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Abstract

Background: A fundamental problem in RNA-seq data analysis is to identify genes or exons that are differentially
expressed with varying experimental conditions based on the read counts. The relativeness of RNA-seq
measurements makes the between-sample normalization of read counts an essential step in differential expression
(DE) analysis. In most existing methods, the normalization step is performed prior to the DE analysis. Recently, Jiang
and Zhan proposed a statistical method which introduces sample-specific normalization parameters into a joint
model, which allows for simultaneous normalization and differential expression analysis from log-transformed
RNA-seq data. Furthermore, an �0 penalty is used to yield a sparse solution which selects a subset of DE genes. The
experimental conditions are restricted to be categorical in their work.

Results: In this paper, we generalize Jiang and Zhan’s method to handle experimental conditions that are measured
in continuous variables. As a result, genes with expression levels associated with a single or multiple covariates can be
detected. As the problem being high-dimensional, non-differentiable and non-convex, we develop an efficient
algorithm for model fitting.

Conclusions: Experiments on synthetic data demonstrate that the proposed method outperforms existing methods
in terms of detection accuracy when a large fraction of genes are differentially expressed in an asymmetric manner,
and the performance gain becomes more substantial for larger sample sizes. We also apply our method to a real
prostate cancer RNA-seq dataset to identify genes associated with pre-operative prostate-specific antigen (PSA) levels
in patients.
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Introduction
A fundamental problem in RNA-seq data analysis is to
identify genes or exons that are differentially expressed
with varying experimental conditions based on the read
counts. Some widely used methods for differential expres-
sion analysis in RNA-seq data are edgeR [1, 2], DESeq2
[3] and limma-voom [4, 5]. In edgeR and DESeq2, the
read counts are assumed to follow negative binomial
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(NB) distributions; while in limma-voom, the logarith-
mic transformation is taken on the data which compresses
the dynamic range of the read counts so that the outliers
become more “normal”. Consequently, existing statistical
methods that are designed for analyzing normally dis-
tributed data can be employed to analyze RNA-seq data.

Due to the relative nature of RNA-seq measurements
for transcript abundances as well as differences in library
sizes and sequencing depths across samples [6], between-
sample normalization of read counts is essential in dif-
ferential expression (DE) analysis with RNA-seq data. A
widely used approach for data normalization in RNA-
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seq is to employ a sample-specific scaling factor, e.g.,
CPM/RPM (counts/reads per million) [7], upper-quartile
normalization [8], trimmed mean of M values [7] and
DESeq normalization [9]. A review of normalization
methods in RNA-data data analysis is given in [6]. In most
existing methods for DE analysis in RNA-seq, the nor-
malization step is performed prior to the DE detection
step, which is sub-optimal because ideally normalization
should be based on non-DE genes for which the complete
list is unknown until after the DE analysis.

In [10], a statistical method for robust DE analysis
using log-transformed RNA-seq data is proposed, where
sample-specific normalization factors are introduced as
unknown parameters. This allows for more accurate and
reliable detection of DE genes by simultaneously perform-
ing between-sample normalization and DE detection. An
�0 penalty is introduced to enforce that a subset of genes
are selected as being differentially expressed. The experi-
mental conditions are restricted to be categorical (e.g., 0
and 1 for control and treatment groups, respectively), and
a one-way analysis of variance (ANOVA) type model is
employed to detect differentially expressed genes across
two or more experimental conditions.

In [11], the model of [10] is generalized to continu-
ous experimental conditions, and the sparsity-inducing
�0 penalty is relaxed as the �1 penalty. An alternating
direction method of multipliers (ADMM) algorithm is
developed to solve the resultant convex problem. Due to
the relaxation of the �0 regularization, the method in [11]
may not be as robust against noise and efficient in induc-
ing sparse solutions as that in [10]. In this paper, we again
generalize the model in [10] from categorical to continu-
ous experimental conditions. But different from [11], we
retain the �0 penalty in our model to efficiently induce
sparsity. We formulated two hypothesis tests suited to
different applications: the first hypothesis test is that con-
sidered in [10] and answers the question of whether the
expression of a gene is significantly affected by any covari-
ate; and in addition, a second hypothesis is formulated
to test whether the expression of a gene is significantly
affected by a particular covariate, when all other covari-
ates in the regression model are adjusted for.

Due to the use of the �0 penalty, the resulting problem
is high-dimensional, non-differentiable and non-convex.
To fit the proposed model, we study the optimality con-
ditions of the problem and develop an efficient algorithm
for its solution. We also propose a simple rule for the
selection of tuning parameters. Experiments on synthetic
data demonstrate that the proposed method outperforms
existing ones in terms of detection accuracy when a large
fraction of genes are differentially expressed in an asym-
metric manner, and the performance gain becomes more
substantial for larger sample sizes. We also apply our
method to a real prostate cancer RNA-seq dataset to

identify genes associated with pre-operative prostate-
specific antigen (PSA) levels in patients.

Methods
Given m genes and n samples, let yij, i = 1, . . . , m, j =
1, . . . , n, be the log-transformed gene expression values of
the i-th gene in the j-th sample. A small positive constant
can be added prior to taking the logarithm to avoid taking
logarithm of zeros. We formulate the following model:

yij = αi + βT
i xj + dj + εij, (1)

where αi is the intercept,

β i =

⎡
⎢⎢⎢⎣

βi1
βi2

...
βip

⎤
⎥⎥⎥⎦ ∈ R

p×1 (2)

is the regression coefficient vector of the linear model for
gene i, and

xj =

⎡
⎢⎢⎢⎣

xj1
xj2
...

xjp

⎤
⎥⎥⎥⎦ ∈ R

p×1 (3)

is a vector of p predictor variables for sample j repre-
senting its experimental conditions (drug dosage, blood
pressure, age, BMI, etc.), dj represents the normalization
factor for sample j, and εij ∼ N

(
0, σ 2

i
)

is i.i.d. Gaussian
noise. Our goal is for each gene to determine whether
its expression level is significantly associated with the
experimental conditions or not.

Remark 1 The αi and dj in (1) model gene-specific
factors (e.g., gene length) and sample-specific factors
(i.e., sequencing depth), respectively. Thus, model (1) can
accommodate any gene expression levels summarized in
the form of cij/(li · qj), where cij is the read count, li is
the gene-specific scaling factor (e.g., gene length) associated
with gene i and qj is the sample-specific scaling factor (e.g.,
sequencing depth) associated with sample j. Special cases
are read count (i.e., li = qj = 1), CPM/RPM (i.e., li = 1)
[7], RPKM/FPKM [12, 13] and TPM [14].

Since the random noise in gene expression measure-
ments are independent across genes and samples, the
likelihood is given by

L
(
α, {β i}m

i=1, {σ 2
i }m

i=1, d; Y
)

=
m∏

i=1

n∏
j=1

1√
2πσ 2

i

exp

⎧⎪⎨
⎪⎩

−
(

yij − αi − βT
i xj − dj

)2

2σ 2
i

⎫⎪⎬
⎪⎭

.

(4)
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The negative log-likelihood is

l
(
α, {β i}m

i=1, {σ 2
i }m

i=1, d; Y
) =

m∑
i=1

n∑
j=1

1
2σ 2

i

(
yij − αi − βT

i xj − dj
)2 + C,

(5)

where C depends on
{
σ 2

i
}

but not on {αi}, {β i} and {dj}.
In “Maximum likelihood estimation of noise variance”
section, we will describe how to estimate σ 2

i , i = 1, . . . , m.
Hereafter, we assume that σ 2

i ’s are known and simply
denote the negative log-likelihood as l

(
α, {β i}m

i=1, d; Y
)
.

