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Abstract

Background: Genetic association studies that seek to explain the inheritance of complex traits typically fail to
explain a majority of the heritability of the trait under study. Thus, we are left with a gap in the map from genotype
to phenotype. Several approaches have been used to fill this gap, including those that attempt to map
endophenotype such as the transcriptome, proteome or metabolome, that underlie complex traits. Here we used
metabolomics to explore the nature of genetic variation for hydrogen peroxide (H2O2) resistance in the sequenced
inbred Drosophila Genetic Reference Panel (DGRP).

Results: We first studied genetic variation for H2O2 resistance in 179 DGRP lines and along with identifying the
insulin signaling modulator u-shaped and several regulators of feeding behavior, we estimate that a substantial
amount of phenotypic variation can be explained by a polygenic model of genetic variation. We then profiled a
portion of the aqueous metabolome in subsets of eight ‘high resistance’ lines and eight ‘low resistance’ lines. We
used these lines to represent collections of genotypes that were either resistant or sensitive to the stressor,
effectively modeling a discrete trait. Across the range of genotypes in both populations, flies exhibited surprising
consistency in their metabolomic signature of resistance. Importantly, the resistance phenotype of these flies was
more easily distinguished by their metabolome profiles than by their genotypes. Furthermore, we found a
metabolic response to H2O2 in sensitive, but not in resistant genotypes. Metabolomic data further implicated at
least two pathways, glycogen and folate metabolism, as determinants of sensitivity to H2O2. We also discovered a
confounding effect of feeding behavior on assays involving supplemented food.

Conclusions: This work suggests that the metabolome can be a point of convergence for genetic variation
influencing complex traits, and can efficiently elucidate mechanisms underlying trait variation.
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Background
Phenotypic variation among individuals in a population
arises from variation in the genotype, the environment,
and the interaction between the two. Genetic variation is
a major determinant of many complex traits and, while
numerous genetic association studies have failed to ex-
plain substantial portions of heritable variation in a
given complex trait, use of highly polygenic models have
closed this gap considerably [1]. However, highly poly-
genic models do not easily allow us to identify gene-level
associations with traits, and may not yield mechanistic
insight into the pathways that shape trait variation. Gen-
etic variation ultimately affects phenotype though the ef-
fect of genes on downstream ‘endophenotypes’ — the
epigenome, transcriptome, proteome, metabolome and
microbiome [2, 3]. Several authors have proposed that
these endophenotypes, and the metabolome in particu-
lar, may serve as a powerful tool in mapping genotype to
phenotype, as well as a source of information upon
which to construct mechanistic hypotheses [3–7]. In this
study, we explore the possibility that genetic effects on
phenotypes are filtered through the profile of small mol-
ecules, the metabolome, that function downstream of
genotype but upstream of phenotype.
The metabolome consists of the small biomolecules, typ-

ically less than 1500Da, that make up the energetic, struc-
tural and functional building blocks of all life [8–12]. Given
the role of these molecules in cells, researchers have
pointed to the metabolome as a key link between genotype
and phenotype [3–5, 13–15]. Genetic variation clearly influ-
ences the metabolome. For example, genome-wide associ-
ation studies (GWAS) have identified alleles that potentially
explain up to 60 to 80% of the variance in individual fea-
tures in the human or plant metabolome [16–20]. Some
have proposed mapping variation in the abundance of trait-
associated metabolites in order to map genotype-to-
metabolite-to-phenotype [2, 3, 5, 15, 21].
To explore the potential of metabolomic profiling to

bridge the genotype-phenotypic gap and to identify
underlying mechanisms of natural variation, here we
study resistance to peroxide (H2O2) stress in a fruit fly
model of genetic variation, the Drosophila Genetic Ref-
erence Panel (DGRP) [22]. This system provides an ideal
model to study the ability of metabolic profiling to
bridge the genotype-phenotype gap. First, H2O2 resist-
ance assays can be performed on hundreds of flies in
parallel, and the resulting survival data can be analyzed
within a rigorous statistical framework [23–25]. Second,
many association studies have examined genetic vari-
ation for survival in Drosophila [26–28], including in re-
sponse to oxidative stressors [25, 29]. The DGRP, a set
of genetically diverse and fully sequenced inbred lines,
now enables labs around the world to quickly identify
loci associated with any trait of interest [26, 30]. Third,

numerous studies over the past decade have shown that
metabolite profiles in flies are highly sensitive to variation
due to genotype and environment [9, 31–36]. And so, a
metabolomic study of H2O2 resistance in the DGRP could
be used to simultaneously measure the metabolomic re-
sponse to stress and its association with resistance pheno-
type within a genetically diverse population. We
hypothesize that resistance to H2O2 among diverse geno-
types may associate with metabolic pathways that mediate
the resistance phenotype. This hypothesis supposes that we
would find resistance-associated metabolic pathways
among a panel of genetically diverse lines. Alternatively,
metabolites could have genotype-specific associations to an
extent that we may fail to detect trait associations with
metabolic pathways across the genotypes measured here.
We note that our experimental design does not rule out
genotype-specific metabolic activity as a mediator of stress
resistance. Rather, we seek to investigate the potential for
trait-associated genotypes to converge on the metabolome.
We present an analysis of survival time and metabolic

profiles in flies from DGRP lines held on H2O2 or
control food. We show that survival is heritable, and that
34.2% of the total variance could be explained by
additive effects of the known genetic variants in our
study population. By mapping genetic variation associ-
ated with resistance, we identified at least two genes
associated with lifespan on H2O2 food, including NPF
and u-shaped (ush). To simultaneously assess the contri-
bution of the metabolome to phenotypic variation, we
profiled the metabolome of a subset of genotypes. By
comparing highly resistant with highly sensitive lines, we
modeled H2O2 resistance as a binary trait. Consistent
with the hypothesis that genotypes could converge on
common metabolomic endophenotypes, we found a con-
sistent metabolomic signature of resistance to H2O2.
Multivariate analysis of metabolome variation across
these genotypes allows us to distinguish resistant from
sensitive lines, even in samples of flies not exposed to
H2O2 food. We compare the potential of genotype and
metabolome to explain trait variation among the resist-
ant and sensitive lines. Whereas multivariate clustering
based on the metabolome leads to clear distinctions be-
tween resistant and sensitive genotypes, similar methods
applied to genetic variation alone fail to differentiate
their resistance phenotype. These results suggest that a
variety of even quite diverse genotypes that share a
phenotype may do so by converging on a similar meta-
bolomic endophenotype.
Additionally, using univariate analysis of individual

metabolite features, we found glycogen and folate me-
tabolism are associated with stress resistance and valid-
ate this analysis by showing that metabolite feeding or
genetic manipulation of candidate pathways both affect
survival on H2O2 food.
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Finally, we found a strong effect of H2O2 on feeding
behavior, suggesting that variation in survival of flies on
food supplemented with H2O2 could be explained in
part by variation in starvation resistance. Our results
suggest that starvation or nutrient assimilation might be
the underlying cause of mortality in historical assays
where the stressor has been administered to Drosophila
in the food.

Results
Resistance to peroxide food within the DGRP
We found substantial variation among 179 DGRP lines
for survival of adult females on H2O2 food. We used a
mixed model to study the variation in mean lifespan
and, in addition to significant effects of genotype (ran-
dom effect, likelihood ratio χ2 = 36.2, df = 1, P = 1.7 ×
10− 9, Methods), we found that weight was a significant
predictor, with larger flies surviving longer on H2O2

(fixed effect, β = 0.49, P = 1.7 × 10− 4). We used individual
fly lifespans to estimate a broad sense heritability for
survival on H2O2 food of H2 = 44.8% ± 0.04 (mean ± se,
Methods).
We then compared our measures of H2O2 resistance

in the DGRP with traits measured in the DGRP in previ-
ous studies. These studies have measured either survival
or behavioral responses of the DGRP to two other oxida-
tive stressors, paraquat and menadione [25, 29]. We ob-
served Pearson correlations of r = 0.34 (n = 179, P <
10− 4) and r = 0.35 (n = 179, P < 10− 4) between the mean
survival time reported here and those measured on food
supplemented with paraquat or menadione, respectively
(Fig. S1 [25]). We found no correlation between our
measures of H2O2 survival and two behavioral traits, the
startle response and climbing, measured by Jordan et al.
[29] following chronic (13–16 day) exposure to mena-
dione food (data not shown). We also found that the
survival times of the DGRP on H2O2 food correlate
highly with survival measured under starvation in two
different labs (Fig. S1 [26, 37]) as well as data from our
own lab (Fig. 1a). It is notable that the correlation be-
tween H2O2 resistance and starvation was greater than
the correlation between H2O2 resistance and any other
trait published for the DGRP, including survival on food
containing paraquat or menadione (Fig. S1). These re-
sults suggest that H2O2 food may affect feeding or nutri-
ent assimilation in Drosophila.
To test the possibility that H2O2 affects feeding behav-

ior, we measured the amount of food consumed by flies
in the CAFE and dye incorporation assays described in
the Methods section [38, 39]. Peroxide reduced feeding
in each of three different genotypes tested, including
strains with both relatively long and short survival time
on H2O2 food (Fig. 1b and c). During the 24 h feeding
period in the CAFE assay, flies exposed to liquid H2O2

food consumed no more than the volume lost due to
evaporation in chambers without flies, suggesting that the
flies consumed very little H2O2 food over 24 h (Fig. 1c).
This finding suggests that mortality in flies exposed to
H2O2 is due at least in part to starvation, in addition to
any oxidative stress caused by H2O2 exposure.

