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Abstract

Background: Use of medication can cause adverse drug reactions (ADRs), unwanted or unexpected events, which
are a major safety concern. Drug labels, or prescribing information or package inserts, describe ADRs. Therefore,
systematically identifying ADR information from drug labels is critical in multiple aspects; however, this task is
challenging due to the nature of the natural language of drug labels.

Results: In this paper, we present a machine learning- and rule-based system for the identification of ADR entity
mentions in the text of drug labels and their normalization through the Medical Dictionary for Regulatory Activities
(MedDRA) dictionary. The machine learning approach is based on a recently proposed deep learning architecture,
which integrates bi-directional Long Short-Term Memory (Bi-LSTM), Convolutional Neural Network (CNN), and
Conditional Random Fields (CRF) for entity recognition. The rule-based approach, used for normalizing the
identified ADR mentions to MedDRA terms, is based on an extension of our in-house text-mining system, SciMiner.
We evaluated our system on the Text Analysis Conference (TAC) Adverse Drug Reaction 2017 challenge test data
set, consisting of 200 manually curated US FDA drug labels. Our ML-based system achieved 77.0% F1 score on the
task of ADR mention recognition and 82.6% micro-averaged F1 score on the task of ADR normalization, while rule-
based system achieved 67.4 and 77.6% F1 scores, respectively.

Conclusion: Our study demonstrates that a system composed of a deep learning architecture for entity recognition
and a rule-based model for entity normalization is a promising approach for ADR extraction from drug labels.

Keywords: Text mining, Entity recognition, Entity normalization, Adverse drug reaction, Deep learning, Machine
learning

Background
Pharmacovigilance is defined as “the science and activities
relating to the detection, assessment, understanding and
prevention of adverse effects or any other drug problem”
[1]. It is impossible to know all possible adverse events of
a particular drug, since generalizability of the clinical trials
are low, sample sizes are small, and duration is short. FDA
uses the Adverse Event Reporting System (FAERS) to

detect adverse events. FAERS includes mandatory reports
from pharmaceutical companies and reports that have
been submitted to MedWatch directly. ADRs are still in
the top 10 leading causes of death and cost approximately
$75 billion annually in the United States [2].
In addition to using medical reports for detecting ADRs

[3], it has been proposed to use data from social media
[4], since users tend to discuss their sicknesses, treatments
and prescribed drugs and their effects in social media plat-
forms. These discussions are not only confined to social
networks specifically dedicated to health-related issues,
but they also exist in generic platforms which could all be
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used for multi-corpus training to increase the accuracy of
text mining systems for ADR recognition [5].
The current approach for FAERS case report review re-

quires manual reading of the text of the drug labels in
order to determine whether a candidate ADR has been re-
ported before or not. The automation of the extraction of
the ADRs from drug labels would increase the efficiency
of this process. Preparing a lexicon [4] for detection of
ADRs requires a lot of manual work and also limits a sys-
tem’s effectiveness to the extent of the lexicon. Syntactic
and semantic patterns have been used in order to remedy
the shortcomings of lexicon-based approaches [6]. De-
tailed information on ADR extraction with different tech-
niques on various data sources is available in [7, 8].
Recently, the Text Analysis Conference (TAC), a series of

workshops organized to encourage research in Natural
Language Processing and related applications (https://tac.
nist.gov/2017/), included a special track focused on adverse
drug reaction (ADR) extraction from drug labels. The
TAC-ADR 2017 challenge targeted the automatic extrac-
tion of ADR mentions from drug labels and normalization
of them through MedDRA. A mention of an entity can be
defined as the portion of a text that corresponds to a cer-
tain entity such as an ADR. For example, given the sentence
“Exclusive of an uncommon, mild injection site reaction,
no adverse reactions to 11C-choline have been reported.”
obtained from the drug label of choline, “injection site reac-
tion” is an ADR mention and “mild” is a severity mention.
Using a comprehensive and well-structured dictionary

is critical in literature mining-based application. For
ADR, Medical Dictionary for Regulatory Activities (Med-
DRA) terms [9], SNOMED CT [10] as well as a few bio-
medical ontologies developed by us such as Ontology of
Adverse Events (OAE) [11] and Ontology of Drug Neur-
opathy Adverse Events (ODNAE) [12] can be used. The
most widely-used dictionary for supporting ADR report-
ing is MedDRA, which is a clinically validated standard-
ized medical terminology dictionary (and thesaurus),
consisting of five levels of hierarchy [9].
The MedDRA dictionary organizes various ADRs using

