〈23〉2 , (5.7)

and its anti-MHV conjugate. These amplitudes simply represent the canonical coupling of
the complex scalars coupled to gravity via the kinetic term gµν∂µZ∂νZ̄. The corresponding
non-zero axion-dilaton amplitudes are

M3(−ϕϕ) =M3(−BB) =κ 〈12〉2〈13〉2
〈23〉2 , (5.8)

and similarly with square brackets for the corresponding amplitudes of a positive helicity
graviton.

Since 3-point special kinematics means that either only angle-brackets or only square
brackets are nonvanishing, the amplitudes M3(±ZZ) = g−1AL

3 [± + +]AL
3 [± − −] vanish

identically. Likewise, 3-scalar amplitudes vanish.
In the double-copy of YM with itself, dilaton- and axion-parity (ϕ → −ϕ and in-

dependently B → −B) emerge from the double-copy. However, when higher-derivative
corrections are included, this is no longer the case. In the generic double-copy, where the
L and R sector couplings can be distinct, dilaton- and axion-parity is broken already at
3-point by the F 3 operator. To see this, note that the double-copy (5.3) gives

M3(−− Z) =
gL

YMg
R
F 3

gΛ2 〈12〉4 , M3(−− Z̄) =
gL
F 3gR

YM
gΛ2 〈12〉4 , (5.9)

and their conjugates. The single axion and dilaton amplitudes are then

M3(−− ϕ) = κϕ
Λ2 〈12〉4 , M3(−−B) = −iκBΛ2 〈12〉4 , (5.10)

where we have defined

κϕ =
gL

YMg
R
F 3 + gL

F 3gR
YM√

2g
, κB =

gL
YMg

R
F 3 − gL

F 3gR
YM√

2g
. (5.11)

The couplings κ, κR3 , κϕ, and κB are not independent, but satisfy

κ2
ϕ − κ2

B = 2κκR3 . (5.12)

In previous studies [8] of the double-copy of YM with higher-derivative operators, the
L and R sector couplings were chosen to be the same and that choice results in gB = 0.
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In that case, axion-parity holds, while dilaton-parity is violated even at 3-point by the
inclusion of the F 3 operator. Note that F 3 is not compatible with supersymmetry, so in a
supersymmetric context, the amplitudes in (5.9) and (5.10) all vanish.

In superstring theory, dilaton-parity is violated by α′-corrections. This does not happen
at 3-point due to supersymmetry, as discussed above, but it can be seen directly from the
α′3e−6ϕR4 effective operator. In type-IIA superstring theory dimensionally reduced to 4d,
axion-parity, B → −B, continues to hold to all orders in α′. From a double-copy point of
view, this is related to the fact that the couplings of the open string in the L and R sectors
are identical and the KLT kernel is symmetric. Conversely, as can be seen from (5.11), for
a non-L-R symmetric or heterotic double-copy, axion- or B-parity is generically broken.
Such hhB interactions arise in the effective action of the heterotic superstring [46] from
the modification of the B field strength tensor by a Lorentz Chern-Simons term and play
an important role in the Green-Schwarz anomaly cancellation mechanism [47].

We now turn to 4-point, where the 3-point amplitudes above are needed for identifying
the pole terms correctly, both in the L and R sector amplitudes and in the resulting
gravitational amplitude.

5.2 4-gluon MHV amplitude and generalized KKBCJ

The starting point is to construct the most general ansatz for the tree-level MHV amplitude
in YM + higher derivative operators. We write it as

A4[1+2+3−4−] = [12]2〈34〉2
(
g2

YM
su
−
g2
F 3

Λ4
t

s
+

N∑
k=2

k−1∑
r=1

ek,r
Λ2k s

r−1tk−r−1
)
,

A4[1+3−2+4−] = [12]2〈34〉2
(
g2

YM
tu

+
N∑
k=2

k−1∑
r=1

hk,r
Λ2k s

r−1tk−r−1
)
.

(5.13)

The terms with g2
YM arise from the pole terms with two regular YM vertices whereas the

s-pole term with g2
F 3 is from two insertions of F 3. There can be no other pole terms

in the MHV sector. Contributions from local operators at 4-point are parameterized as
polynomial terms in the ansatz with general coefficients ek,r and hk,r. We have explicitly
checked (to all orders we are using) that any local contribution to the MHV amplitudes can
be written in the form given in (5.13). The choice of Mandelstam basis in (5.13) is equivalent
to choosing a particular basis of higher-dimension operators in the Lagrangian. The local
contributions at O(Λ−4) with coefficients e2,1 and h2,1 correspond to the combination of
Tr[F 4] operators that contribute to the MHV amplitude. The terms at O(Λ−6) correspond
to operators of the schematic form Tr[D2F 4].

The 4 other arrangements of the external lines are obtained from the above two by
cyclic symmetry and momentum relabeling:

A4[1+2+4−3−] = A4[1+2+3−4−]
∣∣∣∣
3↔4

A4[1+3−4−2+] = A4[2+1+3−4−] = A4[1+2+3−4−]
∣∣∣∣
1↔2
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A4[1+4−2+3−] = A4[1+3−2+4−]
∣∣∣∣
3↔4

A4[1+4−3−2+] = A4[2+1+4−3−] = A4[1+2+3−4−]
∣∣∣∣
1↔2,3↔4

= A4[1+2+3−4−] . (5.14)

Naturally, one expects the coefficients ek,r and hk,r in (5.13) to be related since these
amplitudes should arise from a Lagrangian with a color-group structure and — as we shall
see — indeed this is the case: the generalized KKBCJ relations will fix the hk,r completely
in terms of the ek,r and the kernel coefficients ak,r and they impose additional constraints
on the ek,r.

The generalized KKBCJ constraints are imposed using the trace-reversal identi-
ties (4.14) as well as the L and R sector identities (4.17)–(4.18) or (4.20)–(4.21). The
result in the L sector is

AL
4 [1+2+3−4−] = [12]2〈34〉2

[(gL
YM)2

su
−

(gL
F 3)2

Λ4
t

s
+ (gL

YM)2

g2Λ4 (a1,1 − a1,0) +
eL

3,1
Λ6 t

+ 1
Λ8

{(gL
YM)2

g2 ã3,3 s
2 + αL t2 + eL

4,2 st

}
+ . . .

]
,

AL
4 [1+3−2+4−] = [12]2〈34〉2

[(gL
YM)2

tu
+ 1

Λ4

((gL
YM)2

g2
(
a1,1 − a1,0

)
− (gL

F 3)2
)

+
eL

3,1
Λ6 s

+ 1
Λ8

{
−
((gL

YM)2

g2 ã3,3 +
(gL
F 3)2

g2 (a1,1 − a1,0)
)
tu

+
(
αL − (gL

YM)2

g2 ã3,3 − 2
(gL
F 3)2

g2 (a1,1 − a1,0) + eL
4,2

)
s2
}

+ . . .

]
,

(5.15)

where
ã3,3 = a3,3 − a3,2 + a3,1 − a3,0 ,

αL = (gL
YM)2

g4 a1,1
(
a1,1 − a1,0

)
+ (gL

YM)2

g2
(
2a3,3 − a3,2

)
+

(gL
F 3)2

g2
(
a1,1 − a1,0

)
.

(5.16)

The R sector takes the form

AR
4 [1+2+3−4−] =[12]2〈34〉2

[(gR
YM)2

su
−

(gRF 3)2

Λ4
t

s
+ (gR

YM)2

g2Λ4 a1,1 +
eR

3,1
Λ6 t

+ 1
Λ8

{(gR
YM)2

g2 a3,3s
2 + αR t2 + eR

4,2 st

}
+ . . .

]
,

AR
4 [1+3−2+4−] =[12]2〈34〉2

[(gR
YM)2

tu
+ 1

Λ4

((gR
YM)2

g2 a1,1 − (gR
F 3)2

)
+
eR

3,1
Λ6 s

+ 1
Λ8

{
−
((gR

YM)2

g2 a3,3 +
(gR
F 3)2

g2 a1,1

)
tu

+
(
αR − (gR

YM)2

g2 a3,3 − 2
(gR
F 3)2

g2 a1,1 + eR
4,2

)
s2
}

+ . . .

