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1 Introduction

One of the fundamental results in the study of black holes during the 1970’s was to establish
that they can be attributed an entropy [1, 2], which further fits into a set of rules similar
to the thermodynamic laws [3–5]. At the leading order in Newton’s constant, the entropy
was found to be universally given by a quarter of the area of the horizon. When further
quantum effects are taken into consideration, logarithmic corrections to the entropy arise.

Entropy is an important bridge between the macroscopic and the microscopic worlds,
and we expect any candidate quantum theory of gravity to provide an explanation for the
macroscopic Bekenstein-Hawking entropy in terms of microscopic counting of degrees of
freedom. As a leading candidate for a theory of quantum gravity, string theory has already
provided, in the work of Strominger and Vafa, a microstate counting of the entropy for
certain asymptotically flat black holes [6]. It has also provided, through work by Sen and
collaborators, an explanation for the logarithmic corrections to the entropy [7].

The AdS/CFT correspondence, stating a mathematical equivalence between certain
theories containing gravity in AdS and field theories on the boundary of AdS [8], potentially
translates intricate questions of black hole dynamics into questions in unitary field theories.
Using the AdS/CFT correspondence, Benini, Hristov and Zaffaroni have given a microscopic
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foundation to the entropy of certain magnetically charged AdS4 black holes in terms of a
field theory counting of microstates [9]. More recently, microscopic foundations in terms
of field-theoretic partition functions have been provided for rotating, electrically charged,
asymptotically AdS black holes [10–17]. For some of these black holes it has been shown that
the field-theoretic, microscopic correction to the entropy matches precisely the macroscopic
logarithmic corrections arising from one-loop supergravity [18–21].

The recent developments use the full UV complete description of gravity in AdSd+1, the
supersymmetric field theories in d = 3, 4, 5, 6. Guided by the principle of renormalization
group (RG) flow, one naturally expects that a universal property such as the black hole
entropy can be recovered from an effective theory without full knowledge of the UV complete
descripion, as verified in previous cases [22]. For AdS black holes, applying the Kerr/CFT
correspondence [23–25], a unified microscopic description of the entropy of asymptotically
AdS4,5,6,7 black holes was given in [26] for extremal and extended in [27, 28] to near-extremal
black holes.

The goal of this paper is to explore logarithmic corrections to the entropy of AdS5 black
holes and black strings from both the UV complete boundary N = 4 SYM theory and the
near-horizon 2-dimensional CFT. From the UV complete field theoretical point of view, the
observables are the topologically twisted index and the superconformal index, both of which
are initially given in the grand-canonical ensemble. Only after a Legendre transform to the
microcanonical ensemble does the index probe the degeneracies of states giving rise to black
hole entropy [10, 29]. We should also point out that the Kerr/CFT correspondence, being
entirely based on the near horizon geometry, is not suitable to probe the entropy of the
black hole in the grand-canonical ensemble since the values of the chemical potentials are
to be fixed at the boundary of the full geometry. Hence, we probe the black hole entropy at
fixed charge and angular momentum [30] in the microcanonical ensemble, and compare the
results from the two approaches in this ensemble.1

We review the logarithmic corrections as arising from the analysis of the large-N limit
of the corresponding partition functions responsible for the UV complete counting of the
entropy for the black holes and black strings in AdS5. Namely, we consider the logarithmic
corrections to the superconformal index and the topologically twisted index of N = 4 SYM.
We also exploit the fact that in the Kerr/CFT approach the degeneracy of states is given
by the charged Cardy formula, which can and has been evaluated to the subleading order
that contains logarithmic corrections [30–32]. Logarithmic corrections to the entropy can
be computed macroscopically from one-loop contributions of the massless sector in the
corresponding supergravity theory [33–35], and therefore provide a litmus test to any UV
complete description. We find that both approaches yield the same logarithmic correction
in the microcanonical ensemble.

This paper is organized as follows. In section 2 we review the AdS5 black hole
entropy from the superconformal index of the boundary N = 4 SYM and from the near-
horizon Kerr/CFT, and then compute the logarithmic correction to the entropy using both
approaches. In section 3 we apply similar techniques and use two approaches to compute

1Further discussion about the entropy of black hole in different ensembles can be found in [7, 31].
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the logarithmic correction to the entropy of rotating AdS5 black strings. A brief summary
and some proposals for the future research are presented in section 4. Some relevant facts
about the special functions are collected in appendix A.

2 AdS5 black holes

2.1 The superconformal index and black hole entropy

An efficient way to count 1
16 -BPS states in N = 4 SYM is to consider the theory on S1×S3

and evaluate the superconformal index (SCI) [36, 37]:

I(τ ; ∆) = Tr
[
(−1)F e−β{Q,Q†}vQaa pJ1+ r

2 qJ2+ r
2
]
, (2.1)

where β is the circumference of S1, and F is the fermionic operator, while Qa=1,2,3 are
flavor charges with associated fugacities va = e2πi∆a . With r we denote the R-charge. The
fugacities p = e2πiτ and q = e2πiσ are associated to the angular momenta J1,2 of S3, and the
combinations J1,2 + r

2 commute with the supercharge Q. In what follows we set τ = σ for
simplicity. Note that the counting of states that the SCI offers should be seen as performed
in the grand-canonical ensemble, since we are keeping fixed the values of chemical potentials
while summing over all possible charges.

According to the AdS/CFT correspondence, SU(N) N = 4 SYM is dual to type IIB
supergravity on AdS5 × S5, in which one can find supersymmetric black hole solutions that
are asymptotically AdS, rotating and electrically charged. Remarkably, in recent years
plenty of evidences have been gathered indicating that I(τ ; ∆) captures the entropy of such
black holes [10–12] (see [38–44] for further developments and [45, 46] for a more complete
list of references).

The SCI can be written as a contour integral over the holonomies of the gauge
group [47, 48]:

I (τ ; ∆) = κN

∫ 1

0

N−1∏
µ=1

duµZ (u; ∆, τ) ,

Z (u; ∆, τ) =
∏3
a=1

∏
i 6=j Γ̃ (uij + ∆a; τ)∏
i 6=j Γ̃ (uij ; τ)

,

κN = (p; p)N−1
∞ (q; q)N−1

∞
N !

3∏
a=1

(
Γ̃(∆a; τ)

)N−1
,

(2.2)

where (· ; ·)∞ is the Pochhammer symbol, and Γ̃(u; τ) is the elliptic Gamma function defined
both in appendix A. There are two main approaches to evaluate the N -dimensional integral
over the holonomies of the gauge group representing the SCI. The first approach relies on
a direct application of the residue theorem, and yields what is known in the literature as
the Bethe-Ansatz method. The second approach implements a saddle-point evaluation of
the integral.
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2.1.1 The Bethe-Ansatz approach

The location of the poles of (2.2) is given by the solutions to the set of equations:

Qk(û; ∆, τ) = 1, ∀ k = 1, · · · , N , (2.3)

where

Qk(u; ∆, τ) = e2πiλ
N∏

l=1( 6=k)

3∏
a=1

θ1(−ukl + ∆a; τ)
θ1(ukl + ∆a; τ) (2.4)

are the Bethe-Ansatz operators and the values û satisfying (2.3) are called Bethe-Ansatz
solutions. We then define BA = {û | (2.3) is satisfied}. With λ we have denoted a
Lagrange multiplier implementing the SU(N) constraint on the holonomies

∑N
i=1 ui ∈ Z,

and θ1(u; τ) is the elliptic theta function defined in appendix A. Upon direct application of
the residue theorem, I(τ,∆) can be rewritten in terms of a discrete sum as:

I(τ ; ∆) = κN
∑
û∈BA

Z(û; ∆, τ)H(û; ∆, τ)−1 ,

H (û; ∆, τ) = det
[ 1

2πi
∂ (Q1, · · · , QN )

∂ (u1, · · · , uN−1, λ)

]
.