a five-level hierarchy. The bottom layer is Lowest Level
Terms (LLT) at the bottom, followed by Preferred Terms
(PT), High Level Terms (HLT), High Level Group Terms
(HLGT), and System Organ Class (SOC). While individual
ADR cases are usually coded for data entry at the most
specific LLT level, the outputs of counts or cases are usu-
ally provided at the PT level. The term “Injection site reac-
tion” in the sentence above is an HLT term MedDRA,
which has a MedDRA ID “10022095”. Under this term,
there are many PTs and LLTs.
In this study, we investigated the integration of ma-

chine learning and dictionary/rule-based methods in
identifying ADR terms from drug labels and normalizing
them to MedDRA preferred terms (PT). Our best results

were achieved by an integrated system that is based on a
deep learning model for entity mention extraction and a dic-
tionary/rule-based SciMiner method for the normalization
of the extracted ADRs to MedDRA terms. Our methods
and results are described in the following sections.

Results
The current study focused on extracting the mentions
from a given drug label and normalizing them to appro-
priate MedDRA PTs. The deep model worked at the
sentence level of the texts; therefore, the texts had to be
split to the sentence level first as the initial process.
The NLTK tokenizer [13] was used to identify the tokens

in the sentences and transformed every drug label file into
the CoNLL format. The sentences were separated by an
empty line and every token was written on a separate line.
An example sentence is shown in Table 1 and its CoNLL
format is shown in Table 2, where every line consists of 6
columns and starts with the token itself. The second col-
umn holds the tag type of the token, which was encoded
with BIO2 [14] chunking representation. “B” denotes that
the token is the beginning of an entity mention, “I” denotes
that the token is inside of a mention, and “O” (Outside) in-
dicates that the token is not part of a mention. For example,
the tags of an ADR term “hypersensitivity reactions” are “B-
ADR I-ADR” according to this representation. The follow-
ing columns show the location of the token within a label.
The first one of those is the id of the section. The second
one is the start position of the token within the section and
the last one shows the length of the token.

Named entity recognition (NER) data processing
For the present study, two different approaches were
employed in terms of named entity recognition and
ADR normalization as summarized in Table 3. Briefly,

Table 1 Example sentence from drug label and its
representation in XML format. The text drug label data were
provided in XML format and this figure illustrates an example
sentence exerted from drug label “Choline”. These XML-
formatted labels from the TAC include three main sections:
“Raw Text” containing the original texts from ADR-relevant
sections from drug labels; “Related Mentions” containing the
manually curated ADRs; and “Related Reactions” containing
normalized ADRs in terms of MedDRA terms

Raw Text Long-term cumulative radiation exposure is associated
with an increased risk for cancer.

Related <Mention id="M10" section="S2" type="Factor"
start="2309" len="4" str="risk" />
<Mention id="M11" section="S2" type="AdverseReaction"
start="2318" len="6" str="cancer" />

Mentions <Reaction id="R4" str="cancer">
<Normalization id="R4.N1" meddra_pt="Neoplasm
malignant" meddra_pt_id="10028997"
meddra_llt="Cancer" meddra_llt_id="10007050" />
</Reaction>
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for NER, the Set#1 used the machine learning-based
method alone, Set#2 used the rule- and dictionary-based
SciMiner method alone. Normalization of the ADRs that
were identified by ML-approach was done by SciMiner
using dictionary- and rule-based approach. We have de-
veloped pipelines for both methods and performance of
these approaches is summarized below.

MedDRA ADR normalization
In our study, the PT-layer terms of MedDRA were used
as the dictionary of ADRs. As shown in Fig. 1, the ‘injec-
tion site atrophy’ is a MedDRA PT, and it has many as-
sociated LLTs such as ‘atrophy inject site’, and ‘injection
site fat atrophy’. These LLTs are synonyms or subclasses
of their corresponding PTs. The MedDRA information
was preprocessed and loaded to the SciMiner system.
The identified ADR terms were first mapped to any
LLTs and PTs. ADRs mapped to LLTs were then further
normalized to their corresponding PTs.

TAC contest performance evaluation result
We participated in the task of the TAC-ADR 2017 chal-
lenge with an aim for automatic extraction of ADR men-
tions through MedDRA. There are 2309 labels exists in
the TAC dataset from which 200 of them have been an-
notated. Participants received only 101 annotated labels
and extracted mentions from rest of the 2208 labels

without knowing which 99 labels were included in the
test set (see more details in the Drug Label Dataset sec-
tion). Our performance record is shown in Table 4.
Briefly, these two sets accomplished overall F1-measures
of 77.0 and 63.4% in NER identification, and micro-level
F1-measures of 82.6 and 77.6% and macro-level F1-
measures of 80.5 and 75.6% in normalizing to appropri-
ate MedDRA PT, respectively. The best performance
was achieved when NERs were identified using our ML-
based approach and then normalized to MedDRA Pre-
ferred Terms by dictionary- and rule-based approach
(SciMiner). Our top performing result was ranked at 4th
among the 12 results competed for the normalization
performance in the 2017 TAC-ADR track [15].