Genetic associations with peroxide resistance
The DGRP is both highly inbred and sequenced to high
confidence for the majority of SNPs and small indels
[22], therefore we sought to estimate the extent of gen-
etic variation captured by the characterized genetic vari-
ation in the DGRP. We used restricted maximum
likelihood to estimate the proportion of variance in
phenotype that could be explained by the genomic rela-
tionship between the lines used in our study, the so-

called SNP heritability (ĥ
2
SNP ) at 34.2% (Methods). Thus,

a substantial amount of the heritable variation in H2O2

resistance could potentially be explained by the charac-
terized genetic variation in the DGRP. We then sought
to identify individual genetic variants and genes that
might associate with H2O2 resistance.
We used a linear regression model in PLINK [40] to

test for associations of H2O2 resistance with approxi-
mately 1.9 million SNPs with a MAF ≥ 5% and <30%
missing genotypes, while accounting for population
structure and a significant effect of the major inversion
In(2 L)t (Methods). We used the q value approach [41]
to control the false discovery rate (FDR) and at 20%
FDR, 14 variants (all were SNPs) were associated with
resistance (Fig. 2a, Table S1). Pairwise linkage disequilib-
rium (LD) among the 14 SNPs indicates that they associ-
ate with H2O2 resistance as seven loci, or groups of
SNPs in LD (r2 > 0.5, Fig. 2b). With only 179 genotypes,
we lack the power to analyze SNP-SNP interactions
among these loci. However, our data indicate that H2O2

resistance is polygenic within the DGRP.
To investigate these genetic associations further, we

performed gene ontology (GO) analysis, looking for bio-
logical processes and signaling pathways that are over-
represented among the markers associated with survival
on H2O2 food. To identify gene-level associations, many
studies use the minimum P-value of all variants in a
gene (Pmin). One might expect bias in this approach,
such that genes with more variants are more likely to
have a smaller (more significant) Pmin by chance alone.
Indeed, we found that -log10(Pmin) was positively associ-
ated with the number of variants per gene (Fig. S2), po-
tentially biasing gene-trait associations in favor of genes
with more variants [42]. To test for this bias, we com-
pared the top 200 genes ranked by Pmin with the top 200
genes from ten GWAS of randomly permuted pheno-
types. Out of 15,322 gene models in the Fly Base release
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5.49, the null expectation for such intersection would be
2.6 genes. In contrast, we found an average of 11.6 ± 2.0
genes (mean ± se) in common across the permutations
(χ 2 = 28.3, df = 3, P < 1.1 × 10− 7), consistent with a bias
caused by SNP density. To correct for this bias, we used
a permutation approach to derive gene-level P-values,

Pgene, while also accounting for population structure
(Methods). Unlike Pmin, Pgene did not associate with the
number of variants per gene, and it reduced the number
of false-positives when compared to top genes from
GWAS of randomized phenotypes (Fig. S2, χ 2 = 2.2 ×
10− 26, df = 3, P = 1). Thus, Pgene increases the accuracy of

Fig. 1 Starvation explains the lifespan effect of H2O2 food (a) The correlations between mean lifespan of 31 DGRP lines on food containing either
2% glucose and 2% hydrogen peroxide in replicate trials (peroxide 1 and peroxide 2) or no glucose (starvation). Below the diagonal are plots of
trait values (mean survival (h)). Least-squares linear regression lines are shown in red. Above the diagonal are Spearman correlation coefficients for
each pair of traits. b and c Feeding assays, the mean (+SD) absorbance at 630 nm of extracts from three replicate vials of seven to eleven 1 to 5
day old mated females from the indicated DGRP line (b). Flies were exposed to peroxide (open bars) or control food (colored bars) for two hours
of feeding prior to dye extraction. c The mean (+SD) volume of liquid food consumed by ten replicates of ten 2 to 4 day-old mated females was
measured using the CAFE assay. CAFE food contained 2% glucose and, either water (colored bars) or 2% peroxide (open bars). Additional
apparatus were set up without flies (no flies) to measure volume loss due to evaporation. Asterisks indicate p < 0.05 (Welch’s t-test)
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gene-trait associations. Only one gene, ppk14, was signifi-
cant below an FDR of 0.05, so we chose to look for bio-
logical processes or pathways that might be enriched
among the 29 genes at FDR ≤ 0.5 (Table 1). This gene
ontology (GO) enrichment analysis identified several bio-
logical processes and two biological pathways (FDR ≤ 0.05,
Table 2). Most of the enriched processes are nested in
hierarchical categories and thus are not independent. Also,
the enrichment of 7 of the 9 biological processes, and the
endothelin signaling pathway, is due entirely to three
genes occurring in a small gene cluster, each encoding
adenylyl cyclase (ACXA, ACXB and ACXE, Table 2). Ade-
nylyl cyclase is involved in several signaling pathways, in-
cluding G-protein coupled and calcium-based signaling.
Separately, the platelet-derived growth factor (PDGF) sig-
naling pathway is enriched (FDR = 0.02) due to three other
genes in our dataset, Rab2, Ets21C and the c-Myc-binding
protein homolog CG17202.
We validated these gene-trait associations by using

RNAi to manipulate the expression of six of the 29 can-
didate genes, nAChRbeta3, Ets21C, ush, Nha1, Jon25Bi
and Marcal1 (Pgene < 0.0003 in all cases), and testing the
effect of a mutation in a seventh candidate NPF (Pgene <
0.0006). Several of the candidates reside near a cluster of
six trait-associated SNPs within a 17.5 kb interval on
chromosome 2 (Fig. 2a). This interval spans several
genes, including u-shaped (ush, Pgene = 7.1 × 10− 5), which
contains an intronic C/T SNP associated with H2O2

resistance (P = 2.49 × 10− 8) and several other SNPs in
LD with this SNP (Fig. 2b). None of these SNPs are pre-
dicted to alter amino acid sequence or splicing, but in-
stead may affect ush expression. Ush has roles in
development and growth, including as a negative regula-
tor of PI3K activity within the IlS pathway in the fat
body [43]. To validate the effects of ush on H2O2 resist-
ance, we used the RU486-inducible GAL4 GeneSwitch
driver S106 to drive RNAi targeting ush in the adult fat
body [44]. RU486 treatment of flies carrying both S106
and UAS-RNAi targeting ush resulted in shorter sur-
vival times on H2O2 food than the same genotype with-
out RU486 (Fig. 3). We saw the same result with two
independent RNAi lines, each targeting a different por-
tion of the ush mRNA (Fig. 3). We saw no effect of
RU486 on the survival of F1 flies carrying the driver
and the empty control P-element in the same genetic
background as the UAS-RNAi flies, nor an effect of
RNAi on lifespan on food lacking H2O2 (see Methods).
Knocking down ush in the nervous system with the elav
GeneSwitch driver did not affect H2O2 resistance (data
not shown), and ubiquitous knockdown of ush appears
to be lethal as we failed to recover Act-GAL4/ush-
RNAi flies in crosses of the ush-RNAi construct to the
constitutive Act-GAL4 driver. We also detected a
strong interaction between RU486 treatment and an
Act GeneSwitch driver in our H2O2 food assay and so
were unable to test the effect of ubiquitous knockdown

Fig. 2 Genome-Wide Association (a) –log10 P-values for each polymorphism (MAF≥ 0.05, < 30% missing) in association with lifespan on H2O2

food, P-values above 0.01 not shown, the FDR of 0.2 level of significance is shown by a blue line. Inset shows a locus on chromosome 2 L that
includes 6 resistance-associated SNPs in LD (r≥ 0.5) and several candidate genes, including ush. Genes shown in blue were significant in gene-
level analysis (FDR < 0.5). b A pairwise LD plot for all 14 resistance-associated SNPs (FDR < 0.2), groups of SNPs in LD are indicated with bars
across the top, and a color scale for r is shown. c A Q-Q plot of –log10 P-values for the variants tested in the GWAS showing little to no inflation
after adjusting for population structure (Methods)
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of ush in adult flies (data not shown). Similar RNAi of
five other candidates did not affect H2O2 resistance
(data not shown).
Another candidate, NPF (Pgene = 5.8 × 10− 4) encodes

the ligand neuropeptide F (NPF), which controls feed-
ing, ethanol sensitivity and other behaviors [45]. The
npfSK1 deletion allele reduced H2O2 resistance when
compared to wildtype control flies and did not affect
survival on control food (Fig. 3 and data not shown).
These data demonstrate that manipulation of candi-
date genes from our GWAS affects the H2O2 resist-
ance phenotype.