]
,

(5.17)

where

αR = (gR
YM)2

g4 a1,1
(
a1,1 − a1,0

)
+ (gR

YM)2

g2
(
2a3,3 − a3,2 + a3,0

)
+

(gR
F 3)2

g2 a1,1 . (5.18)
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Schematic Operator Total Generalized String Cubic BAS
Tr[F 4] 1 1 0 ×

Tr[D2F 4] 2 1 1 1
Tr[D4F 4] 3 3 1 1
Tr[D6F 4] 4 3 2 2

Table 2. Number of tunable parameters in the operator coefficients contributing to the MHV
amplitude A4[1+2+3−4−] subject to the L or R sector KKBCJ relations (generalized, string, or
pure field theory BAS, respectively). The total number of independent MHV operators at that
dimension is also listed. The × indicates that Tr[F 4] is disallowed by the field theory KKBCJ
relations.

Each of the local (i.e. non-pole) terms in (5.15) or (5.17) correspond to a local operator
in the YM + h.d. effective action. For example,

AL
4 [1+2+3−4−] ⊃ [12]2〈34〉2 1

Λ4
(gL

YM)2

g2
(
a1,1 − a1,0

)
,

AR
4 [1+2+3−4−] ⊃ [12]2〈34〉2 1

Λ4
(gR

YM)2

g2 a1,1,

(5.19)

comes from the matrix element of (a particular contraction of) Tr[F 4]. As this shows,
the generalized KKBCJ allows Tr[F 4] with independent tunable coefficients, aL and aR
given in (4.32), for the L and R sectors respectively, from the ∂2φ4 operators (4.31) in the
zeroth-copy model. In contrast, this operator is not allowed by the uncorrected field theory
KKBCJ relations (which have ak,r = 0). And while Tr[F 4] does arise the α′-expansion of
the open (super)string gluon amplitudes, it does so with a fixed untunable coefficient
because a1,1 = −1/(6πα′) and a1,0 = 0.

In table 2, the row labeled Tr[F 4] summarizes the above discussion. Similarly, the
subsequent rows in the table compare the number of allowed operators at higher order
contributing to the YM + h.d. MHV tree amplitude when subject to the respective KKBCJ
constraints. In the count of tunable couplings, we consider gL/R

YM , g and gL/R
F 3 fixed by the

3-point amplitudes and we avoid double-counting by taking into account that lower-point
parameters often feed into higher-point contributions. The lesson from the table 2 is that
our generalized KKBCJ relations allow a broader range of EFT operators in single-copy
EFTs but still not all operators are allowed.

For a closer comparison with string theory, the α′-expansion of the 4-gluon MHV tree
amplitude of type-I open string theory is

Aopen
4 [1+2+3−4−] = g2

YM[12]2〈34〉2
[ 1
su
− π2α′2

6 + α′3ζ(3)t+O(α′4)
]
. (5.20)

Comparing the leading orders, this corresponds to the limit

ak,l, g,Λ→ String Kernel, g2
F 3 → 0, eL

3,1 →
ζ3
π3 , . . . (5.21)

of the L or R sector MHV amplitudes (5.15) and (5.17), where String Kernel refers to
equation (4.29).
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5.3 4-graviton MHV from of YM + h.d.

The generalized KLT double-copy formula can be carried out in any choice of KLT basis
(and we have explicitly checked the basis-independence) thanks to the generalized KKBCJ
relations. For example, we can computeM4 as

M4(1234) = AL
4 (1+2+3−4−) 1

f1(s, t)A
R
4 (1+2+3−4−) , (5.22)

with f1 given by (4.27). Using (5.15) and (5.17), we then find

M4(1+2+3−4−) = [12]4〈34〉4
[
− κ2

stu
+
κ2
ϕ + κ2

B

Λ4
1
s

− 1
Λ6

((gR
YM)2

g2 eL
3,1 + (gL

YM)2

g2 eR
3,1 −

κ2

g2 a2,0

)
+ 1

Λ8

(
κ2
R3
tu

s
+
((gR

YM)2

g2 eL
4,2 + (gL

YM)2

g2 eR
4,2 + ãΛ8

)
s

)
+O

( 1
Λ10

)]
, (5.23)

where we have used the identification of the gravitational coupling κ and the R3-coupling
κR3 in (5.6) and the non-canonical 4-derivative couplings between the dilaton/axion and
the graviton in (5.11). The constant ãΛ8 is a linear combination of kernel coefficient ak,r.

Performing a term-by-term analysis of (5.23), we find

• O(Λ0): the leading term is the tree-level graviton amplitude.

• O(Λ−4): the axion and dilaton can be exchanged only in the s-channel since they
couple to same-helicity gravitons (5.10).

• O(Λ−6): this local contribution is the matrix element of R4. It is generated irre-
spective of the higher-dimension corrections in KKBCJ and the KLT kernel so long
as the coefficient e3,1 6= 0 of D2F 4 is non-zero in the L or R sector. Thus, even in
the usual field theory double-copy or in the α′-expansion of stringy KLT, R4 arises
from the double-copy of D2F 4 with the usual leading YM 4-point amplitude.12 The
new feature in the generalized double-copy is that R4 can be generated from the
a2,0-controlled 4-derivative correction to the BAS model even in the absence of D2F 4

in both the L and R sectors of (YM + h.d.).

• O(Λ−8): the pole term arises from the factorization into two R3-vertices. Since they
are only + + + and −−−, the exchange happens only in the s-channel. In addition
there is a local term from ∇2R4 at this order and its coefficient is determined by the
double-copy of the matrix element TrD4F 4 and the usual YM amplitude along with
various kernel coefficients ak,r suppressed into the constant ãΛ8 in (5.23).

12While it is true that the MHV matrix element of R4 mathematically is directly the square of the MHV
matrix element of TrF 4, it is not the case that R4 arises from TrF 4 in the actual double-copy.
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Schematic Operator MHV NSD SD
R4 1 of 1 0 of 0 0 of 1
∇2R4 1 of 1 0 of 0 1 of 1
∇4R4 2 of 2 1 of 1 1 of 2
∇6R4 2 of 2 0 of 0 1 of 1
∇8R4 3 of 3 1 of 1 1 of 2
∇10R4 3 of 3 1 of 1 2 of 2

Table 3. Number of independent local operators out of the total possible contributing to the 4-
graviton amplitude: we list how many operators are generated by any version of the KLT double
copy (generalized / field theory BAS / string kernel).

There are no other poles inM4(1+2+3−4−) than those shown in (5.23), hence higher-
order contributions all arise from local operators. It is perhaps curious to mention that the
full residue of the s-channel of the MHV amplitude (5.23) factorizes into the palatable form

lim
s→0

sM4[1+2+3−4−] = [12]4〈34〉4
g2

(
(gL

YM)2

t
+

(gL
F 3)2t

Λ4

)(
(gR

YM)2

t
+

(gR
F 3)2t

Λ4

)
. (5.24)

Upon expanding the above expression, the t−2 term corresponds to the exchange of the
graviton with the regular Einstein-Hilbert 3-point interactions, the t2 term corresponds
to the exchange with a graviton with two R3 interactions, and t0 term corresponds to
dilaton-axion exchange.

It is quite interesting to note that while the generalized KKBCJ relations allow for
a wider range of higher-derivative operators in the L and R MHV amplitudes, there are
(for generic input) no new operators appearing in the 4-point MHV gravity amplitude (see
table 2); rather, its Wilson coefficients are merely shifted by the ak,r parameters. For
example, in (5.23), we can absorb the nonzero a2,0 into eR

3,1 as

eR
3,1 → eR

3,1 + (gR
YM)2

g2 a2,0 . (5.25)

The pattern continues to higher orders; we have explicitly checked up to and including
O(p18), i.e. ∇10R4. Table 3 summarizes the number of independent local operators that
contribute to the MHV amplitude and we find that each one of them is produced in
any of the KLT double-copies. In particular, we find at 4-point that the entire effect
of the higher-derivative corrections to the double-copy kernel can be absorbed into the
R (or L) sector Wilson coefficients of the YM+h.d. amplitudes. Of course, there are
also other combinations of the double-copy spectrum. For example, we can double-copy
AL

4 (1+2+3−4−) with AR
4 (1−2−3+4+) to get the M4(ZZZ̄Z̄) amplitude. It is noteworthy

(but somewhat trivial at 4-point) that the same shift of Wilson coefficients that absorbs the
effect of the ak,r-coefficients of the double-copy kernel for the 4-graviton MHV amplitude
also does the job for these other helicity combinations obtained from double-copies of the
4-gluon MHV amplitudes.
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This phenomenon is reminiscent of the single-valued projection that occurs in the string
double-copy [48], but is much more general. While the single-valued projection that occurs
in string theory is tied to a particular expansion of higher dimensional operators, our result
seems to hold for a large class of EFTs without a clear high energy completion.