(2.5)

Let us emphasize that (2.5) is not the full story, since the application of the residue
theorem required the poles to be isolated, and there is enough evidence by now [49, 50]
that this is not the case generically. We shall focus only on the contributions coming from
isolated poles (see [51] for more detailed discussions on this point). A set of solutions to
the equations (2.3) was found in [52] and it is given by:

ui = uĵ,k̂ = ū+ ĵ

m
+ k̂

n

(
τ + r

m

)
,

ĵ = 0, · · · ,m− 1 , k̂ = 0, · · · , n− 1 ,
r = 0, · · · , n− 1 ,

(2.6)

where N = mn, hence, each set {ui} in (2.6) can be labeled by the numbers {m,n, r}.
These solutions to the Bethe-Ansatz equations for the SCI were, in fact, inspired by the set
of solutions found in [52] for the Bethe-Ansatz equations associated to the topologically
twisted index. We will discuss that case in section 3.1. However, in the large-N limit, it was
possible to argue that the configuration corresponding to {1, N, 0} contributed dominantly
to the SCI. We shall refer to the {1, N, 0} solution as the “basic” solution, namely

ûbasic =
{
ui = ū+ i

N
τ
∣∣∣ i = 1, 2, · · · , N − 1

}⋃
{uN = ū} , (2.7)

where ū is determined as
Nū+ N(N − 1)

2N τ ∈ Z . (2.8)

The parameter ū enforces the SU(N) constraint
∑N
i=1 ui ∈ Z on the holonomies, which,

together with the periodicity properties of I(τ ; ∆) allows us to obtain:

ū = k

N
− N − 1

2N τ , k = 1, · · · , N − 1 , (2.9)

– 4 –



J
H
E
P
0
4
(
2
0
2
2
)
1
6
0

each of which contributes identically to the I(τ ; ∆), we therefore have that, in the appropriate
regime of chemical potentials:

log I(τ ; ∆)
∣∣
Basic BA = − iπ(N2 − 1)

τ2 ∆1∆2∆3 + logN +O(N0). (2.10)

We see that the logN in (2.10) has a purely combinatorial origin, whose precise form is
quite insensitive to details about the theory in which I(τ ; ∆) is being evaluated.

2.1.2 The saddle point approach and the Cardy-like expansion

Let us further reinforce the idea that the logarithmic correction to the SCI has a combi-
natorial origin. To do so we briefly reproduce here the saddle-point evaluation of (2.2)
implemented in [45].

The strict Cardy-like limit. By the strict Cardy-like limit we mean that we keep only
the most divergent term in a τ → 0 expansion.2 The study of the strict Cardy-like limit
was the subject of several works [11, 41, 54–57], and the main idea is to rewrite (2.2) in the
following way:

I(τ ; ∆) = κN

∫ N−1∏
µ=1

duµ exp
( 1
τ2Seff(u; ∆, τ)

)
, (2.11)

where Seff(u; ∆, τ) is appropriately defined such that Z(u; ∆, τ) in (2.2) is recovered. The
1
τ2 factor can be used as a large control parameter to apply the saddle-point method in
the strict Cardy-like limit. We are exploiting the fact that we already know the leading
contribution in such limit is precisely of the order O

(
1
τ2

)
. The saddle-point equations have

the form:
∂

∂uµ
Seff(u; ∆, τ)

∣∣∣∣
u=saddle

= 0 , (µ = 1, · · · , N − 1) . (2.12)

The set with all identical holonomies, namely ui = uj for all i, j ∈ {1, · · · , N} [11, 55]
is one of the most well-known solutions to (2.12). The effective action at this saddle point
successfully counted the dual AdS5 black hole microstates [11].

There are N distinct sets of identical holonomies satisfying the SU(N) constraint∑N
i=1 ui ∈ Z, namely

u(m) =
{
u

(m)
j = m

N

∣∣∣ j = 1, · · · , N
}
, (m = 0, 1, · · · , N − 1) . (2.13)

Within the appropriate range of chemical potentials, the saddle points (2.13) yield the
following effective action:

1
τ2

N−1∑
m=0

Seff(u(m); ∆, τ) = exp
(
− iπ(N2 − 1)

τ2 ∆1∆2∆3 + logN +O(−1/|τ |)
)
. (2.14)

2More refined limits were considered in [53]. The authors discussed the limit where q = e2πiτ approaches
roots of unit.
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From (2.13) and (2.14) we see that the logarithmic correction has its origin in the multiplicity
of the saddle points. This result remains true even for more generic N = 1 toric quiver
gauge theories, as emphasized in [45], which renders the logN correction a quite robust
one. Note that we have not made use of the large-N limit here, therefore, provided that we
remain at small values of τ , (2.14) holds for finite N (Evidence in favor of this has been
given in [49]).

The Cardy-like expansion. With the Bethe-Ansatz approach we have learned that
even for generic values of τ , in the large-N limit, the logN is the same and arises from
degeneracies of Bethe-Ansatz solutions. At this point we have shown that also for finite N ,
in the strict Cardy-like limit, the logN has a combinatorial origin.

We now proceed to include subleading corrections in inverse powers of τ and show that,
indeed, the logN remains unchanged. This is an important step, since it helps us build
an intuition that we later import to a different situation, namely the refined topologically
twisted index, where we have only access to the strict Cardy-like limit and argue about
the possibility of the combinatorial nature of logN to remain true as we depart from
this limit. We then focus on the effective action evaluated near the leading saddle-point
solution (2.13). Following [45], we make the Ansatz for saddle-point solutions in the finite
Cardy-like expansion,

u(m) =

u(m)
j = m

N
+ vjτ

∣∣∣ vj ∼ O(|τ |0),
N∑
j=1

vj = 0

 , (m = 0, 1, · · · , N − 1) , (2.15)

and evaluate the effective action around this Ansatz. For a suitable choice of chemical
potentials, the following expression was obtained:

log I(τ ; ∆) = − iπ(N2 − 1)
τ2 ∆1∆2∆3 + logN +O(e−1/|τ |) . (2.16)

The exponentially suppressed correction comes from the asymptotic expansion of the
building blocks of the effective action, namely elliptic Gamma functions and Pochhammer
symbols (see appendix A.1). An important aspect about (2.16) is that it includes all
power-like corrections in τ , and rather remarkably, it is a series that truncates at the leading
order. A prominent role in the technical evaluation of (2.16) was the cancellation of the
O(τ0) contribution which was given in terms of the effective action of a matrix model of
SU(N) level k = N Chern-Simons theory on S3 (see [45] for a more detailed discussion).

What seems like a rather technical step when analyzed from the strictly mathematical
perspective of looking at the asymptotic behavior of Seff(u; ∆, τ), becomes very natural
when viewed from an effective field theory perspective. Such analysis was carried out
in [58], where the Cardy-like (small τ) expansion was shown to geometrically correspond to
shrinking the S1 circle, thus leading to an effective field theory on S3 organized in inverse
powers of the circumference of S1.

In particular, a careful treatment of the Kaluza-Klein reduction on S1 yields a result
compatible with (2.16), where the logN is associated to degeneracies of vacua. This
effective field theory approach clarifies the organization of the index in inverse powers
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of |τ | and further confirms the logarithmic term as certain degeneracy of vacua [53, 58].
Specifically, the effective field theory approach allows to establish the existence of a minimum
of Seff(u; ∆, τ) at u = 0, which spontaneously breaks the one-form symmetry ZN of the 4d
N = 4 SYM theory. The fact that u = 0 spontaneously breaks ZN implies the existence of
exactly N − 1 additional local minima which contribute equally to the index, hence the
logN correction to the logarithm of the SCI.