Metabolite profiles associated with peroxide resistance
To investigate the effect of H2O2 on the fly metabolome,
and the potential for the metabolome to explain genetic
variation in resistance to H2O2, we measured untargeted
LC-MS profiles in three biological replicates for each of
eight resistant (mean survival time = 106.9 h, range =
90.4–119.7 h) and eight sensitive (mean survival time =
58.9 h, range = 53.2–70.0 h) lines, chosen such that the
two groups did not differ substantially in fly size (Fig. S3).
These lines were subjected to another survival assay and,
24 h after being exposed to H2O2 or control food, samples
of flies from each line and treatment were flash frozen for

Table 1 Genes Associated with Peroxide Resistance

FlyBase ID Gene Name Lead Variant Pmin Pgene FDR

FBgn0031803 ppk14 Pickpocket 14 2L_6353972_SNP 2.12 × 10–6 9.00 × 10–6 0.004797

FBgn0031261 nAChRbeta3 Nicotinic acetylcholine receptor
beta 3 (Dbeta3) subunit

2L_544231_SNP 9.73 × 10–7 2.20 × 10–5 0.011704

FBgn0031802 ppk7 Pickpocket 7 2L_6351358_SNP 2.12 × 10–6 2.70 × 10–5 0.014337

FBgn0034098 krimp FI20010p1 2R_12124705_SNP 1.68 × 10–6 3.10 × 10–5 0.01643

FBgn0034099 CG15708 AT21920p 2R_12127442_SNP 1.68 × 10–6 3.10 × 10–5 0.01643

FBgn0005660 Ets21C DNA-binding protein D-ETS-6 2L_546065_SNP 9.73 × 10–7 3.30 × 10–5 0.017424

FBgn0002031 l(2)37Cc Protein l(2)37Cc 2L_19121067_SNP 7.57 × 10–6 4.50 × 10–5 0.023715

FBgn0003963 ush Zinc finger protein ush 2L_475238_SNP 4.51 × 10–8 7.10 × 10–5 0.037346

FBgn0031865 Nha1 Na[+]/H[+] hydrogen antiporter 1,
isoform A

2L_6860010_SNP 5.32 × 10–8 0.000123 0.064575

FBgn0020906 Jon25Bi Jonah 25Bi 2L_4953449_SNP 4.23 × 10–5 0.000214 0.112136

FBgn0031655 Marcal1 SWI/SNF-related matrix-associated
actin-dependent regulator of chromatin
subfamily A-like protein 1

2L_4954910_SNP 1.27 × 10–5 0.000253 0.132319

FBgn0263831 Gen Flap endonuclease GEN 3L_5141974_SNP 7.43 × 10–6 0.000262 0.136764

FBgn0037730 DmelCG9444 CG9444, isoform A 3R_5506170_SNP 9.71 × 10–5 0.000272 0.141712

FBgn0005616 msl-2 E3 ubiquitin-protein ligase msl-2 2L_3461213_SNP 3.65 × 10–5 0.000367 0.19084

FBgn0263102 psq Pipsqueak, isoform M 2R_6444567_SNP 3.29 × 10–5 0.000373 0.193587

FBgn0004103 Pp1-87B Serine/threonine-protein phosphatase
alpha-2 isoform

3R_8248858_SNP 0.0001966 0.000437 0.226366

FBgn0083960 DmelCG34124 FI23230p1 2L_4957415_SNP 1.27 × 10–5 0.000461 0.238337

FBgn0040510 ACXA Adenylyl cyclase X, isoform A 2L_12920145_SNP 5.17 × 10–5 0.000472 0.243552

FBgn0085227 CG34198 HDC07368 2R_15569059_SNP 0.0001068 0.000489 0.251835

FBgn0040506 ACXE Adenylyl cyclase X, isoform E 2L_12924675_SNP 8.53 × 10–5 0.000517 0.265738

FBgn0027109 NPF Neuropeptide F 3R_12434359_SNP 9.19 × 10–5 0.000578 0.296514

FBgn0031538 DmelCG3246 CG3246 2L_3459329_SNP 3.65 × 10–5 0.000611 0.312832

FBgn0052391 DmelCG32391 Uncharacterized protein 3L_7060319_SNP 1.15 × 10–5 0.000723 0.369453

FBgn0038043 CG17202 c-Myc-binding protein homolog 3R_8247496_SNP 0.0001966 0.000762 0.38862

FBgn0005640 Eip63E Ecdysone-induced protein 63E, isoform N 3L_3514849_SNP 1.80 × 10–5 0.00091 0.46319

FBgn0051641 stai stathmin 2L_6099379_SNP 6.01 × 10–6 0.000922 0.468376

FBgn0014009 Rab2 GH01619p 2R_2583312_SNP 5.43 × 10–5 0.000932 0.472524

FBgn0262467 Scox AT19154p 2L_4967292_SNP 0.0002591 0.000943 0.477158

FBgn0040509 ACXB Adenylyl cyclase X, isoform B 2L_12916421_SNP 0.0003891 0.00096 0.4848

The gene identifications from Fly Base (FB) release 5.49 for all genes with Pgene FDR < 0.5. The variant with the smallest P value for each gene (Pmin) is listed as the
lead variant
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aqueous metabolite extraction, while survival measure-
ments were conducted on the remaining flies.
Global metabolite profiling measured 2722 and 2691

features that passed quality control thresholds from
positive and negative ionization modes, respectively and
were analyzed separately (Methods). We first explored
these data using principal component analysis (PCA).
Samples from resistant and sensitive genotypes clearly
separate along principal component one of the negative
mode (PC1neg, Fig. 4) and along PC2 of the positive
mode (PC2pos, Fig. S4). Interestingly, H2O2-treatment
samples appear distinct from untreated samples among
the sensitive genotypes along both PC1neg and PC2pos,
and this separation is not apparent among the resistant
genotypes (Fig. 4 and Fig. S4). Principal component ana-
lysis thus detected between-group variation in metabol-
ite profiles from sensitive and resistant flies, and further

suggested an effect of treatment on sensitive that is not
seen in resistant flies.
The separation of resistant and sensitive lines by me-

tabolome profile is striking (Fig. 5b). However, the geno-
types chosen for metabolite profiling were among the
extremes of resistance to H2O2. This design raises the
possibility that resistant and sensitive lines have a con-
founding genetic relationship. To determine if genotype
could also separate lines chosen deliberately with ex-
treme phenotypes, we carried out PCA and hierarchical
clustering of the genotype data on the same lines. We
analyzed the first ten PCs of genotype, which together
account for 69% of the variance of > 3.2 × 105 genetic
variants in the 16 lines used for metabolomics. These
PCs failed to clearly separate the resistant and sensitive
flies (for example, PC1 vs. PC2 is shown in Fig. 5). Simi-
larly, hierarchical clustering of these 16 lines using the

Table 2 Process and Pathway Enrichment Among Candidate Genes

PANTHER GO-Slim Biological Process Gene Content Input Expected Fold Enrichment P-value FDR

activation of adenylate cyclase activity (GO:0007190) 32 3* 0.07 46.09 4.69 × 10 − 5 0.0353

adenylate cyclase-activating G-protein coupled receptor
signaling pathway (GO:0007189)

32 3* 0.07 46.09 4.69 × 10 −5 0.0235

cAMP-mediated signaling (GO:0019933) 41 3* 0.08 35.98 9.38 × 10 −5 0.0282

regulation of cAMP-mediated signaling (GO:0043949) 41 3* 0.08 35.98 9.38 × 10 −5 0.0235

regulation of adenylate cyclase activity (GO:0045761) 42 3* 0.09 35.12 1.00 × 10 −4 0.0216

regulation of lyase activity (GO:0051339) 43 3* 0.09 34.3 1.07 × 10 −4 0.0201

cyclic-nucleotide-mediated signaling (GO:0019935) 50 3* 0.1 29.5 1.64 × 10 −4 0.0274

regulation of biological process (GO:0050789) 1359 11 2.76 3.98 3.87 × 10 −5 0.0582

biological regulation (GO:0065007) 1492 11 3.03 3.62 9.15 × 10 −5 0.0343

PANTHER Pathways Gene Content Input Expected Fold Enrichment P-value FDR

PDGF signaling pathway (P00047) 47 3 0.1 31.38 1.38 × 10−4 0.0213

Endothelin signaling pathway (P00019) 74 3* 0.15 19.93 0.0495 0.0256

Enrichment analysis for the 29 genes associated with peroxide resistance. Gene Content is the number of genes in the respective process/pathway in the
Drosophila genome (n = 13,767 genes in the GO database). Input is the number of resistance-associated genes in each process/pathway, and Expected is the
number expected under the null hypothesis. Asterisks (*) indicate categories enriched due to the adenylyl cyclase X gene cluster

Fig. 3 Candidate Gene Validation (a) Mated F1 females from crosses of the GeneSwitch106 driver to either UAS-RNAi lines targeting u-shaped
(ush-57 and ush-44) or a UAS-control line (attP2, vector), which were maintained on RU486 food (red line) or –RU food (black line) for 48 h prior to
being transferred to H2O2 food or control food. Survivorship was recorded for six replicate vials of ten flies per vial on H2O2 food (n = 60 flies) and
two replicate vials on control food (n = 20 flies). In another experiment (b), survivorship of wild type females (Canton-S, n = 40) was compared to
NPFSK1 females (n = 38) on H2O2 food or control food in an activity monitoring system (Methods). Asterisks indicate significant effect of RU486, or
of the NPFSK1 mutation (P < 0.05) from the log-rank test using the survival package in R. Results are representative of at least two independent
experiments, and there was no mortality observed on control food during these experiments
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same genetic variants also failed to separate the two phe-
notypes (Fig. 5). For comparison, clustering of 2691
negative mode metabolite features separated genotypes
into two clusters composed of resistant and sensitive
lines (Fig. 5). Thus, the distinction between resistant and
sensitive flies is more obvious given an unbiased sample
of LC-MS features rather than an unbiased sample of
their genotype.

