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Abstract

Background: Fitness epistasis, the interaction effect of genes at different loci on fitness, makes an important
contribution to adaptive evolution. Although fitness interaction evidence has been observed in model organisms, it
is more difficult to detect and remains poorly understood in human populations as a result of limited statistical
power and experimental constraints. Fitness epistasis is inferred from non-independence between unlinked loci. We
previously observed ancestral block correlation between chromosomes 4 and 6 in African Americans. The same
approach fails when examining ancestral blocks on the same chromosome due to the strong confounding effect
observed in a recently admixed population.

Results: We developed a novel approach to eliminate the bias caused by admixture linkage disequilibrium when
searching for fitness epistasis on the same chromosome. We applied this approach in 16,252 unrelated African
Americans and identified significant ancestral correlations in two pairs of genomic regions (P-value< 8.11 × 10− 7) on
chromosomes 1 and 10. The ancestral correlations were not explained by population admixture. Historical African-
European crossover events are reduced between pairs of epistatic regions. We observed multiple pairs of co-
expressed genes shared by the two regions on each chromosome, including ADAR being co-expressed with IFI44 in
almost all tissues and DARC being co-expressed with VCAM1, S1PR1 and ELTD1 in multiple tissues in the Genotype-
Tissue Expression (GTEx) data. Moreover, the co-expressed gene pairs are associated with the same diseases/traits in
the GWAS Catalog, such as white blood cell count, blood pressure, lung function, inflammatory bowel disease and
educational attainment.

Conclusions: Our analyses revealed two instances of fitness epistasis on chromosomes 1 and 10, and the findings
suggest a potential approach to improving our understanding of adaptive evolution.

Keywords: Fitness epistasis, Admixed population, Admixture linkage disequilibrium, Co-evolution, Diseases/traits

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: xxz10@case.edu
2Department of Population and Quantitative Health Sciences, Case Western
Reserve University, Cleveland, OH 44106, USA
Full list of author information is available at the end of the article

Ni et al. BMC Genomics          (2020) 21:476 
https://doi.org/10.1186/s12864-020-06874-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-06874-7&domain=pdf
http://orcid.org/0000-0003-0037-411X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:xxz10@case.edu


Background
Epistasis - defined as gene-gene interaction - has been
found to play an important role in the etiology of com-
plex diseases [1–3]. Epistasis is an important factor in
shaping genetic variance within and between popula-
tions, and consequently phenotypic variation [1, 4–6];
epistasits is further considered to be one potential expla-
nations of missing heritability in genome-wide associ-
ation studies (GWAS) [7, 8]. Numerous statistical
methods for detecting epistasis have been developed in
recent years [9–11], including regression-based methods
[12, 13], Bayesian statistical methods [14–16], linkage
disequilibrium (LD)- and haplotype-based methods [17,
18] and machine-learning and data-mining methods [11,
19]. In general, the existing methods test for pairwise or
higher-order interactions through either an exhaustive
search of all marker combinations or a reduced marker
set in the genome, which invariably lead to a large num-
ber of tests and reduced statistical power.
Fitness epistasis refers to the interactive effects among

genetic variants at different loci on fitness, and has im-
portant consequences for adaptive evolution [20]. The
genotype-fitness map, or the fitness landscape as intro-
duced by Sewall Wright [21], is a visualization of a high-
dimensional map, in which genotypes are organized in
the x-y plane and fitness is plotted on the z axis [22].
The shape of the fitness landscape has been considered
to have fundamental effects on the course of evolution
[23]. Empirical information about the topography of real
fitness landscapes has recently emerged from studies of
mutations in the β-lactamase TEM1 [24], HIV-1 prote-
ase and reverse transcriptase [25] and Drosophila mela-
nogaster recombinant inbred lines [26]. However, direct
investigation of fitness epistasis in human subjects has
thus far been limited [27–29]. Based on the assumption
that functional interactive co-evolution could be main-
tained through complementary mutations over evolu-
tionary history [27, 30], findings from a protein-protein
network that used polygenetic distance metrics of a
large-scale high-throughput protein-protein interaction
dataset have suggested that Alzheimer’s disease (AD) as-
sociated genes, PICALM, BIN1, CD2AP, and EPHA1
demonstrate evidence of a pattern of co-evolution [29].
A signature of co-evolution has also been observed for
the killer immunoglobulin receptor (KIR) and the hu-
man leukocyte antigen (HLA) loci, where strong negative
correlation exists between the gene frequencies of KIR
and the corresponding HLA ligand [28]. Combinations
of KIR and HLA variants have different degrees of resist-
ance to infectious diseases that affect human survival
during epidemics [31].
Fitness epistasis has the potential to generate linkage