Discussion
There were many teams participated in the TAC 2017
shared task of adverse reaction extraction. Our model
closely resembles the best performing models for Task 1
from [16, 17] since we all used the Bi-LSTM as the core
of the sequence tagger. Best-performing team, with the
F1 score of 82.48%, used a cascading Bi-LSTM model
for extraction ADRs. They have trained two Bi-LSTMs,
while the first one only tags ADR mentions, the second
one tags the other mention types that are related to a
single chosen ADR mention. This model is expected to
perform better, since the mentions other than ADRs
were not annotated when they were not related to an
ADR mention.
Training a single tagger for all entity types become less

efficient as our model and model of [17] do. Even though
they [16] used BIO tagging, which is not fit to handle
overlapping and disjoint entities their model performed
well, because they combined disjoint entities during tag-
ging. This approach allowed all mention chunks to be
continuous, thus making BIO tags to be more consistent.
They developed rules that are learned from the training
set for later generate disjoint entities that have tagged as
the output of the trained model. The major difference be-
tween our model and the second-best performing model
of [17], with the F1 score of 76.97%, probably is the
BIOHD tagging scheme. This scheme specifically devel-
oped to handle disjoint and overlapping entities with the
addition of new labels for each condition. They also
trained a second sub-model only to classify given a dis-
joint entity pair to be merged or not.
In the normalization of the extracted ADR mentions

onto the MedDRA ontology, the best performing team
was again [16] with a micro-F1 score of 86.91% and a
macro-F1 score of 85.33%. It is hard to compare differ-
ent approaches to this problem since this task is
dependent on the performance of the first one. Perform-
ance levels could be said to be roughly close with us fa-
vored since the difference between ADR extraction

Table 2 BIO sentence processing example. This table illustrates
a BIO (beginning-inside-outside) processing of a sentence,
obtained from a drug label of “Zylelig”, an anti-cancer medicine.
Every drug sectioned with a unique id (S3 in the given
sentence). Every token within the sections has the property
Offset which is the character count before the first character of
a given token

Raw Text BIO encoding Section Offset Length

Fatal B-ADR S3 2763 5

and O S3 2769 3

serious B-SEV S3 2773 7

intestinal B-ADR S3 2781 10

perforation I-ADR S3 2792 11

occurred O S3 2804 8

in O S3 2813 2

Zydelig-treated O S3 2816 15

patients O S3 2832 8

. O S3 2840 1

Table 3 Summary of approaches

Set Named Entity Recognition (NER) Method ADR Normalization

Set#1 ML SciMiner

Set#2 SciMiner SciMiner
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performance is 6.2% between their model and ours
whereas the difference in the micro-F1 score is 4.33%
and in the macro-F1 score is 4.83%.
As future work, we will investigate incorporating

ontology and dictionary knowledge into the deep learn-
ing model. Also updating the word embeddings [18],
making an extensive parameter search and solving the
problems with preprocessing are likely to increase the
performance of the deep learning model. Using a more
suitable tagging scheme that could handle irregular en-
tities would enable the machine learning algorithms to
be more efficient.

Conclusions
In this study, we employed two different methods for de-
tecting mentions of type ADR, drug class, animal, sever-
ity, factor, and negations from drug labels. The neural
network-based approach outperformed the dictionary-
and rule-based approach in terms of extracting ADRs.
Our study suggests that a system composed of a deep
learning architecture for entity recognition and a rule-

based model for entity normalization is a promising ap-
proach for ADR extraction from drug labels.