Metabolic pathways associated with peroxide resistance
Principal component analysis suggested that the metabo-
lome of sensitive and resistant lines differ systematically
and moreover, that resistant and sensitive genotypes differ
in their metabolic response to H2O2 treatment (Fig. 4). To
identify the specific metabolites whose abundance was af-
fected by treatment in a trait-dependent way we ran a lin-
ear regression model, predicting metabolite level in
response to the interaction between the trait and treat-
ment. In the negative mode data we found 105 features
that were significant for a trait by treatment interaction
(FDR < 0.1). Figure S4 shows the clustering of the features
with a significant treatment by trait interaction term.
These data come from analysis of profiles from negative
mode only, as no features from positive mode reached our
FDR cutoff for the interaction term. The clustering of fea-
tures by z-score across samples revealed a consistent pat-
tern with a substantially different effect of H2O2 on the
metabolome of sensitive genotypes compared to resistant
genotypes (Fig. S5). This pattern is similar to the apparent

separation of samples across the latent variables revealed
in PCA (Fig. 4).
We used the mummichog software package [46] to

identify metabolomic pathways enriched among the
features associated with H2O2 resistance, or among
features with significant treatment by trait interaction
effects. Mummichog matches m/z ratios and retention
time data for the features to those predicted to occur
if those features were enriched for a given metabolic
pathway [46]. It is important to point out that we use
mummichog as a tool to identify metabolic pathways
that could associate with variation in H2O2 resistance
and not as a tool for metabolite annotation. This ana-
lysis identified several pathways, including carbohy-
drate metabolism, amino acids and their biosynthesis,
and folate metabolism (see Table S2, Additional File 2).
Many of these pathways share overlapping metabolites
and some pathways are nested within other pathways.
We chose a subset of the identified pathways for fur-
ther analysis based on a several criteria. One criterion
was the significance of each pathway across the differ-
ent contrasts in the linear model (see Table S2, Add-
itional File 2). Another criterion was the strength of
the identification; we gave higher priority to those
features that were uniquely assigned to a particular
metabolite or pathway, rather than features that were
ambiguously associated with more than one metabol-
ite, or with a metabolite that is present in several
pathways.

Fig. 4 Projections of Metabolomic Principal Components The first and second principal components of the negative mode data labeled to
indicate resistant and sensitive genotypes, as well as the effect of treatment (control vs. H2O2). Trait and treatment groups are indicated by
colored points and ellipses (50% CI). The percentage of the variance explained by each PC is shown in parentheses
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Glycogen metabolism
Glycogen metabolism was identified by mummichog
among the features that showed significant trait by treat-
ment interaction (Fig. S6). Glycogen is a storage form
source of glucose in Drosophila and variation in glyco-
gen metabolism across the lines measured here may re-
sult in sensitivity to H2O2 food. Consistent with a role
for glycogen in resistance to H2O2 food, flies fed supple-
mental maltose prior to being exposed to H2O2 showed
increased resistance to H2O2 food in a dose-dependent
manner (Fig. 6). Maltose could increase survival by pro-
viding glucose, or perhaps by some other effect as a di-
saccharide. Supplementing fly diet with glucose but not
the disaccharide lactose extends survival time similar to
supplemental maltose, which is consistent with the
former hypothesis (Fig. 6).
In addition to experiments with supplemental glyco-

gen intermediates, we also used genetic manipulation to
test for a role of glycogen metabolism in resistance to
H2O2 food. The fat body is a site of glycogen storage in
Drosophila, and RNAi targeting glycogenin (CG44244),

the gene encoding the protein core of glycogen, in the
fat body increased the sensitivity of flies to H2O2 food
(Fig. 7). We found that knocking down glycogenin using
the S32 fat-body driver reduced survivorship, while the
S106 fat-body driver did not (Fig. 7). Glycogen is present
in the Drosophila brain, and knocking down glycogenin
with the neuron-specific elav GeneSwitch driver reduced
survival on H2O2 substantially (Fig. 7) [47]. These data
suggest that glycogen metabolism differentiates sensitive
verses resistant flies.

Folate metabolism
The folate pathway was also identified by mummichog
among the features associated with H2O2 resistance and
treatment (see Table S2, Additional File 2). The folate
pathway is central to the synthesis of several amino
acids, nucleotides, secondary metabolites and substrates
for secondary modifications (e.g. methylation). Mummi-
chog detected features that are consistent with metabo-
lites both in the folate pathway as well as in peripheral
pathways (e.g., S-adenosylmethionine), suggesting that

Fig. 5 Metabolome is Proximal to Phenotype on the Genotype-Phenotype Map (a) PCs 1 and 2 of > 3.2 × 105 LD-pruned variants (no missing
calls, r2 < 0.5 within 50 kb windows) from the 16 genotypes in the metabolomics analysis. b PCs 1 and 2 of 2691 median normalized negative
mode LC-MS features (corrected for batch and sample weight) from the same genotypes as in (a). In all plots, sensitive genotypes are colored in
blue and resistant genotypes are colored in orange. The variance explained by each PC is shown in parentheses and the ellipses are the 50%
confidence intervals. c Hierarchical clustering of the same genetic variants (c) or line mean values of the LC-MS features (d). Data were clustered
using the minimal variance method (Ward’s D2) in the hclust R package
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Fig. 6 Supplemental Maltose or Glucose Increases Resistance to Peroxide. Females of three different DGRP lines were allowed to feed on media
containing 2% glucose with the indicated amount of supplemental maltose (a). b Mated females fed on glucose food containing 2% of either
additional maltose, additional glucose, or additional lactose, or control without additional carbohydrate for four days prior to being transferred to
2% glucose food containing 2% H2O2 for survival analysis. Points are the mean lifespans (± 1 s.e.) of 49 to 60 flies. ANOVA was used to compare
the effect of maltose (P = 0.0035) after removing the effect of line in (a). The log-rank test was used in (b) to test the difference between lifespans
of carbohydrate-fed verses control flies (asterisk, Bonferroni-corrected P ≤ 0.05)

Fig. 7 Knockdown of Genes in Glycogen or Folate Metabolism. F1 females from crosses of UAS-RNAi lines, targeting the indicated gene with
either the GeneSwitch106 (106GS, top row), GeneSwitch32 (32GS, middle row), or elavGeneSwitch (elavGS, bottom row) drivers, were maintained
on RU486 food (dashed line) or –RU control food (solid line) for 48 h prior to being transferred to H2O2 or control food. Survivorship was
recorded for five replicate vials of ten flies per vial on H2O2 food and two to five replicates on control food (n = 20 or 5 flies). Asterisks indicate
significant effect of RU486 (P < 0.05, log-rank test). Data are representative of one or two experiments, and the mortality of flies on control food
(not shown) did not exceed 15% in any condition and did not depend on RU486 exposure
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the activity of the folate pathway differs between sensitive
and resistant flies. To investigate the potential role of the
folate pathway in H2O2 resistance, we tested the effect of
metabolic gene knockdown on survival. Knocking down
either CG8665, which encodes 10-formyltetrahydrofolate
dehydrogenase (FDH), or pugilist (CG4067), which en-
codes tetrahydrofolate dehydrogenase (THFDH), in the fat
body or in neurons reduced the survival of flies on H2O2

food (Fig. 7). In parallel experiments, RU486 pretreatment
failed to affect survival in flies carrying the fat body S32
driver. These data suggest that folate metabolism in the
abdominal fat body and neurons is important for survival
on H2O2 food.
Supplemental folic acid was shown to reduce the levels

of oxidative damage associated with knockdown of par-
kin in Drosophila neurons [48]. We also tested whether
supplemental folic acid would affect survival on H2O2

food and failed to see a significant effect (data not
shown).

Discussion
Dissecting variation for complex traits
Next-generation sequencing technology has provided ge-
neticists with unprecedented power to identify single nu-
cleotide variants associated with variation in complex
traits in natural populations. But even with extremely
large sample size (e.g., [20, 49, 50]), the percent of vari-
ance explained by SNPs in most studies remains small
[51–53], and current models suggest that thousands of
SNPs can contribute to any one trait [52, 54]. Our mod-
estly powered GWAS failed to detect individual SNPs
that explain a large amount of the variation in H2O2 re-
sistance. However, our mixed model analysis estimates
that approximately 34% of the variation in peroxide re-
sistance could be explained by the additive effects of
genetic variants within the DGRP. Similar to GWAS
studies of other traits in this population, our results sug-
gest that peroxide resistance is polygenic in the DGRP
[28, 55, 56].
The results presented here also point to the consider-

able potential of metabolic profiles to distinguish genet-
ically determined phenotypic variation (Fig. 5), and
moreover, to identify novel, causal molecular pathways
associated with that variation. In light of our findings,
we propose a model here whereby a large number of
interacting genetic loci [57] converge through a more
limited number of downstream metabolic pathways,
which in turn make up the functional and structural
building blocks of complex traits (Fig. 8).

Metabolomic analysis
This study illustrates that untargeted metabolomic pro-
files, even those that include unknown chemical iden-
tities, give us tremendous power to 1) explain complex

phenotypic variation; 2) identify novel pathways associ-
ated with this variation; and 3) in this particular study,
suggest a novel hypothesis that resistance to stress might
be caused by resistance of the metabolome to environ-
mental perturbation.

The Metabolome as a biomarker
First, we find that the untargeted metabolome when
compared to genotype associates more closely with
phenotype. While a PCA of the metabolome clearly sep-
arates sensitive from resistant flies, a similar analysis of
allelic variants among genotypes failed to clearly separate
genotypes based on their survival on H2O2 food (Fig. 5).
This contrast highlights the ‘proximity’ of the metabo-
lome to trait on the genotype-phenotype map [4, 58].
Numerous other studies have shown metabolomic re-

sponses to diet, age, and temperature [32, 59–61], as well
as body mass and body composition independent of diet
[31], in diverse genotypes. However, these studies were
not designed to test the relative association of genotype
versus metabolome with phenotypic response. Moreover,
studies that describe the effect of stress or environment
on the metabolome often include only a single genotype
and this may fail to resolve the systems-level association
between genotype, environment, metabolome and pheno-
type [62–65]. In light of our results, future studies would
benefit from a clearer characterization of the power of the
metabolome relative to the genome to distinguish bio-
logically relevant phenotypic variation.