5.4 SD and NSD sectors

One can similar perform an analysis of YM with higher-derivative corrections in the Self-
Dual (SD, or all-plus) and Next-To-Self-Dual Sector (NSD, or one-minus) at 4-point. Up
to the order D10F 4 we have checked that the matrix elements of local operators can be
written with a common spinor-helicity prefactor times a Mandelstam polynomial:

SD (+ + ++): 1
〈12〉〈23〉〈34〉〈41〉 × PSD(s, t) ,

NSD (+ + +−): 〈4|1.3|4〉2
〈12〉〈23〉〈34〉〈41〉 × PNSD(s, t) ,

(5.26)

where 〈4|1.3|4〉 = 〈41〉[13]〈34〉 and PSD and PNSD are local Mandelstam polynomials. We
impose cyclic symmetry for the ansatz of the SD local terms. Including the appropriate
pole terms and subjecting the ansatz to the generalized KKBCJ relations ((4.14) and the L
or R sector identities (4.17)–(4.18) and (4.20)–(4.21)), we find the result for the R-sector
SD amplitude is

AR
4 [1+2+3+4+] = stu

〈12〉〈23〉〈34〉〈41〉

(2gR
YMg

R
F 3

Λ2 +
2gR

YMg
R
F 3

g2Λ6 a1,1 t
2

− dR
1

2Λ6 (s2 + t2 + u2) + dR
2

Λ8 stu+ . . .

)
,

(5.27)

and the R-sector NSD amplitude is

AR
4 [1+2+3+4−] = 〈4|1.3|4〉2

〈12〉〈23〉〈34〉〈41〉

(
gR

YMg
R
F 3

Λ2 +
gR

YMg
R
F 3

g2Λ6 a1,1 su−
cR

1
Λ8 stu+ . . .

)
. (5.28)

The leading term in each case arises from the pole diagram with a 3-point vertex of YM
and one from F 3 and they have been given previously (see [8] and references therein). The
rest of the terms are local and can be rewritten in a manifestly polynomial form in terms
of spinor-helicity variables that is less compact. The L-sector SD and NSD amplitudes are
similar and, to the orders shown, they are found by simply taking a1,1 → a1,1 − a1,0 and
changing the superscripts R to L.

One can compute the double-copy of various combinations of the MHV, SD, and NSD
amplitudes to get all the possible gravity-dilaton-axion amplitudes. In particular, ampli-
tudes with an odd number of external axions are nonvanishing whenever the L and R sector
couplings are distinct, as noticed already at 3-point.
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Let us simply do one illustrative example here, the SD graviton amplitude. Using (5.22)
we find from (5.27) that

M4(1+2+3+4+) = 4κκR3 stu
[12][23][34][41]
〈12〉〈23〉〈34〉〈41〉

+ 1
5g2Λ8

(
gL
F 3gL

YMd
R
1 + gR

F 3gR
YMd

L
1 − 2κκR3(2a1,1 − a1,0)

)
×
(
[12]4[34]4s+ [13]4[24]4t+ [14]4[23]4u

)
+ . . .

(5.29)

Let us first comment on the leading term. This is a pole term with two sets of contri-
butions: one from the graviton exchange with a regular vertex from R and another from
R3, contributing 2κκR3 to the overall factor. Next, there are scalar exchanges which kine-
matically take the same form as the graviton exchange: the dilaton exchange comes with
coupling κ2

ϕ while the axion exchange contributes (iκB)2. Thanks to the relation (5.12),
the total scalar exchange therefore contributes a coupling κ2

ϕ − κ2
B = 2κκR3 . Thus, the

combined graviton+dilaton+axion exchange accounts precisely for the overall factor 4κκR3

in the first line of (5.29).
Next, we notice that there is no contribution corresponding to R4. There does exist

a unique operator R4 with a nonvanishing matrix element in the SD sector, but it is not
produced in the double copy. For ∇2R4, there is likewise a unique SD matrix element and
as shown above it is produced by the double-copy.

Table 3 summarizes the results for higher-derivative operators produced by the double-
copy of the 4-point SD and NSD graviton amplitudes. We have computed 4-point ampli-
tudes too with external scalars too, but will not clutter the presentation by presenting
them here.

6 Generalized KLT at 5-point

We now analyse the KLT bootstrap equations at 5-point: we set up the problem and
present the conditions on the zeroth copy that ensures that the matrix of amplitudes has
rank 2. We then solve the equations perturbatively and show that — very importantly —
this does not place restrictions on the coefficients ak,r for the 4-point KLT kernel. As an
example, we apply the generalized KLT double-copy to YM theory with higher derivative
corrections in the SD (all-plus) sector.

6.1 5-point bootstrap equations

We use cyclic symmetry and momentum relabeling to write the (n− 1)! = 4! = 24 doubly
color-ordered amplitudes in terms of 8 functions:

m5[12345|12345] = g1[12345] , m5[12345|13254] = g5[12345] ,
m5[12345|12354] = g2[12345] , m5[12345|13524] = g6[12345] ,
m5[12345|12453] = g3[12345] , m5[12345|14253] = g7[12345] ,
m5[12345|12543] = g4[12345] , m5[12345|15432] = g8[12345] .

(6.1)

Cyclic symmetry requires g1[12345] = g1[51234] and likewise for g6, g7, and g8. We do not
assume reversal symmetry.
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Imposing the minimal rank condition is equivalent to requiring all 3×3 minors to
vanish, thus reducing the 24×24 matrix to rank (n− 3)! = 2. These conditions allow us to
analytically solve for g4, g5, g6, g7, and g8 in terms of g1, g2, and g3. For example,

g4[12345] =
(
g1[12345]g1[12354]g2[12435]− g2[12345]g2[12354]g2[12435]

− g1[12354]g2[51243]g3[12345] + g2[12354]g3[12345]g3[12435]
)

×
(
g1[12345]g3[12435]− g2[12345]g2[51243]

)−1
.

(6.2)

The remaining analytic solutions are given in appendix C. In addition, there are bootstrap
equations that relate g1, g2, and g3. One can explicitly check that the BAS amplitudes and
the string kernel amplitudes of [6] solve these equations.

Let us now outline how we set up the ansatz for solving the functions gi perturbatively
in the momentum expansion. The leading order terms are the usual BAS amplitudes and
the subleading terms have both local contributions as well as pole terms from factoriza-
tion into BAS 3-point amplitudes and 4-point local contributions parameterized by the
coefficients ak,r in section 4.3. For example, the s12-factorization channel of g1 is

s12 g1[12345]
∣∣∣∣
s12=0

=s12m[12345|12345]
∣∣∣∣
s12=0

=g3
( 1
s34

+ 1
s45

)
+m3[12P |12P ] m̃4[345P |345P ]

=g3
( 1
s34

+ 1
s45

)
+ g(a1,0 − 2a1,1)

Λ4 s35 −
g a2,0

Λ6 s2
35 + . . . ,

(6.3)

where P = P12 is on-shell (P 2 = 0), m3[12P |12P ] = g and m̃4[345P |345P ] =
f1(s34, s35)

∣∣
local are the higher-derivative corrections to the 4-point bi-adjoint that are en-

coded in the function f1 given in (4.27).
Including all five factorization channels and all possible local counterterms compatible

with cyclic symmetry gives the following ansatz for g1

g1[12345] = g3
( 1
s12s34

+ 1
s23s45

+ 1
s34s51

+ 1
s45s12

+ 1
s51s23

)
+ g

Λ4 (a1,0 − 2a1,1)
(
s35
s12

+ s41
s23

+ s13
s45

+ s24
s51

+ s52
s34

)
+ w1

− ga2,0
Λ6

(
s2

35
s12

+ s2
41
s23

+ s2
13
s45

+ s2
24
s51

+ s2
52
s34

)
+ w′1

(
s12 + s23 + s34 + s45 + s51

)
+ . . .

(6.4)

In the ansatz, the local terms have coefficients wi.
Remarkably, the 5-point rank 2 bootstrap equations fix the couplings w1 and w′1 of

the 5-point local contact terms completely in terms of the 4-point bi-adjoint, namely

w1 = 2 g

Λ4
(
2a1,1 − a1,0

)
and w′1 = − g

Λ6a2,0 . (6.5)
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One has to go to cubic order in the Mandelstams in order to find local 5-point operators
whose coefficients are not fixed by 4-point coefficients. Starting at O(p4) (not shown above)
we include also parity odd terms, but we have found that none of them are allowed by the
bootstrap. We have solved the bootstrap equations up to and including O(p6).