Methods
A high-level description of our integrated deep learning
and dictionary/rule-based approach for entity detection
and normalization is illustrated in Fig. 2. We investigated
the performance of using both a machine learning ap-
proach and a dictionary/rule-based approach for mention-
extraction task of the TAC-ADR 2017 challenge, whose
goal was to extract entity mentions in drug labels such as
ADR, drug class, animal, severity, factor, and negation. For
example, in the sample sentence provided in the Introduc-
tion section, the severity mention “mild” has been anno-
tated, since it defines the severity of the ADR “injection
site reaction”. If “mild” occurs in a drug label in another
context such as the symptoms of a disease being mild,
then it is not annotated, since it is not related to an ADR.
Another main task in this TAC-ADR challenge was to

properly normalize the positive ADRs detected in the
previous task to their corresponding MedDRA terms.
For ADR normalization we extended and used our in-
house literature mining program SciMiner [19], which is
a dictionary- and rule-based literature mining platform
for identification of genes and proteins in a context-
specific corpus. MedDRA preferred terms (PT) and low-
est level terms (LLT) were added to SciMiner, which
normalized the positive ADRs to MedDRA preferred
terms. MedDRA has the medical terminology hierarchy
arranged from very specific to very general, where LLT
is the most specific layer and PT is on top of it.
The machine learning component operates on sen-

tence level and requires the input to be tokenized.
Therefore, the first step of our system was to transform
the drug labels, given in XML format, to sentence-split
and tokenized format. The NLTK package (http://www.
nltk.org) was used for sentence splitting and

Fig. 1 Illustration of MedDRA PT and LLT hierarchy with example. A single medical concept is represented by a PT which could be described with many
different ways that could have different lexical variants and synonyms. With the help of LLTs, it is pretty beneficial to classify a given text to one of PTs

Table 4 Performance evaluation results. Results are given in
percentages (%)

Set#1 Set#2

Identification Precision 76.5 65.5

Recall 77.5 61.4

F1 score 77.0 63.4

Normalization micro Precision 88.8 74.6

Recall 77.2 81.0

F1 score 82.6 77.6

macro Precision 88.2 73.1

Recall 75.8 79.9

F1 score 80.5 75.6
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tokenization. Since the documents were not well format-
ted and contained tables, a Python script was internally
prepared to detect text pieces and table parts. These ini-
tial preprocessing operations increased the performance
of the sentence splitter. The machine learning and
dictionary-based components of the system are de-
scribed in more detail in the following subsections.

Neural network architecture
A deep learning model designed for extracting named
entity recognition (NER), which makes use of bi-
directional Long Short-Term Memory (Bi-LSTM), Con-
volutional Neural Network (CNN), and Conditional Ran-
dom Fields (CRF) [20], was used for the extraction of
ADR mentions. We used the implementation proposed
by [21] which has minor differences from [20]. In the
paper [21], the authors focused on the parameter tuning
of neural networks on some tasks including named en-
tity recognition. We used their suggested configuration
of hyper-parameters while training the model with the
difference of pre-trained word embeddings and max-
imum epoch count in training. The model works on the
sentence level, where every token is represented by a
vector. Here, we describe the network starting from the
creation of the input vectors to the prediction of the

entity tags, which are calculated for every token of a
given sentence.

Combined word Embeddings
Every token in a given sentence was transformed into a
vector before being fed into the model. These vectors
consist of three parts, namely character embeddings,
word embeddings, and case embeddings. The character
embeddings were generated by a convolutional neural
network (CNN) that runs over the characters of a given
token. This representation has been shown to be power-
ful in encoding morphological information [20], which
we expect to be useful in the biochemical domain as
well. At the first step, the tokens were transformed into
their matrix representation by concatenating their char-
acter embeddings. Since CNNs work on fixed length in-
put, all matrices were filled with padding to the length
of the longest word in the vocabulary. Filter size was set
to be 3 with a stride value of 1. In total 30 filters with
these parameters were used for each input token in the
CNN architecture. After using a max-pooling operation,
a vector of length 30 was generated for each token.
Figure 3 illustrates the workflow of the generation of
character embeddings using the CNN component.

Mention Extraction AE Normalizer
SciMiner

Deep Learning

SciMiner

Drug Labels Segmentation
of

Raw Text

Sentence Splitting
and

Tokenization

Preprocessing

Fig. 2 Overall workflow. This figure illustrates our overall workflow in the present study. Drug labels included in the TAC dataset were analyzed to
identify ADRs and normalized them through MedDRA v20. Pre-processing was needed only when the deep learning architecture was used

......... ...

... ............

P A I N

...

...