Summarizing, the logarithmic correction to the logarithm of the SCI, which we refer to
as ∆log ICFT4 , has been shown to be robust. In [45] it was originally obtained using two
different approaches to evaluate the index: the saddle-point approximation and the Bethe-
Ansatz approach. In the latter approach, the logarithmic term appears as the degeneracy of
the Bethe-Ansatz solutions. The same logarithmic contribution was also shown to persist for
a large class of N = 1 superconformal field theories. The form of the logarithmic correction
was further confirmed in [59], which provides an interpretation for certain exponentially
suppressed terms. In [60], the logarithmic corrections were extended to other gauge groups
and the results were shown to be compatible with the SU(N) analysis.

The black hole entropy is extracted from the SCI by implementing an inverse Laplace
transformation, which yields the degeneracy of a state with given energy and charges. In
the regime of large charges, we can reduce the inverse Laplace transformation to a Legendre
transformation using the saddle point approximation. This is tantamount to changing from
a grand-canonical ensemble to a microcanonical one. At the leading order in N , the two
ways of approaching the entropy should be equivalent. However, when studying subleading
structures we have to be more careful, since the very process of going from one ensemble to
the other could modify the subleading corrections we are trying to probe. To be more specific,
let us call ∆SCFT4 the subleading logarithmic correction to the black hole entropy. Then
we expect that in general ∆SCFT4 = ∆log ICFT4 + (corrections from changing ensemble).
Let us now study more carefully the contribution coming from the change of ensemble.

2.2 The logarithmic correction associated to changing ensemble

We denote IGC as the index computeded in the grand-canonical ensemble and IMC as the
index in the microcanonical ensemble, i.e., the index for fixed values of the charges. We
consider D chemical potentials µI (I = 1, · · · , D) satisfying the constraint,

D∑
I=1

cIµI = n0, (2.17)

where cI = 1 for µI associated to electric charges and cI = −1 for µI associated to
angular momenta. We implement the inverse Laplace transform which takes us from the
grand-canonical ensemble to the microcanonical ensemble

IMC =
∫
dDµdΛ exp

{
log IGC −

D∑
I=1

QIµI − Λ
(

D∑
I=1

cIµI − n0

)}
, (2.18)

where Λ is the Lagrange multiplier associated to the constraint (2.17). Note that we
have already considered the case of equal angular momenta when computing the index
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in the grand-canonical ensemble. Otherwise, we would have also needed an additional
Lagrange multiplier accounting for the constraint among rotations. We know the logarithmic
corrections in the grand-canonical ensemble takes the form

log IGC = log I(leading)
GC + logN. (2.19)

Imposing (2.19), we find that the index in the microcanonical ensemble takes the form

IMC = N

∫
dDµdΛ exp

[
log I(leading)

GC −
D∑
I=1

QIµI − Λ
(

D∑
I=1

cIµI − n0

)]
. (2.20)

We are now ready to implement the saddle point method, keeping the subleading logarithmic
corrections associated to the one-loop determinant. The saddle point equations are given as

∂

∂µI

[
log I(leading)

GC −
D∑
I=1

QIµI − Λ
(

D∑
I=1

cIµI − n0

)]
= 0,

∂

∂Λ

[
log I(leading)

GC −
D∑
I=1

QIµI − Λ
(

D∑
I=1

cIµI − n0

)]
= 0,

(2.21)

which leads to

∂ log I(leading)
GC
∂µI

= QI + cIΛ,

D∑
I=1

cIµI = n0.

(2.22)

A very important property of log I(leading)
GC is its homogeneity of degree one in the chemical

potentials. This implies the following crucial relation

log I(leading)
GC =

D∑
I=1

µI
∂ log I(leading)

GC
∂µI

. (2.23)

Evaluating at the saddle point values, we obtain

log I?(leading)
GC =

D∑
I=1

µ?I (QI + cIΛ) , (2.24)

such that the saddle point imposed on (2.20) yields

IMC ≈ N exp
{

log I?(leading)
GC −

D∑
I=1

QIµ
?
I − Λ

(
D∑
I=1

cIµ
?
I − n0

)
− 1

2 log det (H)
}

= N exp
{

D∑
I=1

µ?I (QI + cIΛ)−
D∑
I=1

QIµ
?
I − Λ

(
D∑
I=1

cIµ
?
I − n0

)
− 1

2 log det (H)
}

= Nen0Λ− 1
2 log det(H). (2.25)
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The Hessian H has the form

H =



∂2 log I(leading)
GC

∂µ2
1

· · · ∂2 log I(leading)
GC

∂µ1∂µD

∂2 log I(leading)
GC

∂µ1∂Λ

. . . .

. . . .
∂2 log I(leading)

GC
∂µD∂µ1

· · · ∂2 log I(leading)
GC

∂µ2
D

∂2 log I(leading)
GC

∂µD∂Λ
∂2 log I(leading)

GC
∂Λ∂µ1

· · · ∂2 log I(leading)
GC

∂Λ∂µD
∂2 log I(leading)

GC
∂Λ2


. (2.26)

Since log I(leading)
GC is a homogeneous function of degree one, the chemical potentials

can appear either in the numerator or the denominator in a way that the second derivative
terms appearing along the diagonal of H vanish when µI appears in the denominator. To
keep track of this we define a list of numbers {δ1, · · · , δD} such that δI vanishes when µI is
in the numerator of log I(leading)

GC and it is equal to one otherwise. This implies the following
scaling of H

detH ∼ det


O(N2)δ1 · · · O(N2) c1

. . . .

. . . .

O(N2) · · · O(N2)δD cD
c1 · · · cD 0

 ∼ O(N2(D−1)). (2.27)

Defining D = d+ 1, where d is the number of independent chemical potentials, the index
computed in the microcanonical ensemble up to logarithmic corrections takes the form

log IMC ≈ n0Λ + (1− d) logN. (2.28)

From (2.28) it is clear that from the CFT4 point of view the origin of the logarithmic
correction is two-fold: a part logN from the grand-canonical ensemble and another part
−d logN from changing the grand-canonical ensemble to the microcanonical ensemble. Since
the chemical potentials are constrained by having equal angular momenta as well as the
BPS condition, we have d = 3 and therefore the logarithmic correction in the microcanonical
ensemble is

∆SCFT4 = −2 logN. (2.29)

We expect this 4-dimensional result to match with the subleading correction coming from
the 2-dimensional Cardy formula.

2.3 Black hole, its entropy and near-horizon limit

The non-extremal asymptotically AdS5 black hole background was found in [61]. In the
Boyer-Lindquist coordinates xµ = (t, r, θ, φ, ψ), the metric and the gauge field are given

– 9 –
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by3

ds2 = −
[
(1 + g2r2)ρ2dt+ 2qν

]
dt

Ξρ2 + 2q
ρ2Ξν

2 + f

ρ4Ξ2 (dt− ν)2

+ ρ2dr2

∆r
+ ρ2

Ξ
(
dθ2 + sin2θ dφ2 + cos2θ dψ2

)
, (2.30)

A =
√

3 q
ρ2Ξ (dt− ν) , (2.31)

where

ν ≡ a ( sin2θ dφ+ cos2θ dψ) , Ξ ≡ 1− a2g2 ,

∆r ≡
(r2 + a2)2(1 + g2r2) + q2 + 2a2q

r2 − 2m,

ρ2 ≡ r2 + a2, f ≡ 2mρ2 − q2 + 2a2qg2ρ2 .

(2.32)

These black hole solutions are characterized by three independent parameters (m, a, q), and
g is the inverse radius of AdS5.