It is very important that the 5-point bootstrap equations do not place any restrictions
on the ak,r-parameters that were free in the 4-point solution. This is a very relevant
consistency check: if 5-point has constrained 4-point, then we would have needed to go
to 6-point to understand if that gave even further constraints. As it is, the lack of such
constraints is an important clue that our generalization of the KLT kernel is based on
sound principles.

6.2 Comparison with string theory at 5-point

The string KLT amplitudes in [6] are dimensionless, for example

gstring
1 [12345] = cot

(
πα′s12

)
cot

(
πα′s34

)
+ cot

(
πα′s51

)
cot

(
πα′s34

)
+ cot

(
πα′s12

)
cot

(
πα′s45

)
+ cot

(
πα′s23

)
cot

(
πα′s45

)
+ cot

(
πα′s23

)
cot

(
πα′s51

)
+ 1

= 1
α′2π2

( 1
s12s45

+ 1
s23s45

+ 1
s23s51

+ 1
s12s34

+ 1
s51s34

)
+ 1

3

(
s35
s12

+ s41
s23

+ s13
s45

+ s24
s51

+ s52
s34
− 2

)
+O(α′2) .

(6.6)

To compare (6.4)–(6.5) with (6.6), we therefore multiply g1 by Λ and then find a match
when the ak,r take the values (4.29) up to and including order O(p6). At O(p6) there
are four coefficients of local operators that are unrelated to the 4-point ak,r’s and the
comparison to (6.6) shows that all four coefficients are zero in the string kernel. In the
generalized kernel they can take any value.

6.3 Example: higher-derivative YM to gravity at 5-point

Due to the tower of local corrections to the 4-point YM amplitudes in sections 5.2 and 5.4,
the analysis of the 5-point factorization channels takes a bit more effort. We assume a
general ansatz for the pole contribution takes the form

AYM
5 [1+2+3+4+5+] = 1

〈12〉〈23〉〈34〉〈45〉〈51〉
[
P+(sij) + P−(sij)ε(1, 2, 3, 4)

]
, (6.7)

where P+ and P− are cyclically invariant polynomials in a basis of independent Mandelstam
invariants {s12, s23, s34, s45, s51} and

ε(1, 2, 3, 4) = εµνρσp
µ
1p

ν
2p
ρ
3p
σ
4 = i

4
(
〈12〉〈34〉[23][14]− 〈14〉〈23〉[12][34]

)
. (6.8)

Since this ansatz is cyclically invariant, we only need to match a single factorization channel
to the known 3- and 4-point amplitudes. For the 45 channel we match to

AYM
4 [1+2+3+(P45)+]AYM

3 [(−P45)−4+5+]

= [45]
〈12〉〈23〉〈34〉〈51〉PSD(s12, s13) ,
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Schematic Operator Total Bootstrapped String FT
Tr[F 5] 2 × × ×

Tr[D2F 5] 5 × × ×
Tr[D4F 5] 14 1 1 1
Tr[D6F 5] 28 4 2 2

Table 4. Number of operators contributing to AR
5 [1+2+3+4+5+] after imposing the KKBCJ re-

lations in the generalized, string, and BAS form. We also list the total number of independent
operators. The × indicates that no operator at that order is allowed.

AYM
4 [1+2+3+(P45)−]AYM

4 [(−P45)+4+5+]

= [45]
〈12〉〈23〉〈34〉〈51〉(s12(s51 − s23) + s23s34)2PNSD(s12, s13) , (6.9)

where PSD and PNSD were defined in (5.26) and their explicit form can be inferred from
the L and R sector results for the 4-point SD and NSD amplitudes presented in section 5.4
where 〈45〉 = 0 for the equality to hold. Combining this with the 5-particle ansatz gives
the following residue matching condition:

P+(s45 = 0)− i

4(s12(s51 − s23) + s23s34)P−(s45 = 0)

= PSD(s12, s13) + (s12(s51 − s23) + s23s34)2PNSD(s12, s13).
(6.10)

Both sides of this equation are polynomials that can be written in terms of the inde-
pendent Mandelstam invariants {s12, s23, s34, s51}, so we can match terms on both sides
and fix all coefficients in the ansatz.

Next, we have to add contributions of local terms to the ansatz. For example, the two
independent SD contributions from Tr[F 5] are

AYM
5 [1+2+3+4+5+] ⊃ c5,1

Λ6 [12][23][34][45][51]

+ c5,2
Λ6

(
[12]2[34][35][45] + cyclic perms

)
.

(6.11)

The ansatz of pole terms (fixed by 3- and 4-point input) and all possible local terms
is then subject to the L and R generalized KKBCJ relations at 5-point. This is efficiently
done in the form of setting all 3× 3 matrices

det

m5[12345|12345] m5[12345|12354] AR
5 [12345]

m5[12354|12345] m5[12354|12354] AR
5 [12354]

m5[αi|12345] m5[αi|12354] AR
5 [αi]

 , (6.12)

to zero. No constraints are placed by these constraints on the lower-point coefficients, but
some coefficients of the 5-point local operators are fixed; for example we find c5,1 = 0 and
c5,2 = 0 for both the L and R sectors. This is summarized in the row labeled Tr[F 5] in
table 4.

The double-copy of A[1+2+3+4+5+] with itself gives the graviton amplitude expression
forM(1+2+3+4+5+), which we have computed up to O(Λ−14). As at 4-point, we find that
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Schematic Operator SD
R5 0 of 1
∇2R5 0 of 1
∇4R5 1 of 3
∇6R5 1 of 3

Table 5. Number of tunable parameters in M5[1+2+3+4+5+] of the given form and number of
tuneable parameters compatible with the double copy. Note that the generalized, string and cubic
BAS double copy all generate the same set of higher dimension operators.

the same operators are produced by the generalized double-copy kernel as with BAS or
strings, however, their coefficients are now in certain cases shifted but the parameters of
the kernel.

7 Alternative double-copy constructions

We showed in the Introduction how the zeros of the determinant of the rank Rn submatrix
of zeroth-copy amplitudes may provide “missing poles” needed for the double copy to
work, but that they can also give rise to potentially dangerous spurious poles, such as in the
example of section 1.3. No such spurious poles arose in the higher-derivative generalizations
of the double-copy kernel at 4- and 5-point studied in sections 4–6.

In this section we initiate the study of whether there can be other versions of the
double-copy which are not anchored on the leading BAS model. The central property we
examine is whether the rank Rn determinant has zeroes in unphysical locations that could
lead to spurious singularities in the double-copy amplitudes unless additional cancellations
take place.

7.1 Modification of KLT at 3-point

In section 3 we classified the most general 3-point bi-adjoint scalar amplitudes

m3[123|123] = g + λ3 , m3[123|132] = −g + λ3 , (7.1)

where g is the cubic BAS coupling and λ3 is the coupling associated with the cubic inter-
action with dabc-contractions; see (3.2). We found that rank 1 at 3-point required one of
these two couplings to be zero. Let us now examine what happens at 4-point.

It follows from the 3-particle input that the three independent doubly-ordered ampli-
tudes at 4-point are

m4[1234|1234] = (g + λ3)2
(1
s

+ 1
u

)
, (7.2)

m4[1234|1243] = (−g2 + λ2
3) 1
s
, (7.3)

m4[1234|1432] = (−g + λ3)2
(1
s

+ 1
u

)
. (7.4)
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For generic non-zero values of g and λ3, the 6× 6 matrix of amplitudes (7.2) in this model
has rank 6; i.e. it is full rank. The determinant is

2048g3λ7
3
(
3g2 − λ2

3
)

s2t2(s+ t)2 , (7.5)

and it has no kinematic zeros, so no spurious poles arise at 4-point. However, it does vanish
for g = 0, λ3 = 0, and λ3 = ±

√
3g which means that those cases have lower ranks. We find

4-point

Couplings Matrix Rank Spurious Singularities?
g 6= 0, λ3 6= 0 6 No

g 6= 0, λ3 =
√

3g 5 No
g = 0, λ3 6= 0 3 No
g 6= 0, λ3 = 0 1 No

The 3rd column asks if there are spurious zeroes in the determinant at the given rank, and
in each case at 4-point the answer is no. We proceed to 5-point.