In practice, typically only a subset of genes are differ-
entially expressed. We introduce a sparse penalty to the
negative log likelihood function:

min f
(
α, {β i}m

i=1, d
) =

m∑
i=1

n∑
j=1

1
2σ 2

i

(
yij − αi − xT

j β i − dj
)2

+
m∑

i=1
λi p

(
β i

)
,

(6)

where λi’s are tuning parameters that control the sparsity
level of the solution, and p

(
β i

)
is a penalty function

In this paper, we use the following two types of penalty
functions.

i) Type I penalty:

p
(
β i

) = 1β i �=0. (7)

This penalty function applies to applications where
all covariates are of interest and we want to identify
genes for which at least one covariate is associated
with its expression.

ii) Type II penalty:

p
(
β i

) = 1βip �=0. (8)

This penalty applies to applications where only one
(the p-th) covariate is of main interest (e.g.,
treatment) while we want to adjust for all other
covariates (e.g., age, sex, etc).

Algorithm development
Note that without dj, model (1) would be decoupled as m
independent linear regression models, one for each gene.
The first step of our algorithm is to solve for dj and express
it as a function of β i’s.

Note that the optimization problem (6) is convex in
(α, d). Therefore, the minimizer of (α, d) is one of its
stationary points.

Taking partial derivatives of f
(
α, {β i}m

i=1, d
)

with
respect to dj, j = 1, . . . , n, and setting them to zeros, we
have

dj = 1∑m
i=1

1
σ 2

i

m∑
i=1

1
σ 2

i

(
yij − αi − xT

j β i

)
. (9)

The solution to model (1) is not unique because an arbi-
trary constant can be added to dj’s and subtracted from
αi’s, while having the same model fit. To address this issue,
we fix d1 = 0. Therefore

dj = dj − d1 =
(

ȳ(w)
·j − ȳ(w)

·1
)

− (
xj − x1

)T
β̄

(w), (10)

where

ȳ(w)
·j := 1

m∑
i=1

1
σ 2

i

m∑
i=1

1
σ 2

i
yij, for j = 1, . . . , n, (11)

β̄
(w) := 1

m∑
i=1

1
σ 2

i

m∑
i=1

1
σ 2

i
β i. (12)

Here the superscript (w) denotes “weighted mean".
Calculating the partial derivatives of f

(
α, {β i}m

i=1, d
)

with respect to αi, i = 1, . . . , m, and setting them to zeros,
we have

αi = 1
n

n∑
j=1

(
yij − xT

j β i − dj
)

= ȳi· − x̄Tβ i − 1
n

n∑
j=1

dj,

(13)

where

ȳi· := 1
n

n∑
j=1

yij, i = 1, . . . , m (14)

x̄ := 1
n

n∑
j=1

xj. (15)

From (10) it follows

1
n

n∑
j=1

dj =
(

ȳ(w) − ȳ(w)
·1

)
− (x̄ − x1)

T β̄
(w), (16)

where

ȳ(w) := 1
m∑

i=1

1
σ 2

i

m∑
i=1

1
σ 2

i
· 1

n

n∑
j=1

yij. (17)

Substituting (16) into (13) yields

αi = ȳi· + ȳ(w)
·1 − ȳ(w) + (x̄ − x1)

T β̄
(w) − x̄Tβ i. (18)

The sum of (10) and (18) yields

αi +dj = ȳi· + ȳ(w)
·j − ȳ(w) − (

xj − x̄
)T

β̄
(w) − x̄Tβ i. (19)

Substituting (19) into (6), the problem becomes an �0-
regularized linear regression problem with {β i}m

i=1 being
the only variables to be optimized:

minimize
{β i}m

i=1
f
({β i}m

i=1
) =

m∑
i=1

1
2σ 2

i

n∑
j=1

(
ỹij + x̃T

j β̄
(w) − x̃T

j β i

)2

+
m∑

i=1
λi p

(
β i

)
,

(20)
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where

ỹij := yij − ȳi· − ȳ(w)
·j + ȳ(w) (21)

x̃j := xj − x̄. (22)
It is easy to see that

m∑
i=1

1
σ 2

i
ỹij = 0,

n∑
j=1

ỹij = 0. (23)

In the next two sections, we will describe algorithms
to solve Problem (20) with type I and type II penalties,
respectively.

Fitting the model with type I penalty

Denote δ = β̄
(w), and let

gi
(
β i

) = 1
2σ 2

i

n∑
j=1

(
ỹij + x̃T

j δ − x̃T
j β i

)2 + λi1β i �=0, (24)

where β i’s are considered as functions of δ. The objective
in Problem (20) can be written as f (β) = ∑m

i=1gi
(
β i

)
.

Assume that δ is fixed, f can be minimized by minimizing
each gi

(
β i

)
separately.

Next we express the minimizing solution of gi
(
β i

)
as a

function of δ.
When β i = 0,

gi (0) = 1
2σ 2

i

n∑
j=1

(
ỹij + x̃T

j δ
)2

. (25)

When β i �= 0,

gi
(
β i

) = 1
2σ 2

i

n∑
j=1

(
ỹij + x̃T

j δ − x̃T
j β i

)2 + λi. (26)

Taking partial derivatives of (26) with respect to β i, i =
1, . . . , m, and setting them to zeros yields

β
(ols)
i =

(
X̃TX̃

)−1
X̃Tỹi + δ, (27)

where the superscript (ols) indicates an ordinary least
squares estimate for the model,

X̃ =

⎡
⎢⎢⎢⎢⎣

x̃T
1

x̃T
2
...

x̃T
n

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

x̃11 x̃12 · · · x̃1p
x̃21 x̃22 · · · x̃2p

...
...

. . .
...

x̃n1 x̃n2 · · · x̃np

⎤
⎥⎥⎥⎦ ∈ R

n×p, (28)

and ỹi is a column vector containing the centered expres-
sion of gene i in all samples, i.e., the i-th row of Ỹ :

Ỹ =

⎡
⎢⎢⎢⎢⎣

ỹT
1

ỹT
2
...

ỹT
m

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

ỹ11 ỹ12 · · · ỹ1n
ỹ21 ỹ22 · · · ỹ2n

...
...

. . .
...

ỹm1 ỹm2 · · · ỹmn

⎤
⎥⎥⎥⎦ ∈ R

m×n. (29)

The objective function value at β i = β
(ols)
i is

gi
(
β

(ols)
i

)
= 1

2σ 2
i

ỹT
i

[
In − X̃

(
X̃TX̃

)−1
X̃T

]
ỹi + λi.

(30)

The change in the objective value gi
(
β i

)
from β i =

β
(ols)
i �= 0 in Eq. (30) to β i = 0 in Eq. (25) is

gi (0) − gi
(
β

(ols)
i

)
= 1

2σ 2
i

[
ỹT

i X̃
(

X̃TX̃
)−1

X̃Tỹi + 2ỹT
i X̃δ + δTX̃TX̃δ

]
− λi

= 1
2σ 2

i

∥∥∥∥X̃
[(

X̃TX̃
)−1

X̃Tỹi + δ

]∥∥∥∥
2

− λi.