PaddingCharacters

One-Hot
Character Embedding

Max-Pooling

Word Embedding
Character Representation

Convolution

Fig. 3 Character representation generation with CNN. This component can only work on the same sized inputs; therefore, inputs are extended
with paddings which are inconsequential in the feature extraction. Also, this representation only shows calculation of one filter on the
Convolution part, but CNN used in the model have 30 filters
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The word embeddings were generated by the Word2-
Vec tool [22] in order to incorporate semantic informa-
tion of words, since these representations had been
shown to be effective in capturing semantic meanings
[22]. The performance is expected to increase when
these embeddings are generated from a corpus that is
more related to the task; therefore, we used pre-trained
embeddings that were generated using PubMed as the
training corpus [23]. These vectors of length 200 were
appended to the character embeddings created by
CNN. While looking for the vector representation of a
token, our system also looked for lower cased and nor-
malized versions in order to reduce out-of-vocabulary
(OOV) words. However, it should be noted that this
process decreased the number of OOV words, but we
also lost the actual casing information of tokens. In
order to remedy this loss, one-hot encoded case embed-
dings with length 8 were appended to the word embed-
ding vectors, obtaining the combined word embedding
vectors.

The bi-LSTM and CRF component
Our model used a long short-term memory (LSTM) [24]
component, which takes as input the combined word
embeddings in order to model the context information
for each word as shown in Fig. 4. LSTM is from the fam-
ily of Recurrent Neural Networks (RNNs), which are de-
signed to learn patterns within sequences [24]. Even
though these components are theoretically capable of
learning long distance dependencies, it is hard to train
them with gradient descent due to the problems of gra-
dient vanishing or explosion [25]. LSTMs are better in
dealing with the gradient vanishing problem compared
to the vanilla RNN, but they cannot solve the gradient
explosion problem. As a solution to the gradient explo-
sion problem, our model used gradient normalization
[26] with the value of 1, since it has been shown to be
effective in the NER task [21].
For detecting NERs, it has been shown to be an effective

approach to have prior knowledge about the rest of the sen-
tence well as the beginning. Two recent studies [20, 27]

Fig. 4 Graphical representation of LSTM module for understanding the operations. This represent a single input in a given sequence, sentence in
our task. In this representation input is denoted by X which enters from below. Features that are extracted for the given input is represented by
h and cell state is represented by c
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used two LSTMs which run on opposite directions on the
input sequences. Therefore, as shown in Fig. 5, the outputs
of the two LSTMs are concatenated. Two of these Bi-
LSTM components are stacked. The first Bi-LSTM has 100
recurrent units and the second one has 75 recurrent units.
Dropout [28] is a way to prevent overfitting in neural

networks. However, it has been shown to be difficult to
apply on RNN layers. Hence, variational dropout [29] has
been applied in the Bi-LSTM layers. This method applies
the same mask through time in recurrence, which is
shown by colored dashed arrows in Fig. 5. Dropout of 0.25
was applied in our Bi-LSTM components.
The last layer is the Conditional Random Fields (CRF)

[30], which does the prediction of the token tags. The
TAC-ADR dataset contained non-contiguous mentions
such as “Interstitial infiltration ... of the chest” with 10
words, but CRF is expected to work better if all mentions
are contiguous. The CNN Bi-LSTM and CRF models are
combined and used as the final deep learning model as
shown in Fig. 6. The NADAM [31] optimization tech-
nique is used in the training of the combined model.

SciMiner: dictionary- and rule-based approach
In parallel to the neural network-based approach above, we
employed a dictionary- and rule-based NER approach. We
used SciMiner written in Perl, which was originally devel-
oped as a web-based literature mining platform for identify-
ing genes and proteins in biomedical literature [19].
SciMiner has been expanded to identify various biomedical
ontologies such as Vaccine Ontology (VO) and Interaction

Network Ontology (INO), developed by our group, result-
ing in specific variations of SciMiner: INO-SciMiner [32],
VO-SciMiner [33], and E-coli-SciMiner [34].
We recently developed and applied an expansion of Sci-

Miner focusing on ADR study, named as ADR-SciMiner, to
a study of ontology-based literature mining and drug class
effect analysis of ADRs associated with drug-induced neur-
opathy [35]. Manual review of these terms was also per-
formed to identify such terms that are unlikely to be ADRs
such as various cancers. Various rules for term expansion
as well as exclusion to increase coverage and accuracy were
implemented. For example, Perl library Lingua::EN was
used to expand the base ADR dictionary allowing the inclu-
sion of additional plural or singular forms, when only one
form was included in the base dictionary. SciMiner-based
approach was also used for normalizing the positive ADR
terms, identified by the deep learning-based approach in
the above section, to their respective MedDRA PTs.

Drug label dataset
The TAC dataset included 200 manually curated labels
(101 in the Training and 99 in the Unannotated sets) and
the details have been recently published [35, 36]. These
XML files contained raw texts with sections, mentions, rela-
tions and normalizations for reactions. Briefly, four annota-
tors, including two medical doctors, one medical librarian
and one biomedical informatics researcher, participated in
the manual annotation process of these 200 drug labels.
These annotators were all trained biomedical annotation
and the drug labels were annotated independently by these

LSTM LSTM

LSTMLSTM

...