disequilibrium [32, 33] and affect the efficiency of nat-
ural selection [34, 35]. Similarly, we previously

demonstrated that fitness epistasis can create LD among
ancestry blocks in recently admixed populations such as
African Americans and Hispanics, and this LD is detect-
able by testing the correlation of local ancestry between
two unlinked loci [3]. Since ancestry blocks in recently
admixed populations are often long and their frequen-
cies are stable, testing the correlation between local an-
cestries is more powerful than testing the LD between
single nucleotide polymorphisms (SNPs) in the genome
by reducing the multiple comparison burden. Ancestry
block LD can be generated as a result of population ad-
mixture, also termed admixture LD [36, 37]. It is then
critical to separate the LD generated by fitness epistasis
from admixture LD. To address this challenge, our pre-
vious study searched for fitness epistasis occurring on
different chromosomes [3].
In this study, we developed a statistical approach to

eliminate the bias caused by admixture LD when search-
ing for fitness epistasis on the same chromosome. We
applied the method in African Americans first by esti-
mating the local ancestral correlation distribution under
the null hypothesis that there is no fitness epistasis.
Next, we searched for local ancestral correlations depart-
ing from the null distribution between two loci within
each chromosome. To verify the identified fitness epista-
sis, we searched for pairs of tissue-specific co-expressed
genes between the two identified regions on each
chromosome by utilizing the GTEx V7 cis-eQTL expres-
sion dataset [38]. Finally, we examined whether there is
an enrichment of diseases/traits associated with genes in
the GWAS Catalog [39] within the fitness epistasis
regions.

Results
Testing fitness epistasis on the same chromosome
We developed a novel statistical method to detect fitness
epistasis on the same chromosome (see Materials and
Methods). Our basic idea is that the ancestral correla-
tions between two loci after eliminating the effect in-
duced by population admixture suggests fitness epistasis
[3]. We applied this method to the African Americans
samples in the Candidate gene Association Resource
(CARe), Family Blood Pressure Program (FBPP) and
Women’s Health Initiative (WHI) cohorts. Our down-
stream analysis was based on 16,252 unrelated African
Americans after removing related individuals and con-
ducting quality controls (Table 1). The distributions of
the departure of local ancestral correlations from the ex-
pected admixture LD on the same chromosomes are
presented in Fig. 1a-c for the three datasets. We ob-
served a significant departure from a normal distribution
(the Kolmogorov–Smirnov test p-values < 2.2E-16). The
skewness was 0.763, 0.245 and 0.925 for CARe, FBPP
and WHI, respectively, suggesting the presence of fitness
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epistasis. The standard deviation of local ancestral
correlations calculated between the pairwise loci located
on different chromosomes in FBPP was larger than that
of CARe and WHI, which can be attributed to the rela-
tively small sample size of FBPP (Table 1). The QQ-
plots of P-values for testing fitness epistasis for CARe,
FBPP and WHI are presented in Figure S1. The genomic
control parameter λ were all less than 1, suggesting our
approach was conservative.
We conducted a fixed meta-analysis weighted by the

square-root of the sample sizes to combine the results
from the three cohorts [40]. The genomic control par-
ameter λ in the meta-analysis was 0.947 (Fig. 1d). We
observed multiple pairs of loci departing from the

diagonal line, indicating fitness epistasis. We also per-
formed Cochran’s Q-test to test the heterogeneity of
locus pairs for the three cohorts. Among 1,440,130 locus
pairs, 98.8% had p-values larger than 0.05, suggesting lit-
tle heterogeneity. The pairwise correlations of Z-score
among these three cohorts ranged from 0.241 to
0.411(Table S1), which were significantly larger than 0,
suggesting shared fitness epistasis among the three
cohorts.
There were 1,440,130 pairwise local ancestry correl-

ation tests performed, and these correlations were
dependent on the degree of admixture LD. We applied
Bonferroni correction to adjust for the number of tests.
We first calculated the number of independent bins (ki)
for each chromosome i using the approach by Li and Jin
[41]. The number of total independent tests in 22

chromosomes equals to
P22

i¼1
kiðki−1Þ

2 . We estimated a

total of 61,616 independent tests among 1,440,130 pair-

wise tests, yielding a significance level α = 8.11 × 10− 7.