(31)

Therefore, the solution is

β i =
⎧⎨
⎩

0 if 1
2σ 2

i

∥∥∥X̃β
(ols)
i

∥∥∥2
< λi

β
(ols)
i otherwise

(32)

Now we only need to solve for δ. We have

δ̂ = arg min
δ

m∑
i=1

min
{

gi (0) , gi
(
β

(ols)
i

)}

= arg min
δ

m∑
i=1

min
{

gi (0) − gi
(
β

(ols)
i

)
, 0

}

= arg min
δ

m∑
i=1

min
{

1
2σ 2

i

∥∥∥∥X̃
[(

X̃TX̃
)−1

X̃Tỹi + δ

]∥∥∥∥
2
− λi, 0

}

= arg min
δ

m∑
i=1

min
{

1
2σ 2

i

∥∥∥∥X̃
[(

X̃TX̃
)−1

X̃Tỹi + δ

]∥∥∥∥
2

, λi

}

(33)

where the second equality is due to the fact that
gi

(
β

(ols)
i

)
is a constant independent of δ, and the third

equality follows from (31). Problem (33) can be solved
exactly using an exhausted grid search for p=1 or 2,
and approximately using a general global optimization
algorithm (e.g., the optim function in R) for larger p.
A more efficient algorithm proposed in [15] can also
be used.

After we obtain the estimate of δ, we substitute it into
(32) to get the estimate of β i. Algorithm 1 describes the
complete model fitting procedure.
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Algorithm 1 Algorithm to fit the model with type I
penalty
Input: Log-transformed gene expression measurements:

Y = (
yij

) = [
y1 y2 . . . ym

]T ∈ R
m×n,

and design matrix: X = [
x1 x2 . . . xn

]T ∈ R
n×p.

• Center columns of X to have mean zeros:
x̃j ← xj − x̄, withx̄ := 1

n
∑n

j=1xj and center yij to
have both zero row and column means:
ỹij = yij − ȳi· − ȳ(w)

·j + ȳ(w), where ȳi·, ȳ(w)
·j and ȳ(w)

are defined in (14), (11) and (17), respectively.
• Select the tuning parameters λi’s according to

“Tuning parameter selection: regression with
type I penalty” section.

• Estimate the noise variance σ 2
i ’s according to

“Maximum likelihood estimation of noise
variance” section.

1: Solve

min
δ

m∑
i=1

min
{

1
2σ 2

i

∥∥∥∥X̃
[(

X̃TX̃
)−1

X̃Tỹi + δ

]∥∥∥∥
2

, λi

}
.

via p-dimensional search. Denote the solution as δ̂.
2: For i = 1, . . . , m, estimate β i:

β̂ i =
⎧⎨
⎩

0 if 1
2σ 2

i

∥∥∥X̃β̂
ols
i

∥∥∥
2

< λi

β̂
ols
i otherwise

where

β̂
ols
i =

(
X̃TX̃

)−1
X̃Tỹi + δ̂

Output: β̂ i, i = 1, . . . , m, and

α̂i = ȳi·+ ȳ(w)
·1 − ȳ(w)− x̃T

1
¯̂
β

(w)

− x̄Tβ̂ i, i = 1, . . . , m

d̂1 = 0, d̂j =
(

ȳ(w)
·j − ȳ(w)

·1
)

− (
x̃j − x̃1

)T ¯̂
β

(w)

, j = 2, . . . , n

where

¯̂
β

(w)

= 1
m∑

i=1

1
σ 2

i

m∑
i=1

1
σ 2

i
β̂ i

Fitting the model with type II penalty

Denote δ = β̄
(w), and let

hi
(
β i

) = 1
2σ 2

i

n∑
j=1

(
ỹij + x̃T

j δ − x̃T
j β i

)2+λi1βip �=0, (34)

where β i’s are considered as functions of δ. The objective

function in Eq. (20) is f (β) =
m∑

i=1
hi

(
β i

)
. Assume that δ

is fixed, f can be optimized by minimizing each hi
(
β i

)
separately.

Next we find the solution for β i’s as a function of δ by
minimizing hi

(
β i

)
.

Denote

x̃j =

⎡
⎢⎢⎢⎢⎢⎣

x̃j1

x̃j2
...

x̃jp

⎤
⎥⎥⎥⎥⎥⎦

=
[

x̃−
j

x̃jp

]
, β i =

⎡
⎢⎢⎢⎢⎢⎣

βi1

βi2
...

βip

⎤
⎥⎥⎥⎥⎥⎦

=
[

β−
i

βip

]
, δ =

⎡
⎢⎢⎢⎢⎢⎣

δ1

δ2
...

δp

⎤
⎥⎥⎥⎥⎥⎦

=
[

δ−

δp

]
.

When βip = 0,

hi
(
β i

) = 1
2σ 2

i

n∑
j=1

(
ỹij + x̃T

j δ − x̃−
j

T
β−

i

)2
. (35)

Taking derivatives of (35) with respect to β−
i , i =

1, . . . , m, and setting them to zeros yields

β−
i =

(
X̃−T

X̃−
)−1

X̃−T (
ỹi + x̃p

δp
) + δ−, (36)

where

X̃− =

⎡
⎢⎢⎢⎢⎢⎣

x̃−
1

T

x̃−
2

T

...
x̃−

n
T

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

x̃11 x̃12 · · · x̃1,p−1

x̃21 x̃22 · · · x̃2,p−1
...

...
. . .

...
x̃n1 x̃n2 · · · x̃n,p−1

⎤
⎥⎥⎥⎥⎥⎦

∈ R
n×(p−1), x̃p =

⎡
⎢⎢⎢⎢⎢⎣

x̃1p

x̃2p
...

x̃np

⎤
⎥⎥⎥⎥⎥⎦

.

(37)

Denote β
(r)
i =

[
β−

i
0

]
, where the superscript (r) denotes

the reduced model. Substituting β i = β
(r)
i into (35) and

after some matrix algebraic manipulation, we have

hi
(
β

(r)
i

)
= 1

2σ 2
i

(
ỹi + x̃p

δp
)T

[
In − X̃−

(
X̃−T

X̃−
)−1

X̃−T
] (

ỹi + x̃p
δp

)
.

(38)

When βip �= 0,

hi
(
β i

) = 1
2σ 2

i

n∑
j=1

(
ỹij + x̃T

j δ − x̃T
j β i

)2 + λi. (39)

The minimizing solution of hi
(
β i

)
is β

(ols)
i shown in (27),

and its p-th coordinate is

β
(ols)
ip =

[(
X̃TX̃

)−1
X̃Tỹi

]

p
+ δp

=
ỹT

i

[
In − X̃−

(
X̃−T

X̃−
)−1

X̃−T
]

x̃p

x̃pT
[

In − X̃−
(

X̃−T
X̃−

)−1
X̃−T

]
x̃p

+ δp,
(40)
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where the second equality follows from X̃ =
[

X̃− xp
]

and

the inverse formula for the partitioned matrix of X̃TX̃. The
value of hi

(
β i

)
at β i = β

(ols)
i is

hi
(
β

(ols)
i

)
= 1

2σ 2
i

ỹT
i

[
In − X̃

(
X̃TX̃

)−1
X̃T

]
ỹi + λi.

(41)

The decrease in the objective value from βip = 0 in
Eq. (38) to βip �= 0 in Eq. (41) is

hi
(
β

(r)
i

)
− hi

(
β

(ols)
i

)

= 1
2σ 2

i

{
ỹT

i

[
X̃

(
X̃TX̃

)−1
X̃T − X̃−

(
X̃−T

X̃−
)−1

X̃−T
]

ỹi

+ 2ỹT
i

[
In − X̃−

(
X̃−T

X̃−
)−1

X̃−T
]

x̃p
δp +

x̃pT
[

In − X̃−
(

X̃−T
X̃−

)−1
X̃−T

]
x̃p

δ2
p

}
− λi

= 1
2σ 2

i
x̃pT

[
In − X̃−

(
X̃−T

X̃−
)−1

X̃−T
]

x̃p
∣∣∣β(ols)

ip

∣∣∣2 − λi,

(42)

where the second equality employs the following equality:

ỹT
i

[
X̃

(
X̃TX̃

)−1
X̃T − X̃−

(
X̃−T

X̃−
)−1

X̃−T
]

ỹi

=

{
ỹT

i

[
In − X̃−

(
X̃−T

X̃−
)−1

X̃−T
]

x̃p
}2

x̃pT
[

In − X̃−
(

X̃−T
X̃−

)−1
X̃−T

]
x̃p

,

which is obtained by partitioning X̃TX̃ into a 2 × 2 block
matrix and then substituting the formula for its inverse,
and β

(ols)
ip is defined in Eq. (40).