As explained in section 6, the 5-point amplitudes are determined by 8 functions g1-g8
and they determine the full 24 × 24 matrix of zeroth copy amplitudes m5. We calculate
them from the known 3-particle vertices with general g and λ3, compute the rank, and
examine the associated determinants for zeros. The results are summarized as

5-point

Couplings Matrix Rank Spurious Singularities?
g 6= 0, λ3 6= 0 24 Yes

g 6= 0, λ3 =
√

3g 21 Yes
g = 0, λ3 6= 0 11 Yes
g 6= 0, λ3 = 0 2 No

Thus, despite first appearances, only the model with λ3 = 0, i.e. the BAS model, leads
to a double-copy without spurious singularities appearing in the kernel. This is a serious
potential obstacle for the double-copy since it means that additional cancellation has to
take place among the terms in the KLT sum to avoid spurious poles in the double-copy
5-point amplitude. We discuss such cancellations briefly for the case with g = 0 and λ3 6= 0
in section 7.3.

7.2 Modification of KLT at 4-point

Having classified the possible generalizations of the double copy at 3-point, let us now
set g = λ3 = 0 and examine the possibility for zeroth-copy models with constant 4-point
interactions φ4.

There are different ways four bi-adjoint scalars φaa′ can be contracted with group-
invariant tensors. This is simplest to classify using the amplitudes. We know from sec-
tion 4.1 that three amplitudes determine the full 6× 6 matrix and we simply parameterize
them with three constants,

m4[1234|1234] = α1 , m4[1234|1243] = α2 , m4[1234|1432] = α3 . (7.6)
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The resulting matrix ranks at 4-point are summarized below

Couplings Matrix Rank
α1 6= 0, α2 6= 0, α3 6= 0 6

α1 6= 0, α2 6= 0, α3 = −4α2 − α1 5
α1 6= 0, α2 6= 0, α3 = 2α2 − α1 4
α1 6= 0, α2 = 0, α3 = −α1 3

α1 = −2α2, α2 6= 0, α3 = −2α2 2
α1 = α2 = α3 1

No kinematically spurious zeros arise in the determinants at 4-point since the amplitudes
are constants, so we need to go to 6-point to assess the model further.

At 6-point we find that all cases have spurious singularities in the kernel from zeros in
the determinant, except the model with α1 = α2 = α3 ≡ λ. This model is13

L = −1
2
(
∂µφ

aa′
)2

+ λ dabcdd̃a
′b′c′d′φaa

′
φbb
′
φcc
′
φdd

′
, (7.7)

and the 120× 120 matrix of its tree amplitudes has rank 10.
An appealing feature of a kernel based on the zeroth copy (7.7) is that it double-copies

F 4 with itself to R4; this is not true of the BAS or stringy double-copy. However, by now,
we have learned the lesson that higher-point calculations may change our outlook. And this
is the case here too: the 5040× 5040 matrix of 8-point amplitudes has rank 273 and there
are spurious zeros in the 273 × 273 determinants. Therefore, unless there are additional
cancellations at 8-point, this model does not lead to a healthy double-copy.

7.3 Cancellation spurious singularities

In the previous two subsections, we have encountered examples with spurious poles in the
kernel. While they represent a potential problem, it is worth noting that the L and R
sector amplitudes must obey the KKBCJ relations defined by the kernel. Does this allow
one to cancel the spurious poles in the generalized KLT sum to recover a sensible local tree
amplitude as a result of the double-copy? We briefly examine this question here.

As an example where such cancellations do happen, consider the kernel based on the
zeroth copy with cubic interactions only with g = 0 and λ3 6= 0. A model whose tree
amplitudes solve the corresponding rank 3 generalized KKBCJ relations is

Lint = dabcφaφbφc , (7.8)

and it is easy to see at 5-point that the spurious poles in the kernel do get canceled. The
double-copy of this theory with itself is the abelian φ3 model.

Thus encouraged, we tried the same with a less trivial model

Lint = dabcZaF bµνF
cµν + h.c. , (7.9)

13This was the modification we added to the BAS model in section 1.3 and found in that case at 4-point
that the rank 2 system had spurious poles. Note that this problem disappears at 4-point when the cubic
coupling g of the BAS model is set to zero, because then the rank is reduced from 2 to 1.
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for a complex adjoint scalar field Z, but in this case the spurious poles of the kernel were
not cancelled at 5-point.

Based on these examples, we note that issues with spurious poles appear to arise for
kernels with non-minimal rank, i.e. with rank greater than (n− 3)!. For the non-minimal
rank kernels studied, imposing generalized KKBCJ conditions is in general not enough
to ensure a well-defined double copy. From a practical point of view, one could simply
disregard the models that do not produce sensible answers under the double copy. However,
this approach is somewhat unsatisfactory as it does not provide a nice explanation for why
some models work while others do not. A more formal view centered on the double-copy
kernel suggests that a valid double-copy product kernel should yield sensible local results
for any local input amplitude that obeys the generalized KKBCJ relations associated with
that kernel. By this metric, our results suggest that the minimal rank condition might be
necessary for a valid double-copy kernel.

Throughout this paper we have referred to rank (n − 3)! at n-point as minimal rank.
This makes sense in the context of BAS+h.d. where the higher-derivative corrections gener-
ically increase the rank to be greater than (n−3)!. However, one could of course remove the
cubic BAS interactions and ask if there are solutions to the bootstrap equations of rank less
than (n−3)!. At 4-point, minimal rank is already 1, so we can only go smaller than that by
eliminating all 4-point interactions. At 5-point, there will be no factorization channels in
the absence of 3-point interactions, hence the leading order is Mandelstam0, i.e. constant
φ5-type interactions. Minimal rank (n − 3)! at 5-point is 2, so a non-trivial sub-minimal
rank would be 1. One finds that at order Mandelstam0, there is one unique solution to
the rank 1 bootstrap equations at 5-point. Whether the resulting double-copy has physical
significance and if the sub-minimal rank is perserved at higher point are questions we leave
for future investigations.

8 Discussion and outlook

The double-copy is a very efficient method for computing gravity amplitudes that is playing
an increasingly important role in modern gravity computations; for example, one of the
recent exciting applications is to gravitional-wave physics [29, 49–56]. A fully systematic
understanding of the double-copy is still an open question. This is true in many contexts
and of particular relevance for our work is the precise role of higher dimension operators
in the double-copy. Although a number of procedures for double-copying higher dimen-
sion operators have been developed [8, 9, 19, 57], no pattern has emerged for which local
counterterms can and cannot be derived from the double-copy. These problems are not
simply a formality but have far-reaching implications. Infinite counterterms are necessary
to regulate UV divergences and finite counterterms are important for determining the (ex-
istence of) regularization schemes that preserve certain symmetries. In gravitational-wave
calculations, higher-dimension operators account for finite-size corrections [54, 58].

In this paper we introduced a novel bottom-up approach to the double-copy in the
KLT formulation. It was based on the KLT algebra and how it links the identity element
(“zeroth copy”) to the kernel that determines the multiplication rule. We showed how
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this gives a KLT bootstrap formalism for the zeroth copy model whose tree amplitudes
determine the kernel. At 4- and 5-point we solved the KLT bootstrap equations and found
a generalized double-copy kernel based on a low-energy expansion that generalizes the α′-
expansion of the string theory KLT kernel. We applied the generalized double-copy to YM
theory and χPT. Many interesting questions remain to be studied and we now discuss some
of them.

Similarity transformations. In our examples with the generalized KLT kernel based
on BAS+h.d., we found that the double-copy contains the same operators as the standard
field theory double copy, but with shifts in some of their Wilson coefficients. It is tempting
to ask if this shift can be encoded more systematically. To examine this, consider at 4-point
performing a similarity transformation on the BAS solutions with superscripts (0):

m4[β|α] = ZL[α]ZR[β]m(0)
4 [β|α] ,

AL
4 [α] = ZL[α]AL(0)

4 [α] ,

AR
4 [β] = ZR[β]AR(0)

4 [β] .

(8.1)

Note that the amplitudes AL/R(0)
4 [α] may include whatever higher-derivative corrections

are compatible with the BAS KKBCJ relations. In general, there are fewer operators in
AL/R(0)

4 [α] than in AL/R
4 [α].

It follows from the definition (8.1) that if m(0)
4 [β|α] solves the rank (n− 3)! bootstrap

equations, then so does m4[β|α] (the rank of a matrix does not change when the rows
and columns of a matrix are rescaled). Similarly, the single-copy amplitudes A4 solve the
generalized KKBCJ relations whenever A(0)

4 is compatible with the field theory ones, as
can be seen from

1⊗ R = R : m4[δ|α] 1
m4[β|α]A

R
n [β] = AR

n [δ] , (8.2)

and similarly for the L sector.
When applied to the double-copy, we see that

M4 = AL
n[α] 1

m4[β|α]A
R
n [β] = AL(0)

n [α] 1
m

(0)
4 [β|α]

AR(0)
n [β] . (8.3)

It may now seem plausible that all double-copies can be equivalently obtained from
the field theory BAS kernel. However, one has to be more careful:

1. First of all, one must ensure that the l.h.s. of (8.1) is local; no spurious poles are
allowed to arise from the product with the similarity factors.