Stress resistance pathways identified by metabolomics
Second, our metabolomic profiling suggests several pos-
sible mechanisms that underlie the phenotypic variation
observed here. As we emphasize above in presenting the
results, and discuss further here, in Drosophila studies,
variation in the ability to survive oxidative stress could
be confounded with starvation resistance. This is im-
portant to keep in mind as we discuss possible mecha-
nisms that underlie the phenotypic variation seen here.
Nonetheless, the ability of the metabolome to distinguish
resistant and sensitive phenotypes is notable.
Several studies have used metabolomics to study the

effects of oxidative stressors in Drosophila in a single
genetic background. For example, paraquat treatment al-
ters branched-chain amino acid, starch/sucrose, and
fatty acid metabolism in the Drosophila brain [65]. We
also detect significant effects of H2O2 food on the first
two of these three pathways (see Table S2, Additional
File 2). The lack of evidence for an effect on the third
pathway, fatty acid metabolism, is perhaps not surpris-
ing, given that our analysis was limited to aqueous me-
tabolites. There are two important caveats to this earlier
work as well as to the present study. First is the ambigu-
ous nature of the untargeted metabolite data. For many
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features in the global metabolome profiles, we know
mass/charge ratios but not chemical structure. Second,
given the relationship between resistance to H2O2 and
starvation (Fig. 1), we expect that the metabolites associ-
ated with exposure to H2O2 or paraquat might relate to
nutrient intake and/or storage, rather than oxidative
stress alone. This confounding influence of H2O2 on
feeding could explain the results of a variety of studies
that use survival on food supplemented with H2O2 as a
measure of oxidative stress resistance.
One way to disentangle the effects of oxidative stress

from a secondary effect of a stressor administered in the
diet on nutrient update is to genetically manipulate en-
dogenous levels of reactive oxygen species. Two recent
studies compared the metabolome of flies with null mu-
tations in superoxide dismutase (sod−) to that of flies ei-
ther chronically or acutely exposed to paraquat-
supplemented diet [62, 63]. Each of these conditions had
a distinct effect on the metabolome, with the sod− mu-
tant metabolic profile clearly separating from the other
conditions in unsupervised clustering [63]. Our analysis
suggests that at least some of the differences between
the sod− and paraquat-treated metabolome could be due
to altered feeding or starvation in paraquat-treated flies.
Keeping these caveats in mind, we find strong evi-

dence for two pathways associated with H2O2 resistance-
glycogen metabolism and folate metabolism. Indeed, the
apparent decrease in glycogen content in flies sensitive
to H2O2 compared to control food suggests that sensi-
tive flies are exhausting their glycogen pool in response
to stress, which is consistent with previous studies of

flies on food with paraquat or under starvation [36, 66,
67]. Maltodextrins are intermediates in the glycogen
pathway, which is used to store and retrieve glucose for
the glycolysis and pentose phosphate pathways (Fig. S5).
We found that supplemental maltose or glucose en-
hances survival on H2O2 food for all genotypes tested in
our study and that RNAi targeting glycogenin either in
the fat body or in neurons reduces survival on H2O2

food (Figs. 6 and 7).
Interestingly, knockdown of glycogenin affected sur-

vival, but only with the S32 driver, which is expressed
primarily in the head fat body, and not the S106 driver,
which is expressed in the abdominal fat body. This sug-
gests that glycogenin functions in the head fat body to
mediate resistance to H2O2 food [68, 69]. However, we
cannot rule out the effect of other differences between
the knockdown of glycogenin by S32 compared to the
S106 driver.
Mummichog also detected enrichment of the folate

pathway (see Table S2, Additional File 2). Several lines
of evidence from this work and previous studies indicate
a role for the folate pathway in stress resistance in Dros-
ophila [25, 48, 70–75]. We show that knocking down ei-
ther the folate pathway genes pugilist or CG8665 in
either the fat body or neurons reduces survival on H2O2

food while not affecting survival on food without H2O2

(Fig. 7 and data not shown). Several studies find that
transcripts encoding enzymes of the folate pathway are
up-regulated following either administration of paraquat
or H2O2 in food, over-expression of manganese super-
oxide dismutase, or in mutants with mitochondrial

Fig. 8 The Metabolome as a Bridge in the Genotype to Phenotype Map. Phenotypic variation, represented by the bottom plane, is influenced by
the action of a large number of genes and genetic variants (upper plane) on a smaller number of metabolites or metabolic pathways. Direct
influences on phenotype are shown as dark lines whereas indirect connections are shown with grey lines. Genetic variation can influence the
levels of individual metabolites or the relationship between metabolites and, as a result, affect metabolic pathways that share direct connections
to phenotype; or, genetic variation can affect phenotype more directly (not depicted). Two or more genes might act epistatically to influence the
level of a single metabolite, and a single gene might act pleiotropically on multiple metabolites
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dysfunction [72–77]. Additionally, two missense variants
in pugilist associate with paraquat resistance in the
DGRP [25]. Functional studies show that overexpression
of Drosophila nmdmc, which encodes methylenetetrahy-
drofolate dehydrogenase, enhances resistance to para-
quat [71], and that folic acid supplementation reduces
oxidative damage to lipids and endogenous H2O2 levels
associated with knockdown of parkin in Drosophila neu-
rons [48]. While our metabolomic data and previous
genetic studies [70] point to a role for folate metabolism,
in our own GWAS analysis, neither pugilist nor CG8665
were clearly associated with survival on H2O2 (Pmin >
0.002 in both cases).

Adaptive shifts versus robustness of the metabolome under
stress
Third, it appears that the metabolome responds to the
presence of H2O2 more strongly in sensitive than in re-
sistant lines (Figs. 4 and S4). One might have expected
the opposite pattern, whereby greater resistance is asso-
ciated with an adaptive response of the metabolome to
an environmental stressor (e.g., [78–80]). Instead, it ap-
pears that resistance in this study is associated with the
ability to maintain the metabolome in its current state.
This observation is made possible by having multiple
sets of stress-resistant and stress-sensitive genotypes.
We interpret these results as suggesting not only that re-
sistance to H2O2 food is explained by the metabolome,
but also that the metabolome is more robust in resistant
genotypes, being less likely to change when faced with a
stressor. We do not propose that metabolic robustness is
a universal or causal feature of stress resistance, though
this is an interesting hypothesis to test, but our data sug-
gest that metabolic robustness and/or resilience might
contribute to phenotypic variation in nature.
This observation, combined with the fact that the me-

tabolome associates with phenotype while the genotype
does not, suggests the hypothesis that there are genetic-
ally diverse ways to achieve resistance to H2O2, but that
these diverse genetic paths converge at a common me-
tabolome associated with resistance. In future studies it
would be worth asking if, across a broad range of pheno-
types, there is a correlation between stress resistance
and the ‘resistance’ of the metabolome to stress-induced
alteration, or vice versa for traits that require metabolic
adaptation.

Genomic analysis
We studied survival on H2O2 food in the DGRP, a popu-
lation representing a sample of natural genetic variation.
We estimate broad-sense heritability for mean lifespan
under H2O2 at H

2 = 44.8% based on the within-genotype
variance in phenotype compared to total phenotypic
variation. There are significant caveats to estimating

heritability in the DGRP, including the relatively small
number of lines and the potential to overestimate the
degree of heritability due to the low among-line environ-
mental variance associated with repeated measures of
biological replicates within inbred genotypes. With these

caveats in mind, we estimate ĥ
2
SNP of 34.2%. This esti-

mate is slightly higher than the narrow sense heritability
h2 estimated for starvation resistance in other studies in
the DGRP using similar methods, although estimates of
h2 in the DGRP vary widely [56, 81]. Given that the
DGRP is highly inbred, we have not empirically evalu-
ated the extent of additive gene action in our study.
However, our results indicate that genetic variation con-
tributes significantly to H2O2 resistance in the DGRP.
Mapping variants associated with mean survival revealed

14 SNPs that were significant and together these variants
define 7 loci (Fig. 2). We limited our analysis to variants
passing MAF and missing genotype filters among 179
DGRP lines. While the DGRP incorporates substantial al-
lelic diversity from the wild, it is a population of inbred
lines with very low levels of heterozygosity compared to its
parent wild population and that has also been purged of
deleterious alleles of strong effect [55]. Along with the
missing genotypes there are also uncharacterized struc-
tural variants within this population [22]. For these rea-
sons, we do not expect this study to identify all variants in
the DGRP associated with survival under H2O2 stress, nor
their mode of gene action. Similar to other studies with
the DGRP, we failed to find common alleles with large and
highly significant effects, suggesting that variation in sur-
vival on H2O2 food is influenced by many loci of small ef-
fect [55, 56]. Importantly, in the relatively small population
used for metabolomics, neither clustering nor multivariate
analysis of genotypes associated with the discrete resist-
ance trait whereas similar analyses of metabolome data did
distinguish resistant and sensitive genotypes (Fig. 5).
Although we hoped to pinpoint specific genes that in-

fluence H2O2 resistance, we face the statistical challenge
that among the DGRP lines we studied, the number of
variants per gene ranged from 1 to 4490 with a mean of
237. To overcome the increased risk of false positives in
genes that contain a large number of polymorphisms, we
used a permutation approach to measure association be-
tween genes and phenotype. Our approach, like other
methods, comes with caveats, one being the imperfect
annotations of variants and genes. We have limited this
analysis to only those variants associated with the Fly-
Base gene annotation, including 1 kb upstream and 1 kb
downstream of the primary transcript [22]. Intergenic
variants might affect the expression of trait-associated
genes. However, we did not attempt to account for those
effects in this study. Additionally, variants that are asso-
ciated with candidate genes can instead exert their effect
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on phenotype by modifying the expression of other local
genes, rather than the candidate gene, and this would re-
sult in misattributing the significance to the gene con-
taining the variant rather than the real trait-associated
gene [82].