...

...

...

Fig. 5 Bi-LSTM component with variational dropout (depicted by colored & dashed connections). Bi-suffix in the component name stands for the
bi-directional which means there exist two identical LSTM modules running on a given input on different directions. Concatenation of extracted
features of LSTMs are the output of this component. Intuition behind this is to utilize the information exist in the rest of a given sequence since
single LSTM extracts latent information using only elements in the sequence before that one
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annotators. Any disagreements were reconciled in pairs or
collectively resolved by all four annotators. The mining per-
formance of our approaches was evaluated using the 99
drug labels in the Unannotated set. The evaluation was
done at the level of normalized MedDRA PTs for each
drug. Recall, Precision, and F1 score were calculated.

Irregular entity mentions
Irregular entity mentions also pose challenges for entity
recognition and normalization. Irregular entity mentions
can be discontinuous or overlapping. Overlapping entity
mentions consist of two or more entities whose mentions
overlap in the text. Discontinuous entities span text por-
tions that are not continuous as exemplified “Angioedema
of the face, lips, tongue, and/or larynx has been reported
with fesoterodine.”, a sentence from the label of the drug
Toviaz. The entity mentions are “Angioedema of the face”,
“Angioedema of the lips”, “Angioedema of the tongue”,
and “Angioedema of the larynx”. These are overlapping
entities, since the text portion “Angioedema of the” is
common in all four entity mentions. The last three entities
are discontinuous, since there are other words between
the text portion “Angioedema of the” and the remaining
parts of the entity mentions. For example, in the entity
mention “Angioedema of the tongue”, the words “face”
and “lips” occur between the entity mention texts “Angio-
edema of the” and “tongue”.

Abbreviations
ADR: Adverse Drug Reaction; Bi-LSTM: Bi-directional Long Short-term Mem-
ory; BIO: Begin-inside-outside; CNN: Convolutional Neural Network;
CRF: Conditional Random Fields; FAERS: FDA Adverse Event Reporting
System; HLGT: High Level Group Term; HLT: High Level Term; LLT: Lowest
Level Term; MedDRA: Medical Dictionary for Regulatory Activities;
ML: Machine Learning; NADAM: Nesterov Adaptive Moment Estimation;
NER: Named Entity Recognition; NLTK: Natural Language Toolkit; OOV: Out of
Vocabulary; PT: Preferred Term; RNN: Recurrent Neural Network; SOC: System
Organ Class; TAC: Text Analysis Conference

Acknowledgements
The authors thank Mr. Mehmet Köse at the Bogazici University for his help in
data preprocessing at the initial phase of the project.

Disclaimer
Part of the content described in this paper was presented at the TAC 2017
Workshop and published online as a non-peer reviewed conference pro-
ceedings paper.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 20
Supplement 21, 2019: Selected articles from the 7th International Workshop
on Vaccine and Drug Ontology Studies (VDOS-2018). The full contents of the
supplement are available online at https://bmcbioinformatics.biomedcentral.
com/articles/supplements/volume-20-supplement-21.

Authors’ contributions
MT designed the model, implemented the machine-learning pipeline, and
wrote the manuscript. AO, YH, and JH designed the model and wrote the
manuscript. JH implemented the rule-based mining system. All authors
helped in the writing of the manuscript, and all authors read and approved
the final manuscript.

Funding
Publication costs were funded by the Junguk Hur’s startup fund.

...

...

...

...

...

...

...

...

...

Bi-LSTM

Bi-LSTM

B-ADR I-ADR O

Word Embedding

Character
Representation

POS Tags

Two Stacked
Bi-LSTM

CRF
Classifier

Because clinical .

Fig. 6 Deep learning model for NER. Complete structure of the architecture to display how described components are put together as a single
named entity recognizer

Tiftikci et al. BMC Bioinformatics 2019, 20(Suppl 21):707 Page 8 of 9

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-21
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-21


Availability of data and materials
The original drug label text data are available through the Text Analysis
Conference 2017 organizing committee.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computer Engineering, Boğaziçi University, İstanbul 34342,
Turkey. 2Unit for Laboratory Animal Medicine, Department of Microbiology
and Immunology, Center for Computational Medicine and Bioinformatics,
University of Michigan Medical School, Ann Arbor 48109, MI, USA.
3Department of Biomedical Sciences, University of North Dakota School of
Medicine and Health Sciences, 1301 North Columbia Rd, Grand Forks, North
Dakota 58202, USA.