After excluding pairwise loci with a genetic distance less

than 50 cM, we observed two pairs of genomic regions

Fig. 1 Distributions of the departure of local ancestral correlations and the corresponding statistical evidence. Distributions of the departure of
local ancestral correlations in (a) CARe (sample size: 6238), (b) FBPP (sample size: 1864) and (c) WHI (sample size: 8150). (d) QQ-plot of P-values in
meta-analysis (sample size: 16252)

Table 1 Datasets, sample size and the standard deviation of
correlations between pairwise loci on different chromosomes

CARe FBPP WHI

Total sample size 8367 3636 8150

Unrelated sample size 6238 1864 8150

σ̂a 0.015 0.027 0.012
a σ̂ is the standard deviation of correlations between pairwise loci on
different chromosomes
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with significant evidence of fitness epistasis (P-value<
8.11 × 10− 7, Table 2). We did not observe any hetero-
geneity between these pairs of regions (all Cochran’s
Q-test p values> 0.05). One pair of regions was local-
ized to chr1:77.32–102.43Mb and chr1:153.22–165.73
Mb and the other to chr10:10.26–24.59Mb and
chr10:55.20–73.20 Mb. The heatmaps of -log10(P-
value) for pairwise loci on chromosomes 1 and 10 are
presented in Figs. 2 and 3, respectively. On the heat-
map of chromosome 1 (Fig. 2d), we observed two sig-
nificant regions (red regions in Fig. 2). But the
genetic distance between the pairwise loci in the re-
gion in the lower right quadrant was less than 50 cM;
therefore, we excluded this signal due to the concern
that admixture LD was not eliminated entirely. On
the heatmap of chromosome 10, we also observed
two significant regions in the meta-analysis (Fig. 3d).
However, one of the red regions was near the telo-
mere, which may reflect errors in local ancestry infer-
ence [42]. Therefore, this region was also excluded
from further analyses. In the heatmaps of CARe,
FBPP and WHI (Figs. 2a-c and 3 a-c), similar heat-
map patterns were observed, suggesting that the fit-
ness landscapes in CARe, FBPP and WHI were
consistent.
We observed the largest proportion of African

ancestry on chr1:153.22–165.73Mb and the largest pro-
portion of European ancestry on chr10:10.26–24.59Mb
(Figure S2). These two regions demonstrate substantial
excess of local ancestry and may suggest natural selec-
tion. We calculated the integrated haplotype score (iHS)
statistic [43] using selscan [44] in the four genomic re-
gions using CARe samples (Fig. 4). We observed mul-
tiple loci with positive selection evidence (|iHS| > 2) in
these four genomic regions. Similar signals could also be
observed in ARIC, CARDIA, CFS, JHS and MESA co-
horts separately (Figures S3 and S4).
If there were fitness epistasis between two loci on the

same chromosome, then we would expect less recom-
bination crossover events (or switch) between African
and European chromosomes occurring between these
two loci. We calculated the average number of cross-
overs between African and European chromosomes
(ANCAEC) per centiMorgan in the region defined from
the right boundary of region 1 and left boundary of re-
gion 2 (Table 2) on chromosomes 1 and 10 and then
compared with the ANCAEC per centiMorgan in the
rest of genome (Table S2). If fitness epistasis between

two genomic regions was not present, then we would ex-
pect the ANCAEC per centiMorgan between the two re-
gions to follow an approximately normal distribution,
with the mean and variance estimated from the whole
genome data after excluding the two regions. The
ANCAEC per centiMorgan between the two detected re-
gions on chromosome 1 is significantly less than what is
present in the totality of the other domains in the gen-
ome (P-value = 7.51 × 10− 35), and similar results were
observed on chromosome 10 (P-value = 2.53 × 10− 7),
consistent with our findings of fitness epistasis in these
two regions.