We are ultimately interested in exploring the black hole solution for the parameter
space satisfying supersymmetry and extremality, i.e. BPS. The supersymmetric limit
corresponds to

q = m

1 + 2ag . (2.33)

However, this is not enough to ensure physical solutions and therefore we must also consider
an additional constraint to prevent naked closed timelike curves, which in the BPS limit
takes the form

m = 2a(1 + ag)2(1 + 2ag)
g

. (2.34)

Extremality occurs when the inner horizon and the outer horizon coincide, which for our
solution gives the double root

r2
0 = a(2 + ag)

g
. (2.35)

The macroscopic Bekenstein-Hawking entropy for the supersymmetric black hole,
computed as a quarter of the area of the horizon (in units of GN = 1), is

SBH = π2a3/2√2 + ag

g3/2(1− ag)2 = 2π
√

3Q2

g2 −
π

2g3J , (2.36)

where we have written it explicitly in terms of the electric charge, Q, and the angular
momentum, J . The remarkable achievement of [10–12] was to obtain this expression for

3For simplicity, we consider the black hole with equal angular momenta J1 = J2 and equal electric
charges Q1 = Q2 = Q3.
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the black hole entropy as the Legendre transform of the leading N2-part of the SCI (2.16),
thus providing it with a microscopic explanation.

Given that the AdS/CFT correspondence geometrizes RG flow in the radial direction,
it is convenient to consider zooming into a near-horizon region (IR), r0, while assuming a
co-rotating frame:

r → r0 + λ r̃ , t→ t̃

λ
, φ→ φ̃+ g

t̃

λ
, ψ → ψ̃ + g

t̃

λ
, (2.37)

where we have also imposed both (2.33) and (2.34). Taking λ→ 0 brings us to a near-horizon
region of the AdS5 BPS black hole:

ds2 = α1

[
−r̃2 dτ2 + dr̃2

r̃2

]
+ Λ1(θ)

[
dφ̃+ α2 r̃ dτ

]2
+ Λ2(θ)

[
dψ̃ + β1(θ)dφ̃+ β2(θ) r̃ dτ

]2
+ α3 dθ

2 , (2.38)

where

α1 = a

2g(1 + 5ag) ,

α2 = 3a(1− ag)

2(1 + 5ag)
√
a
(
a+ 2

g

) ,
α3 = 2a

g(1− ag) ,

Λ1(θ) = 4a(2 + ag) sin2 θ

g(1− ag)(4− ag + 3ag cos(2θ)) ,

Λ2(θ) = a(4− ag + 3ag cos(2θ)) cos2 θ

2g(1− ag)2 ,

β1(θ) = 6ag sin2 θ

4− ag + 3ag cos(2θ) ,

β2(θ) =
3g(1− ag)

√
a
(
a+ 2

g

)
(1 + 5ag)(4− ag + 3ag cos(2θ)) .

(2.39)

It is in the near-horizon limit at extremality where we find that the near-horizon
geometry is locally a U(1)2-bundle over AdS2. The asymptotic symmetries of this space can
be studied via the Kerr/CFT correspondence, which associates to each U(1)-fiber in (2.38)
a central charge and an effective temperature in the CFT2. We can apply the Kerr/CFT
correspondence to either U(1), and the results of the black hole entropy from the Cardy
formula are the same [25, 26].

2.4 Kerr/CFT correspondence and charged Cardy formula

Let us briefly review the Cardy formula which determines the degeneracy of states in a
CFT2. We are interested in its application up to and including the logarithmic corrections
to the degeneracy of states, with constraints among the charges and chemical potentials.
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We consider the partition function of a CFT2 with n global U(1) symmetries expressed in
the grand-canonical ensemble

Z(τ, τ̄ , ~µ) = Tr e2πiτL0−2πiτ̄ L̄0+2πiµiP i , (2.40)

where P i are the conserved charges of the global U(1)’s, and µi are the corresponding
chemical potentials. One particular property of the CFT2 with conserved currents is that
under modular transformations

τ → τ ′ = aτ + b

cτ + d
, µi → µ′i = µi

cτ + d
, i = 1, · · · , n, (2.41)

the partition function transforms as (in a special choice of normalization)

Z
(
τ ′, ~µ′

)
= e
−2πi

(
cµ2
cτ+d

)
Z(τ, ~µ) . (2.42)

Therefore, the modular invariance of the partition function requires

Z(τ, τ̄ , ~µ) = e−
2πiµ2
τ Z

(
−1
τ
, −1

τ̄
,
~µ

τ

)
, (2.43)

where µ2 ≡ µiµjk
ij with kij denoting the matrix of the Kac-Moody levels of the U(1)

currents. The modular invariance (2.43) implies that for small τ

Z(τ, τ̄ , ~µ) ≈ e−
2πiµ2
τ e−

2πiEv
L

τ
+

2πiEv
R

τ̄
+ 2πiµip

i
v

τ , (2.44)

where EvL, EvR and piv are the lowest eigenvalues of L0, L̄0 and P i respectively. Moreover,
we take EvL, EvR to be negative, and piv = 0, corresponding to an electrically neutral
vacuum. Note that (2.44) is the grand-canonical partition function and does not contain
logarithmic corrections, as opposite to the analogous quantity (2.16) in CFT4. This is
already an indication that the Kerr/CFT computation is probing a different object in the
grand-canonical ensemble. Nevertheless, Kerr/CFT still encodes information about the
actual degeneracy of states by transforming to the microcanonical ensemble, i.e., the black
hole sector with fixed charges and angular momentum.

Let us take a moment to understand the charges pi of the theory, which include the
angular momenta p1, p2 and the electric charges p3, p4, p5, originally coming from the AdS5
black hole solution. Particularly, for the 5d BPS black hole of interest, such charges obey a
linear constraint of the generic form

5∑
i=1

bipi = M, (2.45)

where bi are some constant coefficients and M is related to the mass of the black hole.
Therefore, (2.45) implements the BPS conditions (2.33) and (2.34). Since we are considering
pi ∼ O(N0), it can be seen from (2.45) that M ∼ N0.
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In the grand-canonical ensemble, we fix chemical potentials and admit all values of
charges. We consider a linear constraint among chemical potentials

5∑
i=1

siµi = C , (2.46)

where C is a constant of the order O(N0). The constraint (2.17) is a special case of (2.46).
As we are going to see, this leads to the result that in terms of the scaling of N , si ∼ k−1

ii .
Moreover, in order to compare to the CFT4 with equal angular momenta, we consider an
additional constraint of the form

2∑
i=1

αiµi = 0, (2.47)

of which the constraint µ1 = µ2 is a special case. To clarify how we use these constraints to
derive the logarithmic corrections, we carefully change to the microcanonical ensemble by
integrating over chemical potentials while respecting the constraints (2.46) and (2.47). The
density of states ρ(τ, τ̄ , ~µ) can be expressed as the inverse Fourier transform of Z(τ, τ̄ , ~µ)

ρ(EL,ER, ~p) =
∫
dτ dτ̄ dnµdλ1 dλ2 exp

[
2πiS(µ,τ, τ̄)+2πiλ1

( 5∑
i=1

siµi−C
)

+2πiλ2

2∑
i=1

αiµi

]
,

(2.48)

S(µ,τ, τ̄) =−µ
2

τ
−E

v
L

τ
+EvR

τ̄
+µip

i
v

τ
−τEL+τ̄ER−µipi , (2.49)

where EL, ER and pi are the eigenvalues of L0, L̄0 and P i, respectively, and n denotes
the number of independent chemical potentials. Before we proceed, we take a moment to
discuss the scaling of the various expressions and parameters involved. This is a crucial step
in understanding which terms contribute to the subleading corrections of the entropy. The
modular parameters are order-1 parameters: τ, τ̄ ∼ O(N0). Similarly, we take pi ∼ N0 and
C ∼ N0. From (2.49), we find that µ2 ∼ µi pi τ , which solving for the scaling of µi gives

µi ∼ pjkijτ ⇒ µi ∼
∑
j

pjkij ∼ (si)−1, (2.50)

where we have made the summation over the indices explicit, to make it clear that the
highest order in the summation should be the scaling of µi and si. Likewise, EL ∼ ER ∼
EvL ∼ EvR ∼ µ2 ∼

∑
i,j p

ipjkij .
Therefore, we have related the different parameters to the matrix kij , where the scaling

can be found via the Kac-Moody levels. There are two types of levels that we are interested
in. The Kac-Moody level from the SU(2) rotation, i.e. k11 or k22, is proportional to the
central charge c [62], which is of the order of Newton’s constant G−1 ∼ N2. The Kac-Moody
levels from U(1) gauge symmetries, i.e. kii (i > 2), are proportional to N−2 [30, 63]. For
the BPS AdS5 black hole, the N -dependences of various factors are

EvL, E
v
R ∼ N2 , 4EL − P2, ER ∼ N2 , k11, k22 ∼ N2 , k33, k44, k55 ∼ N−2 , (2.51)
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which implies that k11, k22 ∼ N−2 and k33, k44, k55 ∼ N2. Moreover, this also implies that

s1 = s2 ∼ N2, s3 = s4 = s5 ∼ N−2, (2.52)

or likewise s1 = s2 ∼ N0, s3 = s4 = s5 ∼ N0. Due to the definition of µi and pi as
µ2 = µiµjk

ij and P2 ≡ pipjk
ij , we lower and raise the indices of µi, pi and si with kij .