2. The cyclicity properties of the amplitudes m4[β|α] are ensured if ZL/R are both cyclic.

3. It is not a priori clear that all solutions to the 4-point KLT bootstrap equation are
related to the BAS amplitude via a similarity transformation such as the one in the
first line of (8.1).

4. With a cyclic choice for ZL/R, one may not be able to produce all possible solutions
AL/R
n to the generalized KKBCJ relations.
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To simultaneously enforce all these properties is non-trivial. In the perturbative context of
BAS+h.d., one can solve items 1 and 2 by choosing ZL/R = 1 + suPL/R, where PL/R is a
Mandelstam polynomial symmetric in s and u. We can then test whether our generalized
solution for m4 given in section 4.3 for BAS+h.d. can be reproduced and fix most of the
constants in the ansatz PL/R.14 So this resolves item 3 above. The resulting similarity
functions ZL/R do indeed produce the most general solution to the generalized KKBCJ
equations given in section 5.2 for the MHV YM+h.d. amplitudes (to the orders we have
checked), so that addresses item 4. This requires shifts in the YM Wilson coefficients of
AL/R(0)
n such as the one given in (5.25). This then explains (to the orders checked) why

we found no new operators in the double-copy at 4-point and why their coefficients could
be understood as shifts of the Wilson coefficients of the L and R copies. Note though that
this assumes that the L and R Wilson coefficients are sufficiently generic.

At 5-point and higher, it becomes much more challenging to overcome the potential
obstructions from the constraints listed above. Another issue arises if one studies double-
copies outside the regime of the low-energy expansion. Then it becomes much harder to
ensure the absense of spurious poles. Future explorations may shed light on these questions.

Positivity constraints. If a similarity transformation exists for the double-copy of
EFTs, they move the higher-derivative corrections from the generalized kernel into shifts of
the Wilson coefficients of the L and R sector input amplitudes. It would be interesting to
examine if such shifts are in conflict with Swampland positivity constraints.15 Potentially
relevant for this research direction is the observation that imposing the string KKBCJ
relations along with the positivity constraints of [59] is enough to uniquely fix the Wilson
coefficients of YM to those in Type-I superstring theory [60]. Understanding the interplay
of generalized KKBCJ relations, similarity transforms, and positivity restrictions on Wil-
son coefficients could give some bottom-up understanding of why the strings kernel takes
such a particular form.

Connection to BCJ double-copy. While we have focused on the KLT formula, there
is in the field theory (α′ → 0) limit an alternative formulation of the double-copy, first
introduced by Bern, Carrasco and Johansson (BCJ) [5], based on a trivalent graphical
expansion and the principle of color-kinematics duality (see the review [2]). One of the
primary advantages of this approach is that it has been proposed — and tested in nu-
merous cases — to generalize to loop integrands, making possible otherwise prohibitively
difficult high-loop-order calculations in maximal supergravity [61]. Focusing on tree-level,
it is natural to ask if the generalized double-copy presented in this paper has a BCJ-like
formulation.

The recent papers [9, 10] incorporate higher-derivative corrections and generalized
color-tensors in the BCJ double-copy. This approach makes use of generalized color weights
ĉs/t/u (see (18) of [9] for a precise definition) that depend on both color tensors and Man-
delstam invariants in such a way that the usual adjoint-type color identities remain true.

14We have done this to order O(p6) as a preliminary test.
15The string kernel itself does not obey any obvious positivity conditions like those in [59], which makes

sense as the φ3 theory has no ground state and is not well-defined non-perturbatively.
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Taking such objects, we can construct a natural zeroth-copy by making the usual BCJ
replacement of kinematic numerators with color-factors; at 4-point

m4 = ĉ
(L)
s ĉ

(R)
s

s
+ ĉ

(L)
t ĉ

(R)
t

t
+ ĉ

(L)
u ĉ

(R)
u

u
. (8.4)

Similar to the output of the KLT bootstrap described in this paper, this can be identified
as a scattering amplitude of a higher-derivative corrected BAS model, though a priori
these two approaches are not obviously related. To the orders checked at 4p-point, we
find that when (8.4) is expressed as a matrix in L and R color-orderings, the result has
rank 1 for all choices of parameters in the generalized color-weights defined in [9]. In this
sense (8.4) provides a closed form solution to the 4-point bootstrap equations, which impose
the 4-point kernel is rank 1. Moreover, we have found that up to O

(
p8), the parameters

in (8.4) can always be chosen to reproduce the most general solution to the KLT bootstrap
equations (4.26). It remains unknown whether the higher-multiplicity generalized color-
factors described in [10] likewise provide a solution to the bootstrap conditions and whether
a BCJ-like double-copy procedure can be devised to reproduce the results of the generalized
double-copy (5.22) presented in this paper. We leave these and related important questions
to future work.

Exact solutions to the bootstrap equations: trunctions. The field theory and
string zeroth copies are exact solutions to the rank (n− 3)! bootstrap equations. We have
found generalizations of these that solve the bootstrap equations as an order-by-order low-
energy expansion corresponding to adding higher-derivative terms to the BAS model. A
natural question is if there are new solutions that solve the bootstrap equations exactly?

To address this, we take the 4-point solution (4.26)–(4.27) as the starting point and
examine if the low-energy expansion truncates for certain choices of coefficients ai,j , i.e. if
there are choices of a finite set of non-zero coefficients such that the rank of the 6×6 matrix
is exactly 1, rather than solving this constraint order by order in the low-energy expansion.
Interestingly, such solutions do exist!

For example, setting a1,1 = 0 or a1,1 = a1,0 (equivalently, aL = 0 or aR = 0) while
taking all other ai,j = 0 is an exact solution to the f2 condition (4.10), moreover, they give
local solutions for f1: specifically for aL = 0, we have

f1(s, t) = −g
2t

su
− 4aR

Λ4 t , f2(s, t) = −g
2

s
− 4aR

Λ4 u . (8.5)

When this is used as input at 5-point, one finds that the 24× 24 matrix indeed has rank 2,
so the solution truncates consistently; this is true for both solutions aL = 0 and aR = 0.16

When the contribution from aR in (8.5) is regarded as a perturbation of the BAS
model and the kernel is expanded in small sij/Λ2, no spurious poles arise, because this is
just like the general perturbative solution in section 4.3. However, if we attempt to regard
the solution (8.5) as an exact solution with no expansion in sij/Λ2, we have to beware

16Similarly, one can include the contribution with coefficient a2,0 with no further restrictions in the 4-
and 5-point bootstrap. At higher-orders, one finds that certain choices of the ai,j ’s admit finite truncations.
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of potential spurious poles in the kernel (e.g. in 1/f1(s, t)). It is clear that f1 in (8.5) in
addition to the zero at t = 0 (which provides the missing t-channel pole in the double-copy)
also has a zero that cannot be a physical pole (it is not even a massive pole). This means
that amplitudes AL/R

4 that are double-copied with this kernel must have zeros that cancel
the spurious poles; this is similar to the discussion of potential cancellation of spurious
poles in section 7.3. Something nice can indeed happen to cancel these poles. To see
this, consider the L and R amplitudes for YM+h.d. in (5.15) and (5.17). Setting aL = 0
(i.e. a1,1 = a1,0), gF 3 = 0 and all other higher-derivative contributions to zero, one finds

AL
4 [1+2+3−4−] = [12]2〈34〉2 (gL

YM)2

su
, AR

4 [1+2+3−4−] = (gR
YM)2[12]2〈34〉2

[ 1
su

+ 4aR
g2Λ4

]
(8.6)

When these amplitudes are double-copied using (5.22) with f1 given by (8.5), the entire
aR dependence cancels and the result is simply the pure Einstein gravity amplitude

M4(1+2+3−4−) = κ2 [12]4〈34〉4
stu

. (8.7)

Here (5.6) was used to identify κ. In a sense this is a version of the similarity transfor-
mations (8.1) at work for a finite (i.e. non-perturbative) modification of the zeroth and
single-copy models. In particular, this example shows that for the choice of kernel given
by (8.5), it possible at 4-point to double-copy YM with YM+F 4 to give Einstein gravity√
−gR without higher-derivative terms!

Finally, let us note that the solution (8.5) can be written in the form (8.4) with
manifestly local generalized color-factors ĉs/t/u. The exact solutions to the KLT bootstrap
equations, their relation to the BCJ-like formulation [9, 10], and the issues of spurious poles
deserve further investigation.