Co-expression of genes in the two epistatic regions on
chromosome 1 and 10
We hypothesized that the regions demonstrating fitness
epistasis will likely harbor co-expressed genes in mul-
tiple tissues, attributable to genes of similar function.
We identified genes residing within the four regions on
chromosomes 1 and 10 using the GENCODE dataset
[45]. In these four regions there are known to reside
400, 492, 217 and 211 protein-coding genes (chr1:77.32–
102.43Mb; chr1:153.22–165.73Mb; chr10:10.26–24.59
Mb and chr10:55.20–73.20Mb), respectively. GTEx V7
tissue-specific normalized gene expression matrices and
covariates were downloaded from the GTEx Portal
(https://www.gtexportal.org/home/datasets). We calcu-
lated residuals of gene expression after adjusting for sex,
platform, the first three principal components and
tissue-specific latent factors inferred by the GTEx con-
sortium using the PEER method [46]. We performed
pairwise gene expression correlation analysis using the
residuals of gene expression between genes in regions 1
and 2 of chromosome 1. Similar analysis was performed
for the gene pairs between genes in regions 1 and 2 of
chromosome 10. We applied Bonferroni correction to
adjust for the number of tests, which was calculated by
the number of independent genes in region 1 multiplied
by the number of independent genes in region 2 for a
pair of epistatic regions. We calculated the number of
independent genes in a region using the approach by Li
and Jin [41]. For each tissue, the number of genes
expressed in each region varies, but we used the max-
imum number of independent genes when adjusting for
multiple comparisons. Our calculations established the
significance levels of 1.689 × 10− 6 and 5.261 × 10− 6 for
chromosomes 1 and 10, respectively. Because gene ex-
pressions are correlated across tissues [47], we did not

Table 2 Significantly epistatic region pairs on the same chromosome

Chromosome Region 1 (Mb) Protein coding genes Region 2 (Mb) Protein coding genes

Chr 1 77.32–102.43 400 153.22–165.73 492

Chr 10 10.26–24.59 217 55.20–73.20 211
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correct for the number of tissues. The thresholds we
used adopted to a false discovery rate of < 5% for both
chromosome 1 and 10.
We observed 599 pairs of genes that are significantly

co-expressed in the epistatic regions on chromosome 1,
and 161 pairs of genes that are co-expressed in the epi-
static regions on chromosome 10, for at least 1 tissue.
We performed a tissue-specific enrichment analysis for
these co-expressed genes with the GENE2FUNC option
implemented in FUMA [48]. Across 53 tissue types, an
enrichment test of differentially expressed genes (DEG)
showed significantly higher co-expression of these genes
in the lung (P-value < 0.05/53) (Figure S5). The heat-
maps of the -log10(P-value) for these co-expressed gene
pairs on chromosomes 1 and 10 are shown in Figures
S6-S7, respectively. We observed multiple significantly
co-expressed gene pairs in multiple tissues (Fig. 5). For
example, IFI44 and ADAR are co-expressed in almost all
tissues in the GTEx data. We also observed the DARC
gene, which encodes the Duffy antigen receptor for hu-
man malaria [49], was significantly co-expressed with
VCAM1, S1PR1 and ELTD1 in multiple tissues. The

proportion of significant co-expressed gene pairs in epi-
static regions was substantially higher than the regions
that did not overlap with the epistatic regions on
chromosome 1 and chromosome 10 (Table S3).

Enrichment of diseases/traits-associated genes from the
GWAS catalog in epistatic regions
GWAS have identified genetic variants that are signifi-
cantly associated with phenotypes, typically in large sam-
ple cohorts. We hypothesized that GWAS hits for the
co-expressed gene pairs may have the same disease/
phenotype. We compared the GWAS hits on the epi-
static regions with the remaining regions by examining
the genome wide signals from the GWAS Catalog [39].
We observed an approximate 2-fold enrichment in re-
gion 2 of chromosome 1 compared with the average
number of GWAS hits on chromosome 1 (Table S4). To
calculate the P-value of the enrichment, we divided the
chromosomes into non-overlapping regions after exclud-
ing the target region and then calculated the average
number of hits and the corresponding standard error.
The P-value of the enrichment was calculated by a Z-

Fig. 2 Heatmap of -log10(P-value) between pairwise loci located on chromosome 1 in (a) CARe, (b) FBPP, (c) WHI and (d) meta-analysis. Each
point represents the -log10(P-value) between two loci. In (a), (b) and (c), if -log10(P-value) is larger than 6, we set the value as 6. In meta-analysis
(d), if -log10(P-value) is larger than -log10(significant level), we set the value as 7, which reaches the significant level
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score, which was defined as the difference between the
observed number of GWAS hits in a target region and
the average number of GWAS hits, divided by the stand-
ard error. We assumed that the Z-score followed a
standard normal distribution. The enrichment in region
2 of chromosome 1 was statistically significant (P-value =
0.0099, Table S4), suggesting that the epistatic region
likely harbors more GWAS hits. We also observed 15
pairs of genes associated with the same diseases/traits on
chromosomes 1 and 10 (Table 3). Among them, 5 pairs
of genes have GWAS hits for multiple traits.