However, for αi we do not need to raise indices with kij , as α1 and α2 are the net scalings
due to that the right-hand side of (2.47) is zero.

With these scalings in mind, we can now proceed to compute the saddle point.
From (2.48) and (2.49) let us define

S̃(µ, τ, τ̄) ≡ S(µ, τ, τ̄) + λ1

( 5∑
i=1

siµi − C
)

+ λ2

2∑
i=1

αiµi . (2.53)

The equations for the fixed points have the form

i = 1, 2 : ∂S̃

∂µi
= −2kijµ

j

τ
+ (pv)i

τ
− pi + λ1si + λ2αi = 0 , (2.54a)

i = 3, 4, 5 : ∂S̃

∂µi
= −2kijµ

j

τ
+ (pv)i

τ
− pi + λ1si = 0 , (2.54b)

∂S̃

∂τ
= µ2

τ2 + EvL
τ2 −

µip
i
v

τ2 − EL = 0 , (2.54c)

∂S̃

∂τ̄
= −E

v
R

τ̄2 + ER = 0 , (2.54d)

∂S̃

∂λ1
=

5∑
i=1

siµi − C = 0 , (2.54e)

∂S̃

∂λ2
=

2∑
i=1

αiµi = 0 . (2.54f)

We define the values of the saddle to be (µi)0, τ0 and τ̄0, such that (2.54a) gives

(µi)0 =


1
2kij

(
pjv − pjτ0 + λ1s

jτ0 + λ2α
jτ0
)
, i = 1, 2 ,

1
2kij

(
pjv − pjτ0 + λ1s

jτ0
)
, i = 3, 4, 5 ,

(2.55)

where we can redefine pi by shifting it as follows

p̃i ≡

pi − λ1s
i − λ2α

i , i = 1, 2 ,
pi − λ1s

i , i = 3, 4, 5 .
(2.56)

Therefore, we rewrite

(µi)0 = 1
2kij

(
pjv − p̃jτ0

)
, (2.57)

with τ0 satisfying

τ2
0EL = µ2

0 + EvL − (µi)0p
i
v . (2.58)
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Using (2.57), we find that

µ2
0 = 1

4
[
kijp

i
vp
j
v + τ2

0 kij p̃
ip̃j
]
− 1

2kij p̃
ipjvτ0 = 1

4kijτ
2
0 p̃

ip̃j , (2.59)

where kimkil = δlm, and in the second equality we have assumed that the vacuum is
electrically neutral, i.e. piv = 0. Inserting (2.59) in (2.58), we obtain

τ0 = ±i
√

4(−EvL)
4EL − kijpipj

. (2.60)

The saddle point for τ̄ trivially is τ̄0 = ±i
√
−EvR
ER

. Consequently, (µi)0 given by (2.57) now
has the form

(µi)0 = −1
2kij p̃

jτ0 = ∓ikij p̃j
√

−EvL
4EL − kij p̃ip̃j

. (2.61)

Imposing (2.54f), we find

2∑
i=1

αi(µi)0 = −kijαip̃j
√

EvL
4EL − kij p̃ip̃j

= 0 ⇒ α1k11p̃
1 + α2k22p̃

2 = 0 . (2.62)

Choosing the normalization of the Kac-Moody levels such that k11 = k22, we can solve for
the Lagrange multiplier λ2

α1k11p̃
1 + α2k22p̃

2 = 0 ,

⇒ k11
(
α1(p1 − λ1s

1 − λ2α
1) + α2(p2 − λ1s

2 − λ2α
1)
)

= 0 ,

⇒ α1p1 + α2p2 − λ1(α1s2 + α2s2)− λ2((α1)2 + (α2)2) = 0 .

(2.63)

We now set α1 = −α2, since both p1 and p2 should have the same scaling. Therefore, we
obtain

α1, α2 ∼ 1, (2.64)

and
α1 ∼ α2 ∼ 1 , (2.65)

where we do not need to raise indices with kij here, as α1 and α2 are the net scalings due
to that the right-hand side of (2.47) is zero. Moreover, s1 = s2 as they correspond to the
equal angular momenta. We then find from (2.63) that

α1(p1 − p2) = 2(α1)2λ2 ,

⇒ λ2 = p1 − p2

2α1 ,
(2.66)

which vanish for p1 = p2. This implies that λ2 does not affect the logarithmic corrections to
the entropy for the case of equal angular momenta, as its contribution to the determinant
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of the Hessian matrix is of the order O(N0). We are also interested in the scaling of λ1.
From (2.54e), we find

5∑
i

si(µi)0 = −kijsip̃j
√

EvL
4EL − kij p̃ip̃j

= C . (2.67)

As we expect the scaling to remain the same for any arbitrary values of the charges, we
consider a special case pi = piv = 0 and find from (2.56) and (2.67) that

λ1

5∑
i=1

kiis
isi = C

√
4EL − λ2

1
∑5
i=1 kiis

isi

EvL
,

⇒ λ2
1

( 5∑
i=1

kiis
isi
)2

= C2
(

4EL
EvL
− λ2

1
∑5
i=1 kiis

isi

EvL

)
,

⇒ λ2
1

( 5∑
i=1

kiis
isi
)2

+ C2
∑5
i=1 kiis

isi

EvL

 = 4C2EL
EvL

.

(2.68)

Let us now discuss the scalings of each of these terms. Given (2.51) and (2.52), we have at
the leading order EL ∼ EvL ∼ N2, C ∼ N0 and kiisisi ∼ N2 and therefore

λ1 ∼ N−2. (2.69)

The leading order value of the degeneracy is obtained by evaluating the action at the
saddle point values, which gives

log ρ0 =
√
EvL (4EL − kij p̃ip̃j) + 2

√
EREvR . (2.70)

We would like to comment on the scaling with respect to N in (2.70). At the leading order,
λ1s

i ∼ O(N−2) which implies that O(p̃i) ∼ O(pi). Therefore, (2.70) coincides with the
leading order of the degeneracy with p̃i replaced by pi. This is important as we can see
that the constraint we imposed only affects the subleading order of the entropy.