Exact solutions to the bootstrap equations: Z-theory. Any function of the form

fansatz
2 (s, t) = 1

s

G1(s)G2(t)
G3(s+ t) , (8.8)

for general G1, G2, and G3 solves the 4-point KLT bootstrap equation (4.10). Equa-
tion (8.8) is not the most general ansatz to the bootstrap equations, but is curious nonethe-
less. For example, the string solution is of the form (8.8) with G2(t) = G3(s+ t) = 1 and
G1(s) = s/ sin(α′s). Furthermore, there is another solution to (8.8) motivated by string
theory; the double partial amplitudes of non-abelian Z-theory take the form of (8.8) [62–64]:

Z1234[1243] = 1
s

Γ(1 + α′s)Γ(1 + α′u)
Γ(1 + α′s+ α′u) . (8.9)

The double partial amplitudes of non-abelian Z-theory can be identified with the disk
integrals that appear at tree-level in open string integrands and encode all non-trivial
α′-dependence for type-I open-string amplitudes at tree-level. This α′-dependence can
be extracted using generalized double copy procedures, where the double copy of Z-theory
amplitudes with SYM yields type-I open string amplitudes: “type-I=Z ⊗ SYM”. In addition
to providing another “stringy” solution to the bootstrap equations, one might wonder what
physical meaning the minimal rank condition could have for Z-theory amplitudes.
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Other directions. We have formulated a general framework for generalizations of the
double copy and explored it in examples. There are several future directions. For example,
it would be interesting to generalize our construction to theories with massive and/or (anti-
)fundamental states [25, 33, 36, 38, 65, 66]. The (anti-)fundamental KLT kernel could be
a particularly interesting target as it retains many desirable features of the bi-adjoint
kernel, such as local poles in Sn(BL, BR) to at least 8-point [65, 66], a positive geometry
interpretation [67–69], and even a loop generalization [70]. More exotically, a KLT kernel
for quartic kernels was recently constructed using intersection theory [71]. It would also
be interesting to understand our formalism in the context of the CHY formalism [72] and
homotopy algebras [73].
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A Generalized KKBCJ relations as null vectors

We now show that the BAS × BAS bootstrap equation and deformed BCJ relation yield
that vectors orthogonal to AR[α] span the kernel of the column space of m[α|β], thereby
proving that there are only (n−1)!−Rn linearly independent generalized KKBCJ relations.
A similar argument holds for AL[α], whose orthogonal vectors span the nullspace, or the
kernel of the row space, of m[α|β].

We can choose the (n− 1)! color orderings as

{all (n− 1)! color-orderings} = BR
⋃
B̄R , (A.1)

where BR is some BCJ basis and B̄R is the complement of BR in the (n−1)! color orderings.
And BR

⋃
B̄R means BR occupies the first Rn slots, while B̄R takes the remaining (n −

1)!−Rn slots, of the (n− 1)! color-orderings.
Then, an explicit basis for these (n− 1)!−Rn different null vectors take the form

~nR
i =

(
mn[αi, BL]Sn[BL, BR], 0, · · · , −1, · · ·

)
≡
(
mn[αi, BL]Sn[BL, BR], −1αi

)
, (A.2)

where αi corresponds to some color-ordering in B̄R and the −1 entry is at the corresponding
position of αi in eq. (A.1). So the defined vector −1αi takes value −1 at the corresponding
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position of αi and 0 elsewhere. And different choices of the dummy BCJ basis BL will give
the same null vectors.

Taking the product of ~nR
i with mn and AR, one finds

~nR
i ·mn

[
BR

⋃
B̄R, B

′
L

⋃
B̄′L

]
=
(
mn[αi, BL]Sn[BL, BR], −1αi

)
·
(

mn[BR, B′L] mn[BR, B̄′L]
mn[B̄R, B′L] mn[B̄R, B̄′L]

)
=
(
mn[αi, BL]Sn[BL, BR]mn[BR, B′L]−mn[αi, B′L],

mn[αi, BL]Sn[BL, BR]mn[BR, B̄′L]−mn[αi, B̄′L]
)

= ~0,

~nR
i ·AR

[
BR

⋃
B̄R
]

=
(
mn[αi, BL]Sn[BL, BR], −1αi

)
·
(
AR[BR], AR[B̄R]

)
= mn[αi, BL]Sn[BL, BR]AR[BR]−AR[αi]
= 0, (A.3)

where we used the bootstrap equation and the deformed KKBCJ relations, and B′L is
some BCJ basis and B̄′L is its complement in the (n−1)! color orderings. A different choice
of B′L corresponds to a trivial rearrangement of column vectors of mn

[
BR

⋃
B̄R, B

′
L

⋃
B̄′L

]
.

Eq. (A.3) explicitly shows that ~nR
i is orthogonal to column vectors of the (n−1)!× (n−1)!

mn matrix, and to AR as well.
The ~nR

i ’s are manifestly linearly independent due to the different locations of -1 entry
in each vector, so the ~nR

i ’s correspond to a complete basis for the kernel of the column
space of mn, and also the space of the generalized KKBCJ relations of AR. Since there
are only (n− 1)!−Rn linearly independent null vectors of mn, there are olny (n− 1)!−Rn
linearly independent generalized KKBCJ relations of AR.17

B Pions, special galileons and Born-Infeld photons

In section 5 we discuss in detail which higher-derivative Yang-Mills operators that can be
double-copied and what corrections they map to in the resulting theory of gravity. This
is of course not the only effective field theory that can be double-copied via the formalism
introduced in section 2. A far simpler theory is a non-linear sigma model of pions, also
known as chiral perturbation theory, whose 4-point amplitude at leading order is

A0
4[1234] = t

f2
π

, (B.1)

where fπ is the pion decay constant.
17If we have reversal identity for the BAS theory, mn[α|βT ] = (−1)x1mn[α|β] and mn[αT |β] =

(−1)x2mn[α|β], for signs determined by possibly n-dependent integers x1 and x2, we also have corre-
sponding reversal identity for the L and R sector of the single copy theory.
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To find double-copy-compatible corrections, we start with an ansatz,18

A4[1234] = t

f2
π

+ b1,1s
2 + b1,2st+ b1,3t

2

Λ4 + b2,1s
3 + b2,2s

2t+ b2,3st
2 + b2,4t

3

Λ6

+ b3,1s
4 + b3,2s

3t+ b3,3s
2t2 + b3,4st

3 + b3,5t
4

Λ8 +O

( 1
Λ10

)
, (B.2)

with appropriate superscripts on the parameters bi,j for the left and right KKBCJ-
compatible amplitudes.

Since we are dealing with a scalar theory, every other color-ordering is a simple rela-
beling of (B.2). As a result the (right) KKBCJ relations of section 4 can be rewritten as
consistency conditions on the (right) amplitude such as,

A4[1234] = m[1234|1432]m[1243|1432]−1A4[1243] , (B.3)

where A4[1243] is given by a 3↔ 4 relabelling of A4[1234].
Solving such consistency conditions using m[α|β] given in section 4, gives us the final

NLSM amplitudes,

AR
4 [1234] = t

(fR
π )2 + a1,1stu

(fR
π )2

g2Λ4
+
bR
2,4 t(s2 + t2 + u2)

2Λ6 −
bR
3,3 st

2u

Λ8 +O

( 1
Λ10

)
, (B.4)

AL
4 [1234] = t

(fL
π )2 + (a1,1 − a1,0)stu

(fL
π )2

g2Λ4
+
bL
2,4 t(s2 + t2 + u2)

2Λ6 −
bL
3,3 st

2u

Λ8 +O

( 1
Λ10

)
. (B.5)

Note that all corrections that are quadratic in Mandelstam variables are disallowed. This
is important in Born-Infeld theory as we discuss below.

To construct Born-Infeld amplitudes in all helicity sectors, we will also need the self-
dual, next-to-self-dual and MHV Yang-Mills amplitudes that are compatible with the KLT
kernel developed in section 4. These are given in (5.27), (5.28) and (5.17).