Discussion
In this study, we developed a novel statistical method to
detect fitness epistasis by testing the correlation between
local ancestries on the same chromosome in a recently
admixed population while eliminating potential bias
caused by admixture LD. Applying our method to three
large African American cohorts, CARe, FBPP and WHI,
we identified two significant epistatic genomic region
pairs on chromosomes 1 and 10. These genomic regions
also demonstrated high iHS scores, suggesting signatures

of natural selection. We observed that historical recom-
bination events are less likely to occur between a pair of
epistatic genomic regions. A large number of gene pairs
on the chromosomes 1 and 10 epistatic regions are co-
expressed in multiple tissues in the GTEx data. Further-
more, multiple co-expressed gene pairs in these epistatic
regions are associated with the same diseases/traits in
the GWAS Catalog.
Several statistical methods for detecting epistasis have

been developed, either by exhaustively testing all pos-
sible pairwise interactions between SNPs or performing
similar tests in a reduced SNP set. The pairwise search-
ing methods that use genotyping array data would
require billions of pairwise tests, which are computation-
ally inefficient and result in a high statistical penalty be-
cause of the multiple testing burden [9]. In our method,
we tested pairwise interactions between the ancestral
blocks on the same chromosome in a recently admixed
population. The current approach can be viewed as an
extension of our previous study [3], which focused on
pairs of ancestries on different chromosomes. This ap-
proach is more powerful because the ancestral blocks

Fig. 3 Heatmap of -log10(P-value) between pairwise loci located on chromosome 10 in (a) CARe, (b) FBPP, (c) WHI and (d) meta-analysis. Each
point represents the -log10(P-value) between two loci. In (a), b and (c), if -log10(P-value) is larger than 6, we set the value as 6. In meta-analysis (d),
if -log10(P-value) is larger than -log10(significant level), we set the value as 7, which reaches the significant level
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Fig. 5 Heatmap of P-values of significantly co-expressed gene pairs located on (a) chromosome 1 and (b) chromosome 10 in different tissues. Y-
axis represents the names of different tissues. X-axis represents the names of gene pairs. These gene pairs are significantly co-expressed in more
than 2 tissues. Red block represents the significant signals

Fig. 4 The recent selection signal (|iHS| > 2) on the epistatic regions in CARe cohort. (a) and (b) are the selection signal on region 1 (chr1:77.32–
102.43 Mb) and region 2 (chr1:153.22–165.73 Mb) on chromosome 1, respectively. (c) and (d) are the selection signal on region 1 (chr10:10.26–
24.59 Mb) and region 2 (chr10:55.20–73.20 Mb) on chromosome 10, respectively
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are long and often extend beyond 50 cM [36, 50]. We di-
vided the genome into 400 kb bins and used the middle
marker of each bin to represent the local ancestries of
the corresponding bins [3]. This is reasonable because of

the long admixture LD. It is well known that the local
ancestries in neighboring bins are highly correlated.
Therefore, we applied the widely used method by Li and
Jin [41] to calculate the number of independent tests to

Table 3 Co-expressed gene pairs and their common associated diseases/traits

Chr Gene in
region 1

Gene in
region 2

Disease/trait Significant tissues

Chr
1

AK5 CADM3 Educational attainment (years of
education)

Brain Nucleus accumbens basal ganglia

Chr
1

DPH5 DAP3 Inflammatory bowel disease Uterus

Chr
1

ELTD1 DARC White blood cell count Artery Aorta;Artery Tibial; Colon Transverse; Esophagus Gastroesophageal
Junction; Esophagus Mucosa; Ovary; Skin Not Sun Exposed Suprapubic; Vagina

Chr
1

ELTD1 DCST2 Eosinophil counts Adipose Subcutaneous

Chr
1

GFI1 SLAMF7 Multiple sclerosis Heart Atrial Appendage; Ovary; Uterus

Chr
1

MIR137HG CADM3 Educational attainment (years of
education)