Note that we have more than one saddle points, namely one for each choice of signs in
the values of τ0, τ̄0, (µi)0. However, one saddle dominates over the others as S(µ, τ, τ̄) is
exponentially suppressed. To see this explicitly, let us take

τ0 = iετ

√
4(−EvL)

4EL−kijpipj
, τ̄0 = iετ̄

√
−EvR
ER

, µi,0 =−iετkij pj
√

−EvL
4EL−kijpipj

, (2.71)

where ετ and ετ̄ take on values of ±1. Then, under the constraints imposed by the Lagrange
multipliers, the density of states (2.48) can be approximated by the saddle points

ρ0 =
∑

ετ ,ετ̄=±1
exp (2πiS(µ, τ, τ̄))

=
∑

ετ ,ετ̄=±1
exp

{
2πi

[
− iετ2

P2√−EvL√
4EL − P2 − iετ (−EvL)

√
4EL − P2

4(−EvL) + iετ̄ (−EvR)
√

ER
−EvR

−iετEL

√
−4EvL

4EL − P2 + iετ̄ER

√
−EvR
ER

− (−iετ )P2

√
−EvL

4EL − P2

]}

=
∑

ετ ,ετ̄=±1
exp

[
2π
(
ετ

√
−EvL(4EL − P2)− ετ̄

√
−4EvRER

)]
. (2.72)
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If we now select the combination of ετ = 1 and ετ̄ = −1, which maximizes the exponent
in (2.72), we can write

ρ0 ∼ exp
[
2π
(√
−EvL(4EL − P2) +

√
−4EvRER

)]
+ . . . , (2.73)

where the dots denote the exponentially suppressed terms of subleading non-logarithmic
order. To summarize, given the behavior of Z, the degeneracy ρ can be determined using
the saddle-point approximation with the dominant saddle at

τ0 =
√

4EvL
4EL − P2 , τ̄0 = −

√
EvR
ER

, µi,0 = −kij pj
√

EvL
4EL − P2 , (2.74)

where kij is the inverse matrix of kij , and P2 ≡ pipjkij . Note that the saddle-point values
τ0 and (µi)0 are parametrically small, as P2 � |EL|, which is reminiscent of the 4d Cardy
limit originally used in [10, 11] and recently clarified in [53, 58]. Moreover, the Cardy limit
in 2d, which assumes that the levels of the theory is much larger than the Casimir energy, is
compatible with the Cardy limit in 4d, which focuses on small chemical potentials and large
charges, as they both address the high energy states of the theory and in our particular
case address the entropy of extremal black holes.

At the saddle (2.74), the density of states ρ reaches its extremum ρ0, and the corre-
sponding entropy is

S(µ0, τ0, τ̄0) = log ρ0 ≈ 2π
√
−EvL(4EL − P2) + 2π

√
−EvR(4ER) . (2.75)

This expression is also called the charged Cardy formula in [64], which implies a micro-
canonical ensemble of black hole microstates. If we apply EvL = EvR = −c/24, and define
the temperatures TL,R through

EL −
P2

4 = π2

6 cT
2
L , ER = π2

6 cT
2
R , (2.76)

we can rewrite the entropy (2.75) as

S = π2

3 cTL + π2

3 cTR , (2.77)

where TR is proportional to the physical Hawking temperature TH . This formula coincides,
at the leading order, with the canonical ensemble version of the charged Cardy formula, and
has been successfully used in a variety of cases [23, 65–68]. However, we emphasize that
obtaining (2.77) did not involve a change of ensemble, as we merely re-identified certain
combinations.

From the near-horizon CFT2 and the Kerr/CFT correspondence we know that for the
BPS AdS5 black hole

cL = 9πa2

GNg(1− ag)(1 + 5ag) = 18N2(ag)2

(1− ag)(1 + 5ag) , (2.78)

TL = 1 + 5ag
3a(1− ag)π

√
a

(
a+ 2

g

)
, (2.79)
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where we have used the AdS5/CFT4 dictionary 1
2N

2 = π
4GN `

3
5 = π

4GNg3 . Note that both cL
and TL are dimensionless. Consequently, the BPS AdS5 black hole entropy at the leading
order in N is given by the Cardy formula

SCFT2 = π2

3 cLTL = 2N2π(ag)3/2√2 + ag

(1− ag)2 . (2.80)

This near-horizon CFT2 result matches the macroscopic Bekenstein-Hawking entropy of
the black hole (2.36), as shown in [24–26].

2.5 Logarithmic corrections from near-horizon CFT2

To derive the logarithmic corrections to the black hole entropy from the near-horizon
CFT2, we evaluate the Cardy formula beyond its leading saddle-point value by including
its Gaussian correction. Namely, we consider a logarithmic correction ∆SCFT2 obtained
from expanding τ , τ̄ and ~µ to the quadratic order around the saddle point given by (2.74).
The result is

∆SCFT2 = −1
2 log detA

(2π)n+2 , (2.81)

where A is the Hessian of the exponent in the integrand of (2.48) around the saddle
point (2.74), and has the form Aµν = ∂2S̃

∂xµ∂xν , where x
µ = {τ, τ̄ , λ, µi=1,··· ,n}, whose only

non-trivial elements in the presence of constraints are

∂2S̃

∂τ∂µi
= 2kij(µ

j)0
τ0

,

∂2S̃

∂τ2 = − 2
τ3

0

(
kij(µi)0(µj)0 + EvL

)
,

∂2S̃

∂τ̄2 = 2E
v
R

τ̄3
0
,

∂2S̃

∂λ1∂µi
= si, (i = 1, · · · , 5)

∂2S̃

∂λ2∂µi
= αi, (i = 1, 2)

∂2S̃

∂µi∂µj
= −2kij

τ0
.

(2.82)

We see that k11 and k22 come from the SU(2) rotation, which corresponds to the angular
momenta, while kii (i > 2) come from the U(1) gauge symmetries. At the subleading order
the Hessian takes the form

detA = (2π)n+2

16 (−EvL)−
n+1

2 (4EL − P2)
n+3

2 (−EvR)−
1
2 (4ER)

3
2 det(H) , (2.83)

where

H ∼

 kij ST
S 0

 , (2.84)
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and

S =
(
s1 s2 s3 s4 s5
α1 α2 0 0 0

)
. (2.85)

Note that this result is different than in [30], as we have considered two linear constraints
on the chemical potentials.

For supersymmetric extremal (BPS) black holes, one of the Frolov-Thorne temperatures
TR vanishes, as it is proportional to the Hawking temperature, and only the left sector
contributes to the black hole entropy. Consequently, (2.83) for BPS black holes becomes

(detA)BPS = (2π)n+2

16 (−EvL)−
n+1

2 (4EL − P2)
n+3

2 det(H) , (2.86)

where
− EvL = c

24 , 4EL − P2 = 2π2

3 cT 2
L . (2.87)

With the scalings in (2.51), (2.52) and (2.64), the Hessian takes on the N -dependence

detH ∼ N2, (2.88)

such that
(detA)AdS5 Black Hole ∼ (N2)−

n+1
2 (N2)

n+3
2
(
N2
)

= N4 . (2.89)

Note that the result is independent of n since the scaling of EvL and 4EL−P2 are equal. There-
fore, the logarithmic correction to the leading-order BPS AdS5 black hole entropy (2.80) is

∆SCFT2 = −1
2 log detA

(2π)n+2 = −2 logN +O(1) , (2.90)

which precisely agrees with ∆SCFT4 in (2.29). However, we also observe that in contrast
to the CFT4 approach, where the logarithmic correction originates from both the grand-
canonical ensemble and the process of changing ensemble, the logarithmic correction in the
CFT2 approach comes purely from changing the ensemble. This is because the Kerr/CFT
is intrinsically a near-horizon field theoretic approach, and it does not probe the boundary
of the full geometry, where the values of the chemical potentials in the grand-canonical
ensemble are fixed. Hence, in Kerr/CFT it is more natural to consider the entropy in the
microcanonical ensemble, and we only expect the results of the black hole entropy with
logarithmic correction from the CFT4 and the CFT2 approaches match in this ensemble.

3 AdS5 black strings

3.1 AdS5 black string entropy from boundary N = 4 SYM

A rotating AdS5 black string solution in gauged supergravity has been discussed in [64, 69],
where it was shown that its leading-order entropy can be obtained from the refined topolog-
ically twisted index of N = 4 SYM on S2 × T 2.
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The topologically twisted index of N = 4 SYM with gauge group SU(N) is defined as
the supersymmetric index of the theory on T 2 × S2 with a topological twist on S2 [70, 71],
its Hamiltonian interpretation being

Z(pa,∆a) = (−1)F e2πiτ {Q,Q†}ei∆aJa . (3.1)

The topologically twisted index depends on a set of chemical potentials, ∆a, for the
generators of flavor symmetries (a = 1, 2, 3), a modular parameter of the torus τ and
magnetic fluxes pa. The topologically twisted index of N = 4 SYM with gauge group SU(N)
admits a presentation as an integral over the space of holonomies in the following way:

Z(pa,∆a) = 1
N !