Therefore, the solution is

βip =

⎧⎪⎨
⎪⎩

0 if 1
2σ 2

i
x̃pT

[
In − X̃−

(
X̃−T

X̃−
)−1

X̃−T
]

x̃p
∣∣∣β(ols)

ip

∣∣∣2
< λi

β
(ols)
ip otherwise

(43)

Now we only need to solve for δp. We have

δ̂p = arg min
δp

m∑
i=1

min
{

hi
(
β

(r)
i

)
, hi

(
β

(ols)
i

)}

= arg min
δp

m∑
i=1

min
{

hi
(
β

(r)
i

)
− hi

(
β

(ols)
i

)
, 0

}
,

(44)

where the second equality is due to the fact that hi
(
β

(ols)
i

)

is a constant independent of δ.
Substituting (42) into (44) yields

δ̂p = arg min
δp

m∑
i=1

min

{
1

2σ 2
i

x̃pT
[

In − X̃−
(

X̃−T
X̃−

)−1
X̃−T

]
x̃p

∣∣∣β(ols)
ip

(
δp

)∣∣∣2 − λi, 0
}

= arg min
δp

m∑
i=1

min

{
1

2σ 2
i

x̃pT
[

In − X̃−
(

X̃−T
X̃−

)−1
X̃−T

]
x̃p

∣∣∣β(ols)
ip

(
δp

)∣∣∣2
, λi

}
,

(45)

where the β
(ols)
ip

(
δp

)
as a function of δp is defined in

Eq. (40).
After δ̂p is estimated, the estimate of βip is obtained by

substituting δp = δ̂p into (43). Algorithm 2 describes the
complete model fitting procedure.

Next, we introduce a simple method for the selection of
the tuning parameters in our model, which is based on the
property of the solution (32) or (43).

Tuning parameter selection: regression with type I penalty

Substituting (19) into (1) and assuming that δ = β̄
(w) is

fixed, we have

ỹij + δTx̃j = βT
i x̃j + εij, (46)

where ỹij + δTx̃j are the normalized data, which we use
here as the response variables, and εij ∼ N

(
0, σ 2

i
)
.

The condition for β i = 0 in (32) can be rewritten as
∥∥∥∥X̃

[(
X̃TX̃

)−1
X̃Tỹi + δ

]∥∥∥∥
2

σ 2
i

< 2λi. (47)

Under the null hypothesis, β i = 0; the left-hand side
of (47) follows a chi-squared distribution with p degrees
of freedom, i.e., χ2

p . This suggests us choose λi = 1/2 ·
F−1(1 − q; p) = 1/2 · {x : F(x; p) = 1 − q

}
, where F(x; p)

is the cumulative distribution function of χ2
p , and q is a

pre-specified significance level.

Tuning parameter selection: regression with type II penalty
Let ỹij + δTx̃j denote the normalized data:

ỹij + δTx̃j = βT
i x̃j + εij, (48)

where εij ∼ N
(
0, σ 2

i
)
.

The condition for βip = 0 in (43) can be rewritten as
∣∣∣∣∣∣

β
(ols)
ip

SE
β

(ols)
ip

∣∣∣∣∣∣
<

√
2λi, (49)
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Algorithm 2 Algorithm to fit the model with type II
penalty
Input: Log-transformed gene expression measurements:

Y = (
yij

) = [
y1 y2 . . . ym

]T ∈ R
m×n,

and design matrix: X = [
x1 x2 . . . xn

]T ∈ R
n×p.

• Center columns of X to have mean zeros:
x̃j ← xj − x̄, withx̄ := 1

n
∑n

j=1xj and center yij to
have both zero row and column means:
ỹij = yij − ȳi· − ȳ(w)

·j + ȳ(w), where ȳi·, ȳ(w)
·j and ȳ(w)

are defined in (14), (11) and (17), respectively.
• Select the tuning parameters λi’s according to

“Tuning parameter selection: regression with
type II penalty” section.

• Estimate the noise variance σ 2
i ’s according to

“Maximum likelihood estimation of noise
variance” section.

1: Denote

β
(ols)
ip =

ỹT
i

[
In − X̃−

(
X̃−T

X̃−
)−1

X̃−T
]

x̃p

x̃pT
[

In − X̃−
(

X̃−T
X̃−

)−1
X̃−T

]
x̃p

+ δp, i = 1, . . . , m

where X̃− is the submatrix of X̃ with its last column
removed.

Solve

δ̂p = arg min
δp

m∑
i=1

min

{
1

2σ 2
i

x̃pT
[

In − X̃−
(

X̃−T
X̃−

)−1
X̃−T

]
x̃p

∣∣∣β(ols)
ip

∣∣∣2
, λi

}
.

via one-dimensional search.
2: Denote

β̂
(ols)
ip =

ỹT
i

[
In − X̃−

(
X̃−T

X̃−
)−1

X̃−T
]

x̃p

x̃pT
[

In − X̃−
(

X̃−T
X̃−

)−1
X̃−T

]
x̃p

+ δ̂p, i = 1, . . . , m.

For i = 1, . . . , m, estimate βip:

β̂ip =

⎧⎪⎨
⎪⎩

0 if 1
2σ 2

i
x̃pT

[
In − X̃−

(
X̃−T

X̃−
)−1

X̃−T
]

x̃p
∣∣∣β̂(ols)

ip

∣∣∣2
< λi

β̂
(ols)
ip otherwise

Output: β̂ip, i = 1, . . . , m.

where β
(ols)
ip is defined in (40) and

SE
β

(ols)
ip

=
√√√√√√

σ 2
i

x̃pT
[

In − X̃−
(

X̃−T
X̃−

)−1
X̃−T

]
x̃p

is the standard error of the estimate β
(ols)
ip .

Under the null hypothesis, βip = 0; the left-hand side
of (49) follows the standard Gaussian distribution. This
suggests us choose λi = 1/2·[�−1(1 − q/2)

]2, where �(·)
is the cumulative distribution function of the standard
Gaussian distribution, and q is a pre-specified significance
level.

Maximum likelihood estimation of noise variance
To estimate σ 2

i , i = 1, . . . , m, consider the negative log-
likelihood function with σ 2

i ’s being unknown as well:

l
(
α, {β i}m

i=1, {σ 2
i }m

i=1, d
)

=
m∑

i=1

⎡
⎣n

2
log(2πσ 2

i ) + 1
2σ 2

i

n∑
j=1

(
yij − αi − xT

j β i − dj
)2

⎤
⎦ .