Stress resistance pathways identified by genetic association
Our genomic analysis led to several interesting and poten-
tially related genes associated with H2O2 resistance, in-
cluding ush, NPF and the pickpocket paralogs ppk7 and
ppk14. Each of these genes is implicated in several pro-
cesses and though we do not rule out causal associations
between these processes and resistance to H2O2 food,
based on published studies, we argue that genetic variation
in these genes influences feeding and/or metabolism to
explain their effect on H2O2 resistance (Fig. S7).
As we show, flies on H2O2 food substantially reduce

food intake, and their lifespans appear to be a function
of starvation (Fig. 1). Interestingly, feeding behavior is
controlled by neuronal signaling involving several of
these candidate genes. Larvae require NPF to signal the
intake of noxious food under starvation conditions [83],
and NPF-expressing neurons in adults couple hunger to
memory performance [84]. Interestingly, IlS in neurons
expressing the NPF receptor represses larval feeding,
suggesting that NPF controls feeding through neuronal
IlS [83]. We postulate that the candidate ush influences
survival on H2O2 food as a peripheral regulator of IlS
[43]. This appears to be a function directly attributed to
the USH protein, as its human homolog FOG has been
shown to directly bind and inhibit the PI3K complex
[43]. Inactivation of PI3K leads to depletion of nutrient
stores in the fat body and its constitutive activation re-
duces both nutrient stores and survival under starvation
[85]. PI3K is also a negative regulator of FOXO in the
IlS pathway, which has well characterized roles in the re-
sponse to starvation and to oxidative stressors in food
[68, 86–89]. Interestingly, ablation of insulin-like pep-
tide-producing cells in Drosophila increases survival both
on food containing paraquat and under starvation, alters
whole body levels of glycogen, and leads to misregulation
of metabolic genes in the glycogen pathway, which could
link the effect of NPF and ush polymorphism to the vari-
ation we see in glycogen metabolism [90, 91].
The effects of two other candidates, ppk7 and ppk14,

might also be linked to feeding and metabolism through
their potential role in nutrient signaling. ppk7 and ppk14
are members of the pickpocket gene family that are
expressed in neurons and signal taste cues, modulate
feeding, and may influence energy metabolism [92–95].
Interestingly, Drosophila ppk28 was recently shown to
interact with glucagon-like hormone (AKH) signaling, a
pathway involved in regulating glycogen metabolism in
flies [91, 96]. Together, the genetic analysis of H2O2

resistance has revealed pathways whose role in survival
could be explored in future studies.

Starvation as a confounding factor in stress assays
Our study used H2O2-supplemented food as the stressor.
Oxidative stressors such as H2O2, paraquat, or mena-
dione are often administered to Drosophila by supple-
menting the diet, and each of these treatments
dramatically reduces survival in a dose-dependent man-
ner [25, 87]. After screening the DGRP for survival on
H2O2 food, we noticed that these survival times corre-
lated closely with survival times under both paraquat
and menadione exposure, and even more so with sur-
vival times measured under starvation [26].
Feeding is essential to the survival of adult Drosophila,

and feeding behavior is influenced by a variety of cues, in-
cluding food acidity or the presence of bitter compounds,
hypoxia, and the nutrient content of food [97–100]. While
some stressors affect the preference for food of particular
composition [98, 101], others may alter feeding behavior
by affecting satiety [97]. We show that flies consume very
little food containing 2% H2O2. This effect is not limited
to H2O2, as many supplements have been found to reduce
feeding in flies [97], and this may extend to other oxidative
stressors including paraquat and menadione. While sev-
eral studies have detected reduced feeding in response to
paraquat-containing food [102, 103], others detected no
difference [67]. Contrary to the latter study, our data sug-
gest that feeding is significantly reduced in the three geno-
types tested in assays that measured feeding over either 2
h or 24 h (Fig. 1). Several differences in the experimental
setting may explain the discrepancy between this study
and Riahi et al. (2019) [67].
It is possible that the effect we see relates to oxidative

stress and not an aversion to food supplementation, as de-
viation from normoxia alters feeding behavior of Drosoph-
ila larvae in a manner that appears to rely on H2O2-
sensitive neurons [104]. Also, the UV light-avoidance of
egg-laying females appears to signal through H2O2-sensi-
tive taste receptors in Drosophila [105], and H2O2 also in-
hibits feeding in Caenorhabditis elegans through taste
receptors [106]. Additionally, two recent studies found
contradictory roles for the histone methyltransferase G9a
in survival in response to oxidative stressors and starva-
tion, indicating that environment and genetic background
may affect stress-response in Drosophila, but also suggest-
ing that starvation and oxidative stress resistance may
share underlying biological pathways [36, 67]. These stud-
ies suggest that susceptibility to oxidative stress and star-
vation are partially separable. However, they do not rule
out a main effect of H2O2 on survival due to starvation.
The relationship between lifespan under starvation and
survival on H2O2 food has implications for studies that
draw conclusions about stress resistance in response to
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agents administered in food. The effects of altered feeding
patterns or nutrient deprivation should be accounted for
when analyzing the effects of stressors or drugs adminis-
tered in the diet.

Conclusions
Genetic variation in a complex trait converges on the
metabolome
The sample of genotypes in this study show a consistent
metabolic signature associated with their phenotype.
Thus, a potentially wide degree of genotype space may
converge on a smaller number of metabolic pathways to
shape phenotype.

Metabolome robustness associates with stress resistance
Contrary to the metabolic change that might be ex-
pected in animals resisting stress, we find that the me-
tabolome of resistant animals appears robust to stress
treatment. This suggests that maintaining metabolism in
the presence of certain stressors is a means of survival.

Glycogen and folate metabolism and several genes
involved in nutrient signaling mediate resistance to
peroxide food
Genetic and metabolomic analysis of peroxide resistance
revealed roles for glycogen and folate metabolism and
genes with known roles in nutrient signaling. Future
studies to understand this network may reveal novel
mechanisms of stress resistance.

Starvation explains the lifespan response to peroxide
food
Drosophila are sensitive to diet, including additives and
food-borne treatments. We show that the response to
H2O2 in food can be explained by starvation. These ef-
fects may dramatically confound assays that examine re-
sponses to treatments delivered by supplementing the
Drosophila diet.

Methods
Genetic stocks
Drosophila Genome Reference Panel (DGRP) lines were
obtained from the Bloomington Drosophila Stock Center
(BDSC). Genes encoding enzymes involved in the glyco-
gen or folate pathways were identified using the Kyoto
Encyclopedia of Genes and Genomes database (http://
www.genome.jp/kegg/pathway.html). The expression of
GWAS candidates or genes encoding enzymes in the
glycogen or folate pathways were manipulated using the
GAL4 GeneSwitch/UAS system [44]. The drivers S106
(BDSC #8151), S32 (BDSC #8527) or elav GeneSwitch
(BDSC #43642) were crossed to flies carrying UAS-
RNAi transgenes targeting candidate genes: ush
(CG2762, BDSC #32950 (ush_44) and BDSC #44014

(ush_57)), Glycogenin (CG44244, BDSC #42565),
CG8665 (BDSC #62266), and pugilist (CG4067, BDSC
#42950), or the attP2 background control (BDSC #8622).
The NPFSK1 allele is a 179 bp deletion within the coding
region created by CRISPR [107]. NPFSK1 was back-
crossed at least six times into the Canton-S background
prior to testing. Stocks were maintained on standard
cornmeal-sugar-yeast food at 25 °C on a 12/12 h light/
dark cycle at 50–70% RH.

Media
Standard food was made by cooking 12 g Drosophila
agar (type II, Genesee Scientific, El Cajon, CA), 25 g
brewers yeast (MP Biomedicals, Solon, OH), 55 g glucose
monohydrate (MP Biomedicals), 30 g sucrose, 60 g corn
meal, 3 g methylparaben (Genesee Scientific). 12 g 100%
ethanol (Decon Labs, King of Prussia, PA), and 3 g pro-
pionic acid (Fisher Scientific, Pittsburg, PA) per liter of
water. A small amount of dry active yeast was sprinkled
onto standard food prior to use.
Peroxide food was made in one of two ways, for 2%

food, agar was melted into 2% glucose monohydrate and
0.3% propionic acid and, after the food had cooled to
less than 60 °C, 30% H2O2 (Fisher Scientific) was added
to reach 2%, or the same volume of water was added for
the control food. For the 3% H2O2 food, the recipe was
the same with the exception that 30% H2O2 was added
to reach 3% H2O2. Approximately 5 mL of food was dis-
pensed into 25mm wide × 95 mm tall polystyrene vials.
Starvation food was made by melting 2% agar into

0.3% propionic acid and dispensing into vials.
Food supplemented with carbohydrates was made by

adding 2% of either D-(+)-maltose, β-lactose (both from
Sigma, St. Louis, MO), or additional glucose to the 2%
glucose control food.
RU486 food to induce the GAL4 GeneSwitch system

was made by overlaying ~ 5mL standard food with ei-
ther 50uL of 25 mgmL− 1 RU486 (mifepristone, Cayman
Chemical Company, Ann Arbor, MI) dissolved in 100%
ethanol or the same volume of 100% ethanol alone for
the -RU control food. Ethanol was allowed to evaporate
overnight at 22 to 24 °C prior to using the food.