Published: 23 December 2019

References
1. World Health Organization and others. The importance of

pharmacovigilance; 2002.
2. Ahmad SR. Adverse drug event monitoring at the Food and Drug

Administration. J Gen Intern Med. 2003;18:57–60.
3. Gurulingappa H, Fluck J, Hofmann-Apitius M, Toldo L. Identification of

adverse drug event assertive sentences in medical case reports. In: First
international workshop on knowledge discovery and health care
management (KD-HCM), European conference on machine learning and
principles and practice of knowledge discovery in databases (ECML PKDD);
2011. p. 16–27.

4. Leaman R, Wojtulewicz L, Sullivan R, Skariah A, Yang J, Gonzales G. Towards
Internet-age Pharmacovigilance: Extracting Adverse Drug Reactions from
User Posts to Health-related Social Networks. In: Proceedings of the 2010
Workshop on biomedical natural language processing. Stroudsburg:
Association for Computational Linguistics; 2010. p. 117–25.

5. Sarker A, Gonzales G. Portable automatic text classification for adverse drug
reaction detection via multi-corpus training. J Biomed Inform. 2015;53:196–207.

6. Nikfarjam A, Gonzalez GH. Pattern Mining for Extraction of mentions of
adverse drug reactions from user comments. AMIA Ann Symp Proc. 2011;
2011:1019–26.

7. Harpaz R, Callahan A, Tamang S, Low Y, Odgers D, Finlayson S, et al. Text
Mining for Adverse Drug Events: the Promise, Challenges, and State of the
Art. Drug Safety. 2014;37(10):777–90.

8. Karimi S, Wang C, Metke-Jimanez A, Gaire R, Paris C. Text and Data Mining
Techniques in Adverse Drug Reaction Detection. ACM Comput Surv. 2015;
47(4):56.

9. Brown EG, Wood L, Wood S. The medical dictionary for regulatory activities
(MedDRA). Drug Saf. 1999;20:109–17.

10. Nadkarni PM, Nadkarni PM, Darer J. Determining correspondences between
high-frequency MedDRA concepts and SNOMED: a case study. BMC Med
Inform Decis Mak. 2010;10(1):66.

11. He Y, Sarntivijai S, Sarntivijai S, Lin Y, Xiang Z, Guo A, et al. OAE: the
ontology of adverse events. J Biomed Semantics. 2014;5(1):29.

12. Guo A, Racz R, Hur J, Lin Y, Xiang Z, Zhao L, et al. Ontology-based
collection, representation and analysis of drug-associated neuropathy
adverse events. J Biomed Semantics. 2016;7(1):29.

13. Bird S, Loper E, Klein E. Natural language processing with Python: analyzing
text with the natural language toolkit; 2009.

14. Sang EFT, Veenstra J. Representing text chunks. In: Proceedings of the ninth
conference on European chapter of the Association for Computational
Linguistics. Association for Computational Linguistics; 1999. p. 173–9.
Available from: https://www.aclweb.org/anthology/E99-1023/.

15. Roberts K, Demner-Fushman D, Tonning JM. Overview of the TAC 2017
Adverse Reaction Extraction from Drug Labels Track. In: Proceedings of the
2017 Text Analysis Conference. NIST; 2017. Available from: https://tac.nist.

gov/publications/2017/additional.papers/TAC2017.ADRoverview.
proceedings.pdf.

16. Xu J, Lee H, Ji Z, Wang J, Wei Q, Xu H. UTH_CCB System for Adverse Drug
Reaction Extraction from Drug Labels at TAC-ADR 2017. In: Proceedings of the
2017 Text Analysis Conference. NIST; 2017. Available from: https://tac.nist.gov/
publications/2017/participant.papers/TAC2017.UTHCCB.proceedings.pdf.

17. IBM Research System at TAC 2017: Adverse Drug Reactions Extraction from
Drug Labels. In: Proceedings of the 2017 Text Analysis Conference. NIST;
2017. Available from: https://tac.nist.gov/publications/2017/participant.
papers/TAC2017.IBMResearch.proceedings.pdf.

18. Chiu B, Crichton G, Korhonen A, Pyysalo S. How to train good word
embeddings for biomedical NLP. In: Proceedings of BioNLP16; 2016. p. 166.

19. Hur J, Schuyler AD, States DJ, Feldman EL. SciMiner: web-based literature
mining tool for target identification and functional enrichment analysis.
Bioinformatics. 2009;25(6):838–40.