(50)

Setting partial derivatives of l(·) with respect to αi, β i,
i = 1, . . . , m, and dj, j = 1, . . . , n to zeros, and after some
mathematical manipulation, we obtain

β i =
(

X̃TX̃
)−1 n∑

j=1
x̃j

(
yij − ȳ(w)

·j
)

+ β̄
(w), (51)

where X̃, x̃j and ȳ(w)
·j are defined in (28), (22) and (11),

respectively.
Taking partial derivatives of l(·) with respect to σ 2

i , i =
1, . . . , m, and setting them to zeros gives

σ 2
i = 1

n

n∑
j=1

(
yij − αi − xT

j β i − dj
)2

. (52)

Substituting (19) into (52), we have

σ 2
i = 1

n

n∑
j=1

(
yij − ȳi· − ȳ(w)

·j + ȳ(w) − x̃T
j β i + x̃T

j β̄
(w)

)2
,

(53)

where ȳi· and ȳ(w) are as defined in (14) and (17),
respectively.

Table 1 Models and parameters for synthetic data generation

�i ∼ eunif(5,10) length of gene i

αi ∼ N (0, 1) other log scaling factors of gene i

βi = 0 log-fold change for non-DE genes

βi ∼ N (2, 1) log-fold change for up-regulated DE genes

βi ∼ N (−2, 1) log-fold change for down-regulated DE genes

xj ∼ N (0, 1) covariates for sample j

Nj ∼ unif(2, 3) × 106 library size of sample j

dj ∼ N (0, 1) other log scaling factors of sample j

μij = Nj
�i∑m

i=1 �i
eαi+βi xj+dj mean read counts of gene i in sample j
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Given initial estimates of σ 2
i ’s and β̄

(w), {β i}, {σ 2
i } and

β̄
(w) can be updated alternately using Eqs. (51), (53), and

(12) until convergence.

After {σ 2
i }m

i=1 are estimated, they can be robustified
using a “shrinkage toward the mean” scheme [16]:

ˆ̂σ 2
i = (1 − w)σ̂ 2

i + wσ̂ 2 (54)

Table 2 The AUCs of edgeR-robust, DESeq2, limma-voom, ELMSeq and rSeqRobust based on log-normally distributed data

DE (%) Up (%) edgeR DESeq2 voom ELMSeq rSeqRobust

1 50 0.9734 0.9736 0.9786 0.9717 0.9757

(0.0091) (0.009) (0.007) (0.0065) (0.0064)

1 75 0.954 0.9531 0.9711 0.9343 0.935

(0.0113) (0.0141) (0.0086) (0.0153) (0.018)

1 100 0.9525 0.9531 0.9633 0.9476 0.9594

(0.0144) (0.0137) (0.0108) (0.0151) (0.0139)

10 50 0.958 0.9623 0.9668 0.9573 0.9627

(0.0079) (0.0069) (0.0057) (0.0069) (0.0067)

10 75 0.9707 0.9632 0.9749 0.964 0.9668

(0.0057) (0.0045) (0.004) (0.0061) (0.0057)

10 100 0.9403 0.9272 0.9605 0.94 0.9435

(0.0107) (0.0142) (0.0077) (0.0128) (0.0128)

30 50 0.9689 0.9696 0.974 0.9665 0.9678

(0.0056) (0.0048) (0.005) (0.0053) (0.0052)

30 75 0.9318 0.9265 0.9458 0.9564 0.9655

(0.0113) (0.0116) (0.0096) (0.0078) (0.0059)

30 100 0.8771 0.8693 0.8753 0.9372 0.9566

(0.0153) (0.0091) (0.0145) (0.0149) (0.0086)

50 50 0.9466 0.954 0.9425 0.9557 0.957

(0.0092) (0.0059) (0.0087) (0.0071) (0.0065)

50 75 0.9099 0.906 0.9145 0.9401 0.9566

(0.0167) (0.0123) (0.0178) (0.0135) (0.0076)

50 100 0.7083 0.7236 0.7197 0.879 0.9576

(0.022) (0.0291) (0.0242) (0.0195) (0.0071)

70 50 0.967 0.9655 0.9652 0.9655 0.969

(0.0039) (0.0034) (0.0036) (0.0031) (0.0021)

70 75 0.8569 0.8351 0.8564 0.9089 0.9692

(0.0193) (0.0161) (0.0194) (0.0118) (0.0045)

70 100 0.4536 0.5212 0.4893 0.4786 0.9638

(0.0344) (0.0296) (0.018) (0.037) (0.0082)

90 50 0.953 0.9538 0.9513 0.9561 0.9512

(0.0064) (0.0064) (0.0081) (0.0042) (0.0049)

90 75 0.7203 0.6918 0.7256 0.6906 0.9584

(0.0239) (0.0177) (0.0323) (0.0167) (0.0084)

90 100 0.2568 0.506 0.2566 0.3516 0.8276

(0.0257) (0.0265) (0.0278) (0.0345) (0.0426)

The sample size is n = 20. The variance of the normal distribution is σ 2
i = 0.01. The table shows the percent of DE genes (DE %), percent of up-regulated genes among all the

DE genes (Up %), and the mean AUCs (standard errors in parentheses) for all five methods with 10 simulated replicates. The highest AUC value is shown in bold
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where

σ̂ 2 = 1
m

m∑
i=1

σ̂ 2
i , (55)

w = 2(m − 1)

n − p + 1

⎛
⎜⎝ 1

m
+ (σ̂ 2)2

∑m
i=1

(
σ̂ 2

i − σ̂ 2
)2

⎞
⎟⎠ . (56)

The noise variance estimates ˆ̂σ 2
i , i = 1, . . . , m,

can then be used in Algorithm 1 or 2 to solve
for {β i}m

i=1.

Remark 2 Note that when σ 2
1 = σ 2

2 = · · · =
σ 2

m = σ 2, it is no longer needed to estimate σ 2

since σ 2 in (6) can be incorporated into the tuning
parameters λi’s.

Table 3 The AUCs of edgeR-robust, DESeq2, limma-voom, ELMSeq and rSeqRobust based on negative-binomially distributed data

DE (%) Up (%) edgeR DESeq2 voom ELMSeq rSeqRobust

1 50 0.9585 0.9635 0.9636 0.9636 0.9622

(0.0105) (0.0105) (0.0101) (0.0106) (0.0112)

1 75 0.9644 0.9696 0.967 0.9711 0.9734

(0.0114) (0.0098) (0.0105) (0.0095) (0.0088)

1 100 0.9785 0.9711 0.977 0.9765 0.9754

(0.0051) (0.0083) (0.0061) (0.005) (0.0056)

10 50 0.9576 0.9604 0.9613 0.9647 0.9658

(0.005) (0.0035) (0.0039) (0.0042) (0.0036)

10 75 0.9551 0.957 0.9559 0.9613 0.9664

(0.0054) (0.0075) (0.0061) (0.0075) (0.0047)

10 100 0.9469 0.9496 0.9474 0.9611 0.9635

(0.0105) (0.008) (0.0103) (0.0059) (0.0056)

30 50 0.9509 0.9528 0.949 0.9604 0.9582

(0.0083) (0.0045) (0.0101) (0.0035) (0.0043)

30 75 0.9413 0.9428 0.9406 0.9664 0.9673

(0.0093) (0.0056) (0.0069) (0.0026) (0.0024)

30 100 0.8689 0.8629 0.879 0.9128 0.9429

(0.015) (0.0106) (0.0168) (0.0113) (0.0061)

50 50 0.9599 0.9618 0.9543 0.9629 0.962

(0.0081) (0.006) (0.0086) (0.0054) (0.006)

50 75 0.8834 0.8902 0.892 0.9279 0.9482

(0.0123) (0.0131) (0.01) (0.0132) (0.0078)

50 100 0.7465 0.7003 0.7425 0.8802 0.9595

(0.0302) (0.0174) (0.0318) (0.012) (0.0058)