Genetic manipulation
F1 GAL4/UAS flies were collected over four days (day 0
to 3). These flies were allowed to mate for 24 h, at which
time they were anesthetized and sexed, and females (ten
per vial) were then allowed to feed for two days on
RU486 or -RU food. After 48 h on RU486 or -RU food,
flies were transferred without anesthesia to H2O2 or
control food to measure survival. Negative genetic con-
trols included F1 GAL4/attP flies which were crosses of
the GAL4 driver to either the attP2 or attP40 lines from
the Transgenic RNAi Project collection, where attP is
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the empty P-element docking site for the UAS trans-
genes (http://fgr.hms.harvard.edu/fly-in-vivo-rnai). Nega-
tive genetic controls were raised, induced and assayed in
parallel with experimental flies.

Stress survival assays
To measure the variation in resistance to oxidative stress
across a lab population, we measured the survival of
mated females from 179 DGRP lines in a multi-block de-
sign on H2O2 food [26]. For each block, flies were raised
under low-density conditions by allowing ~ 50 flies to
lay eggs for one day on standard food in bottles. Flies for
the assay were then collected over two or three days and
then allowed to mate for 24 h on standard food. Four
vials of flies on H2O2 food and one or two vials of flies
on control food without H2O2 were included for each
genotype in each trial. Each vial contained 10 mated fe-
males. Control vials without H2O2 were included to con-
firm that mortality was due to H2O2. In knockdown
experiments, we included 5 to 8 H2O2 vials and 5 to 8
control vials to ensure that any effect of gene knock-
down on survival in the absence of H2O2 could be mea-
sured. To measure line weights, 24 h after beginning a
lifespan assay, flies from an extra control food vial were
frozen at − 80 °C and were later collectively weighed on
a microbalance (XS105, Mettler Toledo, Columbus,
OH). In all blocks, dead flies in each vial were recorded
two to four times per day using D-life software until all
H2O2-treated flies had died [23]. For assays involving the
Drosophila Activity Monitor System (DAMS, TriKinetics
Inc., Waltham, MA), the activity of 38 to 48 individual
flies per genotype was recorded simultaneously every
minute over the experiment.
All calculations were performed in R [108]. Mean life-

span was estimated from H2O2 assays using the re-
stricted mean (default settings) in the Kaplan-Meier
model with the survival package [109]. We ran 17 blocks
with a mean of 14.5 lines (range = 4 to 35 lines) per
block. We used 2% H2O2 food for the first 10 blocks and
3% H2O2 was used for the last seven blocks. The switch
between 2 and 3% H2O2 was made accidentally and was
realized after the conclusion of the study. We used the
following mixed model in the R package lme4 to test for
an effect of these two food treatments on the log of
mean lifespan:

:

logeli f espan ¼ f ood þ weight þ ð1jblockÞ þ ð1jlineÞ þ ε

where food (2% or 3%) and weight were fixed effects,
and block and genotype were both random effects along
with the error term ϵ. The significance of random ef-
fects was assessed by the likelihood ratio test, and of
fixed effects by ANOVA. We found no difference

between 2 and 3% H2O2 doses on lifespan (β = − 9.1 ×
10− 4, P = 0.988).
To compare lifespans on H2O2 food to lifespans dur-

ing starvation, 2 to 5 replicates of twenty 3-to-5 day-old
mated females were assayed using D-life on agar food ei-
ther with or without 2% glucose (see Media). The life-
span of each line on H2O2 food was measured twice in
separate trials for this comparison, while the lifespan
under starvation was measured once. To measure the ef-
fect of supplemental carbohydrates on lifespan ten repli-
cates of ten 1-to-3 day-old mated females per genotype
were allowed to feed on supplemented food for four days
and then transferred without anesthesia to 2% H2O2 or
control food to assay survival.

Feeding assays
To measure feeding rate, we used both dye incorpor-
ation and CAFE assays. For both assays, flies were
allowed to mate for 24 h and then separated sexes over
light CO2 anesthesia and transferred to agar-only food
for 24 h of starvation. For dye incorporation, after starva-
tion, flies were immediately transferred without
anesthesia into vials that contained either H2O2 or con-
trol food with 2.5% FD&C Blue Dye #1 (Spectrum Che-
micals, Gardena, CA). After 2 h on dye-containing food,
flies were flash frozen in liquid N2, homogenized in
water, centrifuged at 16,000rcf for 1 min, and the ab-
sorbance of the supernatant was measured at 630 nm.
The absorbance of each sample was normalized by divid-
ing by the number of flies in the sample (n = 7 to 11 flies
per sample).
For the CAFE assay, ten replicates of 10 mated females

were starved for 24 h and transferred without anesthesia
to assay chambers. Assay chambers were 15mL conical
bottom polystyrene tubes (Corning Inc., Corning, NY)
containing water under a foam partition to maintain hu-
midity but not allow flies to drink, and fitted with a 0.75
mm ID glass capillary (World Precision Instruments,
Sarasota, FL) which had been filled with 2% glucose,
0.3% propionic acid supplemented with either 2% H2O2

or water. Flies were housed in the assay chambers at
25 °C on a 12/12 h D/L cycle in an incubator at 60–70%
RH for 24 h before the volume of food consumed was
assayed by measuring the difference in height of the top
of the liquid food in the capillary and multiplying by
π·0.375mm2.

Genetic analysis
We estimated broad-sense heritability of fly lifespan
within each of the seven blocks in which at least 13 ran-
domly chosen DGRP lines were included, treating each
block as an independent measure of heritability. For
each block, heritability was estimated by: σL

2 / (σL
2

+ σE
2) in an ANOVA, where σL

2 is the among-line
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variance in the weight-residuals of lifespan and σE
2 is the

average within-line variance [110]. Mean heritability
across blocks and its standard error were calculated
from these seven estimates. We estimated SNP heritabil-

ity ( ĥ
2
SNP ) using genetic variance ( σg

2) and the residual
variance ( σe

2) estimated by restricted maximum likeli-
hood in the NAM package [54, 111] using the model

logeli f espan ¼ Xb þ K þ ε

where the lifespans were from the 9988 individuals
across the study, Xb is the design matrix of fixed effects,
which include block, mean fly weight, Wolbachia status
and the genotype at the four segregating inversions
whose MAF was at least 3%: In(2 L)t, In(2R)NS, In(3R)P
and In(3R)Mo. K is a genetic relationship matrix made
with 712,878 LD-pruned variants (r2 < 0.5), MAF ≥5%,
genotype call rate ≥70%, in PLINK according to [112]
and is modeled as a random effect, and ε is the error
term.
For GWAS, we used residuals from linear regression

of lifespan versus weight as our measure of H2O2 resist-
ance. To correct for block effects, weight residuals of
lifespan were centered (mean = 0) and scaled to unit
variance (SD = 1) by block. For lines measured in more
than one block, we calculated the average block-
centered lifespans across blocks. We used stepwise re-
gression in the MASS package to identify significant co-
variates among the chromosomal inversions and
Wolbachia status [22]. In(2 L) t was the only significant
covariate (P = 0.0277, ANOVA) and residuals from the
linear regression of H2O2 resistance on In(2 L) t geno-
type were used in a linear model of SNP-phenotype as-
sociations in PLINK [40]. Approximately 1.93 million
SNPs with a MAF ≥0.05 and <30% missing genotypes
were tested for association with H2O2 resistance from
179 DGRP lines. To account for population structure,
we used the Tracy-Windom test in the AssocTests pack-
age to evaluate eigenvalues from 20 PCs of genotype,
and retained the first four PCs as covariates in the model
(α = 0.05, [113]). Genome-wide significance was deter-
mined by controlling for FDR at 0.2 using the q value
method [41].
Gene-level associations with H2O2 resistance were de-

rived using two rounds of permutation to reduce com-
putational burden and to estimate more precise
empirical P values. The first round tested 4810 genes
that had at least one variant associated with phenotype
with P ≤ 0.01, thus avoiding computation of gene-level
statistics for genes with a very low chance of being sig-
nificant. We refer to SNPs within 1 kb upstream and 1
kb downstream of the gene model in FB release 5.49 as
associated with that gene [22, 114]. In the initial analysis,
10,000 permutations of phenotype were performed, and

the association between phenotype and each SNP in a
gene was tested using the same linear model employed
for SNP-phenotype associations described above. An ini-
tial empirical one-tailed P value for each gene (Pgene) was
calculated by comparing the maximum test statistic
(Tmax) among the SNPs in each gene from the real
GWAS to the Tmax for each of 10,000 permutations. A
second round of selection was then run, this time choos-
ing only genes with Pgene ≤ 0.01 from the first round.
The 192 genes with initial Pgene ≤ 0.01 were then sub-
jected to 1 million more permutations and the resulting
Pgene values were used as our measure of gene-trait asso-
ciation. We use q values to estimate the FDR for each
Pgene. Over-representation by biological process and
pathways was tested using Fisher’s exact test in PAN-
THER (version 13.1) and the GO-slim subset of bio-
logical processes and PANTHER pathways among the
13,767 gene models in Drosophila melanogaster [115].