20. Ma X, Hovy E. End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-
CRF. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Berlin: Association for
Computational Linguistics; 2016. p. 1064–74. Available from: https://www.
aclweb.org/anthology/P16-1101.

21. Reimers N, Gurevych I. Reporting Score Distributions Makes a Difference:
Performance Study of LSTM-networks for Sequence Tagging. In:
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. Copenhagen, Denmark: Association for
Computational Linguistics; 2017. p. 338–48. Available from: https://www.
aclweb.org/anthology/D17-1035.

22. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed
representations of words and phrases and their compositionality. In:
Advances in neural information processing systems; 2013. p. 3111–9.

23. Pyysalo S, Ginter F, Moen H, Salakoski T, Ananiadou S. Distributional
Semantics Resources for Biomedical Text Processing; 2013 [cited 2017 10 23.
Available from: http://escholar.manchester.ac.uk/uk-ac-man-scw:267174.

24. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.
1997;9(8):1735–80.

25. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with
gradient descent is difficult. IEEE. 1994;5:157–66.

26. Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural
networks: international conference on machine learning; 2013.

27. Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C. Neural
Architectures for Named Entity Recognition. In: Proceedings of the 2016
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. San Diego:
Association for Computational Linguistics; 2016. p. 260–70. Available from:
https://www.aclweb.org/anthology/N16-1030.

28. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a
simple way to prevent neural networks from overfitting. J Mach Learn Res.
2014;15(1):1929–1958.

29. Gal Y, Ghahramani Z. A theoretically grounded application of dropout in
recurrent neural networks. In: Advances in neural information processing
systems; 2016. p. 1019–27

30. Lafferty J, McCallum A, Pereira FC. Conditional random fields: probabilistic
models for segmenting and labeling sequence data; 2001.

31. Dozat T. Incorporating nesterov momentum into adam; 2016.
32. Hur J, Özgür A, Xiang Z, He Y. Development and application of an

interaction network ontology for literature mining of vaccine-associated
gene-gene interactions. J Biomed Semantics. 2015;6(1):2.

33. Hur J, Xiang Z, Feldman EL, He Y. Ontology-based Brucella vaccine literature
indexing and systematic analysis of gene-vaccine association network. BMC
Immunol. 2011;12(1):49.

34. Hur J, Özgür A, He Y. Ontology-based literature mining of E. coli vaccine-
associated gene interaction networks. J Biomed Semantics. 2017;8(1):12.

35. Hur J, Özgür A, He Y. Ontology-based literature mining and class effect
analysis of adverse drug reactions associated with neuropathy-inducing
drugs. J Biomed Semantics. 2018;9:17.

36. Demner-Fusman D, Shooshan SE, Rodriguez L, Aronson AR, Lang F, Rogers
W, et al. A dataset of 200 structured product labels annotated for adverse
drug reactions. Scientific Data. 2018;5:180001.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Tiftikci et al. BMC Bioinformatics 2019, 20(Suppl 21):707 Page 9 of 9

https://www.aclweb.org/anthology/E99-1023/
https://tac.nist.gov/publications/2017/additional.papers/TAC2017.ADRoverview.proceedings.pdf
https://tac.nist.gov/publications/2017/additional.papers/TAC2017.ADRoverview.proceedings.pdf
https://tac.nist.gov/publications/2017/additional.papers/TAC2017.ADRoverview.proceedings.pdf
https://tac.nist.gov/publications/2017/participant.papers/TAC2017.UTHCCB.proceedings.pdf
https://tac.nist.gov/publications/2017/participant.papers/TAC2017.UTHCCB.proceedings.pdf
https://tac.nist.gov/publications/2017/participant.papers/TAC2017.IBMResearch.proceedings.pdf
https://tac.nist.gov/publications/2017/participant.papers/TAC2017.IBMResearch.proceedings.pdf
https://www.aclweb.org/anthology/P16-1101
https://www.aclweb.org/anthology/P16-1101
https://www.aclweb.org/anthology/D17-1035
https://www.aclweb.org/anthology/D17-1035
http://escholar.manchester.ac.uk/uk-ac-man-scw:267174
https://www.aclweb.org/anthology/N16-1030

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Named entity recognition (NER) data processing
	MedDRA ADR normalization
	TAC contest performance evaluation result

	Discussion
	Conclusions
	Methods
	Neural network architecture
	Combined word Embeddings
	The bi-LSTM and CRF component
	SciMiner: dictionary- and rule-based approach
	Drug label dataset
	Irregular entity mentions
	Abbreviations

	Acknowledgements
	Disclaimer
	About this supplement
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