We now construct higher derivative corrections to the special Galileon and Born-Infeld
amplitudes,

MsGal
4 (1234) = − stu

(fL
π )2(fR

π )2 g
−

(bL
2,4(fL

π )2 + bR
2,4(fR

π )2)stu(s2 + t2 + u2)
2 (fL

π )2 (fR
π )2

g2 Λ6

+
((bL

3,3(fL
π )2 + bR

3,3(fR
π )2)g2 + a2,0Λ4) s2t2u2

(fL
π )2 (fR

π )2
g4 Λ8

+O

( 1
Λ10

)
, (B.6)

MBI
4 (1+2+3−4−) =[12]2〈34〉2

[
− (gR

YM)2

(fL
π )2

g2
+

(gR
F 3)2tu

(fL
π )2

g2Λ4
−

(gR
YM)2bL

2,4
(
s2 + t2 + u2)

2g2Λ6

−
(eR3,1 g2 − a2,0 (gR

YM)2)stu
(fL
π )2

g4Λ6
+O

( 1
Λ8

)]
, (B.7)

MBI
4 (1+2+3+4−) = [12]2[3|1|4〉2

[
−

gR
F 3gR

YM

(fL
π )2

g2Λ2
−
gR
F 3 gR

YM bL
2,4
(
s2 + t2 + u2)

2g2Λ8

18While it is a priori possible that the amplitude begins with a constant contribution at order Λ0, such
a term is forbidden by the leading order BCJ relations.
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−
(cR1 g2 − a2,0g

R
F 3gR

YM)stu
(fL
π )2

g4 Λ8
+O

( 1
Λ10

)]
, (B.8)

MBI
4 (1+2+3+4+) = s2tu2

〈12〉〈23〉〈34〉〈41〉

[
−

2gR
F 3gR

YM

(fL
π )2

g2Λ2

+
(dR

1 g
2 − 4a1,1g

R
F 3gR

YM)(s2 + t2 + u2)
4 (fL

π )2
g4Λ6

]
+O

( 1
Λ8

)
. (B.9)

One of the applications of this analysis is determining whether or not duality symmetry
is anomalous. Born-Infeld theory is known to have an electromagnetic duality at tree-level
which manifests on the scattering amplitudes as an optical helicity conservation rule. In
order for the symmetry to be non-anomalous at 1-loop, duality-violating amplitudes should
be removable by the addition of local counterterms for e.g. a Λ−6 counterterm at 4-point.
This was found to be true [74], though the 1-loop regularization scheme was incompatible
with the double-copy, i.e. the local counterterms necessary to restore the symmetry were
not produced by the double-copy [19]. It is interesting that the more nuanced approach
to higher-derivative corrections in the double-copy explored in this paper results in (B.8)
and (B.9) which also lack Λ−6 corrections, in keeping with the previous analysis.

At 5-point, higher-derivative corrections added to the kernel do not change a previously
noted [18] result that the first BCJ-compatible correction to χPT occurs at 14-derivative
order. In particular, this means that the WZW term is incompatible with the generalized
KKBCJ constraints.

C Analytic expressions for the 5-point bootstrap

We arrange the 24×24 matrixm[a|b] according to the following ordering of the permutations
of momenta 2, 3, 4, 5:

{12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254,
13425, 13452, 13524, 13542, 14235, 14253, 14325, 14352,
14523, 14532, 15234, 15243, 15324, 15342, 15423, 15432} .

(C.1)

As described in section 6.1, the 5-point bootstrap equations can be solved for g4-g8 in terms
of g1, g3, and g3. The following are the results, we indicate which minors are set to set to
zero to obtain each relation using the notation that

Minor3[r1, r2, r3; c1, c2, c3], (C.2)

denotes the 3× 3 minor with rows r1, r2, r3 and columns c1, c2, c3 with labels refering to
the basis (C.1). We use cyclic symmetry of g1 to simplify the results as well as momentum
relabeling.

From Minor3[1, 2, 3; 1, 2, 4] we get

g4[12345] =
(
g1[12345]g1[12354]g2[12534]− g2[12345]g2[12354]g2[12534]

− g1[12345]g2[41253]g3[12354] + g2[12345]g3[12345]g3[12534]
)

×
(
g1[12354]g3[12534]− g2[12354]g2[41253]

)−1
.

(C.3)
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From Minor3[1, 2, 7; 1, 2, 3] we get

g5[12345] =
(
g1[13245]g1[13254]g3[51234]− g1[13254]g2[45123]g2[51324]

− g2[13245]g2[13254]g3[51234] + g2[13245]g2[45123]g3[25413]
)

×
(
g1[13245]g3[25413]− g2[13254]g2[51324]

)−1
.

(C.4)

From Minor3[1, 2, 3; 1, 2, 11] we get

g6[12345] =
(
g1[12345]g1[12354]g3[35124]− g1[12345]g3[12435]g3[41235]

− g2[12345]g2[12354]g3[35124] + g2[12345]g2[51243]g3[41235]
)

×
(
g1[12354]g2[51243]− g2[12354]g3[12435]

)−1
.

(C.5)

From Minor3[1, 2, 3; 1, 2, 14] we get

g7[12345] =
(
g1[12345]g1[12354]g5[12435]− g1[12345]g3[12435]g5[23541]

− g2[12345]g2[12354]g5[12435] + g2[12345]g2[51243]g5[23541]
)

(C.6)

×
(
g1[12354]g2[51243]− g2[12354]g3[12435]

)−1
.

where g5 is as given in (C.4). From Minor3[1, 2, 3; 1, 2, 24] we get

g8[12345] =
(
g1[12345]g1[12354]g4[43512]− g1[12345]g3[12435]g4[54123]

− g2[12345]g2[12354]g4[43512] + g2[12345]g2[51243]g4[54123]
)

(
g1[12354]g2[51243]− g2[12354]g3[12435]

)−1
.

(C.7)

where g4 is as given in (C.3).
The perturbative solutions for the g functions are

g1[12345] = g3
( 1
s12s34

+ 1
s23s45

+ 1
s34s51

+ 1
s45s12

+ 1
s51s23

)
+ g

Λ4 (a1,0 − 2a1,1)
(
s35
s12

+ s41
s23

+ s13
s45

+ s24
s51

+ s52
s34

+ 1
)

− ga2,0
Λ6

(
s2

35
s12

+ s2
41
s23

+ s2
13
s45

+ s2
24
s51

+ s2
52
s34

)
+O

( 1
Λ5

)
, (C.8)

g2[12345] = g3
(
− 1
s12s45

− 1
s23s45

)
+ g

Λ4

(
(2a1,1 − a1,0)s13

s45
+ a1,0

(
s35
s12

+ s14
s23

)
+ a1,1

(
s45
s12

+ s45
s23
− 2

))
+ ga2,0

Λ6

(
s2

13
s45
− s14s15

s23
− s34s35

s12
− 2s13

)
+O

( 1
Λ5

)
, (C.9)
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g3[12345] = g3
(
− 1
s12s45

)
+ g

Λ4

(
a1,0

(
s13
s45

+ s35
s12
− 1

)
+ a1,1

(
s45
s12

+ s12
s45

))
+ ga2,0

Λ6

(
− s13s23

s45
− s34s35

s12
+ s14 + s25

)
+O

( 1
Λ5

)
, (C.10)

g4[12345] = g3
( 1
s12s45

+ 1
s12s34

)
+ g

Λ4

(
(a1,0 − 2a1,1)s35

s12
+ a1,0

(
−s13
s45
− s25
s34

)
+ a1,1

(
−s12
s45
− s12
s34

+ 2
))

+ ga2,0
Λ6

(
s15s25
s34

+ s13s23
s45

− s2
35
s12

+ 2s35

)
+O

( 1
Λ5

)
, (C.11)

g5[12345] = g3
( 1
s23s45

)
+ g

Λ4

(
a1,0

(
1− s14

s23
− s13
s45

)
+ a1,1

(
−s23
s45
− s45
s23

))
+ ga2,0

Λ6

(
s14s45
s23

− s13s12
s45

+ s2
14
s23

+ s12 + 2s24

)
+O

( 1
Λ5

)
, (C.12)

g6[12345] = g

Λ4a1,0 + ga2,0
Λ6 (s13 + 2s14 − s23 + s24) +O

( 1
Λ5

)
, (C.13)

g7[12345] = − g

Λ4a1,0 −
ga2,0
Λ6 (s13 + 2s14 − s23 + s24) +O

( 1
Λ5

)
, (C.14)

g8[12345] = g3
( 1
s12s34

+ 1
s23s45

+ 1
s34s51

+ 1
s45s12

+ 1
s51s23

)
+ g

Λ4 (a1,0 − 2a1,1)
(
s35
s12

+ s41
s23

+ s13
s45

+ s24
s51

+ s52
s34

+ 1
)

− ga2,0
Λ6

(
s2

35
s12

+ s2
41
s23

+ s2
13
s45

+ s2
24
s51

+ s2
52
s34

)
+O

( 1
Λ5

)
. (C.15)
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