Brain Hypothalamus

Chr
1

MTF2 NDUFS2 Eosinophil counts Brain Hippocampus

Chr
1

PKN2 ASH1L Red blood cell count Skin Not Sun Exposed Suprapubic

Chr
10

CAMK1D JMJD1C General cognitive ability Brain Hypothalamus

Chr
10

CAMK1D JMJD1C Educational attainment Brain Hypothalamus

Chr
10

CAMK1D JMJD1C Educational attainment (years of
education)

Brain Hypothalamus

Chr
10

CAMK1D JMJD1C Highest math class taken Brain Hypothalamus

Chr
10

CAMK1D JMJD1C Lung function (FEV1/FVC) Brain Hypothalamus

Chr
10

CAMK1D JMJD1C Educational attainment Brain Hypothalamus

Chr
10

CELF2 CCDC6 Systolic blood pressure Spleen

Chr
10

CELF2 CCDC6 Pulse pressure Spleen

Chr
10

FAM107B CTNNA3 Night sleep phenotypes Brain Caudate basal ganglia; Brain Cortex; Brain Nucleus accumbens basal
ganglia; Brain Putamen basal ganglia

Chr
10

FRMD4A REEP3 Red blood cell count Breast Mammary Tissue

Chr
10

NEBL JMJD1C Interleukin-10 levels Pituitary

Chr
10

NEBL JMJD1C Lung function (FEV1/FVC) Pituitary

Chr
10

PIP4K2A CTNNA3 Breast cancer Brain Caudate basal ganglia; Brain Cortex; Brain Nucleus accumbens basal
ganglia

Chr
10

PIP4K2A CTNNA3 Obesity-related traits Brain Caudate basal ganglia; Brain Cortex; Brain Nucleus accumbens basal
ganglia

Chr
10

PLXDC2 BICC1 Heel bone mineral density Stomach

Chr
10

PLXDC2 BICC1 Pulse pressure Stomach
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determine the significance level. Our method could still
be conservative because the genomic control values in
CARe, FBPP and WHI - as well as in the meta-analysis -
were all less than 1. We observed two significant epi-
static regions on chromosomes 1 and 10 in the meta-
analysis. The general correlation patterns were similar
across the stratified analysis in CARe, FBPP and WHI
cohorts (Figs. 2 and 3), suggesting that the detection of
fitness epistasis regions was not likely due to chance. We
also observed that the pairwise correlations of Z-scores
among these three cohorts ranged from 0.241 to
0.411(Table S1). These significant correlations suggested
that there was shared fitness epistasis among the three
cohorts. If there were no fitness epistasis between a pair
of regions, the Z-scores from different cohorts would be
independent and the correlation should be close to 0. It
is possible that population admixture could have lead to
correlations of Z-scores among the three cohorts. How-
ever, we carefully modeled and excluded the contribu-
tion by the population admixture (see Materials and
Methods). The genomic control parameters of the QQ
plots of the Z-scores were all under 1, suggesting that
population admixture was well controlled.
The gene pairs that likely contribute to the detected

fitness epistasis are co-expressed in multiple tissues and
associated with the same traits on the epistatic regions
on chromosome 1 and 10. ELTD1 and DARC are co-
expressed in multiple tissues (Table 3 and Fig. 5) and
also associated with white blood cell count [51, 52]. Both
ELTD1 and DARC have been reported to be under selec-
tion pressure [53, 54]. DARC encodes the Duffy antigen
receptor for human malarial parasites and ELTD1 plays
an essential role in heart development and the preven-
tion of cardiac hypertrophy. The genes DPH5 and DAP3
are co-expressed and associated with inflammatory
bowel disease (IBD) [55]. IBD is a chronic inflammatory
and autoimmune disease that plays an important role in
pathogen defense and other functions that are under
strong natural selection in humans; thus, the associated
genes will exert a negative influence on reproductive fit-
ness [56]. Gene pairs ELTD1-DCST2 and MTF2-
NDUFS2 are associated with eosinophil counts [51].
Gene pairs PKN2-ASH1L and FRMD4A-REEP3 are asso-
ciated with red blood cell count [51]. Variation in red
and white blood cell count are associated with allergic
diseases and certain infections [52, 57, 58], which play
important roles in natural selection. We also observed
several gene pairs associated with educational attain-
ment, such as gene pairs AK5-CADM3, MIR137HG-
CADM3, and CAMK1D-JMJD1C [59, 60]. These gene
pairs are all co-expressed in brain tissues (see Table 3)
and involved in brain-development processes and
neuron-to-neuron communication [59]. Two recent
studies suggest on-going negative selection against