∑
m

∮
C

N−1∏
µ=1

(
duµη(q)2

)
ZTT (u,∆a, τ, pa) ,

ZTT (u,∆a, τ, pa) =
N∏

i,j=1

θ1 (uij ; τ)
iη(q)

3∏
a=1

(
iη(q)

θ1 (uij + ∆a; τ)

)mij−pa+1
 ,

(3.2)

where η(q) is the Dedekind eta function that we define in appendix A. We can evaluate (3.2)
as the sum over residues [71] which takes the following explicit form:

Z(pa,∆a) = η(q)2(N−1) ∑
û∈BA

N∏
i,j=1

 3∏
a=1

(
θ1 (uij ; τ)

θ1 (uij + ∆a; τ)

)1−pa
H−1(û,∆, τ), (3.3)

where, analogously to the SCI discussed in section 2.1, BA stands for the set of solutions
to the Bethe-Ansatz equations (2.3), and H(û,∆, τ) is the Jacobian defined in (2.5). The
location of a set of such residues was found in [52] and have the form given by (2.6) labeled
by {ui} with integers {m,n, r}.

In fact, the set of solutions found in [52] inspired the evaluation of the SCI carried
in [12], where the {ui} are also organized according to equation (2.6), however, in the
large-N limit, it was possible to argue that the configuration corresponding to {1, N, 0}
was dominant. For fixed {m,n, r}, it is possible to count how many values of ū give
non-equivalent contributions to topologically twisted index (by non-equivalent we mean,
those which are not identified by periodicity u ∼ u+ 1 or u ∼ u+ τ). Once again, imposing
the SU(N) constraint we find that:

ū = k

N
− 1

2N

[
n(m− 1) +m(n− 1)

(
τ + r

m

)]
,

k = 0, 1, · · · , N − 1 ,
(3.4)

which reduces to (2.9) for {m,n, r} = {1, N, 0}. We then conclude that there is a degeneracy
factor of N for each {m,n, r} configuration contributing to the topologically twisted index.
To argue that there is no other contribution of the same order that spoils the value of the
coefficient of logN would require a more detailed study of the large-N behavior of the
topologically twisted index, which has been studied recently in [51] at the leading order
in N . A systematic study of subleading corrections to the topologically twisted index still
remains an open problem. It is, however, very tempting to conjecture that indeed, there is
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no contribution other than the one originated from degeneracy of Bethe-Ansatz solutions
and, consequently, the coefficient of logN is 1 also for the topologically twisted index in
the grand-canonical ensemble.

One can further refine the topologically twisted index by adding a rotation on S2 [70].
This will modify the integral expression (3.2) through the appropriate fugacities associated
to the rotation on S2, namely ξ = e2πiω. To be concrete, we would have:

Z(pa,∆a)refined = 1
N !

∑
m

∮
C

N−1∏
µ=1

(
duµη(q)2

)
ZTT ref(u,∆a, τ, pa) ,

ZTT ref(u,∆a, τ, pa) =
N∏

i,j=1

θ1 (uij + 2ωj; τ)
iη(q)

3∏
a=1

(
iη(q)

θ1 (uij + ∆a + 2ωj; τ)

)mij−pa+1
 .
(3.5)

The refined topologically twisted index has been studied, in the strict Cardy-like limit,
in [69], where the correction due to the refinement could be factored out in the following way:

Z(pa,∆a)refined
∣∣
τ→0 = Z(pa,∆a)Zω , (3.6)

where Z(pa,∆a) is the unrefined topologically twisted index, and Zω is the correction associ-
ated to the refinement. The explicit form of Zω is irrelevant to us, while only the fact that it is
independent on u, pa and ∆a will be important. To the best of our knowledge, the direct ap-
plication of the Bethe-Ansatz approach to the refined topologically twisted index has not been
performed yet. However, we can exploit the fact that in the Cardy-like limit there is a simple
connection to the unrefined index, namely (3.6), and based on the intuition we have gained
by studying the SCI, to argue that the combinatorial origin of logN corrections is still there
at small τ , therefore we do not expect it to go away as we depart from the Cardy-like limit.

As we have discussed in the AdS5 black hole case, the logarithmic correction to the
entropy can be seen as essentially arising from the degeneracy of dominant Bethe-Ansatz
solutions to the appropriate partition function of the boundary N = 4 SYM. As in the
case of the SCI, the logarithmic correction we compute for the topologically twisted index
is in the grand-canonical ensemble. However, since we find that the result matches that
of the microcanonical ensemble, we conjecture that there are no additional logarithmic
contributions associated to the change of ensembles. Therefore, for the BPS rotating AdS5
black string considered in [64, 69], the logarithmic correction to logZ(leading)(pa,∆a) can
be obtained from the degeneracy of dominant residues contributing to the topologically
twisted index of N = 4 SYM, i.e.

∆ logZ(pa,∆a) = logN . (3.7)

This result has the same origin (in the Bethe-Ansatz treatment [12]) as in the SCI, and we
expect a similar robustness as the logarithmic correction to the AdS5 black hole.

Since logZ(leading)(pa,∆a) ∼ N2 and it is homogeneous of degree one in the chemical
potentials, it is possible to apply the result of section 2.2 to conclude that the logarithmic
correction has an additional contribution from the change of ensemble which again takes
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the form −d logN , where d = 3 is the number of independent chemical potentials for the
rotating AdS5 black string. We then conclude that

∆SCFT4 = (1− d) logN +O(1) = −2 logN +O(1). (3.8)

3.2 AdS5 black string entropy from near-horizon CFT2

The near-horizon geometry of the rotating AdS5 black string solution is [64]

ds2 = (−MΠ)2/3

Θ2

[
−r2 dτ2 + dr2

r2 + WΘ2

M2

(
dy − M

Θ
√
W

rdτ

)2
]

+ (−M)2/3

Π1/3

[
dθ2 + sin2θ

(
dϕ+ J

M
dy

)2
]
, (3.9)

whereM≡ −p1p2p3 is the product of magnetic charges, and J is the angular momentum,
while

Θ ≡ (p1)2 + (p2)2 + (p3)2 − 2(p1p2 + p1p3 + p2p3) ,
Π ≡ (−p1 + p2 + p3)(p1 − p2 + p3)(p1 + p2 − p3) ,

W ≡ −4q0p
1p2p3 − J 2

Θ ,

(3.10)

with q0 denoting the momentum added along the black string direction. Using the standard
Kerr/CFT correspondence, we obtain the central charge of the near-horizon CFT2

cL = 6M
G4Θ . (3.11)

This central charge was found in [64] as a Brown-Henneaux central charge [72].
To compute the black string entropy using the Cardy formula, we still need the Frolov-

Thorne temperature, which can be computed from the standard formalism for the Kerr/CFT
correspondence [73]

TL =
√
W Θ

2πM . (3.12)

Therefore, the Cardy formula leads to the rotating AdS5 black string (BS) entropy

SBS = π2

3 cLTL = π
√
W

G4
, (3.13)

which is the same as the leading-order rotating AdS5 black string entropy [64, 69].
For the logarithmic correction to the AdS5 black string entropy from the near-horizon

CFT2, we apply the same technique as the AdS5 black hole case. As mentioned in [64, 69],
the rotating AdS5 black string solution has one angular momentum and three electric
charges. Similar to the BPS AdS5 black hole case,

c ∼ N2 , k11 ∼ N2 , kii ∼ N−2 (i = 2, 3, 4) , (3.14)

where we take n = 4 in the general formula (2.86) due to the following reason. Three U(1)
electric charges have three corresponding chemical potentials ∆a subject to a constraint,
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hence there are only two indepedent U(1) electric charges. The angular momentum J
appearing in the second line of (3.9) can be viewed as an additional U(1), which can be
treated in the same way as a U(1) electric charge [74], while in the first line of (3.9) there is
actually another angular momentum hidden in the BTZ part of the metric. Hence, from the
near-horizon region of the rotating AdS5 black string there are still one angular momentum
and three U(1) charges (including J ), which are independent of each other. Unlike the
AdS5 black hole case where we can choose one of the two angular momenta, for the rotating
AdS5 black string the way of counting near-horizon symmetries is unique.