70 50 0.9565 0.9629 0.956 0.9637 0.9636

(0.0049) (0.0036) (0.0054) (0.0025) (0.0026)

70 75 0.8164 0.7922 0.8264 0.8847 0.956

(0.0187) (0.0066) (0.0248) (0.0107) (0.0033)

70 100 0.4964 0.488 0.5462 0.4482 0.9522

(0.0323) (0.0227) (0.0315) (0.0224) (0.0046)

90 50 0.9503 0.9604 0.9463 0.9584 0.9478

(0.0064) (0.0037) (0.0077) (0.0037) (0.0062)

90 75 0.6657 0.6272 0.6879 0.5992 0.6912

(0.0205) (0.0124) (0.0226) (0.0131) (0.0946)

90 100 0.2455 0.4752 0.2905 0.2826 0.5379

(0.0317) (0.0225) (0.0316) (0.0214) (0.1178)

The table shows the percent of DE genes (DE %), percent of up-regulated genes among all the DE genes (Up %), and the mean AUCs (standard errors in parentheses) for all
five methods with 10 simulated replicates. The highest AUC value is shown in bold
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Results and discussion
We demonstrate the performance of our proposed
method (named rSeqRobust) by comparing it with other
existing methods for DE gene detection from RNA-
seq data: edgeR-robust [1, 2], DESeq2 [3], limma-voom
[4, 5], and ELMSeq (which fits a similar model but
with �1 rather than �0 penalty) [11]. We consider the

simple regression model (p = 1), in which case
Algorithms 1 and 2 coincide. For ELMSeq, the tun-
ing parameter is set as the 5th percentile of m val-
ues:

∣∣∣ 1
σ̂ 2

1
x̃Tỹ1

∣∣∣ ,
∣∣∣ 1
σ̂ 2

2
x̃Tỹ2

∣∣∣ , . . . ,
∣∣∣ 1
σ̂ 2

m
x̃Tỹm

∣∣∣ [11]. The tuning
parameters λi is set based on the significant level of
q = 0.01.

Table 4 The AUCs of edgeR-robust, DESeq2, limma-voom, ELMSeq and rSeqRobust based on log-normally distributed data

DE (%) Up (%) edgeR - robust DESeq2 limma - voom ELMSeq rSeqRobust

1 50 0.9349 0.9442 0.9087 0.9243 0.9277

(0.0222) (0.0134) (0.0265) (0.0154) (0.0156)

1 75 0.9349 0.9423 0.9436 0.9359 0.9315

(0.0153) (0.0125) (0.0144) (0.015) (0.0147)

1 100 0.907 0.8781 0.9235 0.8498 0.8481

(0.0391) (0.0456) (0.0398) (0.0579) (0.0596)

10 50 0.8743 0.8772 0.8687 0.8604 0.864

(0.0177) (0.0171) (0.0211) (0.0194) (0.0192)

10 75 0.9043 0.8916 0.9275 0.8751 0.8729

(0.0256) (0.0276) (0.0226) (0.0329) (0.0373)

10 100 0.9217 0.8959 0.9174 0.9194 0.9217

(0.0185) (0.0191) (0.0233) (0.0201) (0.0205)

30 50 0.9154 0.9111 0.9196 0.8874 0.8937

(0.0141) (0.0177) (0.0153) (0.023) (0.0224)

30 75 0.9021 0.8762 0.8942 0.8777 0.8862

(0.0324) (0.0395) (0.0407) (0.0458) (0.0509)

30 100 0.8599 0.8431 0.8658 0.8391 0.8964

(0.0201) (0.0175) (0.022) (0.0265) (0.0149)

50 50 0.9018 0.9178 0.9035 0.8978 0.8914

(0.0187) (0.0132) (0.0162) (0.0162) (0.0252)

50 75 0.8704 0.8681 0.8724 0.8719 0.9066

(0.02) (0.021) (0.0182) (0.027) (0.0215)

50 100 0.7227 0.759 0.7251 0.8133 0.8809

(0.0331) (0.0278) (0.0291) (0.036) (0.0268)

70 50 0.8804 0.905 0.8641 0.9004 0.8885

(0.0247) (0.0238) (0.0348) (0.0258) (0.0301)

70 75 0.8073 0.8202 0.8088 0.8761 0.8747

(0.0275) (0.0285) (0.0241) (0.0277) (0.0227)

70 100 0.4748 0.5097 0.4891 0.4778 0.9059

(0.0507) (0.0415) (0.0601) (0.0614) (0.0165)

90 50 0.8905 0.9316 0.8625 0.9094 0.8581

(0.0299) (0.0113) (0.0322) (0.0116) (0.0433)

90 75 0.6897 0.6534 0.7015 0.6706 0.7144

(0.0485) (0.0438) (0.045) (0.0379) (0.0721)

90 100 0.2229 0.4989 0.2818 0.3102 0.411

(0.04) (0.0297) (0.0365) (0.041) (0.0916)

The table shows the percent of DE genes (DE %), percent of up-regulated genes among all the DE genes (Up %), and the mean AUCs (standard errors in parentheses) for all
five methods with 10 simulated replicates. The highest AUC value is shown in bold
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Simulations on synthetic data
We simulate both log-normally distributed and negative-
binomially distributed read counts, with m = 20, 000
genes and n = 7, 20 or 200 samples. The RNA-seq read
counts are generated as cij ∼ �eN (log μij ,σ 2

i )� under the
log-normal (LN) distribution assumption, and as cij ∼
NB(μij, φi) [2] under the NB distribution assumption,

where μij is the mean read counts of gene i in sample j.
The generation of μij is described in Table 1. The vari-
ance of the normal distribution is set as σ 2

i = 0.01, and
the dispersion parameter of the NB distribution is set as
φi = 0.25.

After estimating the sample-specific normalization fac-
tors dj’s using Algorithm 1, we substitute d̂j’s into model

Table 5 The AUCs of edgeR-robust, DESeq2, limma-voom, ELMSeq and rSeqRobust based on negative-binomially distributed data

DE (%) Up (%) edgeR - robust DESeq2 limma - voom ELMSeq rSeqRobust

1 50 0.8696 0.8944 0.8686 0.8924 0.9052

(0.0378) (0.0175) (0.0389) (0.017) (0.0162)

1 75 0.9085 0.9038 0.8961 0.9001 0.9057

(0.0166) (0.0146) (0.0166) (0.0163) (0.0162)

1 100 0.9108 0.898 0.9158 0.8992 0.8933

(0.0228) (0.0279) (0.0205) (0.0223) (0.0237)

10 50 0.9189 0.9176 0.9141 0.9092 0.9126

(0.0089) (0.009) (0.0091) (0.0091) (0.008)

10 75 0.9025 0.8999 0.8994 0.8892 0.8961

(0.011) (0.0099) (0.0124) (0.0122) (0.0108)

10 100 0.8558 0.8656 0.8646 0.854 0.8651

(0.0263) (0.0257) (0.0217) (0.029) (0.0258)

30 50 0.9156 0.9148 0.9082 0.9046 0.9037

(0.0117) (0.0108) (0.0126) (0.0097) (0.0095)

30 75 0.8963 0.9002 0.8879 0.8935 0.904

(0.0134) (0.008) (0.0171) (0.0126) (0.0096)

30 100 0.8655 0.8843 0.8489 0.8962 0.9215

(0.02) (0.0091) (0.0244) (0.0085) (0.0073)

50 50 0.8924 0.9006 0.8804 0.8888 0.8895

(0.0146) (0.012) (0.0201) (0.0129) (0.0123)

50 75 0.8837 0.9025 0.8761 0.8925 0.9241

(0.0214) (0.0095) (0.0219) (0.024) (0.0083)