education attainment in Western European populations
[61, 62]. Other interesting gene pairs associated with the
same diseases/traits are shown in Table 3. We note that
IFI44 and ADAR are co-expressed in almost all the tis-
sues in the GTEx data (Fig. 5). It has been reported that
IFI44 is associated with psychiatric disorders [63], febrile
seizures [64], immune response to measles vaccine (mea-
sles-specific neutralising antibody titre) [65] and asthma
[66], and ADAR is associated with Aicardi–Goutières
syndrome [67], cerebrospinal fluid levels of Alzheimer’s
disease-related proteins [68], lung cancer [69] and pros-
tate cancer [70]. Psychiatric disorders are moderately to
highly heritable and also highly disabling and confer de-
creasing fitness as observed in schizophrenia [71]. A re-
cent study also suggested that genetic variations
associated with Alzheimer’s disease and asthma were less
common in people who lived longer [72].
As mentioned above, most of the diseases/traits listed

in Table 3 have genetic evidence for natural selection in
humans, although this would reflect the marginal effect
of a single gene. Fitness epistasis leaves genomic signa-
tures as a result of co-evolution through a trait. One way
that a gene may modify a trait is by affecting gene regu-
lation in different tissues. This may be a mechanism that
explains fitness epistasis for co-expressed genes. Thus,
our study adds evidence to the hypothesis that genetic
interactions contribute to human fitness, a phenomenon
incompletely explored in prior literature.
Using the enrichment of GWAS hits to strength our

finding of fitness epistasis is a potential limitation inher-
ent in this analysis. In the GWAS Catalog, the associated
genetic variants were mapped based on the gene and
variant positions. A significant variant from GWAS may
actually regulate a gene far away from the variant.
Therefore, our analysis based on gene and variant posi-
tions may not truly reflect the GWAS hit enrichment
and the current enrichment estimation may be
conservative.
It is worth noting that our approach is only applicable

to recently admixed populations such as African Ameri-
cans or Hispanics. One of our proposed future directions
to extend this method would involve more complex
admixed populations, such as the Uygur and Tibetan
populations. In addition, the efficiency of our method is
influenced by the accuracy of the local ancestry infer-
ence. With additional whole genome sequencing data
becoming readily available, inference of local ancestry
can be improved. We expect more genomic regions with
fitness epistasis will be identified in the near future.

Conclusions
In summary, detecting fitness epistasis is extremely chal-
lenging, especially in human populations. Our method
takes advantage of a recently admixed population and
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reliable local ancestry inference using genetic variants
from genotyping array data. The potential contribution
of this approach is supported by the analysis using em-
pirical data. Our analyses revealed two instances of fit-
ness epistasis on chromosomes 1 and 10, and the
findings provide novel insight into our understanding of
adaptive evolution.

Materials and methods
Admixture LD in an admixed population
In the hybrid isolation model, the admixture LD (D)
decay between two loci without epistasis can be approxi-
mated by an exponential function [73, 74],

D ¼ D0 1−dð Þt ≈ D0e
−td;

where d is the genetic distance between the two loci and
t is the time elapsed since the initial admixture event
(admixture time). Admixture LD decay is more complex
in the continuous gene flow model [36]. However, this
exponential function can well mimic our data, as dem-
onstrated in the WHI African American samples (Figure
S8). We observed that this exponential function well fits
the empirical admixture LD curve. We did observe that
there were departures from the fitting line, especially
with distance over 50 cM, which may be attributed to
statistical noise or fitness epistasis. Our goal is to separ-
ate fitness epistasis from the statistical noise.

Estimate the departure from the admixture LD curve
Let Xi be the local ancestry at locus i and Xj be the local
ancestry at locus j. We assumed the two loci are lo-
cated on the same chromosome. We denoted βij as
the observed correlation of local ancestries between
loci i and j,

βij ¼ corr Xi;X j
� �

Let f(d) be an exponential function representing the
admixture LD between two loci with genetic distance (d)
under no fitness epistasis,

f dð Þ ¼ a0 þ a1 exp −a2dð Þ;

where a = (a0, a1, a2) is the vector of parameters in the
exponential function. We added a parameter a0, which
represents a background LD when the two loci are
unlinked.
For each locus i, we calculated the correlation of local

ancestries βij between loci i and j for all j ≠ i on the same
chromosome using genotyping array data [3]. We fit a
nonlinear regression model by optimizing the following
function,

âi ¼ argmin
a

X
j≠i

βij− f dij
� �� �2 !