The reasoning of section 2.5 can be followed in its entirety except that from the
start there are only 4 chemical potentials, one conjugate to angular momentum and three
conjugate to electric charges, obeying one constraint. This is in contrast with the AdS5 black
hole with 5 chemical potentials, two conjugate to angular momenta and three conjugate to
electric charges. The scalings of the Kac-Moody levels and other parameters are the same.
Moreover, only one Lagrange multiplier is needed, λ1, and we find that detH ∼ N2, as in
the case of the AdS5 black hole with the same final result as in (2.90). Consequently,

(detA)AdS5 Black String ∼ (N2)−
n+1

2 (N2)
n+3

2
(
N2
)

= N4 , (3.15)

and the logarithmic correction to the leading-order AdS5 black string entropy (3.13) is

∆SCFT2 = −1
2 log detA

(2π)n+2 = −2 logN +O(1) . (3.16)

4 Discussion

In this paper we have explored logarithmic corrections to asymptotically AdS5 supersym-
metric extremal, rotating, electrically charged black holes and black strings. For each case
we examined the microstate counting in the context of N = 4 SYM whereby it reduces to a
combinatorial contribution from the space of solutions. We also approached the logarithmic
corrections to the entropy by considering the microstate counting in the near-horizon geom-
etry and its dual CFT2, where the logarithmic corrections arise as subleading contributions
in the Cardy formula for the degeneracy of states. We found that the results from both
approaches precisely match for both AdS5 black holes and rotating black strings. It is
instructive to write our boundary CFT4 result as (1− d) logN to note that the logarithmic
correction has two contributions, one that has a completely combinatorial origin and is
rather universal, namely, logN , while the other contribution from the change of ensemble
depending on the number of independent chemical potentials of the theory, −d logN . Since
we have 3 independent chemical potentials, we obtain −2 logN as a correction to the micro-
scopic entropy. The calculation using the Cardy formula cannot resolve such splitting of the
logarithmic correction, and only after being in microcanonical ensemble, an agreement can be
found. The reason is that the Kerr/CFT correspondence is a field-theoretic approach intrinsic
to the near-horizon geometry. It is, therefore, insensitive to certain details of the UV region.
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Our agreement in using the Cardy formula to its logarithmic precision should come
more as a surprise than as a foregone conclusion. There is precedent where the Cardy
formula leads to the wrong answer for logarithmic corrections [74]. Although the subtleties
in applying the Cardy formula beyond its intrinsic regime are numerous, we expect that
our positive results indicate the existence of resolutions which take into account particular
properties of the spectrum [75, 76].

It would be interesting to derive the logarithmic corrections directly from the macro-
scopic one-loop contribution in type IIB supergravity. It is also natural to extend our
near-horizon analysis to asymptotically AdS black holes in other dimensions. This route is
certain to encounter obstructions in the form of zero modes, as is the case for asymptotically
AdS4 and AdS6 black holes. Indeed, it has been shown that the one-loop supergravity
contribution to the logarithmic corrections for asymptotically AdS4 black holes [18] is
different from the one obtained in the near-horizon approach [77, 78]. Our work indicates
that given the absence of obstructions (zero modes) in odd-dimensional AdS spacetimes
the counting can be performed at the near-horizon level, paving the way for a quantum
entropy formula à la Sen [79]. It will also be interesting to explore the implications of our
near-horizon results within supergravity localization along the lines of [80, 81].
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A Special functions

Here we summarize the definitions of special functions used in the paper. The Dedekind
eta function is defined as

η(q) = q
1
24

∞∏
k=1

(
1− qk

)
, Im(τ) > 0 , (A.1)

with q = e2πiτ . The Pochhammer symbol is defined as

(z; q)∞ =
∞∏
k=0

(1− zqk) . (A.2)
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The elliptic theta functions which are relevant to us have the following product form:

θ0(u; τ) =
∞∏
k=0

(1− e2πi(u+kτ))(1− e2πi(−u+(k+1)τ)) , (A.3a)

θ1(u; τ) = −ie
πiτ
4 (eπiτ − e−πiτ )

∞∏
k=1

(1− e2πikτ )(1− e2πi(kτ+u))(1− e2πi(kτ−u))

= ie
πiτ
4 e−πiuθ0(u; τ)

∞∏
k=1

(1− e2πikτ ) . (A.3b)

The elliptic gamma function and the “tilde” elliptic gamma function are defined as

Γ(z; p, q) =
∞∏

j,k=0

1− pj+1qk+1z−1

1− pjqkz , (A.4a)

Γ̃(u;σ, τ) =
∞∏

j,k=0

1− e2πi[(j+1)σ+(k+1)τ−u]

1− e2πi[jσ+kτ+u] . (A.4b)

A.1 Asymptotic behavior

For a small |τ | with fixed 0 < arg τ < π, the Pochhammer symbol can be approximated as

log(q; q)∞ = −πi12

(
τ + 1

τ

)
− 1

2 log(−iτ) +O
(
e

2π sin(arg τ)
|τ |

)
. (A.5)

To study asymptotic behaviors of elliptic functions, it is useful to introduce the function
{u}τ , as

{u}τ ≡ u− bRe(u)− cot(arg τ)Im(u)c (u ∈ C) , (A.6)

which satisfies

{u}τ = {ũ}τ + ǔτ , {−u}τ =

1− {u}τ (ũ /∈ Z) ,
−{u}τ (ũ ∈ Z) ,

(A.7)

where we have defined ũ, ǔ ∈ R as
u = ũ+ ǔτ . (A.8)

The elliptic theta function θ0(u; τ) can be approximated for a small |τ | with fixed
0 < arg τ < π as

log θ0(u; τ) = πi

τ
{u}τ (1− {u}τ ) + πi{u}τ −

πi

6τ (1 + 3τ + τ2)

+ log
(
1− e−

2πi
τ

(1−{u}τ )
) (

1− e−
2πi
τ
{u}τ

)
+O

(
e

2π sin(arg τ)
|τ |

)
.

(A.9)

The elliptic theta function θ1(u; τ) is approximated for a small |τ | with fixed 0 < arg τ < π as

logθ1(u;τ) = πi

τ
{u}τ (1−{u}τ )− πi4τ (1+τ)+πibRe(u)−cot(argτ)Im(u)c+ 1

2 logτ

+log
(
1−e−

2πi
τ

(1−{u}τ )
)(

1−e−
2πi
τ
{u}τ

)
+O

(
e

2π sin(argτ)
|τ |

)
.

(A.10)

– 25 –



J
H
E
P
0
4
(
2
0
2
2
)
1
6
0

For a small |τ | with fixed 0 < arg τ < π, the elliptic gamma function can be approxi-
mated as

log Γ̃(u; τ) = 2πiQ({u}τ ; τ) +O
(
|τ |−1e

2π sin(arg τ)
|τ | min({ũ},1−{ũ})

)
, (A.11)

provided ũ /→Z (see [56] for example), and the function Q(· ; ·) is defined as:

Q(u; τ) ≡ −B3(u)
6τ2 + B2(u)

2τ − 5
12B1(u) + τ

12 , (A.12)

with Bn(u) being the n-th Bernoulli polynomial.
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