Metabolomic analysis
Eight of the resistant and eight of the sensitive DGRP
lines were selected based on their lifespans and line
weights to reduce the effect of fly size on resistance.
Lifespan for these lines on H2O2 food was again mea-
sured in a single block, and 24 h after exposure to the
H2O2 or control food, 3 replicates of 5 flies each were
collected, flash frozen in liquid nitrogen, and then stored
at − 80 °C. Each Drosophila sample was weighed and
then homogenized in 200 μL water with PBS in a micro-
fuge tube immersed in an ice bath. Methanol (800 μL)
was then added, followed by vortexing for 2 min and in-
cubation at − 20 °C for 30 min to precipitate proteins.
Samples were sonicated in an ice bath for 10 min and
then centrifuged at 17,000 rcf for 5 min at 4 °C. From
each tube, 900 μL supernatant was transferred to a new
microfuge tube for drying under vacuum at 30 °C (~ 3
h). The completely dried samples were reconstituted in
100 μL 40% water/60% HPLC-grade acetonitrile (ACN,
Fisher Scientific) for liquid chromatography-mass spec-
troscopy (LC-MS) analysis. A pooled quality control
(QC) sample was made by combining ~ 5 μL aliquots
from each reconstituted sample. The QC was analyzed
once for every ten study samples to serve as a technical
replicate throughout the data set to assess process repro-
ducibility and allow for data normalization to account
for any instrument drift.
LC-MS analysis was performed using an LC-QTOF-

MS system (Agilent Technologies, Santa Clara, CA) con-
sisting of an Agilent 1200 SL liquid chromatography sys-
tem coupled online with an Agilent 6520 time-of-flight
mass spectrometer. A 5 μL aliquot of reconstituted sam-
ple was injected onto a 2.1 × 150 mm Waters BEH-
Amide 2.5 μm particle column at 35 °C. The metabolites
were gradient-eluted at 0.3 mL/min using mobile phase

Harrison et al. BMC Genomics          (2020) 21:341 Page 17 of 22



A, 5 mM ammonium formate (Sigma) and 0.0125% for-
mic acid (Sigma) in 97% water/3% ACN, and mobile
phase B, 5 mM ammonium formate and 0.0125% formic
acid in 3% water/97% ACN (98% B for 1 min, 98 to 77%
B in 6.5 min, 77 to 39% B in 4.5 min and 39% B for 7
min). The MS interface capillary was maintained at
325 °C with a nebulizing gas pressure of 45psig, and a
drying gas flow of 9 L/min. The capillary voltage for
positive ion injection was 3.5 kV.
Data from 60 to 1000m/Z was acquired using Agilent

MassHunter Workstation data acquisition software
B.02.01 (B2116.30) in centroid mode with a threshold of
200 or 0.01%. LC-MS data was processed using XCMS
online (version 2.2.5) and a list of ion intensities for each
detected peak was generated using a retention time
index and m/z data as the identifiers for each ion (e.g.
M62T11, for median m/z 62 and median retention time
rounded to 11min). Data are reported at Level 4 of the
Metabolomic Standards Initiative, with annotation of
these features as unknown compounds conservatively
limited to exact mass and retention time [116].
Global LC-MS provided measures of 3028 features with

2.4% missing data from positive mode, and 2921 features
with 2.2% missing data from negative mode in a total of
93 samples. All the features with ≥5% missingness and
with ≥30% coefficient of variation (CV) in QC samples
were excluded, leaving 2722 and 2691 features in positive
and negative modes, respectively. We imputed the
remaining missing values using the K-nearest neighbors
imputation method implemented in the R impute package
[117]. The log2-transformed feature abundance was me-
dian normalized prior to imputation. For the unsupervised
learning, the batch effect and sample weight were re-
moved using the limma removeBatchEffect function prior
to the PCA and clustering analysis [118].
To examine the effect of trait and treatment interactions

on metabolite features we fit a linear model to the im-
puted data to detect the group differences (e.g. resistant
H2O2 vs. resistant Control, sensitive H2O2 vs. sensitive
Control, resistant H2O2 vs. sensitive H2O2, resistant Con-
trol vs. sensitive Control, and trait and treatment inter-
action) using the Bioconductor limma package, while
adjusting for the batch effect (e.g. block) and sample
weight as covariates in our model. We used the
Benjamini-Hochberg multiple testing method to control
the FDR and selected metabolites at an FDR of 10% [119].
To identify metabolic pathways whose activity could

explain the distribution of m/z and retention times
among the LC-MS features associated with trait differ-
ences within each treatment, or treatment differences
within each trait, or the interaction between the treat-
ment and trait, we used mummichog version 1.0.10 [46].
Mummichog searches known metabolic pathways for po-
tential enrichment among m/z and retention time data.

In this case, mummichog was provided sets of features
which showed significant effect from the linear model
described above. The BioCyc D. melanogaster (version
16.5) metabolic model was used as the source of path-
way data. One hundred permutations of the data were
performed by mummichog to estimate the null
distribution.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6739-1.

Additional file 1: Table S1. Variants Associated with Peroxide
Resistance all 14 SNPs associated with peroxide resistance below FDR =
0.2. Annotations are based on gene models from FlyBase version 5.48
and SNPs more than 1 kb from an annotated gene are assigned NA.
Asterisks indicate SNPS associated with more than one gene.

Additional file 2: Table S2. Summary of Mummichog Analysis.
Description: Metabolic pathways identified by mummichog from the
features detected in either positive or negative LC-MS (mode) that were
significant from group comparisons (e.g., resistant H2O2 vs. resistant
Control, sensitive H2O2 vs. sensitive Control, resistant H2O2 vs. sensitive
H2O2, resistant Control vs. sensitive Control, and interaction) in the linear
model. BioCyc pathways (pathway) were identified, and the significance
of enrichment was assessed, in part by the number of LC-MS features in
a given pathway (overlap_size) and the size of the pathway (pathway_-
size), by permutation (n = 100) to give a P-value.

Additional file 3: Table S3. Summary of XCMS metabolite feature data.
Description: Untargeted LC-MS features analyzed in this study. Features
were given names (e.g. M438T2) based on their median mass-charge
ratio (mzmed) and median retention time, in minutes (rtmed). The
minimum (mzmin) and maximum (mzmax) mass-charge ratios for each
feature are given, along with their minimum and maximum retention
time (rtmin, rtmax, respectively). When a tentative identification was
made by XCMS, the matching compound (id) is given along with the
matching ion (match_form) and the difference in mass (mz_difference)
between the LC-MS feature and the matching ion. These data are from
positive and negative modes (mode), each data mode was analyzed
separately and combined on this table.

Additional file 4: Figure S1. Trait Correlation Analysis within the DGRP.
The correlations of peroxide lifespan (scaled) with several other traits are
shown. The traits include lifespan during exposure to starvation [26, 37],
or to the log-transformed lifespans during exposure to oxidative stressors
paraquat or menadione bisulfite (menadione) [25]. Least-squares
regressions are shown in red. Above the diagonal are Pearson’s
correlation coefficients for each pair of traits. There is significant
correlation for peroxide survival with each of the traits shown (P < 0.05,
corrected for multiple comparisons).

Additional file 5: Figure S2. Permutation Approach Corrects for Bias in
Gene-Level Associations (a) –log10 Pmin for 4810 gene models plotted
over the number of variants per gene. (b) –log10 Pgene for 533 gene
models that were permuted 1 million times plotted over the number of
variants per gene. The red lines in (a) and (b) are cubic splines using the
default parameters in the R function smoothspline.

Additional file 6: Figure S3. Lifespan and Fly Mass and the Selection
of Lines for Metabolomics Mean lifespan (n = 17 to 80 flies) for each
DGRP line over the average fly mass (n = 5 to 25 flies). (a) Linear
modeling found a significant interaction between mean lifespan from all
blocks and fly mass (P = 1.6 × 10− 5). Mass remained significant across the
study after correcting for block effects (P = 7.5 × 10− 6). (b) The lifespans of
lines chosen for metabolomics minimized the effect of mass on lifespan
(P = 0.171).

Additional file 7: Figure S4. Projections of Metabolomic Principal
Components The first and second principal components of the positive
mode data labeled to indicate resistant and sensitive genotypes, as well
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as the effect of treatment (control vs. H2O2). Trait and treatment groups
are indicated by colored points and ellipses (50% CI). The percentage of
the variance explained by each PC is shown in parentheses.

Additional file 8: Figure S5. Features with Significant Trait by
Treatment Interactions. A heatmap of feature-wise Z-scores among
samples by trait (sensitive; resistant) and treatment (Ctr = control; H2O2 =
H2O2) for the 105 features with significant trait-by-treatment interaction
(FDR < 0.1). Data are clustered by row.

Additional file 9: Figure S6. Glycogen Pathways (a) biosynthesis of
glycogen from glucose in metazoans. (b) glycogen degradation into
glucose. Data are from BioCyc database (Caspi et al., 2016). Metabolites
are in roman font, polypeptides are in bold and biochemical pathways
are in italic.

Additional file 10: Figure S7. Genes Affecting H2O2 Resistance may act
in Common Pathways Several candidate genes, pathways or processes
identified in this study (boxed) are known to regulate feeding and/or
glycogen metabolism in response to cues from the nutrient
environment. This figure was generated using information from the
literature and we attempt to draw parsimonious connections without
including many of the possible intermediate genes or signaling events
involved. Genes or arrows shown in grey are used to depict hypothetical
connections between these pathways or processes.
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