:

We predicted the admixture LD between loci i and j
under the null of no fitness epistasis by

β̂ij ¼ âi0 þ âi1 exp −âi2dij
� �

:

The departure of observed admixture LD from the ex-
pected admixture LD is calculated by

βres
� �

ij ¼ βij−β̂ij:

The above calculation can also be applied to estimate

β̂ji , that is, given locus j, we can estimate â j and there-

fore β̂ji and (βres)ji. In theory, β̂ij ¼ β̂ji . But slight vari-

ation can be observed because different pairwise loci are
applied. Thus, we averaged (βres)ij and (βres)ji as the final
departure of observed admixture LD from the expected
admixture LD when no fitness is present,

β̂res
� �

ij
¼

βres
� �

ij þ βres
� �

ji

2
:

Testing for fitness epistasis

When there is no fitness epistasis, the departure ( β̂res) of
admixture LD from the null follows a normal distribu-

tion β̂res∼Nð0; σ2Þ , where σ2 is the unknown variance.
This variance can be estimated by the local ancestral
correlations between two loci on different chromosomes,
as suggested by Wang et al. [3]. Since the genetic dis-
tance between two loci located on different chromo-
somes was expected to be infinite, the standard
deviation of local ancestral correlations between these
loci was therefore served as the population standard de-
viation of the local ancestral correlations. Thus, we esti-
mated σ by using the standard deviation of ancestral
correlations among the loci located on the different
chromosomes. To test fitness epistasis, we applied a Z-

test Zij ¼
ðβ̂resÞij
σ̂ , with the P-value calculated by Pij = 2(1 −

ϕ(|Zij|)).

Dataset
We applied our method to three African American co-
horts: (1) the CARe study initiated by National Heart,
Lung, and Blood Institute, which included 8367 individ-
uals from five studies: the Atherosclerosis Risk in Com-
munities study (ARIC), the Coronary Artery Risk
Development in Young Adults study (CARDIA), the
Cleveland Family Study (CFS), the Jackson Heart Study
(JHS), and the Multi-Ethnic Study of Atherosclerosis
(MESA) [75]. All the samples were genotyped using the
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Affymetrix 6.0 platform. These genotype data were down-
loaded from the dbGAP repository: ARIC: dbGaP
phs000280.v1.p1, CARDIA: dbGaP phs000285.v2.p2, CFS:
dbGaP phs000284.v2.p1, JHS: dbGaP phs000499.v4.p2,
MESA: dbGaP phs000283.v7.p3. (2) the NHLBI Family
Blood Pressure Program (FBPP), which collected 3636
African American subjects from three networks, GenNet,
GENOA (dbGaP phs000379.v1.p1), and HyperGEN
(dbGaP phs001293.v2.p1) [76], who were genotyped using
either Affymetrix 6.0 or Illumina 1M platform; (3) the
Women’s Health Initiative (WHI), which includes 8150
African American postmenopausal women, who were ge-
notyped with the Affymetrix 6.0 platform (dbGaP
phs000386.v8.p3). QCs were described in Wang et al.
(2017) [3]. We excluded related samples and samples with
extremely low (≤ 5%) or high (≥ 98%) African proportions.
Our downstream analysis was based on 16,252 unrelated
African Americans after quality control (Table 1).
We first inferred the local ancestries for the three

cohorts with SABER+ [77]. SABER+ was designed to re-
construct genetic ancestral blocks in admixed popula-
tions based on the Markov-hidden Markov model.
Following the analysis procedure of our previous study
[3], we divided the genome into 7389 bins with an aver-
age length of 400 kb due to high correlations between
adjacent local ancestries. The local ancestry at the mid-
dle marker was used to represent the local ancestry of
each bin. Due to potentially high local ancestry inference
errors on the telomeres and centromeres [42], we
excluded bins located within 2Mb of these two types of
regions from the analysis. We further performed meta-
analysis to combine the results from the three datasets
using the weighted Z-score method as described in the
METAL software [40]. Finally, we used gene expression
data from the GTEx dataset [38] and diseases/traits asso-
ciations from the GWAS Catalog [39] to strengthen our
findings of fitness epistasis.
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