50 100 0.6974 0.6906 0.6963 0.7648 0.854

(0.0255) (0.0261) (0.0236) (0.029) (0.021)

70 50 0.8985 0.9097 0.8948 0.8897 0.8806

(0.0175) (0.0101) (0.0168) (0.0144) (0.0189)

70 75 0.7951 0.7845 0.806 0.8163 0.8678

(0.0203) (0.0094) (0.0236) (0.0158) (0.0253)

70 100 0.5673 0.4875 0.5651 0.48 0.8623

(0.0271) (0.0255) (0.0326) (0.0261) (0.024)

90 50 0.8809 0.9014 0.8658 0.8841 0.8025

(0.0184) (0.0143) (0.0233) (0.0169) (0.0367)

90 75 0.6859 0.6557 0.6886 0.651 0.6562

(0.0422) (0.032) (0.0399) (0.0378) (0.0565)

90 100 0.2348 0.3932 0.2105 0.2978 0.4837

(0.0256) (0.0273) (0.0355) (0.0196) (0.0576)

The table shows the percent of DE genes (DE %), percent of up-regulated genes among all the DE genes (Up %), and the mean AUCs (standard errors in parentheses) for all
five methods with 10 simulated replicates. The highest AUC value is shown in bold
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(1) to obtain m decoupled gene-wise linear regression
models. For each gene i, we test the null hypothesis that
βi = 0, and calculate the p-value. We decide there is
a significant linear association between the experimental
variable xj and the gene expression yij if the p-value is less
than a predefined threshold (e.g., 0.05). With the p-value
for each gene, we rank the genes and vary the p-value

threshold from 0 to 1 to determine significant DE genes
and calculate the area under the ROC curve (AUC).

Table 2 shows the AUCs of the five methods on log-
normally distributed data with sample size n = 20.
We observe the followings: i) In relatively easy scenarios
where a small percent of genes are differentially expressed
(i.e., DE%=1% or 10%) or the up- and down-regulated

Table 6 The AUCs of edgeR-robust, DESeq2, limma-voom, ELMSeq and rSeqRobust based on log-normally distributed data

DE (%) Up (%) edgeR - robust DESeq2 limma - voom ELMSeq rSeqRobust

1 50 0.9727 0.9861 0.9906 0.9864 0.9863

(0.0077) (0.0066) (0.0051) (0.0061) (0.0063)

1 75 0.9951 0.9994 0.9991 0.9986 0.9991

(0.0032) (4e-04) (9e-04) (9e-04) (8e-04)

1 100 0.9774 0.9892 0.9939 0.9811 0.9845

(0.0089) (0.0068) (0.0026) (0.0093) (0.0135)

10 50 0.9807 0.9889 0.989 0.983 0.9847

(0.0038) (0.0016) (0.0021) (0.0026) (0.0025)

10 75 0.9803 0.9856 0.9889 0.987 0.9895

(0.0037) (0.0027) (0.0019) (0.0023) (0.0028)

10 100 0.9601 0.9568 0.979 0.9784 0.9763

(0.0072) (0.007) (0.0038) (0.0052) (0.0073)

30 50 0.9811 0.9886 0.9878 0.9854 0.9864

(0.002) (8e-04) (0.002) (9e-04) (0.001)

30 75 0.9321 0.946 0.9576 0.9836 0.9856

(0.005) (0.0036) (0.0031) (0.0026) (0.0026)

30 100 0.8313 0.7859 0.8892 0.9725 0.9809

(0.0217) (0.0072) (0.0171) (0.0036) (0.0028)

50 50 0.9836 0.9904 0.9856 0.9889 0.9893

(0.002) (0.0016) (0.0013) (0.0013) (0.0013)

50 75 0.8518 0.8061 0.8857 0.9787 0.987

(0.0218) (0.011) (0.0167) (0.0024) (0.002)

50 100 0.5708 0.5533 0.5863 0.896 0.9827

(0.0356) (0.0086) (0.0223) (0.0078) (0.0029)

70 50 0.9763 0.9875 0.97 0.986 0.9871

(0.0034) (0.0013) (0.0085) (0.0022) (0.0019)

70 75 0.7051 0.5986 0.7466 0.885 0.9826

(0.0226) (0.0139) (0.0311) (0.0109) (0.003)

70 100 0.3702 0.5275 0.3727 0.3825 0.9864

(0.0052) (0.0097) (0.013) (0.0018) (0.0028)

90 50 0.9792 0.9851 0.9766 0.9878 0.9894

(0.0034) (0.0027) (0.0035) (0.0019) (0.0016)

90 75 0.4242 0.5324 0.4887 0.4061 0.9869

(0.0163) (0.0135) (0.0205) (0.0049) (0.0018)

90 100 0.3881 0.5456 0.3553 0.3833 0.9841

(0.003) (0.0119) (0.0027) (0.0026) (0.0018)

The table shows the percent of DE genes (DE %), percent of up-regulated genes among all the DE genes (Up %), and the mean AUCs (standard errors in parentheses) for all
five methods with 10 simulated replicates. The highest AUC value is shown in bold
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genes are equal in portions (i.e., Up%=50%), all five meth-
ods perform equally well (within one standard error of
AUC difference); ii) In challenging scenarios where a large
percent of genes are differentially expressed (i.e., DE%
≥30%) and the up- and down-regulated genes are dif-
ferent in portions (i.e., Up%=75% or 100%), rSeqRobust
outperforms ELMSeq, which in turn outperforms the rest;

iii) In the most challenging scenarios with 70% or 90%
DE genes that are all overexpressed (i.e., Up%=100%),
only rSeqRobust achieves good results (AUC=0.9638 or
0.8276).

Table 3 shows the AUCs of different methods for
negative-binomially distributed data. The same observa-
tions are obtained as in Table 2: In relatively easy settings

Table 7 The AUCs of edgeR-robust, DESeq2, limma-voom, ELMSeq and rSeqRobust based on negative-binomially distributed data

DE (%) Up (%) edgeR - robust DESeq2 limma - voom ELMSeq rSeqRobust

1 50 0.9934 0.9919 0.9922 0.9942 0.9937

(0.0038) (0.0043) (0.0048) (0.0039) (0.0045)

1 75 0.9933 0.9933 0.993 0.9953 0.9922

(0.0033) (0.0043) (0.0036) (0.0032) (0.0047)

1 100 0.9882 0.9836 0.9867 0.9901 0.9891

(0.0046) (0.0057) (0.0054) (0.0045) (0.0047)

10 50 0.9866 0.9892 0.9876 0.9898 0.9895

(0.0024) (0.0021) (0.0024) (0.002) (0.0019)

10 75 0.9775 0.9803 0.9795 0.9867 0.9874

(0.0037) (0.0044) (0.0032) (0.0024) (0.0025)

10 100 0.9724 0.9739 0.9788 0.9864 0.9883

(0.0045) (0.0046) (0.0035) (0.0032) (0.0028)

30 50 0.9838 0.9881 0.9851 0.9874 0.9878

(0.0022) (0.0018) (0.0022) (0.0017) (0.0014)

30 75 0.9568 0.9601 0.9614 0.9837 0.9868

(0.0058) (0.0022) (0.0052) (0.0023) (0.0015)

30 100 0.8809 0.8902 0.89 0.9837 0.9898

(0.0171) (0.0044) (0.0143) (0.0014) (0.0013)

50 50 0.982 0.9875 0.9823 0.9867 0.9869

(0.0022) (0.0013) (0.0027) (0.0017) (0.0016)

50 75 0.9178 0.8977 0.9228 0.9799 0.986

(0.008) (0.0074) (0.0069) (0.0015) (0.0013)

50 100 0.5817 0.5509 0.6413 0.9157 0.9923

(0.0345) (0.0104) (0.027) (0.0026) (0.0012)

70 50 0.9811 0.9873 0.9807 0.9873 0.9871

(0.0026) (0.0016) (0.0022) (0.0013) (0.0014)

70 75 0.7935 0.6559 0.8258 0.9108 0.986

(0.0348) (0.023) (0.0306) (0.0061) (0.0013)

70 100 0.3529 0.4508 0.3866 0.3371 0.9865

(0.0082) (0.0222) (0.0188) (0.003) (0.0018)

90 50 0.9842 0.9867 0.9849 0.987 0.9875

(0.0023) (0.0019) (0.0019) (0.0015) (0.0015)

90 75 0.5017 0.5326 0.5683 0.4044 0.9864

(0.0238) (0.0121) (0.0247) (0.0104) (7e-04)

90 100 0.3403 0.5145 0.2979 0.3167 0.9828

(0.0033) (0.0092) (0.0021) (0.003) (0.0012)

The table shows the percent of DE genes (DE %), percent of up-regulated genes among all the DE genes (Up %), and the mean AUCs (standard errors in parentheses) for all
five methods with 10 simulated replicates. The highest AUC value is shown in bold
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with small percent of DE genes or symmetric over- and
under-expression pattern, rSeqRobust performs as well
as other methods; In challenging settings with large per-
cent of DE genes (DE% ≥10%) and asymmetric over- and
under-expression pattern (Up%=75% or 100%), rSeqRo-
bust consistently performs the best, and ELMSeq ranks
second in all except extreme cases: (Up%, DE%)=(70%,
100%), (90%, 75%) or (90%, 100%) where most methods
suffer from severe performance degradation or complete
failure.

In Tables 4 and 5, the sample size is reduced to n = 7.
Again, we observe similar patterns: when a small sub-
set of genes are differentially expressed (i.e., DE%=1%
or 10%), or the up- and down-regulated DE genes are
imbalanced in numbers, rSeqRobust and other methods
perform equally well; when most genes are differentially
expressed (i.e., DE% = 50% or 70%) in an asymmetric
manner (i.e., Up%=75% or 100%), rSeqRobust outper-
forms all other methods. Note that in the presence of
70% DE genes that are all up-regulated, only rSeqRo-
bust achieves good results (AUC=0.9059 for LN data and
AUC=0.8623 for NB data).

In Tables 6 and 7, the sample size is increased to n =
200. As the sample size increases from n = 20 to n =
200, the AUCs of edgeR-robust, DESeq2 and limma-voom
increase for easy cases (small percent of DE genes or sym-
metric over- and under-expression patterns). However, for
challenging cases (i.e., DE%=50%, 70% or 90%, Up%=75%
or 100%), the AUCs decrease. On the contrary, the AUC
of rSeqRobust increases consistently in all cases. The per-
formance gain of rSeqRobust over other methods is more
significant for more challenging cases. Note that rSeqRo-
bust performs nearly as well in the most challenging cases
(Up%, DE%)=(50%, 100%), (70%, 100%), (90%, 75%) or
(90%, 100%) as in easy cases. In contrast, ELMSeq only
works for (Up%, DE%)=(50%, 100%) and edgeR-robust,
DESeq2, limma-voom completely fail in all these cases.
This indicates that rSeqRobust is more robust than ELM-
Seq, which in turn is more robust than edgeR-robust,
DESeq2 and limma-voom.

Table 8 shows the average running times (in seconds) of
the five methods on an Intel Core i3 processor with 8GB
of memory and a clock frequency of 3.9GHz. We can see
that rSeqRobust is slower than limma-voom; however, it

Table 8 The computational times (in seconds) of edgeR-robust,
DESeq2, limma-voom, ELMSeq and rSeqRobust

n edgeR DESeq2 voom ELMSeq rSeqRobust

7 5.45 0.76 0.13 403.39 16.63

20 9.49 1.51 0.16 987.87 21.84

200 70.68 49.30 0.54 2225.95 76.93

Percent of DE genes: 10%, percent of up-regulated genes among the DE genes:
50%. The least time is shown in bold

scales well for large sample sizes and is much faster than
ELMSeq.

Application to a real RNA-seq dataset
We further assess the proposed method on a real RNA-seq
dataset from The Cancer Genome Atlas (TCGA) project
[17], which contains 20,531 genes from 187 prostate ade-
nocarcinoma patient samples. The dataset was down-
loaded from the TCGA data portal (https://portal.gdc.
cancer.gov). In this experiment, we aim at identifying
genes associated with pre-operative prostate-specific anti-
gen (PSA), which is an important biomarker for prostate
cancer. The data are pre-processed using the procedures
described in [11]. We use the Bonferroni correction and
determined DE genes using a p-value threshold of 0.05/m.
Figure 1 shows the Venn diagram based on the sets of
differentially expressed genes discovered by five methods.

There are twelve genes that are detected by rSe-
qRobust and ELMSeq, but not by edgeR, DESeq2 and
limma-voom: EPHA5, RNF126P1, BCL11A, RIC3, AJAP1,
CDH3, WIT1, PRSS16, CEACAM1, DCHS2, CRHR1 and
SRD5A2. For the majority of these twelve genes, there
are existing publications reporting their associations with
prostate cancer. For instance, EPHA5 is known to be
underexpressed in prostate cancer [18]. CEACAM1 is
known to suppress prostate cancer cell proliferation when
overexpressed [19]. Two of the twelve genes, CRHR1
and SRD5A2, are identified only by rSeqRobust, where
SRD5A2 is associated with racial/ethnic disparity in
prostate cancer risk [20].

There are twelve genes that are detected by all five
methods: KANK4, RHOU, TPT1, SH2D3A, EEF1A1P9,
ZCWPW1, ZNF454, RACGAP1, PTPLA, POC1A, AURKA
and TIMM17A. Similarly, there are existing publications
reporting their associations with prostate cancer. For
instance, RHOU is associated with the invasion, prolifera-
tion and motility of prostate cancer cells [21].

Conclusion & discussion
In this paper, we present a unified statistical model
for joint normalization and differential expression detec-
tion in RNA-seq. Different from existing methods, we
explicitly model sample-specific normalization factors
as unknown parameters, so that they can be esti-
mated simultaneously together with detection of differen-
tially expressed genes. Using an �0-regularized regression
approach, our method is robust against large proportion
of DE genes and asymmetric DE pattern, and is shown
in empirical studies to be more accurate in detecting
differential gene expression patterns.

This model generalizes [10] from categorical experi-
mental conditions using an ANOVA-type model to con-
tinuous covariates using a regression model. In addition,
two hypothesis tests are formulated: i) Is the expression

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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Fig. 1 Venn diagram based on the set of differentially expressed genes identified by edgeR, DESeq2, limma-voom, ELMSeq and rSeqRobust

level of a gene associated with any covariates of the regres-
sion model? This is the test considered in [10]; ii) Is
the expression level of a gene associated with a specific
covariate of our interest, when all other variables in the
regression model are adjusted for? Although the model
is high-dimensional, non-differentiable and non-convex
due to the �0 penalty, we manage to develop an efficient
algorithms to find their its solution by making use of
the optimality conditions of the �0-regularized regression.
It can be shown that for categorical experimental data,
the developed algorithm for the first hypothesis test for
the slopes in a regression model with p binary covariates
reduces to that in [10] for the (p + 1)-group model.
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